Combat Aircraft

What is a "classic"? The term has become overused, its meaning fuzzy. Perhaps the best definition I've heard goes something like this: "I can't tell you what it is, but I know it when I see it." When you talk to the people who fly and maintain today's fleet of U.S. Air Force aircraft, they use the word classic a lot. There's a reason: Every USAF fighter, bomber, and support aircraft in service is a classic, because it has to be. It takes so much time, money, and effort to produce a combat aircraft these days, anything less than a roaring success is going to be a disaster for everyone concerned. Every new combat aircraft must be an instant classic, capable of vastly outperforming the plane or planes it was designed to replace. This chapter will help you get to know some of the classic aircraft programs of recent years.

Today, when a military service commits to fund an aircraft program, and a company chooses to jump in and build that airplane, both are literally "betting the farm," with severe consequences for both if the program fails. Given the risks involved, it is amazing that anyone wants to be in the aircraft business at all — but the payoffs of a successful program can be immense for a company, its stockholders, the surrounding communities, and the military service that takes delivery of the final product.

In order to spread their cost over as long a period as possible, modern aircraft tend to have extremely long service lives. For example, the Boeing KC-135 first came into USAF service in the late 1950s, and is planned to be retired in the later 2020s, a run of over sixty years! Even longer lived is the truly classic C-130 Hercules, which first flew just after the Korean War. A new version (the C-130J) is being built right now for use into the middle of the next century by the USAF, as well as by Great Britain and Australia.

The gestation period of a modern aircraft may take as long as fifteen years from first specification to squadron service. And there may be several generations of production models built, with up to twenty-five years of total production. If this period seems long, consider the McDonnell Douglas F-15 Eagle. It was first designed in the late 1960s, went into production in the mid-1970s, and has remained in continuous production ever since. Given the current backlog of orders to Saudi Arabia and Israel, and other possible production orders, the third-generation Eagle variants will be in production and in service for over twenty-five years, until approximately 2015 to 2020.


An F-15C of the 366th Wing/390th Fighter Squadron on the flight line of Nellis AFB during Green Flag 94-3. It carries the standard load of three 610 gallon/2,301.9 liter fuel tanks and eight air-to-air missiles.
Craig E. Kaston

So read on, and get to know some of the classic aircraft being flown by the USAF, now and in the future.

MCDONNELL DOUGLAS F-15 EAGLE

In July 1967 at Domodedovo Airport, outside Moscow, the Soviet Air Force proudly unveiled a new aircraft to the world press, the Ye-266/MiG-25. Nomenclature rules used by Western intelligence agencies specified that all "threat" fighter types got names starting with the letter F; so the MiG-25 was called "Foxbat." Like its namesake, the world's largest flying mammal, this new plane was a beast with remarkable sensors, sharp teeth, and impressive performance. It quickly established several new world records for altitude, speed, rate-of-climb, and time-to-altitude, all important measures of a fighter's capability in combat. The best contemporary American fighter of the time, the McDonnell F-4 Phantom, was clearly outclassed; and the U.S. Air Force launched a competition to design a plane that could surpass the Russian achievement. This program became even more vital when you consider that the same airshow had seen the rollout of the MiG-23/27 Flogger-series aircraft, and a number of other impressive Soviet fighters as well. Quickly, the USAF produced a specification for what they called the Fighter Experimental (FX). Several manufacturers competed for the FX contract, which eventually went to McDonnell Douglas in St. Louis. The contract was awarded in December 1969, and the first F-15, dubbed the "Eagle," was rolled out on June 26th, 1972. By the end of 1975, operations of the first F-15 training squadron at Luke AFB, the famous 555th "Triple Nickel," were in full swing; and the 1st Tactical Fighter Wing (TFW) at Langley AFB, Virginia, was fully equipped with its cadre of the new birds. There were 361 F-15A fighters and 58 combat-capable F-15B trainers produced before the improved — C and — D models went into production in 1979. In early 1995 the Air Force operated about twenty squadrons of F-15s, including five Reserve and National Guard squadrons.

The designers at McDonnell Aircraft produced a 40,000 lb./18,181 kg., "no-compromise" air superiority fighter that, superficially, resembled the Foxbat, with huge, boxy air intakes, large wing area, and tall twin tail fins. The exterior is covered with access panels, most at shoulder level for easy access without the need for work stands. The structure made extensive use of titanium (stronger than steel) for the wing spars and engine bay, and limited use of advanced boron fiber (non-metallic) composite materials in the tail surfaces. Stainless steel is found mainly in the landing gear struts, and the skin is primarily made of aircraft-grade aluminum. By comparison, the Foxbat used heavy steel alloys throughout the airframe. This imposed a huge weight penalty on the Soviet machine. In case you wonder about the strength of the American bird, consider that McDonnell Douglas's F-15 test airframe has completed over eighteen thousand hours of simulated flight, which represents a potential service life of fifty-three years, based on a flight schedule of three hundred hours per year.

According to the original FX design guidelines, the aircraft was to be a pure air-superiority fighter—"not a pound for air-to-ground." Earlier designs like the F-4 Phantom and F-105 Thunderchief had traded off air-to-air performance for a multi-role "fighter-bomber" capability, and this often put them at a fatal disadvantage against the more agile Soviet MiGs, such as those that they encountered over North Vietnam. (Later, as it happened, the Strike Eagle derivative of the F-15 became one of the great air-to-ground combat aircraft of all time.)

The F-15 used the very advanced Pratt and Whitney F100-PW-100 turbofan, which pushed then-existing technology to the limits. The 17,600lb./ 8,000 kg. thrust J-79 engine, for example, two of which powered the F-4 Phantom, had a turbine inlet temperature of 2,035degF/1,113degC, while the F-100-PW-100 turbine inlet can sustain a hellish 2,460degF/1,349degC. In full afterburner, the basic F100 produces 25,000 lb./11,340 kg. of thrust — nearly eight times its own weight! A skilled ground crew can remove and replace an engine in thirty minutes; just try that on your Oldsmobile! In service, F100 engines have worn out much faster than expected, principally because the Eagle's advanced airframe allowed pilots to fly on the "edge of the envelope" at throttle settings and angles of attack that stress the engines severely. But the edge of the envelope is where pilots win air battles, so the price has been paid to maintain the awesome capability that the F100 delivers.

One of the realities of modern jet fighters is that they burn gas faster than teenagers drink diet soda — a lot faster. While the F100 turbofan is more efficient than the older turbojet fighter engines, they still burn a huge load of fuel, especially in afterburner. To feed the two big turbofans, the Eagle carries a huge load of fuel internally, in the fuselage and wings. In addition, all F-15s can carry up to three external 610 gallon/2,309 liter drop tanks, one on the centerline and one under each wing. To extend the Eagle's unrefueled range even further, McDonnell Douglas developed the Fuel and Sensors, Tactical (FAST) Pack, a pair of bulging "conformal" fuel tanks (CFTs) that fit tightly against the sides of the fuselage below the wings. These are designed to minimize drag and actually generate some lift, so the Eagle's performance is only slightly affected. Holding 750 gallons/2,839 liters of fuel, each CFT can be installed or removed in fifteen minutes. In addition, there are fittings on each CFT for mounting bomb racks or missile rails. CFTs are not carried on the current fighter version of the Eagle, the F-15C, because the normal internal fuel load, as well as that in the drop tanks, is usually adequate for the missions the Eagle drivers fly.

The business end of the Eagle is the cockpit, which is topped with a large bubble canopy. It provides exceptional panoramic visibility, which is critical to survival in a dogfight. F-15 pilots talk about a feeling of riding "on" the aircraft rather than "in" it. By slightly extending the canopy, the design left sufficient room behind the pilot for a second seat, making it relatively simple to build the F-15/D operational trainer, and ultimately the F-15E Strike Eagle.

The pilot sits in a McDonnell Douglas ACES II ejection seat, which is one of the best in the world. When you sit in one, you are held by a lap belt and shoulder-harness system, and the cushions contain the parachute and rescue packs that deploy when the seat separates. All you need to do to escape from a stricken aircraft is to pull one of the two sets of ejection handles (one on either side of the seat) while sitting firmly in the seat, and you are on your way. Pyrotechnic charges blow off the canopy, and then a rocket motor fires and blasts you free. At that point, everything, including the parachute deployment, is handled automatically. Even the release of the parachute in the event of a water landing is handled by sensors that detect the presence of water and cut the riser lines loose to keep the survivor from fouling the chute and drowning.

While the instrument panel directly in front of the pilot is crammed with a mix of dial gauges, most of what he actually uses centers around just three things, the Heads-Up Display (HUD), the control stick, and the throttles. Earlier we saw how the HUD presents the most vital flight and sensor data to the pilot, without the pilot having to move his gaze down into the cockpit. This is critical, because the last thing you want to do in a dogfight is take your eyes off the target. Most of the controls that an F-15 pilot needs for fighting in the Eagle are located on the control stick; engine throttles are on the left side of the cockpit. Both are studded with small switches and buttons, each shaped and textured differently, so that after a short time, a pilot can rapidly identify a particular switch just by feel. This system — known as Hands on Throttle and Stick (HOTAS) — was developed by a brilliant McDonnell Douglas engineer named Eugene Adam, who is a legend in the business of cockpit design, having also been behind the "glass" (using computer MFDs instead of dials and gauges) cockpits in the F-15E Strike Eagle, the F/ A-18 Hornet, and many other combat aircraft in service today. The HOTAS switches control almost everything a pilot needs in a fight — the radar mode, radio-transmit switch, decoy launchers, and of course the weapons release, which can be controlled by the movement of a finger and a flip of a switch.

A drawing of the McDonnell Douglas ACES II ejection seat.
Jack Ryan Enterprises, Ltd., by Laura Alpher

While I've never flown in the front seat of an actual Eagle, I spent some time on the domed full-motion simulators operated by McDonnell Douglas at their St. Louis facility. When you sit down in the seat of an Eagle, the first thing you notice is that your hands just naturally move to the HOTAS controls and your eyes to the HUD. It takes a while to sort out all the switches and buttons, though you rapidly identify the really important ones. When they start it up and you're actually "flying," the first thing you notice is that your aircraft seems to wobble all over the sky, because the controls are so sensitive. You quickly learn that the trick to maintaining a smooth flight path is to loosen your grip on the control stick and let your right hand just "kiss" it with a light touch. When you start maneuvering the Eagle, the control system is just so quick and responsive to even the smallest control inputs that you feel you're "behind" the airplane. Even the twin F100 power plants are quick to accelerate and idle, thanks to the digital engine control system.

I mentioned earlier that the Hughes-built radar of the Eagle has been a standard for air intercept (AI) radars since it came into service in 1975. Originally designated the APG-63, it has been updated to the APG-70 standard in the F-15E and the last block of F-15C Eagles. The reason for having a radar so powerful and agile (i.e., able to discriminate and hold lock even on small targets during the high-G maneuvers of a dogfight) on the Eagle was that the designers wanted to be able to scan and attack targets in a vast volume of airspace in front of the new fighter. This requires a lot of power. The brute power of a radar is determined mainly by two factors, the amount of electrical current the aircraft can supply and the space available for the antenna. The sophistication of a modern radar is determined largely by the state-of-the-art in digital signal processing, an arcane branch of computer science. The original APG-63 radar had three main operating modes: low pulse-rate (frequency) for ground mapping, medium pulse rate for close-range maneuvering targets, and high pulse rate for long-range detection at ranges of 100 nm./183 km. or more. Since the most important radar controls are located on the throttle column and control stick, they are easy to use in combat. The most important of these are the switches for selecting where the radar is pointed in elevation and the various radar modes. This system has been continually upgraded to keep pace with advances in technology, and is now designated the APG-70, with a programmable signal processor (PSP). The PSP was added to the APG-63 in later F-15A/B model aircraft; and later — C/D/E models got the APG-70 with the PSP already built in. The upgrade included a variety of new operating modes, such as Synthetic Aperture Radar (SAR) precision ground mapping in the F-15E model.

Another important part of the Eagle's avionics is the communications suite. In addition to the new Have Quick II radios (jam and intercept resistant), there is one of the new Joint Tactical Information Data System (JTIDS) terminals, which allows the "linking" of any aircraft so equipped to an aerial local area network. This secure (i.e., unjammable and untappable) data link allows the sharing of information from a plane's sensors and other systems with other aircraft, ships, and ground units. JTIDS terminals are currently on the E-3 Sentry AWACS, as well as new E-8 Joint-STARS ground surveillance aircraft. Even U.S. Army Patriot SAM batteries, U.S. Navy Aegis cruisers and destroyers, and NATO units have the capability to tap into the JTIDS data link system. Now, while data links are nothing new, what makes JTIDS special is that it transmits a full situational report, including radar contacts, sending aircraft position, altitude, and heading, and even fuel and armament status (counting gun, bomb, and missile rounds onboard) to anyone with a terminal equipped to receive it. The major problem with the early JTIDS terminals was that they were extremely expensive; but later versions have been re-engineered to reduce their size, cost, and complexity. Luckily, the rapid march of technology has made this both possible and reasonable, and the new terminals should be in service within a year or two. Currently, only the F-15Cs assigned to the 391st Fighter Squadron of the 366th Wing at Mountain Home AFB, Idaho, are equipped with JTIDS.

It is always vitally important that the pilot know where he or she is; thus the inclusion of a highly accurate inertial navigation system (INS) in the Eagle's avionics suite. The Litton ASN-109 INS is a "black box" that uses laser beams moving in opposite directions in rings of fiber-optic cable. Any motion of the aircraft causes tiny shifts in the wavelength of the light, which is sensed and analyzed to determine position, velocity, and acceleration. Before takeoff, the system is "aligned" and fed the geographic coordinates of the starting point (usually the aircraft parking ramp, where a sign is posted with the surveyed coordinates) and a series of "waypoints." Since INS positional fixes tend to "drift" over the course of a mission several hours long, there are provisions to update the navigational fix with inputs from ground-based aids such as the TACAN system (a series of ground-based electronic navigation stations), as well as visual and radar map fixes. A future avionics upgrade for the — C will add a super-accurate Honeywell system combining a GPS receiver with a ring laser gyro in a single box.

Another system directed from the pilot's HOTAS controls is the defensive countermeasures system. To survive today in a high-threat environment, you need a radar jammer. In the Eagle, this system is the internally mounted Northrop ALQ-135(V), which operates automatically, requiring only that the pilot turn it on. To alert the pilot to electronic (i.e., radar guided) threats, there is a Loral ALR-56C Radar Warning Receiver (RWR), with the display mounted just below and to the right of the HUD. This display shows both the type of threat and the bearing to the enemy radar. It also can tell the pilot whether the enemy radar is just scanning, or if it has actually fired a SAM. As might be imagined, this information is vital for a pilot to survive in the modern aerial battlefield. Antennas for the ECM and RWR systems are mounted in pods on top of the twin tail fins. Should the ECM system fail and there's an incoming missile on your tail, the pilot also has a Tracor ALE-45/47 chaff and flare decoy dispenser, with the release button mounted on the left side of the throttle column.

