ГЛАВА 5 Внутреннее изгнание

По мере того как творческая звезда Эйнштейна угасала, он становился все более важной публичной персоной.

Ученый превратился в «патриарха», которого уважают и к чьему мнению прислушиваются, но от которого новые поколения ученых-физиков стремятся отмежеваться.

Однако Эйнштейн не унывал и в одиночку решил заняться не-квантовой теорией, способной устранить противоречия между электромагнетизмом и гравитацией.

Может быть, Эйнштейн и мечтал о научной славе, однако автором афоризмов о мире, Боге или свободе он вряд ли себя видел. В течение всего XX века, пока ученый стремился к тому, чтобы в нем видели физика, за ним прочно закрепилась репутация пацифиста, сиониста и беженца. Он прибыл в США большим ученым, а уехал оттуда настоящим идолом. Где бы Эйнштейн ни появлялся, он вызывал симпатию и любовь – частично благодаря своей скромности и образу рассеянного гения, но еще и потому, что умел пользоваться славой во имя справедливости, поддерживая борьбу за ценности, которые многие считали утраченными. Конечно, некоторые думали, что активная гражданская позиция – совершенно лишнее качество для академика. Друг Эйнштейна, Макс фон Лауэ, укорял его: «Ну зачем тебе надо было лезть еще и в политику! Я не собираюсь критиковать твои идеи. Но мне кажется, что интеллектуалы должны держаться в стороне от всего этого. Политическая борьба идет по другим правилам и представляет собой совершенно иное явление, нежели научные исследования».

Наблюдая, как Европу сотрясают войны и идеологические бури, Эйнштейн решил, что доверять политикам равноценно коллективному самоубийству. Его публичные выступления вызывали ненависть у многих его бывших соотечественников, а когда ученый призвал не участвовать в охоте на ведьм, объявленной в 1950-х годах сенатором Джозефом Маккарти, он наступил не на одну мозоль Соединенных Штатов. Эйнштейн не стал ни идеальным немцем, ни образцовым американцем, но всегда старался быть искренним в своих словах и поступках, даже рискуя вызвать недовольство.

16 октября 1933 года Альберт и Эльза после краткого посещения Европы снова прибыли в Нью-Йорк. На пятом десятке ученый должен был (в последний раз) привыкнуть к новому академическому центру – Институту перспективных исследований в Принстоне, с которым будет связана вся его дальнейшая работа. Эльза была восхищена архитектурой института: «Место здесь очаровательное, с совершенно английской атмосферой в стиле Оксфорда, но с большим влиянием». Однако некоторые ученые считали Принстон интеллектуальным кладбищем, башней из слоновой кости, где дефицит общения с экспериментаторами и высокая преподавательская нагрузка душили всякое творчество.

По мере того как общественная роль Эйнштейна росла, физики все больше теряли интерес к его научной деятельности. Абрахам Пайс вспоминал, как растерялся, увидев великого физика в толпе перед началом конференции, посвященной частицам. Вероятно, подобное чувство испытал бы и сам Эйнштейн, если бы на одном из своих университетских занятий в Берне заметил Ньютона, отыскивающего свободное место.

Год за годом пытаясь соединить в одной теории гравитацию и электромагнетизм, Эйнштейн разработал геометрическую интерпретацию уравнений Максвелла – правда, оставив в стороне сильное и слабое ядерные взаимодействия. Однако его хитроумные схемы все равно не объясняли необычного поведения квантов: принцип неопределенности Гейзенберга никак не проявлял себя в уравнениях гравитационного поля.

Некоторые важные фрагменты мозаики, которую собирал ученый, не найдены и по сей день, однако в большей степени его неудача объяснялась слабым интересом к ядерной физике. А она между тем становилась все важнее.


Меня здесь считают чем-то вроде ископаемого, которого годы сделали слепым и глухим.

Из письма Эйнштейна к Максу Борну


В середине июля 1939 года два венгерских физика, Лео Силард (1898-1964) и Юджин Вигнер (1902-1995), посетили Эйнштейна, который проводил лето в Нассау, в двух шагах от залива Пеконик. Силард был давним коллегой ученого – они вместе несколько лет работали над проектом коммерческой модели холодильника. Однако у этой встречи была другая причина – результаты бомбардировки нейтронами одного из изотопов урана (235U). При этом образуются более легкие элементы, такие как криптон и барий, а также два или три нейтрона, которые можно использовать для продолжения бомбардировки. В результате нейтронов при каждом попадании в цель становится все больше, ядра урана разрушаются и начинается цепная реакция, способная высвободить огромное количество энергии, которая может быть использована в самых разных целях. Силард и Вигнер подозревали, что Гитлер найдет открытию худшее из применений, тем более что крупные залежи урана находились в Чехословакии, которая была к тому времени оккупирована Третьим рейхом.

