4. Как работают гены

Как ДНК кодируют структуру белков

Каждая наша клетка содержит около 30 тысяч различных генов, в то время как некоторым бактериям достаточно всего 500 генов. В генах содержатся коды, согласно которым синтезируются белки и определяется порядок расположения в них аминокислот. В каком бы месте человеческого тела ни находились клетки, они всегда содержат один и тот же набор генов. Однако в зависимости от типа клеток — клеток кожи, нервных или мышечных — в них для синтеза новых белков задействуются различные гены.

Длинные цепочки ДНК в хромосомах клетки плотно сжаты. Компактное расположение ДНК в хромосомах осуществляется за счет особых белков, вокруг которых наматываются нити ДНК. Но в клетке присутствуют белки, которые, чтобы облегчить синтез новых белков согласно содержащемуся в ДНК коду, при необходимости переводят ДНК из компактной формы в развернутую. Под воздействием этих белков готовящиеся к делению клетки хромосомы развертываются и с этого момента занимают в 10 тысяч раз больше места.

Нуклеотиды типа «А», «Т», «С» и «G», входящие в состав длинных молекул ДНК, располагаются в определенном порядке, чтобы обеспечивать кодирование белков при их синтезе, который происходит из 20 различных видов аминокислот. ДНК при этом выполняют роль матрицы — каждому белку соответствует свой ген, по образцу которого осуществляется синтез аминокислот, образующих нужный белок. Таким образом генетический код воплощается в белках, и последовательность нуклеотидов в гене определяет последовательность аминокислот в белке. Это очень похоже на азбуку Морзе, где точки, тире и их совокупность соответствуют определенным буквами алфавита. Последовательность нуклеотидов, которые считываются по три за один раз, соответствует последовательности аминокислот в белке. При этом набор из трех нуклеотидов, которые считываются за один раз, кодирует одну аминокислоту. Так, например, набор нуклеотидов AUG кодирует аминокислоту ацидометионин.

Существуют 64 комбинации нуклеотидов, однако синтезируются всего 20 различных видов аминокислот. Это означает, что некоторые троичные последовательности нуклеотидов используются не для синтеза аминокислот, а для обозначения прерывания процедуры синтеза. Совершенно бессмысленных наборов троичных нуклеотидов не бывает — каждый из них выполняет какую-то определенную функцию. Существует и несколько наборов нуклеотидов, которые кодируют одни и те же аминокислоты. Самый крупный ген состоит из двух миллионов нуклеотидов, размещенных на каждой из его нитей, а самый маленький — из одной тысячи.

Наши ДНК — это помещенные внутри клеточного ядра кладези ценнейшей информации. Однако синтез белков происходит не в ядре, а в окружающей его цитоплазме клетки. Как же это происходит? Сначала содержащийся в ДНК белковый код передается другой аминокислоте — РНК, которая, подобно ДНК, представляет собой цепь из четырех нуклеотидов. Однако, в отличие от ДНК, представляющей собой двойную цепочку, свернутую в спираль, РНК состоит из одной цепочки нуклеотидов. Другое отличие РНК от ДНК заключается в том, что вместо нуклеотида «Т», в цепочке РНК помещен нуклеотид урацил, который легко связывается с нуклеотидом «А». Это означает, что цепочка РНК может присоединяться к цепочке ДНК и дополнять ее.

Открытие РНК последовало после того, как ученые пришли к выводу о том, что должен существовать какой-то механизм передачи генетической информации от ДНК, находящейся внутри клеточного ядра, в цитоплазму. Эта мысль посетила Сиднея Бреннера, ученого из Южной Африки, который является моим кумиром, и Фрэнсиса Крика во время научной конференции, которая состоялась в 1960 году в Кембридже. После этого Бреннер и Крик отправились в США, чтобы провести серию экспериментов, и в ходе их открыли РНК.

Ген включается в активную работу по синтезу новых белков тогда, когда он передает свой код РНК при помощи специального белкового механизма, который копирует генетический код ДНК, представляющий собой последовательность нуклеотидов.