The only reason for the existence of a combat aircraft is to deliver (or at least threaten to deliver) ordnance (the technical term for weapons) onto an enemy target. As we stated earlier, the original design of the Eagle was for a no-compromise air-to-air (the USAF term for this is "air superiority") fighter. Thus, the F-15C weapons suite was optimized for taking on and rapidly defeating a large number of air-to-air targets. For the designers of the Eagle, their starting point was the original weapons loadout of the aircraft that it replaced, the eight air-to-air missiles of the F-4 Phantom. In addition, they decided to add a gun to the package, since the lack of such a weapon had cost American pilots so many MiG kills over North Vietnam. Unlike guided missiles, guns have no minimum range, and can also be used against ground targets, should that be required. While originally it was planned to fit the F-15 with the new Philco Ford (now Loral Aeronutronic) 25mm GAU-7, it was eventually decided that the F-15 would be equipped with the older, more dependable General Electric M-61 Vulcan 20mm six-barreled rotary cannon. Used on USAF aircraft since the mid-1950s, it is something of a classic on its own, and is on every air superiority fighter currently in the U.S. inventory. The cannon muzzle is located in the starboard wing root, well behind the engine intake, so there is no risk of ingesting gun gas, causing an engine flameout. A drum magazine behind the cockpit holds 940 rounds, but you better fire short bursts, since this is just enough for 9.4 seconds of firing. (The M61 fires over six thousand rounds per minute!) Today, the big news about the Vulcan is that there is a new kind of ammunition for it to fire — the PGU- 28, which has armor piercing, explosive fragmentation, and incendiary effects, all in a single round. This new bullet has greatly improved the capabilities of the M-61, which is still one of the finest airborne cannons in the world. In the F-15C, the gun is angled up about 2deg, so that it "lofts" the rounds towards the target, allowing a better view before you lose sight of the target under the nose of the aircraft. There also is a new gunsight — or more properly, gunsight symbology for the HUD — which greatly eases the task of aiming. When the GUN mode is selected (from a switch on the throttle), what looks like a funnel appears on the HUD. Once you have the enemy aircraft centered between the two lines of the funnel, a squeeze of the trigger on the front of the control stick sends a stream of cannon shells toward the target. According to F-15 pilots, the new sight symbology has radically improved gunnery accuracy and makes the gun a much more dangerous weapon.

Good as the gun is, the most powerful weapons on the Eagle are its eight air-to-air missiles (AAMs). Originally, the F-15's primary AAM was the Raytheon AIM-7 Sparrow, four of which could be carried on racks tucked neatly on the underside of the fuselage. These have since been replaced by the Hughes AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM), which is known as the "Slammer" by pilots. Underwing pylons also can carry up to four AIM-9 Sidewinder AAMs or AMRAAMs.

All these systems and weaponry have made the Eagle the most powerful air superiority fighter in the world for over two decades now. This has translated to a modest degree of success in the export market, despite the relatively high cost of the Eagle compared to the F-16 Fighting Falcon, the Mirage F-1 and -2000, and the MiG-29. Several generations of Russian, British, and French fighters have tried to get the better of the Eagle, but regular upgrades and the superb training of the USAF pilots have kept the F-15 at the top of the worldwide fighter hierachy. Currently, there are more than 1,300 F-15s of all models in service with the U.S. Air Force, the Israeli Air Force (F-15A/B/I models), the Japanese Air Self-Defense Force (F-15J), and the Royal Saudi Air Force (F-15A/B/S models). The Japanese F-15J is built by Mitsubishi on license from McDonnell Douglas.

The ultimate test of any military aircraft is combat, and the Eagle has an undefeated record. The Israelis scored the Eagle's first kill, a Syrian MiG-21 in June of 1979. Later on, in February 1981, they provided the ultimate proof of the Eagle's superiority by downing a Syrian MiG-25 Foxbat, the very aircraft it had been designed to defeat. Israeli F-15s also escorted the force of F-16s that destroyed an unfinished Iraqi nuclear reactor outside Baghdad in 1981. The Saudis also have scored with their force of Eagles, with at least one kill of an Iranian Phantom over the Persian Gulf in 1988, and two kills by one pilot of a pair of Iraqi Mirage F-1Qs armed with AM-39 Exocet anti-shipping missiles during Desert Storm. In fact, Eagles shot down at least thirty-five of the forty-one aircraft that Iraq lost in air-to-air combat during the 1991 conflict. The record book currently credits the F-15 with a career total of 96.5 confirmed air-to-air kills for no losses.

With the coming of the F-15's designated replacement, the Lockheed F-22, further production of the Eagle for the USAF and a few foreign governments will be limited to the Strike version. The remaining USAF — C and — E model aircraft will all be fitted with GPS receivers, as well as the follow-on version of the JTIDS data link terminal. There is also a radar upgrade program, designed to replace some of the "black box" components of the APG-63/70 system with newer units from the APG-73 radar used on the F/ A-18 Hornet fighters now being delivered to the U.S. Navy. This upgrade will allow for faster processing of information, as well as a larger memory module. It is also likely that before it goes out of service, the new model of the venerable Sidewinder AAM, the AIM-9X with its helmet-mounted sighting system, will be integrated into the Eagle. Whatever happens to the Eagle fleet, the taxpayers of the United States can be pleased with the value that they received for their investment in the Eagle, which held the line in the air for the last years of the Cold War and the beginning of the new world order.

MCDONNELL DOUGLAS F-15E STRIKE EAGLE

I had never flown an eighty-one-thousand-pound jet before, and we were surprised when we started taxiing. We felt a thump, thump, thump underneath us, and we were concerned until we realized that all that weight standing on the tires had molded a temporary flat spot on them.

— F-15E PILOT, DESERT STORM, JANUARY 17, 1991

The F-15E Strike Eagle is an almost perfect balance of structure, power plant, sensors, weapons, and avionics, controlled by the finest cockpit design in the world today. Now you might wonder why I'm describing it separately from the air-to-air version of the Eagle. The truth is that while the two birds share a common heritage, they really are different aircraft, both inside and out. In fact, the crews that fly this powerful beast say there are two kinds of USAF crews: those that fly the Strike Eagle, and those who wish they did. Given what I've learned about this machine, they may be right.

It is surprising that an aircraft originally designed as a pure air superiority machine should give rise to one of the greatest fighter-bombers in aviation history. Nevertheless, by the early 1980s, with the fleet of F-111 fighter bombers aging rapidly, and the F-117As just coming into service, there was a severe shortage of all-weather strike aircraft in USAF service. Thus, the USAF leadership began to kick around the idea of an interim strike aircraft, which could bridge the gap between the older F-111 and the new stealth types that were being planned.

The F-15E was not a plane the Air Force requested directly per se; it began as a private venture funded by McDonnell Douglas. This is because the contracting rules of the U.S. Department of Defense (DoD) do not allow the services to "ask" a contractor directly to make them something. They can, however, "suggest" that a company put together an "unsolicited proposal" to offer certain goods and services. Such dialogues are common, and were apparently conducted by General Wilber Creech, USAF, then commander of the Tactical Air Command, and several aircraft companies concerning strike variants of existing fighter designs. Thus, General Creech might well be considered the USAF "father" of the Strike Eagle. The effort began when a production F-15B (originally a two-seat trainer version) was converted for ground attack by adding extra underwing pylons and bomb racks on CFTs. Demonstrations of the prototype at Edwards and Eglin AFBs in 1982 and 1983 were sufficiently impressive that the Air Force decided to hold a competition between the F-15 and an improved version of the General Dynamics (now Lockheed) F-16 with a cranked delta wing, the F-16XL. The McDonnell Douglas entry won the competition, and in 1984 they were awarded a contract to begin full-scale development, with an original goal of 392 production aircraft. But budget cuts at the end of the Cold War chopped this number down to two hundred by 1994, plus a few replacements for aircraft lost in Desert Storm and training mishaps.

A McDonnell Douglas F-15E Strike Eagle of the 366th Wing's 391st Fighter Squadron flies over the Nevada desert during Green Flag 94-3. It is armed with the training versions of Sidewinder and AMRAAM air-to-air and Maverick air-to-ground missiles.
Craig E. Kaston

The first flight of the Strike Eagle was on December 11th, 1986, with deliveries to the Air Force beginning on December 29th, 1988. The 4th TFW, with three squadrons, reached an initial operational capability (IOC — first squadron service) in October 1989 at Seymour Johnson AFB, North Carolina.

A cutaway drawing of the forward fuselage of the McDonnell Douglas F-15E Strike Eagle.
Jack Ryan Enterprises, Ltd., by Laura Alpher

That change was more than just cosmetic. Although the F-15E is externally very similar to the F-15D (the two-seat trainer model of the F-15C), about 60 % of the F-15's structure was redesigned to accommodate its new role as a strike aircraft. These changes were designed to strengthen the airframe, extending the certified fatigue life to sixteen thousand hours, and allowing sustained 9-G maneuvers, like its smaller partner, the F-16. The extra strength is important, because the huge fixed-geometry wing of the F-15 can make for a rough ride at low altitude for both the airframe and the crew, even when nobody is trying to kill you. Also, since low-altitude, high-speed flight can be a dangerous thing, the F-15E's windshield is specially strengthened against bird-strikes, which are more common than you might think. The basic F-15 is an enormously tough airplane — after a midair collision, one F-15 pilot safely landed his craft with only 14 in./35 cm. of wing remaining on one side — and the modifications to the — E model have only made it tougher. Maximum takeoff weight was increased from 68,000 lb./30,845 kg. to an astounding 81,000 lb./36,741 kg.! Of this total, up to 24,500 lb./11,100 kg. can be ordnance, in almost any mix of air-to-air and air-to-ground weapons imaginable.

The two-man cockpit of this Mc-Donnell Douglas F-15E Strike Eagle is shown to advantage, with the wide-field-of-view Heads-Up Display (HUD) at the bottom, in front of the pilot.
Craig E. Kaston

The greatest strength of the Strike Eagle is the two-man cockpit, which allows for the increased workloads of low-level, day and night strike missions. Historically, two-seat fighters have usually gained the advantage in combat against single-seat types, because the situational awareness benefit of an extra set of eyes and brains is greater than the weight penalty of the extra ejection seat. The benefit is even greater in ground attack missions, because the backseater can concentrate on precise delivery of weapons and managing the defensive-countermeasures systems (jamming, chaff, and flares), while the pilot concentrates on flying the plane. Though Weapons Systems Officers (WSOs) are not trained as pilots, they do tend to become skilled at flying and "staying" the pilot; and both crew positions have a full set of flight controls.

A cutaway drawing of the Lockheed Martin AAQ-13 LANTIRN navigation pod.
Jack Ryan Enterprises, Ltd., by Laura Alpher

The division of labor in the Strike Eagle between the pilot (in the front seat) and WSO (or "wizzo," in the backseat) is nearly perfect, thanks to another excellent design effort by Eugene Adam and his team at McDonnell Douglas. In the front seat, the pilot has a wide field-of-view HUD and three Multi-Function Displays (MFDs), two monochrome/green and one full-color, in addition to the normal controls you would encounter in an F-15C. Each MFD functions like a computer monitor that can show data clearly even in bright daylight, and has an array of selection buttons mounted on all four sides of the bezel. The HOTAS controls have been upgraded to support the extra capabilities of the — E model's APG-70 radar, as well as the Low Altitude Navigation and Targeting Infrared for Night (LANTIRN) system pods (which we will look at later). To the right of the HUD is the display for the Improved Data Modem (IDM), a sort of low-speed data link which is tied to the onboard Have Quick II radios and the weapons delivery system. It is designed to be part of the joint-service Automatic Target Hand-Off System (ATHS), which allows the F-15E to automatically send and receive targeting coordinates to and from a number of other U.S. Army, Marine, and Air Force systems, including the F-16C, the OH-58D Kiowa Warrior, the AV-8V Harrier II, the AH-64A Apache, and the Army's TACFIRE artillery control system. In lieu of a JTIDS terminal (which is planned for installation later), it is a capable little device for getting targeting information from a variety of sources. In the rear cockpit, delivery of air-to-ground ordnance is the WSO's main job, and the best tool for this is the same Hughes APG-70 radar that is on the — C model Eagle, though it has a number of added features unique to the Strike Eagle. The radar data, as well as data from the onboard LANTIRN pods, are displayed on four MFDs — two color and two monochrome/green — in the rear cockpit. An onboard videotape recorder serves as the "gun camera," recording whatever appears in the HUD, or on any of the selected MFDs.

Along with the radar, the WSO also controls the same ALQ-135 internal jammer package, ALE-45/47 decoy launchers, ALR-56M RWR, APX-101 IFF system, as on the — C model Eagle, along with the other avionics. Provisions are currently being made in the F-15Es flight software and on the data bus for a GPS receiver and the JTIDS secure data link, which will be added later in the 1990s. Another planned upgrade may be a satellite communications system, which would allow ground-based commanders to stay in contact with aircraft on the most distant missions.

The pilot's instrument panel in the McDonnell Douglas F-15E Strike Eagle. The three computer-style Multi-Function Displays are clearly shown, as well as the Data Entry Panel (top center).
McDonnell Douglas Aeronautical Systems

The engine bays of the F-15E were designed with a common interface to accommodate either the standard Pratt & Whitney F100-PW-220 turbofan or the more powerful F100-PW-229, which can deliver up to 29,000lb./ 13,181 kg. of thrust. All this thrust means that in "clean" configuration at high altitude, the F-15E's maximum speed is Mach 2.5. At low altitude, with a maximum bomb load, the weapons impose a practical limit around 490 knots/564 mph./908 kph. The maximum unrefueled combat radius of the F-15E depends very much on the flight profile, but a typical figure is about 790 nm./1,445 km. using 3,475 gallons/13,100 liters of internal fuel (including that in the CFT packs) and three 610 gallon/2,300 liter external tanks. For truly long-range missions, tanker support is essential to the Strike Eagle, though the F-15E needs less of this than other strike aircraft.

A heads-on view of a McDonnell Douglas F-15E Strike Eagle from the 366th Wing's 391st Fighter Squadron. The two Lockheed Martin Low Altitude Navigation and Targeting Infrared for Night (LANTIRN) system pods are mounted on pylons under the engine inlets, with a pair of Mk 84 general-purpose bombs mounted on hard points under the two Conformal Fuel Tanks (CFTs). There is also a Sidewinder air-to-missile training round on the port wing weapons pylon.
John D. Gresham

LOCKHEED MARTIN AAQ-13/14 LANTIRN SYSTEM

I commented on how close our wing tip was to the trees. [The pilot] responded, "It's worse in the daytime. You can see every chipmunk… "

— AVIATION WEEK PILOT REPORT, F16/LANTIRN APRIL 25, 1988

The Lockheed Martin (formerly Martin Marietta) Low Altitude Navigation and Targeting Infrared for Night (LANTIRN) system consists of a pair of cylindrical pods that fit on stubby pylons under the forward fuselage of the F-15E and selected F-16s. The AAQ-13 navigation pod weighs 430lb./195 kg.; the AAQ-14 targeting pod weighs 540 lb./245 kg.; and the software that integrates them with the aircraft flight controls and weapons weighs nothing at all. LANTIRN combines a host of electro-optical and computer technologies to do something quite simple: turn night into day for the crew of a strike fighter. Under a $2.9 billion contract awarded in 1985, Martin Marietta delivered 561 navigation pods and 506 targeting pods, plus support equipment, to the U.S. Air Force. At one time, there were plans to integrate the system on the A-10, and possibly the B-1B, but this is now unlikely, due to budget constraints. The complete LANTIRN system adds about $4 million to the cost of the aircraft; not a high price for turning night into day.

The AAQ-13 navigation pod includes a Texas Instruments Ku-band terrain-following radar (TFR) and forward-looking infrared (FLIR) sensor that turns heat emitted by objects into a visible image. The pod generates video imagery and symbology for the pilot's Heads-Up Display (HUD) for a field-of-view of 21deg by 28deg. The image is grainy, but the sense of depth is good enough to fly by in total darkness or the smoke of a battlefield. Rain, fog, or snow, however, degrade the performance of the system, since infrared energy is attenuated by aerosols or water vapor. The TFR in the AAQ-13 pod can be linked directly to the aircraft's autopilot to automatically maintain a preset altitude down to 100 feet/30.5 meters while flying over virtually any kind of terrain. For manual operations it projects a "fly-to box" on the HUD, so that all the pilot needs to do is keep the plane's centerline aimed at the "fly-to box" to safely clear obstacles. It is even possible to land the plane safely at night without runway lights, simply by viewing the different infrared signatures of the painted strips on the runway surface! By flicking a HOTAS switch on the control stick, the pilot can "snap look" left, right, up, or down, either in level flight or in a banked turn. Another switch selects "black hot" or "white hot," allowing the pilot to choose whichever mode provides the best image contrast.

