3. Как мы функционируем

Как белки определяют работу клеток

Подобно заводам, оснащенным многими сборочными линиями, клетки исполняют множество функций: растут и делятся, двигаются и поддерживают свою структуру. Клеточная деятельность — это и мускульные сокращения, и передача нервных импульсов. Все это делается при помощи белков.

Многие наши клетки организованы в ткани — такие, как ткани кожи, легких и кишечника, — и выполняют различные функции в соответствии со своим предназначением. Возьмите, например, кожу, которая защищает нас от укусов насекомых и проникновения грязи, не позволяет жидкостям проникать в организм и выходить из него наружу. Внешний слой нашего кожного покрова представляет собой мертвые клетки, которые все время отшелушиваются и отпадают. В основном они состоят из белка кератина, который предопределяет их прочность. Этот же белок отвечает за то, чтобы связь клеток друг с другом была эластичной и одновременно прочной.

Потеря клеток кожи, которые располагаются на самой поверхности, восполняется за счет образования новых, которые образуются из стволовых клеток, находящихся в подкожном слое. Другой тип клеток образует нашу разветвленную кровеносную систему, в которую входят кровеносные сосуды, артерии, вены и капилляры общей протяженностью почти в сто тысяч километров. Одних капилляров — мельчайших сосудов, соединяющих артерии и вены, — в нашем организме 40 миллиардов.

Клеточные оболочки позволяют клеткам обмениваться газами, питательными веществами и выводить продукты распада. Каждая клетка находится на расстоянии не более чем в несколько клеток от обслуживающего ее капилляра.

При этом все наши клетки состоят из одних и тех же молекул и используют одни и те же механизмы для производства белков. Их химический состав также одинаков — все они примерно на 70 процентов состоят из воды. 95 процентов клеточной массы образовано всего лишь четырьмя видами атомов — углерода, водорода, азота и кислорода, которые соединяются друг с другом в самых различных комбинациях для того, чтобы создать множество видов молекул, содержащихся в клетках. Сложная структура клетки как раз и обусловлена тем, что все эти простейшие атомы соединяются друг с другом в разнообразнейших комбинациях, образуя белки и аминокислоты. Представляется, что главным качеством клеток является их способность генерировать великое множество различных химических соединений на основе одних и тех же базовых элементов — и эта способность зависит от белков.

Внутри каждой клетки имеется набор молекул, которые выполняют эти функции. Основная роль здесь у наиболее сложных белковых молекул. В нашем теле содержится до 200 различных разновидностей клеток — кожи, печени, жировых, нервных клеток и так далее, и функции всех их устанавливаются определенными белками. Различия в назначении клеток предопределяются различиями в составе белков.

Число аминокислот в белковой молекуле обычно варьируется от 50 до 2000. При этом существуют белки, состоящие всего из 30 аминокислот, и белки, состоящие из 10 000 аминокислот. Последовательность и состав аминокислот в каждом белке уникальна, и именно это определяет особенности поведения данного белка. Функционирование белков во многом зависит от их взаимодействия с другими белками или молекулами, причем это взаимодействие характеризуется весьма высокой степенью избирательности: определенный белок может связываться лишь с одной из тысяч разных молекул, находящихся в клетке. Эта особенность связана с характерным трехмерным строением каждого белка, соответствующим лишь определенному типу молекул. Благодаря такому строению, например, на поверхности белка может появляться полость, куда и проникает молекула, с которой он должен взаимодействовать.

Белки определяют структуру клетки — и в то же время представляют собой строительный материал, из которого образуется клетка. Белки являются основным компонентом клеточной оболочки, благодаря им клетки обладают способностью к перемещению. Белки также могут проникать сквозь клеточную оболочку и таким образом переносить молекулы из клетки и внутрь нее, они передают информацию, которой обмениваются клетки, действуют в качестве рецепторов и осуществляют контроль за работой генов. Белки могут объединять свои усилия, они соединяются вместе, образуя волокна, микротрубочки, кольца, слои ткани и т. д.