Многие считают, что формула Е = mc² была зерном, из которого выросла атомная бомба. Но сам Эйнштейн, выслушав Силарда, воскликнул: «Об этом я совершенно не думал!» Одно дело – обнаружить в материи концентрированные запасы энергии, и совсем другое – изобрести механизм для ее высвобождения. Превращение массы в энергию и обратно происходит в природе ежесекундно, и когда Эйнштейн в 1905 году вывел свою формулу, он совсем не думал о цепной реакции. Только через 27 лет после его открытия Джеймс Чедвик догадался о существовании нейтронов, и появилась ядерная физика. Идея об атомной бомбе на основе цепной реакции была ярко описана еще в романе Герберта Уэллса «Освобожденный мир» в 1914 году.

После совещания в Нассау Эйнштейн отправил письмо президенту Рузвельту, где советовал ему запастись ураном и поддержать исследования физиков-ядерщиков. Поколебавшись, спустя два года Рузвельт запустил Манхэттенский проект. Произошло это в декабре 1941 года, ровно за день до бомбардировки Перл-Харбора.

Участие Эйнштейна в ядерной программе ограничилось разовой консультацией по вопросам отсеивания изотопов урана. Его нонконформизм и социалистические взгляды настораживали как политиков, так и военных, и неблагонадежного ученого решили держать подальше от Манхэттенского проекта. Во второй раз Эйнштейн коснулся темы ядерного оружия лишь после бомбардировки Хиросимы.



Фрагмент письма Эйнштейна Рузвельту от 2 августа 1939 года

Сэр!

Некоторые недавние работы Ферми и Силарда, о которых мне сообщили, заставляют меня ожидать, что элемент уран может быть в ближайшем будущем превращен в новый и важный источник энергии. […]

В течение последних четырех месяцев благодаря работам Жолио во Франции, а также Ферми и Силарда в Америке стала возможной ядерная реакция в крупной массе урана, вследствие чего может быть освобождена значительная энергия и получены большие количества радиоактивных элементов. Можно считать почти достоверным, что это будет достигнуто в ближайшем будущем.

Это явление способно привести к созданию ядерных бомб – исключительно мощных бомб нового типа. Одна такая бомба, доставленная на корабле и взорванная в порту, полностью разрушит весь порте прилегающей территорией. […]

Ввиду этого положения, не сочтете ли Вы желательным установление постоянного контакта между правительством и группой физиков, исследующих проблемы цепной реакции в Америке? […]

Мне известно, что Германия в настоящее время прекратила продажу урана из захваченных чехословацких рудников. Такие шаги, возможно, станут понятными, если учесть, что сын заместителя германского министра иностранных дел фон Вейцзекер прикомандирован к Институту кайзера Вильгельма в Берлине, где в настоящее время воспроизводятся американские эксперименты с ураном. […]


Я не знаю, какое оружие будет использоваться в третьей мировой войне, но оружием четвертой будет каменный топор.

Из интервью 1949 года


В тот момент Эйнштейн вспомнил о своих советах Рузвельту: «Если бы я знал, что немцы не сумеют изобрести атомную бомбу, я бы и пальцем не пошевелил». Примерно в то же время он написал Силарду: «Невозможно предугадать все последствия наших поступков, потому-то мудрецы и посвящают свою жизнь исключительно созерцанию». Но трагедия уже произошла, и Эйнштейн не стал уходить в созерцание.

Он с детства испытывал отвращение к национализму. Атомная бомба в сочетании с близоруким патриотизмом правительств гарантировала, по его мнению, развязывание войны настолько опустошительной, что она может произойти в истории человечества лишь единожды. Ученый использовал каждую возможность, чтобы публично говорить о необходимости разоружения, пацифизме и создании наднациональной политики, которая обеспечивала бы контроль за ядерной энергией. Ученый вновь хотел создат4 ь единую систему, однако в этот раз не в области физики, а в международной политике. Если фундаментальные силы природы могли действовать согласованно, то, возможно, и народы сумели бы передать часть своего суверенитета институту, объединяющему всех.