Процесс считывания генетической информации, который называется «транскрипция», начинается с открытия и развертывания небольшой части двойной спирали ДНК в конце хромосомы. Генетические коды этого участка хромосомы копируются затем на растущую по мере продвижения процесса копирования молекулу РНК; при этом белковый копирующий механизм продвигается вдоль нити ДНК. Процесс переноса генетического кода заканчивается, когда на конце РНК синтезируется так называемая терминальная группа аминокислот — ее присутствие сигнализирует об окончании белковой цепочки данного кода. Многие могут подумать, что после этого РНК готова к тому, чтобы на основе ее матрицы начался синтез нужного белка. Однако, как и все остальное клетках, все не так просто.

Большинство генов, которые находятся в наших клетках, содержат в своем составе намного больше нуклеотидов, чем реально требуется для синтеза белков. Те нуклеотиды, которые не нужны для синтеза, называются нитронами. Они копируются на РНК, но перед тем, как она может начать синтез новых белков, удаляются.

Те области РНК, которые непосредственно кодируют последовательность аминокислот в белках, называются аксонами. Они вступают в дело лишь после того, как интроны ретируются при помощи хитроумного механизма, который называется «сращиватель РНК». Удаляя интроны, он одновременно проверяет состояние эксонов и гарантирует то, что они четко связаны воедино. После этого РНК разрешается покинуть клеточное ядро и перейти в область цитоплазмы.

При этом существует еще одно затруднение. Когда РНК разрезается ради извлечения из нее интронов, а затем сращивается опять, то часто эксоны соединяются в неверном порядке. Это приводит к тому, что они начинают синтезировать совсем не те белки, которые нужны. Поэтому специальные механизмы клетки тщательно следят за сращиванием эксонов, чтобы в конечном счете синтезировались именно те белки, которые действительно необходимы, и именно в тех местах клетки, где их ждут.

Активация гена и последующее копирование на РНК содержащейся в нем наследственной информации зависят от воздействия особых белков — так называемых транскрипционных факторов, — которые привязываются к специальным контрольным зонам ДНК. Эти контрольные зоны сами не осуществляют кодирование новых белков — они лишь опознают транскрипционные факторы и используются особым белковым механизмом, который передает генетические коды РНК для дальнейшего синтеза белков. Транскрипция начинается в промоторной области, которая располагается непосредственно перед кодировочной областью. Процесс транскрипции гена начинается только в том случае, если надлежащий транскрипционный фактор достигает соответствующей контрольной зоны. Мы говорим о том, что ген активирован, если осуществляется его транскрипция в РНК; если же транскрипция не осуществляется, то такой ген считается неактивированным.

Для работы с отдельным геном может быть задействована не одна, а сразу несколько контрольных зон, ибо активация гена может потребоваться в самых различных ситуациях и обстоятельствах. Невозможно переоценить важность контрольных зон. Мы вновь вернемся к ним, когда станем рассматривать вопросы развития эмбриона.

Белок, синтезированный одним геном, может активировать несколько других генов или равным образом деактивировать их. Таким образом, в клетке существует система взаимодействия различных генов, определяющая поведение клетки и ее изменение со временем.

Срощенная РНК покидает клеточное ядро, проникает в цитоплазму и направляется к рибосомам — местам сборки белков. Рибосомы — это небольшие округлые белковые образования, в которые попадают РНК и в которых в точном соответствии с последовательностью нуклеотидов РНК происходит синтез новых белков — так, что расположение аминокислот синтезируемых белков точно соответствует последовательности нуклеотидов матричной РНК.

Само превращение последовательности нуклеотидов РНК в последовательность аминокислот вновь синтезируемого белка в рибосомах происходит при помощи небольших молекул РНК, известных как «передаточные РНК». Эти молекулы способны распознавать набор из трех нуклеотидов, которые считываются за один раз, и прикрепляться к той аминокислоте, которая соответствует этому троичному набору. Например, аминокислота лизин кодируется последовательностью нуклеотидов «ААА» или «AAG», а аминокислота тирозин — последовательностью нуклеотидов «UAC» либо «UAU». Передаточная РНК распознает эти последовательности нуклеотидов. Затем вступает в действие рибосома — своеобразная клеточная «фабрика» по производству новых белков.