Основная функция некоторых белков — выступать в роли энзимов. Энзимы — это белки, которые связываются с молекулами и изменяют их структуру, расщепляя одни молекулы на более мелкие, а другие, наоборот, объединяя. Таким образом, они играют определяющую роль в формировании новых молекул и в расщеплении пищи на более мелкие молекулярные единицы; через это они влияют на поведение клеток. Практически все происходящие в клетке процессы контролируются и осуществляются различными типами белков.

Молекулярная цепочка аминокислоты чрезвычайно гибка, она обладает способностью свертываться и складываться любым образом. Глядя на нее, любой акробат может лишь позавидовать. Трехмерная структура, которую она образует, предопределяет функцию белка. То, какую форму принимает в конечном счете белок, зависит от последовательности входящих в него аминокислот. Представьте себе веревку, которая на всем своем протяжении завязана в узлы и петли и унизана крючками. Если складывать такую веревку хаотичным образом, то некоторые крючки зацепятся за петли и форма веревки изменится. То же самое происходит и с белками. Весьма часто белковые цепи соединяются неправильно, и тогда клетка уничтожает их. Правда, на это расходуются значительные запасы клеточной энергии. Для того же, чтобы белковые цепи связывались воедино правильно, в клетке существуют особые белки-поводыри.

Если меняется всего лишь одна аминокислота в длинной белковой цепочке, то меняется и вся структура белка. А это может вызвать серьезные изменения в его деятельности и привести к ненормальному функционированию всей клетки. Именно это обстоятельство лежит в основе многих заболеваний. Ярким примером является серповидная анемия, при которой меняется всего лишь одна аминокислота в белке гемоглобина. Эта мутация приводит к нарушению структуры белка, из-за чего меняется форма кровяной клетки — она приобретает серповидные очертания, что, в свою очередь, мешает нормальному прохождению кровяных клеток через кровеносные капилляры.

Каким же образом определяется порядковое место той или иной аминокислоты в белковой цепи? Фреду Сангеру, биохимику из Кембриджа, была присуждена Нобелевская премия за то, что он определил последовательность аминокислот в белке инсулина. Сангер разработал метод отделения от белковой цепи аминокислоты, находящейся на самом ее конце. Благодаря этому методу он получил возможность отделить одну за другой все аминокислоты, входящие в белок инсулина, и определил точную последовательность их расположения в белковой цепочке.

Однако даже точное знание расположения аминокислот не всегда помогает понять пространственную структуру белка. Самым удобным методом для выяснения этого является превращение белка в кристалл, который затем просвечивается рентгеновскими лучами. Изучение углов отражения лучей и позволяет распознать пространственную структуру белка. На практике же наиболее быстрым методом для определения пространственной структуры белка является его сравнение с другим белком, пространственная структура которого уже известна. Поэтому чем больше белков изучено, тем проще становится процедура выяснения пространственной структуры новых белков.

Некоторые белки необходимо точно доставить в определенные области клетки. Столь же важно не пускать кое-какие белки в места, где их присутствие нежелательно. Но каким же образом белки направляются на путь, по которому им следует устремиться для выполнения своих специфических функций? Ведь в большинстве наших клеток имеются миллионы белковых молекул, представляющие несколько тысяч разных видов белков. Как устанавливается порядок в этом хаосе? Но все, оказывается, просто: выбор места, в котором белки должны находиться, закодирован в самой их структуре. Свободно плавающие внутри клетки белки каждую секунду встречаются с тысячами других молекул, в том числе и белковых. В результате такого взаимодействия они получают нужную информацию и попадают туда, где и должны находиться.

Ключевую роль в определении местоположения отдельных белков играют клеточные оболочки, поскольку белки не могут проникать сквозь эти оболочки, не обладая специальными средствами транспортировки. Основной же структурой клетки, помогающей белкам оказаться в нужном месте внутри клетки, является эндоплазматический ретикулум. Именно туда устремляются сначала все белки, и именно оттуда они перенаправляются в нужные места. Это происходит за счет видоизменения структур белков, например за счет добавления их к молекулам сахаров, благодаря чему меняется характер их дальнейшего присоединения к другим белкам.