Конец

Физика Эйнштейна постепенно уходила в прошлое, как и прежняя жизнь. Эльза не дожила до Рождества 1936 года – у нее случился инфаркт. Милева умерла летом 1948 года от инсульта. Сестра ученого, Майя, скончалась от пневмонии 25 июня 1951 года, Мишель Бессо – от тромбоза 15 марта 1955-го. Хотя Эйнштейну и нравилось говорить о своем стремлении к одиночеству, в действительности это было не так. Он постоянно заботился о немецких беженцах и тяжело переносил сужение круга друзей и близких. Чтобы снизить остроту переживаний, ученый с головой ушел в работу. Однажды близкий друг Пауль Эренфест упрекнул Эйнштейна в том, что ему никто не нужен, на что он возмущенно ответил: «Мне нужна твоя дружба так же, а может быть, и больше, чем тебе моя».

Он осознавал, что с годами его способности слабели, и сосредоточился на «геометризации» физики. Наука стала самой первой и самой долгой страстью Эйнштейна, привлекавшей его до конца дней. Каждое утро ученый входил в свой кабинет в Принстоне с набросками новых уравнений, сделанными накануне ночью.

Вечером 13 апреля 1955 года Альберт Эйнштейн почувствовал внезапный упадок сил. Аневризма брюшной аорты угрожала его здоровью в течение семи лет, и теперь сосуд не выдержал, произошло внутреннее кровоизлияние.. Несмотря на сильные боли, ученый отказался от операции: «Я хочу уйти тогда, когда придет время. Продлевать жизнь искусственно мне кажется дурным тоном. Свою задачу на земле я выполнил. Пришел мой час, и я уйду достойно». В пятницу его убедили поехать в принстонский госпиталь, чтобы хотя бы снять болевой синдром. Через некоторое время организм ученого сдался окончательно.

Ганс Альберт, старший сын Эйнштейна, преподаватель гидравлики в Университете Беркли, пересек всю страну, чтобы увидеть отца. Их отношения в течение жизни были разными, однако после воссоединения в США все недоразумения остались позади. Рана, нанесенная Гансу Альберту разводом родителей, зажила, хотя шрам на ее месте остался. Проститься с младщим сыном Эйнштейну не удалось. Когда Эдуарду было 20 лет, врачи поставили ему диагноз «шизофрения», и отец- ученый был уверен, что потерял сына навсегда. Он беспокоился за юношу, проходившего лечение в швейцарской клинике, справлялся о нем у родственников и друзей, но так и не смог наладить контакт с ним.


Для человека, побежденного возрастом, смерть является избавлением. Именно это я ощущаю со всей ясностью – теперь, когда сам я состарился и перестал считать смерть старым долгом, который в конце концов придется заплатить.

Из письма Эйнштейна к Герхарду Фанкхаузеру, профессору биологии принстонского университета


У Эйнштейна была «аллергия» на торжественность и пышность, и он не захотел стать главным героем похоронной церемонии. По его воле тело было кремировано, а пепел развеян по ветру. Перед смертью он в последний раз невольно посмеялся над всеми: свои последние слова он прошептал ночной медсестре по-немецки, и та не поняла ни единого слова и не сохранила их для истории.

Альберт Эйнштейн умер на рассвете 18 апреля 1955 года.

Рядом с ним нашли листки с обрывками уравнений, которые он успел нацарапать карандашом.


Наука после Эйнштейна

Постулаты теории относительности стали неотъемлемой частью всех отраслей физики. Она смогла примириться даже с квантовой механикой. Более того, в союзе с ней было предсказано существование таких явлений, как позитроны (братья- близнецы нейтронов с положительным зарядом), вскоре обнаруженные в космическом излучении. Как мы видели, после открытия формулы Е = mc² ядерная физика испытала резкий подъем. Ранее косвенное подтверждение эквивалентности массы и энергии было получено в 1932 году при изучении распада ядра лития при бомбардировке протонами. В 2005 году уравнение Эйнштейна было подвергнуто строгой проверке. В ходе одного из опытов один из самых обыкновенных изотопов серы ( 32S) подвергся нейтронной бомбардировке. В результате образовался другой устойчивый изотоп ( 33S) в возбужденном состоянии, который при переходе обратно в состояние равновесия испустил фотон высоких энергий (γ). Уравнение этой реакции выглядит как: n + 32S -» 33S + γ. Рассчитав соотношение масс до и после реакции с учетом энергии фотона, исследователи подтвердили формулу Е = mc² с точностью до 0,00004 %.

Замедление времени, увеличение массы и пространственное сжатие сегодня являются обычными явлениями в работе ускорителя заряженных частиц. Этот аппарат поглощает такое количество электричества, что его хватило бы на целый город. При этом высвобождаются огромные объемы энергии, которая превращается в тяжелые частицы – такие нестабильные, что они едва проживают одну миллионную долю секунды.