The AAQ-14 targeting pod includes another FLIR in a two-axis turret, with a selectable wide or narrow field-of-view, and a laser designator/rangefinder. The targeting pod FLIR displays its imagery on a small video screen in the cockpit; it can be aimed independently of the navigation pod FLIR and used like a telescope to identify terrain features or targets at fairly long ranges. The targeting pod's laser designator can then "illuminate" targets for laser-guided bombs like the Paveway III series (described later). It can also lock on to moving targets and track them automatically, as well as designate ground targets for AGM-65 Maverick missiles (which use either TV or imaging infrared guidance). In fact, it is possible to designate targets for multiple Maverick shots in a single pass. The laser can also be used to determine the exact range to a landmark in order to update the aircraft's inertial navigation system; this is critical for the accurate delivery of all kinds of ordnance (guided and unguided) without visual references. For training, the targeting pod laser has a special low-energy "eye-safe" mode, which suggests that the full power of the AAQ-14's laser could potentially blind ground troops. Although LANTIRN targeting was designed for air-to-ground weapons delivery, there is nothing to prevent the crew from using the capabilities of the system in air-to-air combat. Modern Russian aircraft like the MiG-29 and Su-27 have an Infrared Search and Track System (IRST) mounted in a small hemispherical fairing forward of the cockpit that allows for detection and targeting of enemy aircraft without radar emissions that might alert the potential victim. It is likely that AAQ-14 pod has a similar potential, although it is not certain how well this is supported by the current software.

A cutaway drawing of the Lockheed Martin AAQ-14 LANTIRN Targeting Pod.
Jack Ryan Enterprises, Ltd., by Laura Alpher

Despite delays in the LANTIRN program, one wing of seventy-two F-16s (out of some 249 deployed) was equipped for LANTIRN during Desert Storm, with the AAQ-13 navigation pod. Forty-eight F-15Es deployed to the Persian Gulf; all of these had the navigation pod, and about a dozen received AAQ-14 targeting pods, rushed into service directly from the factory. LANTIRN made it possible to fly safely, at low level, at night, across featureless desert terrain, without the need for high-powered navigation aids, such as the APG-70 ground-mapping radar, which might have alerted enemy sensors. Many of the LANTIRN combat sorties flown by the F-15Es and F-16Cs were devoted to the "Great SCUD Hunt" in the western desert of Iraq.

Flying the F-15E Strike Eagle

The first time they go to an airshow featuring the USAF Thunderbirds, the USN Blue Angels, or perhaps the RAF Red Arrows, many boys and girls dream of flying the kind of high-performance aircraft they see there. When we went out to visit the 366th Wing at Mountain Home AFB, there was an invitation waiting for just such a ride, in the aircraft of our choice — F-15 Eagle, F-15E Strike Eagle, or F-16 Fighting Falcon. Now, it's no secret that I'm not much of a fan of powered flight, much less sitting on top of an explosive ejection seat ready to launch me from the airplane! I've turned down a number of such offers over the years, the most tempting of these being an F-16 ride from my old friend Brigadier General "Tony" Tolin, who once commanded the F-117 Wing out in Nevada. Luckily, my researcher John Gresham has no such qualms, and all but left tread marks on the ground when he was informed of the opportunity.

His first choice of aircraft was something of a "no-brainer," being one of the powerful F-15E Strike Eagles flown by the 391st FS, the "Bold Tigers." Thus, several days before we flew down to Nellis AFB, Nevada, for Green Flag 94-3, we all went down to the 391st FS headquarters building to watch him suit up and go on his flight. The first stop was to meet Lieutenant Colonel Frank W. "Claw" Clawson, the 391st's commanding officer, who gave John the opportunity to choose who would chauffeur him around the sky this day. John, no fool, asked for one of the senior pilots in the squadron, and got one of the best, Lieutenant Colonel Roger "Boom-Boom" Turcott, the squadron's operations officer. This decided, we were shuttled off to get ready for his adventure.

First stop was a quick check from the squadron flight surgeon. After a look with a stethoscope and blood pressure cuff, he was pronounced fit for "limited, low-altitude flight." This is because he does not have a current altitude chamber card (issued after an annual pressure chamber test to certify a flyer's tolerance to the low pressures above 15,000 feet/4,572 meters altitude), or a centrifuge certification (similar to the chamber card) which would allow him to pull the maximum Gs that the modern USAF is capable of pulling. Not that any of this was going to be a limitation, for the flight he was going on was to be an actual low-altitude training flight, practicing bomb and missile deliveries on the 366th's range at Saylor Creek, some twenty miles from the base. As the medical officer was finishing, he smiled and said he would see John afterwards, just in case he needed something for nausea or anything else.

The next stop was the cockpit simulator, which is kept in a small room in the headquarters building. Here, we were met by Captain Rob Evans, who ran us through what John would be doing in the backseat of Boom-Boom's aircraft. Evans then demonstrated what not to touch unless directed to by the pilot (the stick, throttles, and ejection seat handles being key items!), and how to use the ACES II ejection seat in the event of an emergency. It is incredibly simple actually. All you have to do is straighten yourself up in the seat and pull one of the two yellow ejection-seat handles. The canopy transparency is then jettisoned, and the seats eject, the WSO's first, followed by the pilot's. From that point on, everything happens pretty much automatically, including seat separation and parachute deployment.

Now it was time for the preflight briefing. Moving over to the squadron briefing room, John sat down with Boom-Boom, Claw, and the other five crewmen who would be on the flight. One thing that was made clear to us was that with training dollars as scarce as hen's teeth these days, this mission was going to run exactly like any other training sortie. Every part of the planned flight was discussed, and then loaded from a planning computer onto a 32K data transfer module (DTM) cartridges. All Boom-Boom would have to do is stick the DTM into a small slot in the front cockpit of the F-15E, and the bird would pretty much know where to go, what to do, and how to do it. Flight and equipment safety rules were restated and reinforced. Finally, as the meeting broke up, each of the other aircrews wished John a hearty "good luck," and then we headed down to the 391st Life Support Shop.

Series researcher John D. Gresham just prior to his ride in a McDonnell Douglas F-15E Strike Eagle of the 366th Wing's 391st Fighter Squadron. He is wearing a standard USAF issue HGU-55 lightweight flight helmet with an MBU-12/P oxygen mask and a CWU-27/U Nomex flight suit.
Official U.S. Air Force Photo

The Life Support Shop is so named because its equipment is absolutely vital to sustaining life in the variety of conditions that a combat pilot may encounter. These can range from the freezing temperatures and oxygen starvation of high altitudes to staying afloat in the water following an ejection. The technicians in the Life Support Shop tend to take a holistic approach to fitting gear to a particular individual, and watching them fit John with his gear was like seeing a turtle getting fitted with a new custom-made shell. You start with underwear, which can just be what you wear normally. While some pilots do wear Nomex (a fire-resistant fabric produced by Dupont) long underwear, especially in cold weather, the bulk of them wear normal "jockey-style" briefs and undershirts, though the new crop of female tactical aviators also usually wear a firm sports bra to help ward off the effects of Gs on those sensitive areas. Aircrews also like to wear thick socks to help their boots fit well and to keep their feet warm in the event of a cockpit heater failure. Next to go on is an olive-drab CWU-27/P flight suit, which is really comfortable and sharp-looking, considering that it is designed to resist flame for a period of time. It seems to have a million pockets for "stuff" all over the sleeves and legs, which John promptly began to fill with things needed for the coming flight. Most important of these were several small manila envelopes, containing plastic bags in case he suffered from the in-flight nausea and airsickness that is more common among flight crews than you might think. Stuffed in one of the leg pockets went another vital piece of survival gear, a "piddle pack." The male version of this item is basically a plastic zip-lock bag with a strip of dry sponge inside to soak up and hold the urine, while the female version is essentially a diaper which is donned before flight. Currently, the USAF is working hard to improve both models, which are vital on long missions and overseas deployments. Next come flight boots, the choice of which is left to the individual aircrews. For additional warmth, you can also add a Nomex CWU-36/P "summer" flight jacket, or even a rubberized "poopy suit" (the name is derived from the fact that when you sweat in one, there is nowhere for the moisture and odors to go!) for flying in arctic conditions over water. Along with the suit go a set of GS/FRP Nomex flying gloves, with leather palms, which are wonderfully comfortable.

On your head goes a cotton skullcap to help absorb sweat and keep your head cool, followed by one of the new USAF HGU-55 lightweight helmets. Weighing only about 30 oz./.85 kg., these are lighter and smaller than the older HGU-33, and are easier on the neck muscles during high-G maneuvers. The HGU-55 is equipped with the new MBU-12/P oxygen mask, which fits quite nicely, though John later wished that he had shaved his beard to get a tighter seal on his face. Once John's helmet was fitted, on came the G-suit, a girdle for the abdomen and legs. It is composed of a system of pneumatic bladders, which inflate to squeeze the lower body and keep blood from pooling there. This helps aircrews to better tolerate the G forces of high-performance aircraft that can lead to a blackout.

At 1320 hours (1:20 PM), clad in what seemed like a mountain of clothing and equipment, Boom-Boom, John, and the rest of the training-flight aircrews boarded a blue step van to ride out to the flight line. Carrying his helmet and knee board in a green bag, and waddling out of the van with a decided stoop, John was helped into the rear cockpit. Meanwhile Boom-Boom completed a walkaround of the aircraft, an early-production F-15E, equipped with F100-PW- 220 engines, which appears to have flown in the 1991 Persian Gulf War with the 4th Wing. While Boom-Boom completed his check, several technicians were strapping John in, making sure the various oxygen and telecommunications lines were properly hooked up. Both cockpits of the Strike Eagle are roomy and spacious, with lots of room for people who are John's size (he's over 6 feet 3 inches/1.9 meters tall). There's plenty of room to store personal gear, maps, and other things in a small compartment on the left, slightly behind the seat. On either side of the seat are the hand controllers for the sensor/ weapons systems, with the control stick and throttle column exactly as they are in the front seat. The instrument panel is dominated by the four MFDs, the two outside screens being smaller color displays, while the two inner ones are larger monochrome "green" screens. What makes these MFDs unique is that unlike normal computer displays, they function perfectly well in bright daylight. The whole cockpit is laid out in an incredibly efficient manner. It just makes logical sense to do things that way.

By 1340 hours, Boom-Boom, John, and the rest of the crews were strapped in and ready to go. Boom-Boom then yelled to John to get ready for engine start, as the crew chief plugged in a special microphone/headset designed for use in areas with high noise levels. When he was ready, Boom-Boom fired up the engines with a whine and a roar and began to get the avionics spun up and settled. This took several minutes, as the navigation system aligned itself and the rest of the systems warmed up. In the cockpit, the ear-splitting noise is muffled by the helmets, headsets, and the aircraft structure, although you can feel the power almost immediately through your butt. It is something more than you feel with a powerful V-8 automobile engine… more like a motorcycle engine at full tilt. Both John and Boom-Boom snapped in the bayonet clips on their oxygen masks, and Boom-Boom turned up the air-conditioning system to keep a flow of cool air going into the rear cockpit to help keep John comfortable.

Around the cockpit, the various strip indicators and warning enunciators all switched to a "green" condition, and Boom-Boom called over the radio to ground control for permission to taxi down to the east end of the ramp. This done, at 1355 they followed the other three F-15Es down to the arming pit, where they parked for a time. There, the ordnance technicians removed the last of the safety arming pins from the BDU-33 practice bomb dispensers; and Claw Flight got ready to roll onto the runway. Sharing the pit were several F-16s from the 389th FS which were going out on their own training hop. Mountain Home is a busy place year-round, and this day was no exception. After about a ten-minute wait, the final clearance for takeoff from the tower was received, and at 1415, Lieutenant Colonel Clawson rolled Claw-1 out to takeoff position. Pushing his engines to afterburner for takeoff, he was off the ground in a few thousand feet, and headed out over the south side of the base to wait for the rest of the flight to form up.

When their turn came, Boom-Boom and John in Claw-2 taxied to takeoff position, and Boom-Boom dropped the flaps and told John to grab the handlebar above the instrument panel and hang on. As Boom-Boom slid the throttles all the way forward, the twin F100 engines roared. Boom-Boom released the brakes, the afterburners belched flame, and the Strike Eagle literally leaped down the runway. Unlike airliners, which seem to take forever to accelerate to takeoff speed, the Strike Eagle seems to fling itself off of the earth. At 130 knots/241 kph., Boom-Boom rotated the aircraft upwards, and just seconds later, as they passed 166 knots/307 kph., they took off. As soon as they were off the ground, Boom-Boom retracted the landing gear and flaps, getting the Strike Eagle cleaned up for their flight to Saylor Creek Bombing Range; then he retarded the throttles to a more civil "dry" setting, to save fuel as well as wear and tear on the precious engines.

The feelings of flying in a high-performance fighter are fundamentally different from an airliner, even the supersonic Concorde. It's a raw, almost wild experience, like a ride on a Harley-Davidson motorcycle. The view out of the bubble transparency is simply amazing. You feel exposed, sitting as you do with your shoulders well above the canopy rails, almost sitting on top of the jet. And since low-level flight is where the Strike Eagle earns its pay, the feeling of the world going by in a hurry is more like a super-fast helicopter than any airliner you have ever ridden. It also needs to be said that flying the Strike Eagle is something like riding a wild horse: The older-style controls of the F-15E are a bit "twitchy" and require a delicate, almost "kissing" touch on the stick to keep the big bird from wallowing around the sky.

Boom-Boom Turcott has that soft touch, and he needed it this day; the air over the Idaho desert was decidedly unpleasant. While the base was under bright sunshine and a hard but steady wind, the range was under a heavy cloud cover, with intermittent snow and rain falling. This is a rough combination, and Boom-Boom was working hard to keep John from having to use one of the vomit bags in the pocket of his flight suit. In fact, several of the other WSOs in the flight were also having problems with motion sickness, and eyeing the bags in those little manila envelopes. Despite the popular notion that aircrews have cast-iron stomachs, almost every flier has occasional bouts of airsickness and vertigo. In fact, the ability to rapidly recover from such maladies is greatly respected among aircrews.

Meanwhile, as the flight transited out to the Saylor Creek Range, Boom-Boom took the opportunity to show John a few things about the territory, and about the F-15E. As they flew just a few thousand feet over the canyon of the Snake River, he had him power up and unstow the FLIR turret on the AAQ-14 targeting pod under the belly of the fighter. The crews of LANTIRN-equipped aircraft usually keep the targeting FLIR turrets in the stowed position, since dust and sand tend to pit and erode the optical windows. The targeting FLIR is normally controlled by the right-hand controller, and is aimed via a small dish-shaped switch which uses the WSO's finger movement, much like a mouse on a computer. There are also two other controls in this cluster, one called a "coolie hat" and the other the "rook" or "castle" controller, because of their shape and feel. These two manipulate the two right-hand displays, which show the FLIR video, radar displays, and other sensor and weapons-related data. There is an identical controller on the left side of the cockpit, which mostly controls the ring laser gyro-based INS. The INS drives the most noticeable and dynamic display, the left-side color MFD, called the moving-map display. This MFD displays a full-color navigational chart of where you are, where you are going, and how you are oriented.