Рибосомы являются одними из наиболее сложных образований клетки. В их состав входят белки и РНК. Рибосома движется вдоль молекулы РНК и соединяет воедино аминокислоты при помощи передаточных РНК. Рибосомы работают весьма быстро — как и все остальные части клетки — и за одну секунду способны соединить две аминокислоты. В результате белки синтезируются в период времени от 20 секунд до нескольких минут.

В настоящее время мы способны понять природу мутаций и то, как они могут влиять на поведение клетки. Мутация ДНК может поменять последовательность нуклеотидов в генах и тем самым привести к изменению последовательности расположения аминокислот во вновь синтезируемых белках. Это способно изменить пространственную структуру белка и его функции, привести к образованию белка-мутанта, что может иметь как негативные, так и позитивные последствия. Все это мы рассмотрим в последующих главах. Мутации, меняющие функции белков в яйцеклетках или сперматозоидах, являются основными факторами эволюции, поскольку они будут унаследованы следующими поколениями. Изменения в ДНК, расположенных в контрольных зонах, также влияют на поведение клеток, поскольку они определяют, когда и в какой клетке происходит активация наследственного гена.

ДНК человека содержат 3 миллиарда основных пар нуклеотидов. В среднем человеческий ген содержит 27 тысяч основных пар нуклеотидов, однако при этом лишь 1300 пар нуклеотидов в составе такого гена используются для кодирования последовательности аминокислот во вновь синтезируемом белке, определяя тип и последовательность примерно 430 его аминокислот. Люди, не являющиеся родственниками, отличаются друг от друга в среднем всего на 1 процент, однако подобное различие включает в себя и различия в трех миллионах их нуклеотидов.

Трудно представить себе, как такой гигантский объем информации может содержаться в наших клетках. Меня поразила выставка, где вся последовательность наследственной информации человека была для наглядности представлена в виде книг, заполнявших собой огромный шкаф. Достаточно открыть любую из этих книг на какой угодно странице и увидеть, что каждый из этих томов заполняет описание последовательности нуклеотидов, напечатанное мелким шрифтом: «ATGCTGACCGATTAGTCA» — и так далее, при этом в каждом таком томе не меньше пятисот страниц. Достаточно просто взглянуть на это, чтобы испытать чувство неподдельного почтения к способности клеток хранить и использовать наследственную информацию. Если вытянуть содержащуюся в клетке цепочку генов в длину, то длина ее составит два метра. Каким же образом клетка находит нужный ей ген? И откуда клетка знает, в какой из этих книг и на какой именно странице находится нужный ей ген? Что определяет переход гена в активированное состояние и создание РНК, содержащей информацию, необходимую для синтеза какого-то конкретного белка?

Ответ на этот вопрос раскрывает фундаментальные особенности механизма контроля за поведением клетки, ибо именно это определяет, какие белки содержатся в клетке, что, в свою очередь, непосредственно определяет и само поведение клетки.

Теперь мы видим, что делают гены — или, вернее, чего они не делают, ибо во время всего процесса синтеза новых белков они остаются пассивными. Они лишь задают код, по которому будут синтезированы белки, и образуют контрольные зоны, которые запускают процесс синтеза белков. Когда же приходит время продублировать сам ген, белки также выполняют эту работу.

Необходимо всегда помнить, что ДНК — это не чертеж, по которому строится весь организм. Это станет совершенно очевидно, когда мы будем рассматривать вопросы развития эмбриона. Тем не менее совершенно поразительным является то, что гены управляют огромным множеством процессов, проистекающих в клетке за счет того, что в данный момент времени задают синтез тех или иных белков. В наших клетках содержится около 30 тысяч различных генов, и если мы представим, что несколько сотен различных белков могут обусловить какое-то определенное состояние клетки, то получается, что если внутри клетки активированы различные комбинации генов, то мы имеем дело с миллиардами разных клеток, каждая из которых синтезирует свой уникальный набор белков.