По сей день общая теория относительности остается самой успешной теорией гравитации, однако это взаимодействие невозможно долго держать в стороне от родственных ей теорий электромагнитного взаимодействия, сильного и слабого ядерных взаимодействий, которые уживаются под крылом квантовой теории поля – счастливого союза специальной теории относительности и квантовой механики. Объединение всех четырех сил в рамках одной концепции – «теории всего», или «окончательной теории» – стало навязчивой идей современных физиков. И самыми перспективными исследованиями в свете этого желания кажутся различные теории струн, рисующие картину мира с дополнительными измерениями. Если эти исследования в конце концов себя оправдают, наше представление о принципе относительности значительно изменится.

Принцип относительности управляет звездами и галактиками, квантовой механикой, атомами и кварками. Предполагается, что точка, в которой совпадают эти области, порождая весь спектр разнообразных необычных явлений, соответствует так называемой планковской длине – около 10-35 м. Речь идет о расстоянии столь малом, что его невозможно себе представить, оно примерно равно диаметру спирали ДНК. Для того чтобы узнать, что происходит в этом масштабе, необходима энергия порядка 1016 ТэВ (около 500 кВт ч).


Эйнштейн в свой 70-й день рождения в окружении детей- беженцев.


Обложка журнала Time за декабрь 1999 года. В этом выпуске Эйнштейн был назван величайшим мыслителем XX века.


В газете объявляется о смерти Эйнштейна.


Большой адронный коллайдер в Женеве (ЦЕРН), самый мощный ускоритель частиц в мире, работает с энергиями до 7 ТэВ.

Возможно, что в планковской шкале пространство-время перестанет быть непрерывным и раздробится, а его квантовая природа вызовет нарушение релятивистских законов. Вероятно, что в столь малых масштабах частицы смогли бы проявить свою струнную структуру, а гравитация отразилась бы в других взаимодействиях. Однако сегодня эта область недоступна нашим возможностям, и это положение сохранится еще не один год. Впрочем, физики не сдаются на милость будущего и продолжают вглядываться в окружающее нас пространство в поисках малейшего знака, способного выдать секреты архитектуры глубинных уровней бытия.



На волне

В 1918 году Эйнштейн, чтобы отвлечься от желудочного недомогания, задумался о вопросе, к которому уже подходили в свое время Лоренц и Пуанкаре, – существовании гравитационных волн. Отклонение в одной точке электромагнитного поля сообщается остальным точкам с помощью электромагнитных волн. Произойдет ли то же самое с геометрической деформацией зоны пространства-времени (изменение в распределении масс)? Гравитационные волны, если они существуют, практически не взаимодействуют с материей. В отличие от света, который воздействует на электрические заряды, эти волны задействовали бы массы. По словам швейцарского физика Даниеля Сигга, поддающиеся наблюдению эффекты малы «не потому, что испускаемая энергия невелика, – наоборот, она огромна, – а потому, что пространство-время является жесткой средой». Электромагнитное излучение разлетается в пространстве, но в случае гравитационных волн вибрацию испытала бы сама пространственно-временная ткань. Считается, что постепенное уменьшение периода вращения двух нейтронных звезд, движущихся одна вокруг другой в созвездии Орла, может быть косвенным доказательством существования волн. Если искажение пространственно-временной ткани и передается в форме гравитационных волн, мы пока не в состоянии их измерить. Однако этот факт привел бы к таким потерям энергии, которые заставили бы звезды сблизиться, – что и наблюдается. Прогнозируемая с помощью волновой теории эволюция системы совпадаете наблюдениями астрономов.


В доступном нам спектре энергий теория относительности выдержала все испытания, которым ее подвергли. Сложно оспаривать гипотезу Эйнштейна, учитывая, насколько тонко она корректирует теорию Ньютона. В свою очередь, улучшение теории относительности – настоящий вызов для экспериментаторов и исследователей. В течение долгого времени общая теория относительности считалась раем для физиков-теоретиков и чистилищем для физиков-экспериментаторов. Однако в последние десятилетия ситуация изменилась.

В 1962 году Ирвин Шапиро предложил «четвертое доказательство общей теории относительности», объединившее три классические теории Эйнштейна. Оно состоит в том, что электромагнитная волна не только испытывает отклонение вблизи тела с очень большой массой, например звезды, но и сама ее траектория в четырехмерном (включая временное измерение) пространстве нарушается, и при движении она начинает опаздывать. Это происходит не потому, что искривленная траектория длиннее, чем прямая, а по вине чисто релятивистского эффекта. Чтобы его зафиксировать, Шапиро разработал эксперимент, для которого требовалось дождаться парада планет, Венеры или Марса: с точки зрения наблюдателя на Земле одна из планет должна была находиться на одной линии с Солнцем, располагаясь позади него. Перед самым выходом из этой позиции с Земли посылался радиосигнал, отражающийся от планеты. Путь сигнала от Земли и обратно занял бы больше времени, чем когда между планетами нет Солнца. Несмотря на амбиции Шапиро («Было бы неплохо доказать, что Эйнштейн ошибался»), результат опыта подтвердил теорию относительности.