Moving back to the right-hand controller, you find that with a little practice, the targeting FLIR is quite easy to use, and has a field-of-view that can see almost everything in the lower hemisphere of the Strike Eagle. There are also several magnification settings, which can easily allow you to determine what you are looking at from a considerable range. Once you get an object centered up in the scope, you can lock it up and the FLIR will track it, no matter what maneuvers the pilot chooses to lay onto the bird. This proved useful, as John found when Boom-Boom gave him a mild demonstration of the Strike Eagle's maneuvering capabilities by pulling some hard turns at one of the navigational waypoints; the FLIR stayed steady on a telephone pole on the desert floor below.

Even though they only pulled about 31/2 Gs in these maneuvers, it was a telling experience for John, who is a big, burly sort of man. It felt like everything on his body began to head towards his feet, and he found the movement of his lips and cheeks towards the bottom of his face particularly eerie. As soon as Boom-Boom would start a run and the Gs came on, the G-suit around his waist and legs inflated to keep the blood from pooling in his abdomen, thus avoiding a blackout. Despite the stresses of the Gs, John found that he still could work the controllers and continue doing the tasks Boom-Boom asked him to perform. In fact, one of the surprises was that despite his relative lack of experience with the LANTIRN system (and rising nausea), he was easily able to learn the routine with the controllers, and he even managed to fire up the APG-70 radar and lock up Colonel Clawson and his WSO (callsign "Fuzz") in Claw-1. He also managed to take a couple of SAR radar maps with the APG-70.

By then they were at the Saylor Creek Bombing Range, which was experiencing a series of intermittent snow/hail/rain showers. These made the air fairly rough during the runs that followed. Boom-Boom again followed Claw- 1, and set up the arming panel to drop one BDU-33 practice bomb on each run. John's job on each run was to lock up the aiming point, so the video recorder could evaluate the accuracy of the run. This involved slewing the FLIR turret around until the desired target in the array was centered in the screen, and then selecting the lock button to start the system autotracking. At the same time, the ground-based television optical scoring system (TOSS) would score each bomb dropped. What followed was a pinwheel of F-15Es, with each making a run about every thirty seconds. Boom-Boom and John started each run by lining up the target array on the nose of Claw-2 and putting the aircraft into a shallow 15deg dive. As soon as John would lock up the target with the targeting FLIR (or the APG-70 radar), the weapons delivery system would begin computing the proper course to the target. This was displayed to Boom-Boom as a steering cue, on the HUD; all he had to do was aim the "fly-to" box at the steering cue, and the computers did the rest. Despite the high crosswind in the target area, the crews of all four Strike Eagles were easily scoring "shacks" (direct hits) on their desired targets. The idea of this exercise was to see how accurately each crew could place a "dumb" bomb on the target, with the assistance of the Strike Eagle's weapons delivery systems. Despite the popular public notion that Desert Storm was a war won with "smart" munitions, the vast majority of the bombs dropped were unguided, and this will be the case for some time to come. Thus the need to stay in practice with the older-style weapons. After each run, Boom-Boom would pull Claw-2 off to the right and climb back to several thousand feet AGL to set up for the next run. Each time, as they banked overhead, Boom-Boom and John could see the runs of Claw-3 and -4 off to their right as they hit the ring of targets on the TOSS range.

When their supply of BDU-33s was expended, Claw Flight moved over to the Maverick missile target array a few miles away. The first of these was a circular array of oil drums (called Target 101). These showed up nicely on the targeting FLIR when warmed by the sun, which was breaking through the clouds from time to time. The 391st is the only Strike Eagle unit in the USAF equipped with the IIR Maverick missile, and they are quite skilled with it. Their tactic is to make side-by-side runs at the targets, two at a time, starting at 11 nm./20.1 km. with a 30deg split and a 10deg climb to the pushover at about 8 nm./14.6 km., then a 30deg merge with a 5deg dive at the weapons release point, and an egress (pilot talk for leaving) at about 2 nm./3.7 km. They then make a right-hand turn, with the number-two aircraft falling in behind the leader. This gives them time to acquire multiple targets, if desired, and hit them all on the same pass. Boom-Boom and John in Claw-2 made their first pass on the left side of the circular array, locking up three of the barrels and delivering three simulated missiles fairly successfully. It struck John then that less than an hour before, he had never touched an F-15E. Now he was delivering ordnance well enough to actually hit things.

Once Claw-3 and -4 had made their run on Target 101, the flight moved over to the Owyhee Pumping Station, which is also used as a target for the simulated missiles (the seeker heads are real, but do not fire). This time the WSOs of Claw-1 and -2, John and Fuzz, worked to lock up specific points on the pump house for the missiles to hit, thus producing a true precision strike, despite the rough air over the Idaho desert.

With the weapons practice finished, the flight headed back to land at Mountain Home AFB, some miles to the west. As they headed home, Boom-Boom was trying to coach John on some more procedures with the radar, but by this time the rough air had taken its toll, and John began to reach for the little manila envelope with the plastic bag in it. Boom-Boom was kind enough to keep the Strike Eagle level while John relieved himself — and felt better immediately. A few minutes later, they were in the Mountain Home AFB traffic pattern, preparing to land. With just a handful of aircraft in the pattern at this time of day, it took just a few minutes to contact the tower, gain clearance, drop into the landing pattern, and set up for landing.

The runway of a modern military airfield seems huge when you are approaching it in an aircraft the size of a fighter, and the vast tarmac almost seems wasted upon you, though as a passenger, you appreciate every square yard/meter of area to land upon. Boom-Boom made his approach with a practiced grace, in spite of a stiff crosswind that was crabbing the Strike Eagle to one side. As he flared the F-15E for touchdown, he extended the large air-brake, which acted like a drag parachute, rapidly slowing the jet to taxi speed. When you are taxiing one of the Eagle family, you almost feel as if you are up on stilts, and you wonder if you're going to fall over. It should be said, though, that the landing gear struts and brakes of the Strike Eagle are the toughest ever installed on a USAF tactical aircraft, and they work just fine!

After taxiing back to the 391st ramp, the crews of the four jets — including a somewhat wobbly and green-around-the-gills John Gresham — exited the aircraft. They immediately proceeded back to the Life Support Shop and turned in their gear for repair and maintenance. Though still a bit nauseous, John, smiling from ear to ear, proclaimed, "God can take an arm or leg or whatever he wants. I've done what I always wanted to do!" As if on cue, the 391st flight surgeon showed up and asked if he wanted something for his nausea. When John replied in the affirmative, the flight surgeon handed him a small pill bottle of Phenergan, which settles the stomach and the inner ears. Later that day, after a nap and a shower, he was up and around, enthusiastically describing his adventure.

When we asked what he thought about flying in the big bird, this was his answer: "If I had to go to a war and didn't know where or against whom, I'd want to take that plane with Boom-Boom as the driver!"

LOCKHEED MARTIN F-16C FIGHTING FALCON

The F-16 was the workhorse of this war. It did the baseline bombing, the body punching. It hauled the iron.

— GENERAL CHUCK HORNER, USAF (RET.)

Officially it's the Fighting Falcon, but to its pilots it's the Viper (after the fighters in the TV series Battlestar Galactica) or the "Electric Jet" (because of its digital flight-control system). To millions of Americans who attend air-shows, however, it's one of the Thunderbirds: six F-16Cs with some of the finest aerobatic flight crews in the world (a statement that is sure to start a debate if any Naval aviators are reading this). It is the Lockheed (formerly General Dynamics) F-16, the most successful fighter design — at least in terms of production numbers — in the last quarter century. Its existence came about when the USAF leadership realized in the 1970s that America no longer had unlimited funds to spend on airplanes and that a compromise between cost and capability was needed. For many years, military planners have known that the cost of combat aircraft is roughly proportional to their weight. If you want to buy more aircraft for the same budget, the solution seems obvious — design a lightweight fighter. "Light" and "heavy" are relative terms; the typical standard for comparing aircraft is maximum gross takeoff weight.

A lightweight fighter might not have all the "bells and whistles" that engineers can think up, but a no-frills aircraft is better than no aircraft at all; and for the cost of one heavyweight fighter you might buy two no-frills aircraft that together should be able to outfly and outfight one heavy one. This became the central dogma of the "Lightweight Fighter Mafia," a group of Air Force and Pentagon officials gathered around the charismatic John Boyd, an Air Force colonel who codified the original concept of energy maneuvering (using power and speed in the vertical dimension to outmaneuver another aircraft) and had been a prime mover in the F-15 program office. During the Vietnam War, lightweight enemy aircraft like the MiG-17 and MiG-21 were often able to outmaneuver and kill heavy multi-role U.S. fighters like the F-4 Phantom and F-105, despite the Americans' advantages of speed, sensors, and weaponry. Though these losses were in great part caused by the restrictive ROE that were set by politicians, the Air Force was determined to stop that from happening again. Thus, while the new USAF lightweight fighter might not have ultra-long range or super-sophisticated electronics, it would for damn sure be more agile than any MiG flying.

The lightweight fighter competition came down to a flyoff between two excellent designs, the General Dynamics Model 401, and the Northrop YF-17; and in February 1974, General Dynamics's entry won. The design was a slightly enlarged Model 401, and the prototype was designated YF-16. The competing twin-engined YF-17 ultimately became the basis for the McDonnell Douglas F/A-18 Hornet.

A Lockheed Martin Block 52F-16C assigned to the 366th Wing's 389th Fighter squadron cruises over the Nevada desert during Green Flag 94-3. It carries a simulted Sidewinder air-to-air missile and a range instrumentation pod on the wingtips, an ALQ-131 electronic jamming pod on the centerline, as well as fuel tanks and Mk 82 general-purpose bombs on the wing pylons.
John D. Gresham

One key design element of the Model 401 was accepting the risk of only one engine — you have to have a lot of confidence in that engine. At the same time, one reason the YF-16 was the winner against the Northrop entry was the matter of that single engine. GD made the decision early to use the same Pratt & Whitney F100-series engine that was on the F-15 Eagle, thus providing a great deal of risk reduction and savings for the Air Force. Risk reduction because it was using an already proven engine design that was in USAF service, and savings because of the economies of greater production numbers and a wider user base.

A head-on view of an F-16C Fighting Falcon. The large engine inlet and bubble canopy are clearly shown, as well as the two large 370 gallon/1,396.2 liter external fuel tanks.
John D. Gresham

The first production F-16, officially named the "Fighting Falcon," was delivered to the Air Force in August 1978, and the first full wing, the 388th TFW at Hill AFB, Utah, became operational in October 1980. Meanwhile, by eliminating some 17 % of the internal fuel capacity, General Dynamics was able to squeeze in a second seat under an enlarged canopy, creating the F-16B operational trainer (later replaced by the more advanced F-16D). The U.S. Air Force eventually ordered some 121 F-16Bs, and 206 F-16Ds.

One advantage of a small fighter is that you are a small target: hard to spot visually and on radar, as well as hard to hit. The blended wing-body of the F-16 helps to reduce its radar cross section, but the gaping air intake, large vertical tail fin, and the need to carry weapons and pods externally mean that it is by no means a stealth aircraft. About 95 % of the structure is made up of conventional aircraft aluminum alloys in order to simplify manufacturing and keep costs down. Production of the F-16A and — B models for the USAF ended in 1985, when the F-16C/D models began to roll off the mile-long assembly line at Fort Worth, Texas. In addition to the letters that designate major F-16 variants (like the F-16C), there are "Block" numbers that describe particular production batches. The current version (since October 1991) is the Block 50/52. In 1994, General Dynamics sold its Ft. Worth, Texas, aircraft factory to Lockheed, which will continue to produce the F-16 through at least 1999. When production ends, over four thousand F-16s will have been delivered.

A cutaway drawing of the Lockeed Martin F-16C Block 50/52 Fighting Falcon.
Jack Ryan Enterprises, Ltd., by Laura Alpher

One reason the F-16 has been so successful is its fly-by-wire flight-control system. On most aircraft, when you move the stick or rudder pedals, you are working mechanical linkages tied to a series of hydraulic actuators that move the control surfaces of the wings and tail. This is similar to the brakes on a car. When you hit the brake pedal, you are not directly applying pressure to the wheels; you are opening a hydraulic valve (the master cylinder) that allows stored mechanical energy to apply a lot more force to the brake pads than your foot could ever deliver. Just as the feel of the brake pedal, when integrated with the perception of deceleration (or the lack of it), conveys important information to a driver, the feel of the control stick provides vital feedback to the pilot. In fly-by-wire the mechanical linkages in the flight-control system are replaced with a tightly integrated set of electro-mechanical force sensors and computer software that translates the pilot's movement of the stick into precisely regulated electronic commands. These are sent over a quad-redundant (i.e., four-channel) data bus to the hydraulic actuators that move the control surfaces, causing the plane to pitch, roll, or yaw as desired. The flight computer software regulates all this without allowing dangerous or excessive excursions that might cause the plane to "depart controlled flight." All F-16A/B aircraft and F-16C/Ds before Block 40 had an analog flight-control system; subsequent aircraft have an improved digital system.

One major benefit of fly-by-wire is weight reduction, since mechanical cables and pulleys can now be replaced by slim electrical signal lines, and even fiber-optical cable ("fly-by-light") in newer systems. Another benefit has been a dream of aircraft designers ever since the Wrights flew their first airplanes — the creation of aerodynamically unstable aircraft. Prior to fly-by-wire systems, all aircraft were designed to be neutrally stable or balanced in the air, so that only a small trimming was required to keep it flying. While this is fine for an airliner or transport aircraft, it is not necessarily what is desired for a combat aircraft like a fighter. Ideally, you want a fighter to be quick and agile — right on the edge of disaster — so that it can react more quickly than other aircraft. With the coming of fly-by-wire control systems, aircraft designers can actually make an aircraft so dynamically unstable that a human being cannot even fly it. The flight software of the system can make adjustments to the attitude and trim of an unstable aircraft many times a second, thus rendering it stable through sheer quickness on the part of the computer.

The unique characteristics of the fly-by-wire flight-control system allowed the General Dynamics engineers to do a number of new things to the cockpit of the F-16. The ACES II ejection seat, for example, is reclined at an angle of 30deg, since this helps to reduce the frontal cross section of the aircraft, which cuts drag and is also more comfortable, especially when pulling high-G maneuvers. The single-piece bubble canopy provides better all-around visibility than any modern fighter aircraft in the world. Remember that most planes shot down in combat never see their opponent sneaking up from behind or below. The lack of normal hydraulic runs means that the control stick can be mounted on the right side of the cockpit, instead of the usual position between the pilot's legs, which eases the strain on the pilot during maneuvers. Mounted on the right armrest, the "side stick" controller is a force-sensing device which requires only light pressure to execute large and rapid maneuvers.

The cockpit of a Lockheed Martin Block 50/52 F-16C Fighting Falco. Just above the pilot's bare knees are the two Multi-Function Displays (MFDs), with the Heads-Up Display (HUD) mounted on top of the Data Entry Panel.
Lockheed Martin

The throttle column is on the left armrest, and both it and the side stick are studded with the same kind of HOTAS radar, weapon, and communications switches as the F-15, and are optimized for operations in high-G maneuvers. In front of the pilot is a small but busy control panel, with the HUD mounted on top, the display for the RWR to its left, and the IDM display (called a Data Entry Display) on the right. Below this is a center pedestal that runs between the pilot's legs. It contains most of the analog flight instruments (artificial horizon, airspeed indicator, etc.), the data keypad (called an Integrated Control Panel), and a pair of MFDs, one on either side of the pedestal.