Сейчас ученые признают, что структура генов и роль ДНК — гораздо более сложные, чем это считалось прежде. Лишь небольшая часть ДНК, содержащихся в наших хромосомах — менее 2 процентов, — непосредственно отвечает за синтез белков. В структуре хромосом существует множество повторяющихся участков, функция которых до конца не ясна. Некоторые исследователи вообще считают, что в структуре ДНК присутствует множество «лишних», не играющих никакой роли, и просто накопленных за многие годы эволюции звеньев.

Звенья, в которых содержатся повторяющиеся нуклеотиды, составляют не менее 10 процентов объема хромосом. При этом некоторые из них перемещаются из одного места в другое. Подобные переходы приводят к тому, что звено ДНК копируется и затем вставляется в какое-то другое место. Многие мутации, которые происходят в клетке, как раз и порождаются тем, что эти звенья переходят в кодировочные или контрольные зоны и тем самым меняют их характер.

ДНК и гены — гораздо более сложные образования, нежели было принято считать ранее. Появились данные, которые свидетельствуют о том, что области, отвечающие за кодирование белков некоторых генов, пересекаются со спиралями других генов, расположенных на большом расстоянии от них. Почему так происходит, не известно.

В течение долгого времени РНК считалась рядовым переносчиком генетической информации от генов к рибосомам, где происходит синтез белков. Однако совсем недавно стало ясно, что РНК выполняют и множество других функций. В ходе глобальных исследований, которые скоординированно проводились учеными многих стран, было выяснено, что существует множество РНК, являющихся копиями с отдельных участков ДНК, функции которых до конца не ясны. Ученые установили, что происходит значительное копирование генетической информации с ДНК на РНК, не связанное с целью последующего синтеза новых белков. Существует даже мнение, что количество подобных РНК превышает общее количество генов в клетках. Образующиеся в результате этого микро-РНК способны регулировать функции «основной» РНК и контролировать, будет ли синтезирован белок по ее матрице или нет. Некоторые микро-РНК контролируют группы белков, состоящих из сотен различных разновидностей.

Микро-РНК состоят всего из 20 нуклеотидов. Одна из их основных функций — связываться с РНК, содержащей информацию, необходимую для синтеза белка, и уничтожать ее, с тем чтобы данный белок не был синтезирован. Эти микро-РНК со всей очевидностью представляют собой еще один контрольный механизм клетки, регулирующий синтез отдельных видов белков.

Все белки синтезируются в рибосомах, содержащихся в цитоплазме клетки. Некоторые рибосомы прикреплены к таким внутренним структурам клетки, как оболочки эндоплазматического ретикулума. Белки, синтезируемые подобными рибосомами, поступают в эндоплазматический ретикулум и таким образом передаются в распоряжение своеобразной «почтовой службы» клетки, которая отправляет их в те места, где они нужны. Транспортировка белков происходит благодаря взаимодействию различных клеточных оболочек. Это — довольно сложная, но весьма эффективная «почтовая служба».

Существует и особая «пересыльная служба» для организации перемещений РНК, которые переносятся в те места, где необходимо появление новых белков, и только тогда, когда они туда попадают, синтез необходимых белков осуществляется.

Когда перемещается сама клетка, то ее передняя часть требует большого количества актина, из которого образуются волокна, позволяющие передней части клетки перемещаться вперед. В этом случае соответствующие РНК доставляются в переднюю часть клетки, и там синтезируется актин. Ученым еще предстоит выяснить, как РНК перемещаются в эту область клетки и каким образом синтез новых белков по их матрице задерживается, пока они там не окажутся.

При этом клетки «чувствуют» время. Функции тела в значительной степени зависят от суточного ритма, который нарушается, когда мы совершаем авиаперелеты в направлении на восток или запад. Этот ритм воздействует не только на цикл бодрствования и сна, но и на выделение гормонов и работу печени и почек. На формирование 24-часового цикла воздействует интенсивность дневного света: когда свет достигает сетчатки глаза, то соответствующие сигналы посылаются в особый отдел мозга — главный «хранитель времени» в организме. Однако биологические часы имеются не только в мозге: представляется, что каждая клетка нашего тела обладает своеобразным часовым механизмом. В таких разных тканях, как ткани печени и легких, присутствуют гены, которые активируются и деактивируются в зависимости от различных фаз 24-часового цикла.