20 апреля 2004 года НАСА запустило на орбиту спутник Gravity Probe В, чтобы измерить искажение пространства-времени вблизи массы Земли и эффект увлечения инерциальных систем отсчета. В ньютоновском пространстве сфера, вращающаяся в 600 км от земной поверхности, сохранила бы ориентацию своей оси в одном направлении. Однако эйнштейнова четырехмерная пространственная ткань сообщила бы сфере искривления Земли, и ось потихоньку начала бы смещаться. Датчик Gravity Probe В в течение года фиксировал изменение осей вращения четырех практически идеальных кварцевых сфер, сориентированных в начале опыта на звезду в созвездии Пегаса.

Чувствительность датчиков позволяла обнаружить изменения в угле наклона оси, сравнимые с толщиной волоса, если смотреть на него с расстояния 32 км. Окончательные результаты были опубликованы в мае 2011 года, когда руководитель проекта и сотрудник Стэнфордского университета Фрэнсис Эверитт сделал следующее заявление: «Мы провели этот важнейший опыт, чтобы подвергнуть испытанию модель мира, созданную Эйнштейном. И Эйнштейн прошел это испытание».


Миссией спутника Gravity Probe В, запущенного на орбиту в 2004 году, было обнаружение воздействия массы и вращения нашей планеты на пространство-время. Спутник был оборудован четырьмя гироскопами, ориентированными в качестве контрольной точки на звезду IM Пегаса. Изменения в положении осей гироскопов доказали экспериментальную гипотезу.


Столетие спустя после открытия теория относительности вошла, наконец, в нашу жизнь. GPS-устройства определяют наше местонахождение, обрабатывая данные со спутников. Для того чтобы информация была точной, часы на орбите и часы на Земле должны быть синхронизованы. Если мы хотим уточнить наше положение в пределах 30 м, нужно помнить о двух релятивистских поправках. Во-первых, необходимо учесть запаздывание сигнала (7 микросекунд), вызванное скоростью спутника и описанное специальной теорией относительности, а во-вторых, его опережение (45 микросекунд), описанное общей теорией относительности и вызванное тем, что время течет тем быстрее, чем меньше плотность гравитационного поля (обратный эффект запаздывания, вызывающий сдвиг к красному спектру). Гравитация на высоте 20 000 км, на спутниковой орбите, слабее, чем на поверхности Земли. В новых системах позиционирования эти фазовые сдвиги нивелируются.

Главный удар по теории относительности был нанесен в сентябре 2011 года заявлением о предполагаемом выходе за пределы скорости света. Нейтрино, генерируемые в Большом адронном коллайдере, пронзили земную кору, достигнув подземных детекторов под самым высоким пиком Апеннинских гор – Гран-Сассо, в 100 км от Рима. После соответствующих расчетов экспериментаторы пришли к выводу, что нейтрино пришли на 60 наносекунд раньше времени. Эта новость была сообщена с большой осторожностью и воспринята с огромным скепсисом – особенно после того, как были обнаружены неполадки в механизме, синхронизирующем хронометры ЦЕРН и Гран-Сассо. В июне 2012 года ученые подтвердили, что опережение частиц было ошибкой измерения.

Но даже если предположить, что нейтрино пробили брешь в старой физике, теория относительности все еще сильна. Серия других экспериментов подтвердила базовые принципы теории с точностью, которую можно было бы назвать миллиметровой даже говоря о расстоянии от Земли до Луны. Идеи теории относительности вошли в плоть и кровь науки, и их следы останутся в ней навсегда. Точно так же, как ньютоновская физика находит свое применение, когда речь идет о скоростях, малых по сравнению со скоростью света, и о слабых гравитационных полях, физика Эйнштейна останется на отвоеванной территории.

Наука – словно шлифовальный станок: с каждым годом она добирается до все более точного описания мира. В идеях Ньютона угадывается сегодняшняя физика, а квантовые и релятивистские теории позволяют рассмотреть все больше любопытных и неожиданных деталей. Кто знает, каким будет лицо физики через несколько десятков лет? Однако, вне всяких сомнений, эйнштейновские время, пространство и гравитация все так же будут озарены светом новых открытий.


Загрузка...