You can hang a lot of weaponry — up to ten tons of it — on an F-16, if you're willing to pay the costs. These include increased drag, which translates into decreased range, endurance, speed, and agility. However, even when heavily loaded, an F-16 is a dangerous opponent, as a number of Iraqi and Serbian pilots have found out the hard way. On the wing tips are launch rails for AIM-9 Sidewinder AAM or AIM-120 AMRAAM. About 270 F-16s assigned to Air Defense units of the Air National Guard also have the software and radar modifications needed to launch the AIM-7 Sparrow, though this older AAM is rapidly being phased out of service in favor of the newer AIM-120. Under each wing are three hard points where pylons can be installed to carry additional missiles, bombs, pods, or fuel tanks.

Another station under the centerline of the fuselage usually carries a fuel tank, but can also be fitted with an electronic jamming pod (the ALQ-131 or ALQ-184) or (in the future) a reconnaissance pod. All F-16s have an M61 Vulcan 20mm cannon located inside the port strake, with over five hundred rounds of ammunition in a drum magazine just behind the cockpit. The muzzle exhaust of the gun is well clear of the engine air intake to avoid any ingestion of gun gases.

The F-16's sharply pointed nose provides limited space for a radar antenna, so the designers of the Westinghouse APG-66 radar had to use cleverness rather than brute force to get the performance that was required. This included the ability to launch air-to-air missiles, aim the gun, drop bombs, and deliver air-to-ground missiles. When it was finished, the entire APG-66 installation weighed only 260 lb./115 kg., and it was one of the first airborne radars to use a digital signal processor, translating the stream of analog data from the X-band pulse-Doppler receiver, filtering out clutter, and displaying simplified symbology in the pilot's HUD or one of the display panels. In the "look down" mode, the new radar could scan the ground 23 to 35 nm./45.7 to 64 km. ahead, while in "look up" mode it could search the air as far as 29 to 46 nm./53 to 84.1 km.; the higher figures represent performance under ideal conditions, while the lower figures are worst-case maximums. The solid reliability and modular design of this radar has allowed it to be modified for installation on a wide variety of aircraft and other platforms, including the Rockwell B-1B bomber and the tethered "aerostat" balloons that scan the skies of the U.S. southern borders for drug-smuggling aircraft.

Even as the early-model Fighting Falcons were going into general service, improvements were already being contemplated for the F-16. These became the F-16C and — D (the two-seat trainer), which had a number of sub-variants or Blocks which first came into series production in 1985. The first major set of upgrades were incorporated into the Block 25 F-16Cs, which had an improved cockpit, a new wide-angle HUD, and the new APG-68 radar system. The following year, the Block 30/32-series birds appeared with a bigger computer memory, new fuel tanks, and the same kind of common engine bay that's on the F-15E. This means that either the General Electric F110-GE-100 (Block 30) or the Pratt & Whitney F100-PW-220 (Block 32) engine can be fitted, with only minor changes between the two variants. The biggest of these is a larger engine inlet for the F110-powered variant, which can be easily changed. In addition, the inlet of both variants, always a major contributor to the F-16's RCS, has been specially treated with several radar-absorbing material (RAM) coatings, which radically reduces its detectability. The next major variant (it appeared in 1989) was the Block 40 (F110)/42 (F100) version, which had the new enhanced enveloped gunsight (like the F-15C/E), APG-68V5 radar and ALE- 47 decoy launchers, a GPS receiver, and provisions for a higher gross weight (42,300 lb./19,227.3 kg.). Following this (in 1991) was the Block 50/52 version, which made use of a pair of new technology, higher thrust engines (29,000 lb./ 13,182 kg.), the General Electric F-110-GE-129 installed in Block 50 birds, and the Pratt & Whitney F100-PW-229 in the Block 52s. In addition to the new engines, the Block 50/52 F-16s were equipped with a new ALR-56M RWR and a MIL-STD-1760 data bus for programming new-generation PGMs. The latest, and probably final, production variant is the Block 50D/52D version, equipped with a new 128K DLD cartridge, a ring laser gyro INS, an improved data modem (IDM) like the F-15E, and the ability to fire the latest versions of the AGM-65 Maverick and AGM-88 HARM missiles.

On the Block 15 and later models of the F-16, there are two special mounting points on either "cheek" of the air intake that can support sensors such as the LANTIRN system pods (targeting on one side, navigation on the other), the ASQ-213 HARM targeting system (HTS) pod, the Atlis II targeting pod, the Pave Penny laser tracking pod, or future precision targeting devices. The HTS pod has opened up a whole new mission for the Viper. Only 8 in./20 cm. in diameter, 56 in./142 cm. long, and weighing 85 lb./36 kg., it fits on the right-side cheek mount (Station 5 as it is called), where the AAQ- 14 LANTIRN pod would normally hang. Originally developed by Texas Instruments under a program to provide new modular targeting systems for USAF aircraft, it is the key to USAF's effort to hold on to some kind of SAM hunting capability in the 21st century. This is particularly vital, given the age of the F-4G Wild Weasel fleet, which is rapidly drawing down. The HTS pod allows the pilot of a single-seat F-16C to do just about everything a two-seat F-4G can do with its APR-47 RWR system. Most important of these is the ability to rapidly generate ranges to target radars, as well as to provide greater discretion between different types of enemy radars. Lockheed is even working on a new version of the F-16 flight software which will allow two or more F-16s with HTS pods, GPS receivers, and IDMs (acting as data links) to work together so they can generate more accurate targeting solutions, and even feed them to other HARM-equipped aircraft with IDMs. This matter of establishing ranges to target radars is vitally important since standoff range for an AGM-88 can be roughly doubled if you know this before launch and can program it into the HARM. It also reduces the time of flight for a HARM, by allowing the missile to fly a more direct path. About a hundred of the HTS pods were manufactured and delivered by Texas Instruments (who also manufacture the AGM-88 HARM), and have been assigned to several F-16 units within ACC and overseas units.

Beginning with the — C and — D models of the F-16, a new radar, the Westinghouse APG-68, has been installed, with higher reliability (very low false alarm rate, and up to 250 hours' mean time between failure), much greater computer capacity, increased range out to 80nm./146.3km., improved countermeasures against enemy jamming, and a special sea search mode for operation against naval targets. The radar can scan a 120deg arc horizontally and 2, 4, or 6 "bars" in elevation (each bar being about 1.5deg in elevation). These enhancements came at the cost of increased weight — an extra 116 lb./53 kg. The APG-68 offers a lot of choices for a single hard-working pilot, especially in the stress of combat. Fortunately for the pilot, their favorite radar mode presets (along with many other system settings) can be programmed on a mission-planning computer and stored in a DTU cartridge (Data Transfer Unit, much like the DTD on the F-15E Strike Eagle) which snaps into a socket in the cockpit. Designed for continuous upgrading, the APG-68 will eventually provide automatic terrain following, integrated with the aircraft flight control system, a high-resolution synthetic aperture mode (SAR) like the APG-70 on the F-15E, and perhaps even NCTR capabilities. Another possibility is the retrofitting of a radar with an electronically scanned antenna like the APG-77 planned for the F-22 (the present antenna is mechanically scanned in azimuth and elevation by electric motors). All of this translates into a radar as capable as anything flying today, at relatively low cost, volume, and weight.

Because a large number of Fighting Falcons have been sold overseas, an early trial in combat for the little jet was virtually guaranteed. In July 1980, the Israeli Air Force (Hel Avir) received its first F-16s, after an eleven-hour, six-thousand-mile ferry flight from New Hampshire. Within months, the new birds had gone into combat. The highlights of these early actions were the raid on the Osiris nuclear reactor complex near Baghdad in 1981, and the huge air-to-air victory over the Syrian Air Force in what has come to be called the "Bekka Valley Turkey Shoot" over Lebanon. And Pakistani Air Force F-16s scored more than a dozen air-to-air victories against Soviet and Afghan aircraft during the war in Afghanistan.

And then there was "the Storm." During Desert Storm, the performance of the F-16 was something of a disappointment, despite some 13,500 combat sorties that delivered over twenty thousand tons of ordnance. Part of the problem was the rotten weather, for the F-16 is optimized as a clear-weather day fighter. Another part of the problem was the reluctance of the Iraqi Air Force to come out and get killed in air-to-air duels (the F-16 is very capable as an air superiority machine). But the greatest problem was the lack of LANTIRN precision targeting pods. Only seventy-two of the 249 F-16s in the theater had this vital system, and they only had the AAQ-13 navigation pod, and not the AAQ-14 targeting pod. The F-16's bomb delivery software and the training of the pilots had been optimized for low-level attacks, where even the dumbest bombs can be delivered with some accuracy. But the volume of Iraqi ground fire led Coalition air commanders to decree that bombing runs would be made from medium altitude (12,000 to 15,000 feet/3,657.6 to 4,572 meters), an environment where the F-16 was at that time definitely not optimized. Reportedly, software modifications to the weapons delivery system have overcome these shortcomings. However, since that time the F-16 has shined, obtaining six air-to-air kills over Iraqi and Serbian aircraft trying to operate in United Nations mandated no-fly zones, as well as gaining the capabilities inherent to the LANTIRN and ASQ-213 HTS pods.

One criticism of the F-16, compared to its competitors, is its relatively short unrefueled range. The Israelis use six-hundred-gallon external fuel tanks, which extend typical mission range 25 % to 35 %; but the U.S. Air Force has stuck with the standard 370 gallon tanks. Lockheed has recently developed a pair of conformal fuel tanks which hug the upper surface of the fuselage. To cope with the increased weight, the landing gear and brakes are being strengthened. This "enhanced strategic" version will reportedly be able to fly deep penetration missions like the F-15E.

There are other ideas to keep the F-16 alive. In the life cycle of any combat aircraft program, weight growth is almost inevitable, leading to a gradual loss of agility. Considerable research and development has gone into finding ways to compensate for this in the F-16. One experimental variant was the F-16XL, with a greatly enlarged "cranked arrow" delta wing. Another experiment was the Multi-Axis Thrust Vectoring (MATV) engine nozzle, which uses hydraulic actuators to deflect the exhaust up to 17deg in any direction. A very promising future enhancement is an enlarged wing which could be the basis for a third generation of production Vipers.

The ultimate replacement for the F-16 is already evolving, under the acronym JAST, which stands for Joint Advanced Strike Technology. This is likely to be a single-seat, single-engine aircraft that may come into service sometime around 2010, if the Navy, Marines, and Air Force can manage to cooperate enough to impress Congress with the need for a new generation of manned combat aircraft. It will probably incorporate low-observables technologies, but not the super-stealthy features of the F-117, B-2, or F-22. Also, it may wind up using vectored thrust to achieve short takeoff and vertical landing.

ROCKWELL INTERNATIONAL B-1B LANCER

It may seem perverse to describe a bomber as sexy, but when you get up close to the B-1B, the sinuous curves and sculptural form of the airframe radiate an almost erotic energy, looking like smooth flawless skin over warm pulsing muscles rather than aluminum and composite panels riveted to steel and aluminum ribs. Pilots like to say that if a plane looks good, it flies good, and the B-1B proves the point. The plane holds most of the world records for time-to-altitude with heavy payloads, and it has flight characteristics more like a fighter plane than a bomber with twice the weight-carrying capacity of the classic B-52 Stratofortress which it was designed to replace.

Few modern aircraft programs have involved such bitter and protracted political battles as the B-1—or so many radical redesigns — and still made it into squadron service. The B-1 story began with the cancellation of the North American Rockwell XB-70 Valkyrie in 1964. This huge dart-shaped aircraft was designed to fly nuclear strike and reconnaissance missions at Mach 3 above 80,000 feet/24,384 meters. The growing effectiveness of American ICBMs and the Soviet development of surface-to-air missiles (as demonstrated by the downing of the U-2 flown by Francis Gary Powers in 1960) and high-speed, high-altitude interceptors like the MiG-25 threatened, it seemed, to make the manned bomber as obsolete as horse cavalry.

But there was still life in bombers. If there was no safety in high altitude, then a high-speed, low-level penetrator might still get through the thick wall of the Soviet air defense network, but only if a thicket of technical problems could be solved. Low-level means from 50 to 500 feet/15.2 to 152.4 meters above the ground, where the air is dense and you need a lot of power to push it aside. Simple enough over the Nevada salt flats perhaps; but in rough terrain, the mountains and hills are much denser, and you can't push them aside. You have to go up and over them, hugging the contours but avoiding the violent roller-coaster excursions that leave both crew and airframe overstressed and fatigued.

Moreover, fuel considerations make it impossible for an aircraft to fly a low-level dash at supersonic speeds while still carrying a useful payload to a strategically meaningful range, say 7,500 nm./13,716 km. For reasonable fuel economy and fast transit to the enemy border, any new bomber would have to cruise at high subsonic speed above 25,000 feet/7,620 meters, before descending for the run in to the target. One way to achieve this goal is to use "variable geometry" wings. That is, you change the sweep angle of the wings to optimize lift and minimize drag under a wide range of flight conditions. Variable geometry has been successfully implemented on fighter-sized aircraft like the MiG-23 Flogger, F-111, F-14 Tomcat, and Panavia Tornado, but on a big bomber it requires actuators of enormous power and a pivot bearing of immense strength.

In 1970, the Air Force chose Rockwell International (formerly North American Aviation) to develop the "Advanced Manned Strategic Aircraft." It would be powered by four GE F101 turbofan engines, each rated at 30,000 lb./ 13,600 kg. thrust with afterburner. The first B-1A was rolled out on October 26th, 1974, and the Strategic Air Command (SAC) hoped to procure a total force of 240 of the new bombers to replace the B-52s that had worn themselves out over Vietnam. In those years of runaway inflation, the cost of the plane escalated rapidly, and the complex software-driven avionics system was plagued with the usual development problems inherent in the early systems of this type. Then in 1977, President Jimmy Carter canceled the program in favor of long-range cruise missiles launched from the existing fleet of B-52s. The four completed prototypes were nevertheless retained in service for testing, though one was eventually lost due to a crew error in regulating the aircraft's fuel supply and center of gravity, and another as a result of a collision with a pelican. Bird strikes are a major hazard to low-flying aircraft. Like most tactical aircraft, the B-1 is designed to withstand high-speed collision with a 4 lb./1.8 kg. bird, even on the windscreen transparency. Unfortunately, at 600 knots/1,097.8 kph., the 15 lb./6.8 kg. pelican that hit the Test B-1 was a lethal projectile, taking out a significant part of the hydraulic system and causing the loss of the aircraft.

Meanwhile, by the end of the 1970s, the B-52s weren't getting any younger, and the SAC bomber force, with no follow-on replacement program, was facing obsolescence. As might be imagined, the SAC leadership lobbied hard to get the B-1 program back on track, with lots of support from Rockwell and those who believed in the continued importance and viability of the manned strategic bomber as part of the American nuclear triad (bombers, ICBM, and SLBMs). And in 1981 President Ronald Reagan announced the decision to build one hundred B-1B bombers — externally similar to the B-1A but radically redesigned in many respects. The production of those one hundred aircraft had been at the heart of his presidential campaign promise to rebuild the American military force to face down the Soviet Union in the 1980s. The first production bomber, christened the B-1B Lancer (after a famous pre-World War II interceptor), rolled out of Rockwell's Palmdale, California, plant on September 4th, 1984, with the IOC of the first squadron being achieved on October 1st, 1986.

While it is officially designated the "Lancer," the B-1B's crews call it "the Bone." Currently, B-1B squadrons are based at Dyess AFB, Texas; Ellsworth AFB, South Dakota; and McConnell AFB, Kansas. In addition, the six B-1Bs of Ellsworth's 34th Bomb Squadron, now attached to the 366th Composite Wing, are hopefully scheduled to move to Mountain Home AFB in 1998, when expanded facilities are completed. Finally, two aircraft are permanently based at Edwards AFB, California, for continuing testing and evaluation of new B-1B weapons and systems. The B-1B force did not participate in Desert Storm, since it was then dedicated mainly to the nuclear deterrent role, crew training and software modifications for delivering conventional weapons were incomplete, and it was not really needed in the Gulf.