Клетки, которые находятся в искусственной среде длительный срок — скажем, на протяжении двадцати лет, также способны подчиняться этому 24-часовому циклу. Вполне вероятно, что часовой механизм клеток куда больше влияет на состояние нашего здоровья, чем было принято считать ранее. И возможно, в будущем будут найдены более эффективные способы переводить биологические часы клеток на новое время.

Каждый человек обладает уникальным набором генов, если только у него не имеется брат-близнец. Благодаря этому анализ ДНК может использоваться для исключительно точной идентификации личности, что является весьма эффективным инструментом при расследовании уголовных дел и установлении личностей жертв катастроф.

Но содержащиеся в наших хромосомах ДНК не так стабильны, как можно было бы ожидать. Нуклеотиды могут перескакивать в структуре хромосомы с одного места на другое. Изменение структуры ДНК, вызванное заменой всего лишь одного нуклеотида, может иметь серьезные последствия, ибо следствием такого изменения становятся изменения в синтезируемых клеткой белках. Например, изменение нуклеотида в гене, отвечающем за синтез гемоглобина, приводит к серповидной анемии: белок получает из-за этого неправильную структуру и деформирует кровяную клетку, придавая ей ненормальную серповидную форму.

Мутации, то есть изменения в последовательности нуклеотидов в ДНК, случаются в первую очередь во время деления клетки и репликации всех ее составных частей. Однако ДНК может быть повреждена и из-за этого подвергнуться мутации не только в этот момент. ДНК, как и все остальные молекулы клетки, непрерывно бомбардируется другими молекулами, стремящимися найти себе подходящий объект, с которым они могли бы соединиться и создать новое химическое соединение. К сожалению, в результате некоторых таких столкновений структура ДНК может подвергнуться изменению — то есть место одних нуклеотидов в ней займут другие, в результате чего записанная в ней наследственная информация изменится. Очень часто это ведет к тому, что белки, синтезируемые по матрице измененной ДНК, приобретают новые свойства и не могут работать эффективно. Ультрафиолетовое и радиоактивное излучение, а также некоторые химические соединения также вызывают изменения в структуре ДНК, приводящие к мутациям.

При этом заметим, что в ходе эволюции были выработаны способы противодействия нежелательным мутациям и в случае повреждения цепочки ДНК немедленно вступают в действие особые механизмы по ее «ремонту». В этом случае спирали ДНК разводятся в разные стороны особыми белками в местах повреждения и «неправильный» нуклеотид заменяется на «правильный».

Когда мы говорим о перемещающихся генах, нельзя забывать о вирусах. Это не что иное, как гены, упакованные в защитную белковую оболочку. Вирусы сами по себе нежизнеспособны и воспроизводят себя только тогда, когда оказываются внутри клетки. Они используют для целей собственного воспроизведения внутриклеточные механизмы, созданные для репликации и размножения белков. В основе своей вирусы являются паразитами. Их размножение внутри клетки часто приводит к ее гибели, в результате чего клетка разрушается и выпускает из себя вирусы, которые заражают другие клетки.

Вирусы содержат простейшие геномы, необходимые для синтеза их защитной белковой оболочки и выработки энзимов, позволяющих воспользоваться клеточными механизмами воспроизводства и размножения. Оболочка простейшего вируса — пример возбудитель кори — состоит из белка одного вида и позволяет укрывать всего лишь три гена. Более сложные вирусы имеют несколько сотен генов и сложную оболочку. В дальнейшем мы рассмотрим вопрос о том, каким образом вирусы порождают болезни. Отметим, что гены некоторых вирусов являются не ДНК, а РНК.

Гены контролируют все, что происходит в нашем теле, — именно они определяют, какие белки и в каком количестве присутствуют в наших клетках. Однако у меня не вызывают симпатии рассуждения тех, кто приписывает влиянию генов все особенности человека — от красоты до нетерпимости. Коренятся или нет подобные отличительные черты в наших генах — слишком сложный вопрос. Сама его постановка может невольно ввести в заблуждение. Ведь, например, не существует единого гена, отвечающего за глаз. Многие сотни, если не тысячи генов влияют на развитие глаза, и при этом сбой или ошибка даже в одном из них может привести к возникновению серьезных отклонений.