К числу наиболее поразительных по своим функциям белков относятся энзимы. Они могут преобразовывать молекулы одного типа в молекулы другого типа, могут расщеплять молекулы на исходные компоненты, могут соединять воедино две разные молекулы, и таким образом благодаря им становится возможным синтез множества молекул. Энзимы являются катализаторами, способными в миллион раз ускорить химическую реакцию, причем в процессе этого сами они остаются неизменными. Они действуют поразительно быстро, успевая воздействовать на тысячи молекул в течение одной секунды. Поэтому скорость протекания химических реакций внутри клетки исключительно высока.

Все основные химические процессы, которые протекают внутри клетки, происходят с участием энзимов. Они расщепляют молекулы сахаров, которые обеспечивают нас энергией в форме АТФ. Образно энзим можно представить в виде замка, к которому должен подойти определенный ключ — та молекула, которую этот энзим должен изменить. Когда «замок»-энзим встречается с «ключом»-молекулой, он подгоняет этот ключ под себя — меняет его форму, либо отнимая у него некоторые молекулярные компоненты, либо, наоборот, добавляя их. Энзимы часто действуют по командному принципу: молекулы, обработанные одними энзимами, становятся объектами воздействия следующих групп энзимов. Это приводит к образованию сложных внутриклеточных механизмов производства энергии или синтеза новых молекул.

Энзимы, находящиеся в нашем кишечнике, играют ведущую роль в переваривании пищи, которую мы потребляем, — иными словами, в расщеплении ее на мелкие компоненты, которые проникают в систему кровообращения и разносятся кровью по организму, предоставляя питание содержащимся в нем клеткам. Другим ярким примером того, как действуют энзимы, является функционирование содержащегося в нашей слюне и слезах лизоцима, который предотвращает распространение в организме бактериальной инфекции. Этот энзим способен разрывать молекулярные цепочки сахаров, находящиеся во внешней оболочке бактериальных клеток, что ведет к ее разрушению и гибели бактерий.

Действие лизоцима основано на том, что он добавляет к белковой цепи микроба молекулу воды, вставляя ее между двух групп молекул сахаров и заставляя тем самым белковую цепь рваться. Молекулы воды бомбардируют цепочки сахаров все время, однако существующий энергетический барьер не позволяет им разорвать цепь. Энзим же видоизменяет цепочку сахаров так, что устойчивость ее понижается и молекула воды проникает в нее.

При этом энзимы не действуют автономно, сами по себе — их деятельность контролируется другими молекулами клетки и в случае необходимости регулируется. Подавление их активности осуществляется по методу обратной связи. Так, если энзим вырабатывает некое вещество «X», то оно, в свою очередь, вырабатывает некое вещество «Y», которое вступает во взаимодействие с энзимом для того, чтобы приглушить его активность.

Форма клетки и ее передвижения определяются внутренним каркасом, состоящим из белковых нитей и трубочек, которые, вместе с различными клеточными оболочками, являются своего рода костями и мускулами клетки. Находящиеся в сложном и непрерывном взаимодействии друг с другом белковые нити и трубочки поддерживают форму клетки, заставляют эту форму видоизменяться, а также обеспечивают передвижения клетки. Нити играют роль скреп, которые оберегают клетку от воздействия сил, стремящихся деформировать ее. Из них образуются подобия белковых веревок, благодаря которым форма остается неизменной. В некоторых клеточных тканях, таких, как, например, кожа, белковые нити скрепляют клетки в местах их соединений, чтобы придать тем самым ткани дополнительную прочность. Это пример весьма умной инженерии. Нити также помогают удерживать оболочку ядра, которое формируется из небольших белковых образований, и создают своего рода дорожки, по которым внутри клетки двигаются различные мелкие частицы.