The place to explore a B-1B is the flight line of Ellsworth AFB near Rapid City, South Dakota, which is the home of the 28th Bombardment Wing, as well as the 34th Bombardment Squadron, which is assigned to the 366th Wing at Mountain Home AFB, Idaho. When you see a B-1B on the flight line at Ellsworth, the first thing you feel is speed. The Bone seems to be moving — and fast — just standing still on the ramp. Then there are the sensuous curves. As you get closer, the details that show the quality of the B-1B's workmanship begin to show, and you begin to notice that the join lines between panels and access doors are almost impossible to see without knowing exactly where to look. Part of the reason for this has to do with the desire of the USAF and Rockwell to make the B-1B as small to enemy radars as possible. While technically not a stealth aircraft, it is considered a "low-observable" airframe, which does give it some penetration capabilities that even small fighters like the F-16 lack. The four afterburning F101 engines are mounted in underwing gondolas, with the two bomb bays located in the fuselage aft of the crew compartment. Except for a pattern of white markings around the in-flight refueling receptacle, B-1s are currently painted the same uniform dark gray as the F-111 and F-15E fleets, with small, low-visibility national markings. In peacetime, B-1 crews have applied some of the most creative nose artwork in the Air Force, but the rampaging animals and well-endowed young ladies would probably be painted over for combat missions, to reduce the visual signature. Moreover, the coming of women to the flight crews of USAF combat aircraft has imposed certain limits of taste upon such decorations, probably to the advantage of all concerned, but to the detriment of a highly cherished tradition of airmen around the world.

A cutaway drawing of the Rockweell International B-1B Lancer.
Jack Ryan Enterprises, Ltd., by Laura Alpher

The crew enters the Bone by climbing a retractable ladder built into the nose wheel well. An interesting feature here is the "alert start" button. Since SAC originally expected to launch under conditions of nuclear attack, a single big red "bang" button on the nose wheel strut can start all four engines and begin alignment of the inertial navigation system, so that the aircraft would be ready to roll as soon as the crew was strapped in. Now that the B-1Bs no longer operate in the nuclear deterrent role, nobody uses the panic start button anymore, and there's time to work through the preflight check-list methodically. You have to be a bit careful going up the ladder, because the aisle is narrow and the headroom is limited. The flight crew consists of a pilot and copilot, who sit side by side in the front, with an offensive avionics operator (who fills the role of bombardier/navigator) and defensive avionics operator in a separate compartment behind them. The backseaters have small side windows, but their attention is dominated by large electronic consoles. The original B-1A design incorporated a complex crew "escape capsule"; the entire cockpit compartment would separate from the aircraft and deploy stabilizing fins and a parachute. But on the B-1B this was replaced by simpler, lighter, and more reliable ACES II ejection seats. Blow-out panels above each crew position are triggered by the ejection mechanism, which has a surprisingly good record for crew survival in emergencies. The in-flight refueling receptacle is built into the nose, just forward of the windshield; flight crews with B-52 experience find this a bit disorienting at first.

The controls, while not quite as advanced as those on the F-15E or F-16C, are quite easy to use, and very functional. You sit in the pilot's seat, with the fighter-style control stick fitting in a nice, neutral position that is designed to reduce crew fatigue. While there is no HUD, the mission data is easily read from several MFDs located on the instrument panels. The throttle quadrant is located on a pedestal between the pilot and copilot positions, with other common controls like navigation and flight management systems being positioned there for easy access from either position. Engine, fuel, and other indicators are of the "strip" type, much like an old-style mercury thermometer. These visual readouts make it easy to see if an engine or some other system is operating within "green" (safe) parameters or in a "red" (danger) situation. There is also a small panel of enunciators, which show system status and warning lights for things like engine fires or low hydraulic pressure.

B-1s prefer to operate as lone wolves. Any escorting fighter that is not stealthy is likely to increase the risk of enemy detection. In low-level penetration missions, when the autopilot is coupled to the TFR mode of the APQ- 164, speed is life. At 500 feet/152.4 meters altitude, the B-1's cruising speed is about 550 knots/1,006 kph., and at full afterburner it can be cranked up to just a hair over the speed of sound. Maximum takeoff weight is 477,000 lb./ 216,365 kg., with a maximum altitude of over 50,000 feet/15,240 meters.

No fighter in the world can overtake a B-1B operating at low altitudes. Over rough terrain, any fighter pilot who tries to stay on the B-1's tail is likely to have a highly detrimental intersection with the ground. In addition to the APQ-164's TFR radar mode, what makes this possible is a pair of small downward-slanted vanes on the nose, just forward of the cockpit. (From some angles, they make the plane look like a catfish.) Everything on an aircraft gets an acronym, and these little fins are part of the SMCS: Structural Mode Control System. Flying at low altitude means an aircraft is going to encounter turbulence even in good weather. This can make the aircraft dangerously hard to control, fatigues the crew, and causes flexing of the airframe that drastically shortens its service life. To reduce this problem, a set of accelerometers mounted in the aircraft sense the turbulence, and a computer rapidly moves the fins to compensate. The effect is to limit the vertical accelerations felt by the crew to no more than three Gs.

Just behind the pilot's position is a space, about the size of a large packing carton, which pretends to be a toilet. This is not of the flush variety, but simply a canned chemical "pack" which allows a crew of four to function for about twenty hours. For the longer "Global Power/Global Reach" missions, which can last more than thirty hours, a second toilet pack is kept in the stowage compartment just behind the copilot's position. Also kept here are things like food, water, coffee, personal equipment, engine inlet covers, and anything else that can be crammed into the space. For crews used to the relative roominess of the old B-52s, the B-1B can be somewhat confining and spartan. In fact, where the B-52 had crew rest bunks, B-1 crews tend to just lay a couple of engine covers in the aisle between the front and rear compartments and snatch catnaps as time and events allow. Mission endurance is, in fact, virtually unlimited. With aerial refueling, B-1s have flown completely around the Earth in thirty-hour marathons.

In the after part of the crew compartment, on either side of the crew entry hatch, are the positions for the offensive avionics operator (bombardier/ navigator) and defensive avionics operator (electronic warfare officer). Sitting in their own ejection seats, they each face a large vertical panel which controls the various sensor and electronic warfare systems. The electronic systems of the B-1B are tied together by a quadruple-redundant MIL-STD- 1553 data bus. The health and status of all systems are continuously monitored and recorded by a central integrated test system, which greatly simplifies troubleshooting for ground-based mechanics. There are a number of IBM AP-101F computers, based on the 1960s-vintage computers, installed in the B-52G; two are dedicated to terrain following, one is for navigation, one for controls and displays, one for weapons control, and one for backup. By modern standards these computers are pretty feeble — they share a total mass memory unit with only 512K of magnetic core memory (less than the cheapest portable computer you could buy today); but these systems are hardened against the electromagnetic effects of a nearby nuclear explosion. Just try that trick with your desktop PC or Macintosh. Continuing upgrades of the computers and software are likely, if government policies do not cripple the highly specialized radiation-hardened chip industry.

A Rockwell International B-1B Lancer bomber assigned to the 366th Wing's 34th Bombardment Squadron on the ramp of Ellsworth AFB.
John D. Gresham

On the right is the position for the offensive avionics operator, who controls the radar, navigational, and weapons-delivery systems of the B-1B. The nose-mounted Westinghouse APQ-164 radar of the Bone is derived from the APG-66 used on the F-16A. Actually composed of two radars (one to control the terrain-following autopilot, the other to provide an attack sensor) stacked one on top of the other, the APQ-164 has matured a great deal since coming into service ten years ago. Updated software provides for up to thirteen different radar modes to provide ground mapping, navigation, weapons targeting, and all-weather terrain following. The APQ-164 can also operate in an SAR mode, to take the same kind of target-mapping photos that can be obtained from the APG-68 on the F-16C, and the APG-70 on the F-15E. Recent software improvements in SAR mapping radar mode are dramatic. "You could pick out fence posts before; now you can practically see the wire," said one Rockwell executive in a recent trade journal interview, and the crews from the 34th BS confirmed this claim. One of them told us that with the attack system he could resolve the structural legs of high-tension power towers, and deliver 50 lb./227.1kg. iron bombs between the legs. And that's the whole point of keeping the big bombers — their ability to deliver vast amounts of ordnance with a single sortie.

One thing that B-1B crews have desperately needed is an improved navigation system, preferably one based around the NAVSTAR GPS satellite constellation, which was recently completed. Composed of 24 satellites, it provides super-accurate navigation and timing information to users equipped with relatively cheap, small, and lightweight GPS receivers. Unfortunately, unlike fighters like the F-16C, which were among the first to get the Rockwell Collins MAGR, the B-1B bomber force has languished without this badly needed black box. While there are future plans to add the MAGR to the Bone's avionics fit, the crews decided to take matters into their own hands, and thus are the roots of a story. Several years ago, when faced with exactly the same problem, the crews of U-2 reconnaissance aircraft, whose navigation must by nature be extremely accurate, began to get impatient for their own GPS upgrade, and started to look at some commercial options. This led them to our old friends at Trimble Navigation, the makers of the famous SLGR GPS receiver which was used extensively during Desert Storm. (See my previous book Armored Cav for a description of the SLGR.) Makers of a whole line of military and commercial GPS receivers, they had taken the basic technology elements of the SLGR, which was packaged into a case about the size of a car stereo, and repackaged it into a smaller, lighter, and cheaper form factor called the Scout-M. Looking for all the world like an olive-drab phaser from the TV series Star Trek: The Next Generation, the Scout-M provided similar functionality to the SLGR, at less than one fifth the weight, volume, and cost. The little green machine has proven quite popular with military personnel and sportsmen around the world, despite the lack of a more accurate PY-code military model, and it is here that we start our story. Trimble's aviation version of the Scout-M contained an additional read-only-memory (ROM) chip, which stores additional flight-related data. Known as the Flightmate Pro, its special ROM is loaded with some 12,000 positions for airfields, airbases, and other important navigational landmarks of concern to aviators. Originally designed to provide private pilots with an inexpensive way of taking advantage of the benefits of the GPS system, it is in fact a highly sophisticated self-contained navigation system which can be had for less than $1,000, and then clipped to the control wheel of your Cessna, Piper, or Beechcraft. Packaged in an attractive gray case, it is equipped with a socket for an external antenna, as well as an interface connector to connect it to a personal computer for route and flight planning. First sold in 1993, it has sold thousands of units to pilots worldwide, and has become something of a bestseller in the world of general aviation.

The Trimble Flightmate, a hand-held GPS receiver being used by USAF crews, including those who fly the B-1B Lancer.
Trimble Navigation

Now enter the U-2 crews of the 9th Reconnaissance Wing, who, as we previously mentioned, were desperately in need of a GPS-type navigational system. Soon after the Flightmate Pro's introduction, the U-2 pilots pressured their procurement office to make a request for a commercial buy of the little GPS receivers. To keep the Powers-That-Be from figuring out just what they were doing, they claimed that the Flightmates were going to be used as a search-and-rescue (SAR) aid, to help SAR forces to find them, and in fact, they are quite useful for that task. If it had been bought as a piece of navigation gear, it would have been treated as an avionic system by the folks who manage the procurement programs, and taken years to get approval. As a commercial buy, though, it could be done in a matter of days. Almost immediately, the U-2 pilots began to strap them to their kneeboards, and use them without modifications, since the GPS satellite signals could be easily read by the receiver right through the aircraft's bubble canopy. The U-2 drivers loved it, and have kept their Flightmate Pros well after their aircraft have finally received their scheduled MAGR GPS receiver installation. Word of the nifty little GPS receiver has gotten around, and numerous other units have made "commercial orders" of Flightmate Pros as a "SAR aid." Many of these have come from the B-1B community, including the 34th Bombardment Squadron (BS) of the 366th Wing. The 34th BS maintenance technicians have rigged a GPS antenna on top of the fuselage, and then run antenna connections to each of the crew positions, so that each one can plug in their own personal Flightmate Pro to assist them in their tasks. For the pilot and copilot, this usually means assisting them with route planning, execution, and timing. For the folks in the rear seats, it can be used to assist in planning weapons deliveries and avoiding the envelopes of threat systems like SAM sites. The young B-1 crews are always finding new ways to use their laptop computers to program the Flightmate Pro, and I have to imagine that they will continue to in the future. Even though it is only accurate to about 100 yards-meters of ground truth, this is usually accurate enough to make a considerable difference in a crew's performance of a particular task. And while the Flightmate may lack some of the accuracy of the PY-code MAGR (which is accurate to within about 10 yards/meters), it is a vast improvement over their existing systems, and may have to do until the coming B-1B GPS installation in the late 1990s. In any case, it's another example of how this fast-moving technology can do almost impossible things for absurdly low prices, and you can even buy one for yourself to boot!

A Conventional Munitions Module (CMM) is loaded into the forward bomb bay of a B-1B Lancer bomber. The B-1B can carry up to three CMMs, each of which can be loaded with up to twenty-six 500 lb/277.3 kg Mk 82 general-purpose bombs.
John D. Gresham

On the left side of the compartment is the position for the defensive avionics operator, whose job it is to manage and operate the defensive countermeasure systems of the Lancer. These include a variety of different sensor, jammer, and decoy systems. But the B-1B's best defense lies in its ability to avoid being seen and caught. As a result, the B-1's designers dispensed with the traditional tail gun, relying on elaborate electronic countermeasures for protection and the aircraft's inherent low radar cross section (RCS).

All of the offensive weapons are carried internally — and I mean a lot of weapons. The maximum ordnance load is 125,000 lb./56,700 kg. — twice the capacity of a B-52. But a more typical combat load would be about half that much. There are two bomb bays: The forward bay is twice the length of the aft bay, and has a movable bulkhead that allows the fitting of one or two optional extra fuel tanks in place of bombs. Up to eighty-four Mk 82 500-pound bombs can be carried in special dispensers called conventional munitions modules (CMMs) that can drop the entire bomb load in just two seconds — about 3,000 feet/914.4 meters of horizontal flight. This is the equivalent of the maximum combat load of seven F-15Es delivered by just one aircraft! Back in the Cold War when the Lancer flew in the strategic deterrent role, it carried up to three removable eight-round rotary launchers, loaded with nuclear gravity bombs or AGM-69 Short Range Attack Missiles. The launchers have been retained and can be fitted with adapters for up to eight Mk 84 2,000-pound bombs, BLU-109, or other weapons, including the AGM-86 ALCM-C air-launched cruise missile with a conventional warhead. (See Chapter 4 for a fuller description of these.) Strangely, because the B-1B is no longer being counted as a nuclear-capable platform under the SALT and START treaties, the entire force is now unable to drop nuclear weapons.

Weapons deliveries of the Mk 82 500 lb./227.1 kg. bombs tend to be made in "strings" or "sticks" of bombs, usually in multiples of six, though as few as one at a time can be dropped. Until the new Precision Guided Munitions (PGMs) come on-line later in the 1990s, the B-1 will run a string of bombs across or along the line of a target, insuring that at least one of the deadly projectiles hits it. Precision targeting was not a big concern back in the days of nuclear deterrence. During the Cold War, target aim points were planned years in advance, and crews trained and drilled endlessly for specific missions until the target area was as familiar as their own neighborhoods. When you're dropping 500-kiloton thermonuclear weapons, an error of a few meters one way or the other is not significant. But in the conventional role, the B-1's current lack of PGMs is a crippling handicap.