Сам язык, при помощи которого обычно описываются многие явления, связанные с генами, часто провоцирует недоразумения. Ни один нормальный человек не возьмется утверждать, что автомобильные тормоза сконструированы для того, чтобы вызывать аварии. При этом, однако, очень часто можно встретить упоминания о «генах гомосексуальности» или «генах преступности».

Когда автомобильные тормоза, предназначенные для того, чтобы обеспечить безопасное вождение, отказывают, случается авария. Точно так же если преступные наклонности человека имеют некоторую генетическую основу, что отнюдь не является точно установленным фактом, то они проявляются не потому, что существует пресловутый «ген преступности», но потому, что изменения во множестве генов привели к нежелательным последствиям. Подобные изменения могли, например, повлиять на развитие мозга на ранней стадии или вызвать изменения в функционировании нервных клеток уже взрослого мозга.

Важно осознать, что в настоящий момент даже обладание знаниями обо всех генах человека не поможет нам точно предсказать, как будет функционировать его клетка или как будет развиваться его эмбрион. Возьмите, к примеру, следующую фразу: «Намерен тлена соединенью двух сердец я не может ли знает любви и безмерной измена мешать конец любовь не положить убыли». Слова, из которых она составлена, взяты из начальных строк знаменитого сонета Шекспира. По ним можно представить себе, чему посвящен его сонет, — кажется, речь в нем идет о любви, однако из набора этих слов совершенно невозможно понять, какие мысли автор сонета выражает в связи с этим. Примерно в таком же положении мы находимся сейчас в отношении понимания роли генов.

Мы знаем всю последовательность спирали ДНК человеческого генома, то есть последовательность цепочки ДНК всех человеческих генов. И это является выдающимся достижением, ведь мы можем идентифицировать 30 тысяч генов, которые контролируют наше развитие и нашу жизнь. Однако каждый из этих генов — что-то вроде отдельного слова в поэме и сам по себе мало что говорит нам о том, как будет вести себя в человеческом теле тот белок, который синтезируется на основе заключенной в нем наследственной информации, и о том, как этот белок будет взаимодействовать с другими белками. Выяснение последовательности человеческого генома — это только начало познания, и существует еще слишком много неизвестного, что только предстоит открыть. Если мы узнаем, как контролируется развитие эмбриона, то тогда, может быть, доберемся и до смысла шекспировского текста, который должен выглядеть так:

Мешать соединенью двух сердец

Я не намерен. Может ли измена

Любви безмерной положить конец?

Любовь не знает убыли и тлена.

Всего шесть лет назад были опубликованы две версии последовательности генома человека. Обе эти версии — результат сравнительных исследований геномов многих анонимных доноров. Не так давно один американский ученый, Крейг Вентер, опубликовал последовательность своего собственного генома.

Сложно представить, что именно приводит Вентера в восторг, когда он рассматривает свой собственный геном, однако в принципе изучение последовательности нуклеотидов в гене может быть потенциально полезным, — например, благодаря этому можно выявлять известные науке виды мутаций генов, увеличивающих риск тех или иных заболеваний.

Можно ли, исследуя геном человека, предсказать, как будет вести себя организм в целом? Относительно отдаленного будущего ответ, вероятно, будет утвердительным, но сейчас это так же невозможно, как реконструировать связный текст сонета по отдельным хаотично разбросанным словам. Ключ к пониманию того, как функционируют живые системы, — это белки, а гены всего лишь предоставляют информацию, благодаря которой белки синтезируются. Знание структуры человеческого генома подскажет, какие белки будут синтезироваться в клетках, однако это не позволит нам получить легкий ответ на вопрос, когда и где такие белки будут синтезироваться в теле растущего эмбриона. Ведь десятки тысяч белков постоянно и непрерывно взаимодействуют друг с другом внутри клетки, но при этом геном сам по себе не может задавать ни характер, ни последовательность этих взаимодействий.

Загрузка...