Микротрубочки представляют собой достаточно прочные полые трубки, обладающие способностью быстро возникать и затем исчезать в различных частях клетки в зависимости от посылаемых оттуда сигналов. Их относительная нестабильность наделяет их способностью быстро перестраиваться и перегруппировываться. Мы уже наблюдали это, когда рассматривали процесс деления клеток, во время которого микротрубочки участвуют в процессе разделения хромосом.

Подобно нам самим, клетки обладают развитым внутренним скелетом и высокой мобильностью. Внутренний скелет клетки строится из белков. Они же определяют движение клетки. Примером этого являются мускульные сокращения — фундаментальное свойство наших клеток. Когда наши мускулы сокращаются, они становятся короче. Можно было бы подумать, что сокращаются мускулы благодаря укорачиванию некоторых молекул, однако это не так. Клетки применяют для этого более хитроумный способ.

Особенно ясно это видно на примере скелетных мускулов — мышц, которые прикрепляются к костям скелета и состоят из выстроившихся в цепочку небольших мускульных образований, способных к сокращению. Каждое длинное волокно скелетных мышц представляет собой одну огромную клетку, которая в процессе эволюции сформировалась из нескольких малых клеток. Мышечное волокно содержит в себе специфические элементы, связанные с механизмом сокращения, — миофибриллы. Каждая миофибрилла состоит из саркомеров, следующих друг за другом. Саркомер — это функциональная единица мышцы, именно сокращение саркомеров и вызывает сокращение всей мышечной группы. В состав саркомера входят сократительные белки — актин и миозин.

Миозиновые и актиновые нити собраны в мышечные пучки, устроенные таким образом, что актиновые нити находятся между миозиновых. Сокращение мышцы происходит в результате скольжения миозиновых и актиновых нитей относительно друг друга, в результате чего вся миофибрилла становится короче. Это похоже на то, как если бы пальцы одной руки скользили между пальцами другой. Особые области миозиновых нитей воздействуют на актиновые нити, заставляя их двигаться относительно себя, и для этого требуется АТФ. Из-за этой способности к совершению мускульных движений миозин называют белком — мотором мышц.

Актин — это многоликий белок, способный легко вытягиваться в нити и затем распадаться опять на элементарные составляющие. Он может образовывать и жесткие ткани, и — вместе с миозином — сократительные волокна, которые во время деления клетки создают сократительное кольцо, приводящее к образованию двух клеток из одной делящейся. Актин обеспечивает способность клетки к движению. Особенно наглядно это проявляется при движении белых кровяных телец через ткани, когда они внедряются туда для уничтожения вторгнувшихся в организм вредоносных бактерий.

В передней части двигающейся клетки имеется густой пучок актиновых нитей. Разрастаясь, они начинают давить на клеточную оболочку, заставляя ее выпячиваться вперед. Затем эти актиновые нити сокращаются, за счет чего вся клетка подтягивается вперед. Этот процесс повторяется вновь и вновь. Все это похоже на то, как если бы кто-то карабкался вверх по лестнице, помогая себе лишь одной рукой. Однако и в задней части двигающейся клетки также происходят сокращения, которые вызываются уже миозиновыми нитями.

Непрерывное движение внутри клетки в основном вызвано движением митохондрий и небольших пузырьков, окруженных оболочкой, которые перемещаются скачкообразными движениями. В основе этих движений лежит тот же принцип, что и в основе мускульных сокращений. Находящиеся в клетке белковые нити и микротрубочки являются теми «рельсами», вдоль которых совершаются все эти движения. Осуществляется же движение благодаря двигательным белкам, которые связываются одним концом с оболочкой пузырька или митохондрии и затем путешествуют вместе с ними вдоль белковой нити или микротрубочки. Продвижение пузырька или митохондрии происходит за счет того, что с ними поочередно связываются последовательно расположенные двигательные белки, «вытягивающие» их таким образом вперед. Все это напоминает то, как тянутся относительно друг друга во время мускульных сокращений актиновые и миозиновые нити.

