ГЛАВА 1 Основания геометрии

Карьера Гильберта пошла вверх, когда он решил хитрую проблему Гордана. Однако молодой ученый отложил алгебру и теорию чисел, чтобы полностью погрузиться в изучение оснований геометрии. Открытие неевклидовых геометрий стало шахом почти 2000-летней греческой геометрии. Переформулирование аксиоматического метода позволило Гильберту навести порядок в этой области и подчеркнуть, что нет единой справедливой геометрии: их много, и каждая обладает различным набором аксиом.

Кёнигсберг, 1862 год. Прошло 58 лет после смерти Иммануила Канта и 120 с тех пор, как Леонард Эйлер (1707-1783) решил знаменитую проблему семи мостов. Давид Гильберт появился на свет 23 января в протестантской семье из среднего класса, которая вот уже два поколения жила в столице Восточной Пруссии. Пруссия в то время возглавила объединение Германии под руководством кайзера Вильгельма I и железного канцлера Отто фон Бисмарка. Отец будущего ученого был городским судьей и прививал сыну типичные прусские ценности: пунктуальность, дисциплину и чувство долга. Мать, наоборот, увлекалась философией, астрономией и, как рассказывают, простыми числами.

В школьные годы Гильберт показал себя упорной, энергичной и решительной личностью, хотя в средней школе страдал от того, что учебный процесс выстраивался на заучивании. Он увлекался искусством, литературой и математикой, однако не считался вундеркиндом. В 1880 году он выдержал экзамен и был зачислен в университет, избрав математику, хотя родители хотели, чтобы он изучал право.

Кёнигсберг — конечно, не Берлин, где развернули свою деятельность преподаватели уровня Карла Вейерштрасса (1815- 1897) и Леопольда Кронекера (1823-1891), но и здесь имелась прочная математическая традиция. Здесь когда-то работал Карл Якоби (1804-1851), считавшийся вторым после Гаусса немецким математиком. Так в каком же научном контексте получал образование Гильберт? В последней четверти XIX века предполагалось, что как дисциплина математика имеет три ответвления: анализ, алгебру и геометрию. Анализ — это исследование все более строгого использования бесконечно малых, решение дифференциальных уравнений и теория функций в целом. Алгебра постепенно перестала походить на предмет, который мы изучали в школе, и занималась уже абстрактными объектами, хотя и не исключала теорию чисел. Геометрия же включала в себя целое семейство плохо согласованных между собой составляющих: евклидову геометрию и неевклидовы геометрии (в том числе проективную), а также дифференциальную и алгебраическую геометрии, в которых использовались инструменты анализа и алгебры.


Любая дисциплина проходит три фазы развития: наивную, формальную и критическую.

Давид Гильберт


Гильберт успешно изучал курсы алгебры, анализа и геометрии. В университете же он познакомился с Германом Минковским (1864-1909), который стал его лучшим другом. Будучи однокурсником Гильберта, он был на два года младше него, он опережал курс на целый триместр. Когда ему только исполнилось 19, он получил гран-при в области математики, которую вручала Парижская академия наук (хотя все прошло не слишком гладко, поскольку заходила речь о плагиате). Друзья обычно прогуливались вместе и восхищенно обсуждали математику. В ходе этих прогулок они исследовали каждый уголок математического знания. Эту традицию студенческих лет они сохранили на всю жизнь.

Получив степень доктора, Гильберт задумался о том, чтобы устроиться на должность приват-доцента, которая позволила бы ему преподавать в университете (пусть даже жалованье не было фиксированным и складывалось в зависимости от количества студентов). Для этого требовалось внести какой-нибудь оригинальный вклад в науку. С этой целью Гильберт отправился на встречу с Феликсом Клейном (1849-1925), одним из знаменитых математиков того времени. Годы спустя Клейн говорил, что сразу же понял: за этим юношей — будущее математики. По его совету Гильберт поехал в Париж, где познакомился с Анри Пуанкаре (1854-1912). Француз был на восемь лет старше Гильберта, но уже состоялся как ученый. Он считался главным представителем французской математики, которая надеялась обойти немцев. В результате Пуанкаре и Гильберт не нашли общий язык, со временем они даже стали открыто соперничать. Тут крылась конкуренция за главенствование в математике будущего (отношения Пуанкаре и Клейна также не были хорошими: у последнего это противостояние даже вылилось в депрессию). На обратном пути Гильберт задержался в Гёттингенском университете и навестил недавно обосновавшегося там Клейна. Тот познакомил его с Паулем Горданом (1837-1912), одним из главных экспертов по теории инвариантов — области, в которой Гильберт добился своего первого большого успеха.