With only 500 lb./227.1 kg. bombs to drop, you might wonder why the USAF has not grounded the B-1B fleet and scheduled it for decommissioning. The reason is that while it has some shortcomings in the area of weapons and communications, the Bone represents a potential to rapidly deliver a vast load of precision ordnance over intercontinental distances. Thus, the Bone is at the core of the new "Bomber Roadmap" program that has new communications and weapons systems being installed to support ACC's current and projected conventional missions. Where the B-1B is concerned, this will be a phased upgrade program running over the next five years or so.

In 1996, the active squadrons of B-1Bs will begin to receive the Conventional Munitions Upgrade Program (CMUP) that will provide modified bomb racks bombs (called "Tactical Munitions Dispensers") for delivering CBU-87/89/97 cluster bombs. By 2001, a more ambitious second phase of the CMUP will begin equipping the fleet with the new Joint Direct Attack Munition (JDAM) system. This will require installation of a GPS receiver, an upgraded mission computer, and wiring the bomb bay for the high-speed MIL-STD-1760 data bus, which transfers GPS time, position, and velocity data from the aircraft to the smart bombs.

After many delays and configuration hassles, the NAVSTAR/GPS system, with a suitable low-profile antenna, is finally being integrated onto the B-1's data bus. This Rockwell Collins MAGR unit will supplement or replace the outdated inertial navigation system currently installed on the Bone.

One thing that will have to be upgraded is the communications systems, which are currently oriented towards the old Doomsday mission of the Cold War (largely limited to receiving and authenticating the "Go" codes). Thus, the priority is to install the new Have Quick radios and JTIDS terminals in the bombers' communications bays, so that they will be able to work with the other combat aircraft in the ACC force. Thus, the CMUP will also provide new Rockwell Collins ARC-210 Have Quick II jam-resistant tactical radios. Also likely is a mid-life upgrade for the ALQ-161 jammer, and better integration of advanced missile-warning and radar-warning systems into the defensive avionics suite. Because of the perceived lack of sophisticated threats, money for electronic countermeasures is very scarce in the budget right now. But with the planned decommissioning of the EF- 111A Ravens in 1996, the B-1B's onboard jammer will probably be the most capable airborne jammer in the USAF inventory, and may well be required to fill in that role for a time.

The B-1B is an airframe and a community in transition, with much potential that will have to be realized if it is to perform useful work into the 21st century. Doing this will not be cheap, but ACC will need these bombers if they are to succeed in their goal of supporting two major regional conflicts at one time.

BOEING KC-135R STRATOTANKER

Where once a trip to Europe was considered an adventure, today a trip to the Middle East elicits a travel-weary reaction. "I don't want to go to Saudi Arabia again; I've been there five times, [and] I've got enough souvenirs," one KC-135 pilot said.

— QUOTED IN AIR FORCE TIMES, FEBRUARY 6, 1995

It is a hard fact that much of the "Global Reach" of the U.S. Air Force depends on a fleet of aerial refueling tankers that are, in many cases, now older than their crews. The first KC-135 made its maiden flight on August 21, 1956, and the aircraft entered service in January 1957. A total of 798 KC-135 Stratotankers were built between 1956 and 1966. Their original, highly critical mission was to refuel the SAC fleet of B-52 nuclear bombers on their way to Doomsday (and back). Many of these planes spent decades standing alert duty, enjoying the fanatically meticulous maintenance that SAC enforced. Because the aircraft spent so little time under the stresses of flying, the -135 fleet is in surprisingly good condition. In fact, the fleet average on flight hours per airframes is something less than fifteen thousand hours, which is amazing when you consider that most of them were built in the early 1960s, and an equivalent commercial Boeing 707 might have over 120,000 flight hours! Now equipped with new engines, new wing skins, strengthened landing gear, and modernized avionics, the 552 remaining KC-135s will continue to give many years of good service. They will have to, because there is currently nothing on the drawing boards, or in the Air Force budget, to replace them.

Throughout the history of aerial warfare, the single most limiting factor has been the fuel capacity — and thus the range — of the aircraft flying the combat missions. The lack of a long-range escort fighter cost the Germans the Battle of Britain in 1940. Conversely, the P-51 Mustang, with its "seven-league boots," was the deciding factor in the success of the 8th Air Force in their operations over Germany. Thus, the idea of extending an aircraft's range by aerial refueling is such a simple idea, it is surprising that it took so long to catch on.

The first known attempt to do so occurred in 1921, when an aviator named Wesley May climbed from one flying biplane to another with a 5-gallon /18.9-liter can of gas strapped to his back. Later, daring young officers like Major Henry H. "Hap" Arnold and Major Carl A. Spaatz (both became generals in World War II) experimented with simple hose and gravity-feed or pump arrangements for passing fuel from one aircraft to another. At the time, this was regarded more as a stunt to set flight endurance records than a realistic operational option; but it was a start on the road to the airborne tankers of today. World War II passed without any known use of aerial refueling by any of the combatants, though it would be the last major conflict where the technique would not be used.

After World War II, two different technologies for aerial refueling were developed in the United States. The first of these, the probe-and-drogue method, required the tanker aircraft to reel out a hose with a cone-shaped receptacle (the drogue), that could then be "speared" by a fixed or extensible probe on the receiving aircraft. This method is preferred by the U.S. Navy, the Royal Air Force, and a number of NATO countries. The other method, Boeing's Flying Boom, required a trained boom operator with nerves of steel to guide a telescoping boom with twin steering fins into a locking receptacle on a receiving aircraft, which meanwhile is trying to maintain precise formation in the tanker's turbulent wake. This technique appealed to the USAF, who felt that the actual hookup between the aircraft should be controlled by a professional who did this odd task for a living. Tanker "boomers," as they are known, are usually sergeants who double as the aircraft's crew chief.

The first operational tankers, the KB-29, the KB-50, and the KC-97, were derived from the Boeing B-29 bomber. Their shortcomings were obvious. Because of their four piston engines, the early tankers simply could not keep up with the new generation of jet fighters and bombers that were quickly becoming the primary customers for these aerial gas stations. The solution, clearly, was going to be a jet tanker capable of integrating itself with the new jet combat force of the USAF.

The problem was that until someone developed a jet transport with sufficient payload capacity, this idea was going to stay just that — an idea. Fortunately, in the early 1950s there was an international race to produce the first commercially viable jet transport, and the USAF was able to pick their new tanker from the winners. The British Comet was first into service, but an unforeseen problem with metal fatigue around the window frames led to the loss of several aircraft in flight through explosive decompression. In the United States, Boeing's long experience with designing pressurized high-altitude aircraft like the B-29 paid off in the design of a tremendously strong airframe that would become the basis for both the military C-135 transport and the 707 commercial passenger liner. In 1954, soon after the first flight of Boeing's first jet transport prototype, the Model 367-80, the Air Force ordered a fleet of Boeing tankers to support the bomber force of the then-Strategic Air Command.

Boeing's project number for what became known as the Stratotanker was Model 717. It differed from the basic 707 airliner in having smaller overall dimensions, a somewhat narrower fuselage, no cabin windows, and, of course, an extendible, finned refueling boom and tiny compartment for the boom operator under the tail. The tankers, constructed more simply, to military standards, than their commercial cousins, actually went into service before the Boeing 707 completed final commercial certification.

Now, you should understand that if the whole fuselage barrel section were filled with fuel, the plane would be too heavy to take off. Thus, the fuel carried is actually contained in a relatively small volume, leaving the inside of the cabin available for other uses. All of the tanker-related equipment is below the main deck, leaving seating space for passengers or an equivalent volume of cargo — up to 83,000 lb./37,650 kg.

Over the years, more than two dozen variants of this versatile airframe have been built, including a bewildering collection of "deep black" intelligence collection platforms, going by such names as Rivet Joint and Cobra Ball. A small number of all-cargo versions were built as C-135 Stratolifters. The -135 has also enjoyed some modest success in the export market; a dozen C-135F models were sold to France in 1964 to support that country's tiny but potent nuclear strike force of Mirage IV bombers. Canada and Israel also purchased tanker/cargo aircraft from the 707/KC-135 family, and continue to operate them today.

If you take a walk around one of the big tankers, the first thing that strikes you is how much it looks like an old Boeing 707, but with fewer windows. This absence of viewports is one of the reasons for the Stratotankers' longevity, since each hole that you put in a pressurized airframe is just another place for structural fatigue cracks to start.

The entire KC-135 fleet was originally equipped with the noisy and fuel-guzzling Pratt & Whitney J-57 engine, which also put out a lot of smoke on takeoff. Fortunately, most of the aircraft remaining in service have been re-engined with more efficient and powerful General Electric/SNECMA CFM- 56 turbofans, creating the KC-135R variant. The engine change reduces noise by 85 % and pollutant emissions by 90 %, and the increased power allows for a much shorter takeoff run. The biggest benefit, though, is the vastly improved fuel efficiency, which allows a KC-135R to offload up to 50 % more fuel than one of the earlier J-57-equipped birds. While most aircraft in the USAF fleet are equipped to take fuel from tankers, most KC-135s are not themselves equipped with flight-refueling receptacles. The few that are so equipped are known as KC-135RTs, and are highly coveted assets by the new Air Mobility Command (AMC), which controls most of their operations, maintenance, and use. Thus, unlike the small fleet of McDonnell Douglas KC-10 Extenders (the newest USAF tanker, based on the commercial DC-10), most KC-135s can only be refueled on the ground. This makes for an interesting set of decisions for the operators of the -135. Unlike the Extender, they can either off-load fuel or deploy to an overseas area, but not both at the same time.

You get into the KC-135 through an entry hatch in the bottom of the fuselage, on the left side of the nose. It requires a bit of a climb to get up the ladder and into the cockpit, something like the climb into the conning tower of a submarine. Once there, the first thing you will probably notice is that by the standards of current commercial airliner cockpits, the -135 is decidedly ancient. The four-person flight crew usually includes three officers (aircraft commander, pilot, and navigator/radar operator) and one enlisted airman (the crew chief/ boom operator), each with a seat in the tight little workspace up front. Very little of the modern computer age is evident, other than a digital flight management system and the throttle controls for the four CFM-56 engines. The fit of communications and navigation gear enables the tanker to maintain station precisely and talk to its customers, though the navigation gear is also a bit dated. Until the planned installation of a GPS receiver later in the 1990s, the navigator has to depend on the old standbys of shooting the sun and stars with a sextant, and the old-style LORAN and TACAN navigation beacon systems. The nose-mounted radar is a Texas Instruments APQ-122(V) weather and ground-mapping radar, which is capable of assisting in the navigator's tasks. All USAF tankers are unarmed; and indeed, they are not even equipped with basic self-protection radar warning receivers, chaff or flare dispensers, or jamming pods. As a result, they can only survive and operate under conditions of total local air supremacy. It is not hard to understand why, when you consider that a tanker is nothing but a relatively slow and unmaneuverable bag of fuel, requiring just one cannon shell or "hot" warhead fragment from an AAM to turn it into a very large fireball.

As you move aft, you encounter the lavatory compartment on the left side, just aft of the cockpit. You are struck again by the rather spartan nature of this most necessary of aerial conveniences; it does not even flush! Instead, they use the same kind of chemical toilet "packs" found on the B-1B. Also, for the male crew members, there is a "whiz tube" urinal. While convenient, this can be deadly during rough flights, as the spring-loaded lid tends to snap shut when "bumped." Just across from the lavatory is the galley — or more precisely, the place where box lunches and the thermos bottles for coffee and water are kept. There are no microwave ovens or refrigerators, just a bare aluminum rack, looking for all the world like an airline food/drink cart with no wheels. Just aft of the lavatory compartment on the aircraft's left side is a large pressurized cargo door, big enough to load large items like bulk cargo, duffel bags, or other personal equipment. These can be strapped down or placed in large crate bins tied to the floors. The original floors are made of impregnated plywood, and are kept lovingly cleaned and painted by the ground crews. Other than the planned GPS receiver upgrade, these floors are the next major planned upgrade for the -135 fleet. The plan, if money is available, is to replace the existing floors with hardened metal Roll-On/Roll-Off (Ro/Ro) floors, so that items like palletized cargo and small wheeled vehicles like ramp service carts can be loaded and tied down. This should help alleviate some of the airlift problems Air Mobility Command (AMC) has been having with their fleet of heavy airlift aircraft.

Along the side walls of the KC-135 are passenger seats made of aluminum tubing and synthetic webbing. These are surprisingly comfortable, if you aren't packed in too tightly. That means eighty people can travel in mild discomfort, and 160 in total unpleasantness! Except during actual deployment, most tankers fly with few passengers, and are actually quite comfortable. While I'm always a reluctant flier, other people I know generally enjoy their time in the -135s, and even find that the webbing seats make passable bunks if there is enough room to spread out. In fact, the main cargo compartment is large and open. You feel like you're in a wide-body commercial jet, with none of the annoying overhead bins or narrow seat aisles to bump yourself on.

In the rear of the compartment is the environmental control system, with large green bottles of oxygen mounted to the after bulkhead. Just above these are several very comfortable bunks, though a pair of severely lettered signs make it clear that these are for members of the crew to rest in, and not for mere passengers. Overall, the pressurized cabin of the KC-135 is quite comfortable, though the heating system, which occupies a large part of the after cabin, is somewhat inadequate to warm the entire interior. Thus, it is advisable on long flights to wear something warm, preferably a leather flight jacket, which also has the advantage of looking good around the officers' club!

At the far after end of the cargo compartment, on either side of the environmental control system, are the entrances to the refueling pod. To get into this, the business end of the KC-135, pick one side or another, step down onto what looks like a very comfortable cushion, and lie on your stomach. At this point, you are on one side or another (observers' stations actually) of the "boomer" position, so named because this is where the refueling boom is actually "flown" and mated to other aircraft. The boomer lies on a similar couch between the two observers' stations and faces a thick window (with two smaller side windows) with a small control panel below it. This position is a favorite of aerial photographers who want to take really spectacular pictures; you never forget the view. Just below the boomer's couch is a control stick, which flies the boom. This stick controls a pair of fins on the telescoping refueling boom just in front of the boomer's window, and these respond to control inputs from the operator. The stick is surprisingly simple to use. To conduct a refueling, the boomer flips a switch which deploys the boom from its stowed position up against the KC-135's tailcone down into its "flying" position. The boomer then sets the telescoping boom to a "neutral" length position and alerts the flight crew that he is ready to have an aircraft take on fuel. What happens next borders on the bizarre if you are not familiar with it.

From behind will come a small formation of aircraft, having flown to the tanker track in complete radio and emissions silence (which limits the ability of an enemy to read whether something is coming at them or not). Even in peacetime, this is a skill practiced whenever the restrictions of weather and the exercise rules allow. After establishing formation on the tanker (either on the wing or behind), the first recipient moves up behind the KC-135, aligns itself with a series of colored position lights located under the tail of the tanker, and opens its refueling receptacle door. Most aircraft designs have this placed behind the flight crew position, over their shoulder and to the left side. Once the boomer sees that the receiving aircraft is stable and in its proper refueling position (this varies with different aircraft types), the real fun begins.