Двигательные белки отвечают также за движения ресничек. Многие наши клетки имеют так называемые реснички — что-то вроде одиночного волоска, находящегося на внешней оболочке. Эта ресничка изгибается и выпрямляется, заставляя окружающую жидкость обтекать клетку. Подобные реснички очищают, например, наши легкие: миллиарды ресничек в легких все время находятся в непрерывном движении, освобождая их от пыли и выводя ее наружу через рот. Сперматозоид, который после эякуляции устремляется навстречу яйцеклетке, также движется за счет похожего на ресничку отростка, но только значительно большего по своим размерам. Этот отросток изгибается и заставляет сперматозоид продвигаться вперед с завидной скоростью, превращая его в подобие оснащенного мощными ластами пловца.

Основным механизмом, приводящим в движение реснички, являются девять пар микротрубочек, собранных в кольцеобразную структуру, которая может изгибаться за счет скольжения микротрубочек относительно друг друга. Это скольжение осуществляется благодаря особым двигательным белкам. Недавно было признано, что гораздо больше клеток, нежели считалось ранее, имеют реснички и что при помощи этих ресничек клетки могут подавать друг другу различные сигналы.

Белки, расположенные на внешней оболочке клетки, также исполняют важнейшие функции. К внешней оболочке привязываются молекулы сахаров, создавая нечто вроде дополнительного защитного чехла, предохраняющего клетку от механических повреждений и неблагоприятного химического воздействия. На внешней поверхности клеточной оболочки имеются также белки, которые связываются с белками, расположенными на поверхностях других клеток, соединяя тем самым клетки воедино и позволяя им образовать клеточную ткань.

На внешней поверхности клеточных оболочек размещаются также белковые рецепторы, которые позволяют улавливать и передавать внутрь клетки сигналы, поступающие от других клеток. Поступающая таким образом информация передается прежде всего генам, находящимся в клеточном ядре, и оповещает их о том, что происходит в других клетках. Передача подобных сигналов протекает в виде сложных реакций и взаимодействия различных клеточных белков.

Клетки должны иметь возможность воспринимать сигналы соседних клеток, а также сигналы, которые поступают им издалека в виде гормонов. Например, гормон инсулин сигнализирует клеткам о том, что они должны позволить молекулам сахаров проникать в себя. В силу того, что белки внешней оболочки клетки играют определяющую роль в связях клетки с окружающим ее миром, число разновидностей таких белков достигает десяти тысяч, и они представляют собой значительную составляющую часть общей армии белков.

Основу клеточной оболочки составляют молекулы жиров, или липиды, и молекулы белков. Ключевая роль молекул жиров в строительстве клеточной оболочки основана на том, что они по природе своей отталкивают воду. Молекулы жиров не смешиваются с водой, а также держатся отдельно друг от друга. Они покрывают оболочку клетки тончайшим двойным слоем, благодаря чему она становится гибкой и подвижной и одновременно практически непроницаемой для молекул, растворимых в воде, — таких, как молекулы глюкозы. Размещенные в клеточной оболочке жировые молекулы похожи на крошечных животных, которые не выносят воду: головная часть этих молекул делает все, чтобы убраться из области, где есть вода, а хвостовая часть способна вынести лишь незначительный контакт с водой.

В образующем клеточную оболочку жировом слое размещены и молекулы белков, составляющие примерно половину всех молекул клеточной оболочки; они способны контролировать перенос и перемещение молекул сквозь клеточную оболочку. Благодаря этому клеточная оболочка обладает высокой степенью подвижности и гибкости, что позволяет ей принимать любую форму при изменении формы самой клетки, и не разрываться даже тогда, когда что-то протыкает ее извне. Новая клеточная оболочка формируется клеточным пузырьками — мельчайшими образованиями, которые, в свою очередь, также имеют оболочку. Легкость, с которой жировые молекулы образуют двойной защитный слой, сыграла важную роль в эволюции клеточной оболочки и самой клетки в целом.