Using the control stick to fly the refueling boom into position over the receiving aircraft's receptacle, the boomer activates a switch which stabs the refueling probe of the boom into the receptacle, causing it to "hard latch." This last part of the operation can be tough, especially in rough air, and may require several attempts to get it right. The two aircraft are now joined, flying just a few yards/meters apart, and the boomer relays this fact to the flight deck, where the flying crew actually controls the pumping of fuel down the boom to the receiving aircraft. Though the pumping is fairly rapid, fully refueling a tactical aircraft like the F-15E Strike Eagle or the F-16 Fighting Falcon does take a few minutes. Meanwhile, both aircraft are flying an oval "racetrack" course at about 300 knots/545.5 kph. at an altitude of 20,000 to 25,000 feet/6,060.1 to 7,575.8 meters. One of the more interesting features of this aerial dance is that once the two aircraft are hooked up, they can talk plane-to-plane over a special intercom link, which allows the pilot of the receiving aircraft to report battle damage or other problems, and to receive updates on targeting and scheduling changes. For many pilots during the early hours of Desert Storm in 1991, the last thing they heard before going into combat was the reassuring voice of a Boomer on the intercom, wishing them well and a safe return. Since the two aircraft are only about 35 feet/10 meters apart, the receiving aircraft can take a severe buffeting from the tanker's wake turbulence. It's tough to maintain a position, even for a skilled pilot, especially at night, in bad weather, when you are low on gas.

To the aircrews of combat aircraft returning to base, shot full of holes and leaking fuel all over the sky, every drop on a tanker is precious. Happily, the KC-135R tanker can carry a lot of fuel — some 203,288lb./92,210kg., which translates to a capacity of about 25,411 gallons/95,890.6 liters. Since an airborne tanker can do two things with the fuel, burn it or off-load it to another aircraft, there is a tradeoff between the range and endurance of the tanker on the one hand and the amount of fuel available for off load. For example, with 120,000 lb./54,545 kg. of transfer fuel, the range of the KC-135R is 1,150 nm./2,090.1 km. On the other hand, with 24,000 lb./10,909.1 kg. of transfer fuel, the range is 3,450 nm./6,309.4 km.

So, how does all of this come together in the real world of combat operations? In an intervention scenario, a KC-135R tanker can either deploy to an overseas base (carrying high-priority personnel and cargo), or support the deployment of other aircraft by tanking them — it can't do both. This means that planners have to be careful to make sure that enough tankers are available to do both. Unfortunately, this is getting tougher all the time. During 1994, the tanker force took a 25 % personnel cut and moved almost three quarters of its U.S.-based tankers and people from former SAC bases to three main AMC bases, as well as reassigning many aircraft to USAF Reserve and Air National Guard units. Tankers also are increasingly used to transport cargo, because metal fatigue and other problems with the C-141B Starlifter fleet have forced planners to assign cargo missions to the hard-working tankers.

As long as combat aircraft need to burn fuel, there will be a requirement for tankers. Eventually the KC-135s and the force of about sixty wide-body KC-10 Extenders will have to be replaced. To some extent, the tanker mission can be performed by tactical aircraft fitted with extra fuel tanks and refueling gear mounted in removable "buddy packs." But for really long hauls, there is no substitute for specialized and dedicated aerial tankers, based on economical, standardized commercial airframes. Just what that replacement will be exactly is anyone's guess, but rest assured that when fuel is low and tensions are running high, the tanker crews will be the most popular folks in the skies.

BOEING E-3C SENTRY AIRBORNE WARNING AND CONTROL SYSTEM

Ever since our simian ancestors learned to climb trees, we have known instinctively that the higher you climb, the farther you can see. Later, many ancient cultures devoted considerable labor to building hilltop watchtowers. Spotting an approaching enemy even a few minutes sooner can make the critical difference between victory and defeat. The development of radar in the 1930s provided proof that nature is consistent. Generally speaking, radar works much like light — it travels in straight lines and usually cannot bend to peer over the local horizon. While a mountaintop is a good spot for a radar station, a mountain is rarely located where you need it, and it's hard to move. However, if you could put a big radar antenna on a high-flying airplane, your radar horizon could theoretically reach out to two or three hundred miles. Also, if you put an air battle control staff on the same airplane and provide them with powerful computers, situation displays, and secure communications, you have what is called an Airborne Warning and Control System (AWACS) — the king on the chessboard of the modern air battle. Its status also makes it the most prized target in the sky, making the Sentry the sort of high-value airborne asset that will normally be protected by a hefty escort of fighters.

AWACS aircraft had their start at the end of World War II, when the U.S. Navy was desperately trying to fight off the hordes of Japanese Kamikaze suicide aircraft that were trying to stop the invasion and battle fleets of the Americans. The Navy's solution to the relative vulnerability of their surface ships was to convert TBM Avenger torpedo bombers into primitive AWACS aircraft. These early AWACS aircraft would have been available for the invasion of Japan in late 1945, had it taken place. Later, purpose-built AWACS aircraft were built by both the Air Force and Navy to their specific needs, usually on transport or airliner airframes. For many years, the USAF birds were based upon the classic Lockheed C-121 Super Constellation airliner /transport. Called the EC-121 Warning Star, it served in the AWACS mission for over twenty years before being replaced by the current AWACS aircraft, the E-3 Sentry, in the later 1970s.

The Boeing E-3C Sentry AWACS looks like a large jet airliner being attacked by a small flying saucer. The airliner is the old reliable Boeing 707- 320B airframe, with a flight deck crew of four (pilot, copilot, navigator, and flight engineer) and a "mission crew" of thirteen to eighteen controllers, supervisors, and technicians back in the main cabin. Using an airframe similar to the venerable KC-135 and all the other Boeing Model 320 derivatives has proven quite popular with the U.S. military, and quite practical for the taxpayers. The saucer, or "rotodome," is 30 feet/9.1 meters in diameter, 6 feet/1.8 meters thick at the center, and is supported 11 feet/3.35 meters above the fuselage on two streamlined struts just aft of the trailing edge of the wings. It is designed to generate enough aerodynamic lift to support itself, and does not place any stress, other than drag, on the wings or airframe. Mounted back-to-back with the main APY-2 radar antenna (upgraded from the original APY-1 version) inside the rotodome is an antenna array for the APX-103 IFF/ Tactical Digital Data Link (IFF/TADIL–C) system. This is a highly sophisticated IFF system, capable of interrogating virtually any IFF transponder in the world within 200 nm./365.7 km. (It reportedly has some sort of NCTR capabilities as well.) When transmitting, the rotodome, powered by hydraulic motors, makes one complete revolution every ten seconds. When it is not transmitting, it makes one revolution every four minutes, to keep the bearings lubricated. Considering the flight stresses it has to support and the complex of wave guides, power cables, and signal lines that must pass through it, the saucer's rotary slip joint is a marvel of mechanical engineering. The radar transmitters and their elaborate power supplies and cooling equipment are located under the floor of the aft cabin, where conventional 707s stow the passengers' luggage.

All of this is packaged inside a standard Boeing Model 707-320B/VC-137 airframe with four Pratt & Whitney JT3D/TF33 turbofan engines. It is also quite expensive, having originally cost something like $270 million a copy.

Getting into an E-3 is roughly the same as a KC-135, through a normal passenger hatch on the left side of the aircraft, where the cargo door is on the tanker. The first thing that strikes you is that the interior is much more comfortably appointed than the -135s. The interior is covered with the same kinds of sound-deadening walls as a conventional airliner, mainly to ensure the comfort of the mission crew. Along with all the display consoles and other electronic gear, they are crammed into the cabin for missions that can last most of a day (though twelve to sixteen hours is normal). The tops of all the consoles in the main cabin are covered with blue indoor/outdoor carpet, which is actually quite nice to lean on! The flight deck is roughly similar to that of the Stratotanker, though some of the controls and displays are a bit more modern than the 1960s-vintage instruments on the -135.

As you move back through the main cabin, there are any number of large cabinets and consoles scattered throughout, which can make moving about somewhat tight. These include the main computers for the radar system, as well as the symbology/display generator systems for the controller consoles. Towards the mid-cabin area over the wings are the radar control consoles. There are fourteen of these in back-to-back rows, with a flight seat (complete with shoulder harnesses and seat belts) in front of each position. Each console is configurable by the user, and can be set up for a controller, supervisor, or mission commander. Everyone is linked by a thirteen-channel intercom system, which feeds into a bank of secure Have Quick II radios, as well as other sets capable of UHF, VHF, and HF communications. In addition, the E-3 is equipped with a JTIDS data link terminal, which does much to reduce the burden on the radio channels.

A cutaway drawing of he Boeing E-3B/C Sentry Airborne Warning and Control System (AWACS).
Jack Ryan Entreprises, Ltd, by Laura Alpher

Obviously, the primary reason for this aircraft's existence is the radar system it is designed to carry. The original AWACS radar system, designated APY-1, was designed by Westinghouse after a 1972 competition with Hughes. The AWACS radar operates in the E/F band, meaning that it generates radar waves in the 2-to-4-Gigahertz (GHz) range, with a wavelength of from 7.5 to 15 cm./2.95 to 5.9 in. The radar uses the pulse-Doppler principle, relying on precise measurement of the tiny frequency shift in energy reflected from a moving target to distinguish flying aircraft from background ground clutter. This gives the radar the ability to "look down" and detect low-flying targets, as long as they are moving faster than 80 knots/148 kph.

The normal E-3 mission crew consists of separate surveillance and control sections, each typically commanded by a senior captain. In the surveillance section, three to five technicians monitor the air traffic in a huge volume of airspace and pass on information to the control section. This is composed of two to five weapons controllers sitting at multi-purpose consoles, guiding friendly aircraft to intercept enemy or unidentified contacts. Depending on its particular mission, an AWACS also may carry senior staff officers, radar technicians, radio operators, a communications technician, and a computer technician.

While the E-3 displays are a great improvement over the "bogey dope" screens of the old EC-121s, which required almost mystical powers to interpret, they are rapidly becoming dated. The symbology is somewhat hard to interpret, and the screens can easily become cluttered. On the positive side, the trackball "mouse" used to select or "hook" targets on the screens is quite easy to use, and once you get used to the idea that a small symbol with a track number is an aircraft, you do quite well.

Aft from the console area are more electronics cabinets, as well as an area reserved for passengers and off-duty personnel. While the seats are not terribly comfortable, they are an improvement over the maximum-stress environment of being "on the scope." There is also a tiny galley, as well as several small bunks which are usually reserved for spare flight crew personnel (pilots, navigators, etc.). Combat AWACS missions in excess of eighteen hours during Desert Storm were not uncommon, and spare personnel were often necessary. At the very back of the cabin is a rack of parachutes, and there's a bail-out door in the floor of the forward cabin. This, fortunately, has never had to be used, since no E-3 Sentry has ever been lost.

A USAF Boeing E-3 Sentry Airborne Warning and Control System (AWACS) aircraft arrives in Saudi Arabia during Operation Desert Shield. Fourteen of these valuable aircraft, as well as E-3s from the Royal Saudi Air Force and NATO, provided airborne radar support during Desert Shield and Desert Storm.
Official U.S. Air Force Photo by Jim Curtis

The key to making this system work is the need for steady, consistent flying. Sentry pilots are trained to fly a precise, wide oval racetrack course, straight and level, avoiding any sharp banking turns that might disrupt the radar beam's normal sweep. Typical cruising altitude for an operation mission is 29,000 feet/8,840 meters (just about the height of Mt. Everest), at a maximum cruising speed of 443 knots/510 mph./860 kph. Unrefueled, the E-3 has an endurance of more than eleven hours, and the aircraft has a receptacle for in-flight refueling which can stretch the endurance to twenty-two hours, a limit set by the supply of lube oil for the four JT3D/ TF33 engines. On these marathon aerial-surveillance missions, the endurance of both the flight crews and mission personnel is stretched to the limit. This has been pointed to as one of the weaknesses of the AWACS community. In the past, there have frequently been difficulties with flight personnel getting adequate rest between missions, as well as with the excessive number of "on-the-road" days that have been a hallmark of the AWACS lifestyle for almost twenty years. Unfortunately, since AWACS aircraft are a favorite instrument of politicians trying to find out what's happening in a trouble spot, the lifestyle of the AWACS crews is unlikely to change much.

The interior of a USAF Boeing E-3 Sentry AWACS aircraft looking aft. Visible are the consoles, where the controllers sort out airborne contacts and supervise flight operations.
Boeing Aerospace

Most of the thirty-four E-3s in USAF service are assigned to three operational Airborne Air Control squadrons (the 963rd, 964th, and 965th), and one training squadron (the 966th) of the 552nd Air Control Wing based at Tinker AFB, Oklahoma. One aircraft is assigned to continuing research and development work at the Boeing plant in Seattle, and a few are permanently stationed in Alaska, assigned to the Pacific Air Force (PACAF) commander. Detachments have been, and continue to be, deployed to trouble spots all over the world. These started with a movement by the Administration of President Jimmy Carter of a three-aircraft detachment of E-3s to Saudi Arabia to keep an eye on the Iran/Iraq War. It was called ELF-1, and what was planned as a deployment of several months eventually wound up lasting over eleven years. It seems to be the lot of the AWACS community to spend their lives on the road, keeping watch on the world's trouble spots.

Even though some of the E-3's systems are getting to be a bit dated right now, the E-3s of the AWACS fleet are the crown jewels of the USAF fleet, and represent the most valuable aircraft that an aerial commander can be assigned. Their presence on the aerial battlefield greatly improves the efficiency of any force that they support, thus explaining why USAF leaders call the AWACS fleet a "force multiplier." This may explain the tolerance for the high costs of developing, operating, and maintaining such a force. The technical problems of developing a reliable and effective airborne warning and control system are so great that only one other nation has ever really managed it — Russia, with its A-50 Mainstay AWACS, based on an IL-76 heavy transport airframe. Meanwhile, NATO, Saudi Arabia, and a few other very friendly nations have bought versions of the E-3.

As the E-3 fleet heads into its twentieth year of service, there are strong plans to upgrade the system so that it will be ready to continue its valuable service into the 21st century. The major points of the planned E-3 upgrade program include:

GPS—It has taken a while, but the E-3 is finally going to get a GPS receiver to help improve both navigational accuracy of the AWACS aircraft itself, as well as the quality of the information it supplies.

Radar System Improvement Program (RSIP)—The RSIP upgrade is a long-overdue series of improvements to the APY-1/2 radar systems that includes an improved radar computer, a more modern graphics processor for the radar operators' consoles, as well as upgrades to the radar system itself. All of these should allow the AWACS controllers to handle more targets with less clutter on the displays. In addition, the software rewrite that is included with RSIP will allow for things like "windowing" (display-within-a-display) capabilities, as well as the ability to detect low-observable/first-generation stealth aircraft. While the technology behind this last capability is highly classified, it probably centers around the same kind of "broad band" processing technology that is used on submarines. Westinghouse is the prime contractor on the RSIP upgrade, and will begin installation in the late 1990s.


As the E-3 completes its second decade of service, it is time for the Air Force to start thinking about a Sentry replacement. The problem, of course, is finding the money, as well as deciding what kind of aircraft the USAF wants to base it on. As with the other models of first-generation American jet transports, the 707 was designed to very conservative 1950s engineering standards; and after forty years of steadily advancing technology, it's too heavy, it's a fuel hog, and it's too hard to update with modern digital flight control systems. When Japan decided to join the AWACS club, the Japanese ordered the basic E-3 mission package on a modern airframe, the wide-body, twin-turbofan Boeing 767. With a two-person flight crew and better fuel economy, operational costs should be lower, but this is still going to be a very costly aircraft.

In the future (around 2010 to 2020), it should become possible to do away with the radar rotodome and rely on conformal phased-array and synthetic aperture antennas to integrate the AWACS air surveillance mission and the Joint-Stars ground-surveillance mission onto a single platform. This could well be a very high-flying stealthy aircraft, with most of the crew replaced by advanced computers. AWACS, with a top speed of only Mach.78 and a radar cross section somewhat greater than the broad side of an average office building, has been fortunate in its long operational career, since it has never faced an enemy with long-range, high-speed anti-radiation missiles. Right now, though, with the E-3 in the prime of its service life, such a solution is several decades away from fruition, and the Sentry is still the undisputed king on the aerial chessboard.

Загрузка...