Несмотря на то что жировые молекулы не терпят воды, вода все же способна проникать сквозь клеточную оболочку внутрь клетки, а также выводиться из нее. Но жировая оболочка пропускает внутрь в основном молекулы воды, не имеющие электрического заряда. Те же молекулы, что содержат электрический заряд — например, натрий и ионы калия, — проникают сквозь оболочку с большим трудом.

Ион — это атом или молекула, которая либо потеряла, либо приобрела один или два электрона, в результате чего получила отрицательный или положительный электрический заряд. Клеточную оболочку ионы преодолевают при помощи специального механизма транспортировки, состоящего из белков. Размещенные в клеточной оболочке белки также обеспечивают проникновение в клетку и вывод из нее крупных молекул. Клеточная оболочка содержит в себе две белковые системы по транспортировке молекул: одни белки обеспечивают чужим молекулам каналы проникновения сквозь оболочку, а другие выступают в роли их непосредственных переносчиков.

Концентрация ионов натрия вне клеток примерно в 20 раз выше их концентрации внутри клеток. Концентрация ионов калия вне клеток, наоборот, примерно в 20 раз ниже их концентрации внутри клеток. Подобная разница достигается за счет работы белкового «натриевого насоса» — белка, который выносит из клетки молекулы натрия и закачивает молекулы калия. Работа этого «насоса» чрезвычайно важна для того, чтобы не допустить разрыв клеточной оболочки под напором нагнетаемой в клетку воды. Если работа белкового «насоса» остановится, то давление разорвет оболочку клетки и клетка погибнет. Около одной трети всей энергии клетки — то есть около одной трети вашей энергии — уходит на обеспечение работы этого насоса.

Для того чтобы в клетку могла проникнуть глюкоза, являющаяся необходимым компонентом для обеспечения ее энергией, требуется особый белковый механизм; его роль осуществляет белок инсулин. В присутствии инсулина глюкоза переносится сквозь клеточную оболочку при помощи особых групп молекул, которые называются «транспортировщиками глюкозы». Они размещаются в мельчайших пузырьках внутри клетки. Когда инсулин связывается с оболочкой клетки, пузырьки перемещаются по системе микротрубочек, пока также не достигают оболочки и не связываются с ней. После этого транспортировщики глюкозы проникают в оболочку клетки и переносят сквозь нее молекулы глюкозы. Отказы в работе этого механизма приводят к развитию диабета.

В отсутствие инсулина глюкоза не способна преодолеть клеточную оболочку и проникнуть внутрь клетки. Инсулин вырабатывается бета-клетками поджелудочной железы, и, если эти клетки перестают вырабатывать инсулин, развивается диабет первого типа. Диабет первого типа является болезнью аутоиммунного происхождения, в ходе которой иммунная система ошибочно атакует и уничтожает бета-клетки. Проявляется диабет первого типа уже в раннем возрасте. Диабет второго типа, наоборот, поражает человека в возрасте более зрелом; причина его в том тем, что рецепторы клеточной оболочки перестают реагировать на инсулин и он не может ее преодолеть. Основным фактором риска при возникновении диабета второго типа является ожирение, поскольку увеличившиеся жировые клетки вырабатывают большее количество веществ, в том числе жирные молекулы особого вида, которые провоцируют устойчивость к инсулину. Напротив, «исхудавшие» жировые клетки вырабатывают вещества, способствующие поглощению инсулина. При диабетах обоих типов потребление глюкозы клетками значительно уменьшается, что, в свою очередь, уменьшает их способность вырабатывать энергию и ведет к сердечно-сосудистым заболеваниям, отказу почек, слепоте, нервным расстройствам, плохому заживлению ран и т. д. Плохое же заживление ран, особенно на ногах, грозит гангреной и ампутацией.

Загрузка...