ОТ АЛГЕБРЫ К ТЕОРИИ ЧИСЕЛ

Теория инвариантов представляла собой ответвление алгебры XIX века и рассматривала, какие величины не изменяются (остаются инвариантными), когда мы преобразуем один многочлен в другой в соответствии с определенными правилами. Одна из самых любопытных проблем получила название проблемы Гордана. В 1868 году Гильберт ошарашил современников, предложив революционное решение задачи, которое король теории инвариантов Гордан назвал «теологическим». Гильберту удалось сделать то, к чему уже несколько лет стремились все эксперты по инвариантам: доказать так называемую основную теорему теории инвариантов, в которой утверждается, что любая система инвариантов образована конечным образом (проще говоря, что любой инвариант системы может быть представлен в виде сочетания небольшого количества инвариантов, образующих базис). Эту задачу не назовешь пустяковой.

Однако нас интересует не ее содержание, а форма ее доказательства Гильбертом, поскольку это поможет представить путь развития его исследовательской карьеры. Как и в других областях математики, Гильберт разработал множество элементов, составивших новый подход. В данном случае он структурный алгебраический, сосредоточенный на структурах математических объектов в большей степени, чем на собственно математических объектах, а на группах, идеалах, кольцах и телах (алгебраических структурах) — в большей степени, чем на самих числах или конкретных многочленах, которые они содержат. Не осознавая этого, Гильберт готовил абстрактную алгебру XX века и мимоходом утвердил новый математический метод, знаменосцем которого стал позже.

Подход Гильберта разительно отличался от традиционного. Вместо того чтобы открыто искать решение проблемы, он доказал: проблема не может не иметь решения. Его доказательство было не конструктивным, а экзистенциальным. Он не предлагал решения напрямую («вот базис инвариантов»), а только доказывал, что оно обязательно должно быть («если бы не было базиса инвариантов, мы бы пришли к противоречию»). Следовательно, доказательство основной теоремы осуществлялось путем доведения до абсурда. Эта аргументация не была единодушно принята математическим сообществом.

Кронекер — одна из главных фигур немецкой математики того времени — высказался в этом отношении довольно резко. По слухам, подход Гильберта многим показался «зловещим». Для Кронекера доказательство существования обязательно означало построение того объекта, существование которого требовалось доказать. В данном случае это построение базиса инвариантов, которое, по утверждению Гильберта, существует. Он не принимал аргументов, что отсутствие существования базиса предполагает противоречие, следовательно, данный базис обязательно должен существовать, хотя его вычисление неосуществимо.


КОНСТРУКТИВНЫЕ И ЭКЗИСТЕНЦИАЛЬНЫЕ ДОКАЗАТЕЛЬСТВА

Чтобы понять разницу, рассмотрим пример. Если вопрос заключается в том, имеет ли уравнение х2 - 1 = 0 решение, у нас есть два варианта. Первый — найти решение с помощью вычислений и алгебраических манипуляций: х = 1 и х = -1. Второй — попытаться ответить косвенно: задействовав некую теорему, показать, что уравнение имеет решение, хотя мы не можем его найти. Естественно, второй путь оказывается эффективнее, когда математик сталкивается с намного более сложными проблемами, чем решение простого уравнения второй степени. Очень часто в уравнениях высшей степени легче доказать существование решения, чем найти его.


Путь, известный со времен Античности

Эта характеристика является общей для многих математических проблем. Евклид доказал, что существует бесконечное количество простых чисел без необходимости перечислять их все. Он выстраивал свое рассуждение путем доведения до абсурда. Первый шаг в таком доказательстве состоит в том, чтобы отрицать высказывание, которое нужно доказать. Чтобы доказать, что существует бесконечное количество простых чисел, Евклид предположил, что их число конечное: р1 р2,... Рn. На основе этого предположения он делал выводы, пока не пришел к абсурдному утверждению. Если предположить, будто есть только n простых чисел, то либо число р1 х р2 х ... х рn + 1 (образованное произведением их всех плюс один) является простым, либо не является. В первом случае отмечается противоречие, поскольку это новое простое число не является ни одним из партии. Во втором случае, если это не простое число, оно должно делиться на простое число, но ни одно из чисел р1, р2,... рn явно не является его делителем (деление неточное, оно дает 1 в остатке). И тут мы вновь сталкиваемся с противоречием. Следовательно, гипотеза, что существует конечное количество простых чисел, ложная: их должно быть бесконечное количество (хотя мы не можем определить их по одному). Доведение до абсурда, которое так любили Евклид и Гильберт, — один из лучших математических инструментов.


Гильберт опубликовал статью в 1890 году в журнале Mathematische Annalen, который издавал Клейн. Рецензентом выступил сам Гордан, и хотя вначале он потребовал внесения существенных изменений, в итоге признал революционный подход Гильберта. Работы Гордана составляли ужасно длинные и сложные вычисления, они контрастировали с краткой, элегантной и лаконичной статьей Гильберта, в основе которой лежало доведение до абсурда. Однако потребовалось решительное вмешательство Клейна, чтобы примирить их, поскольку Гильберт не желал трогать ни единой запятой в своей статье. В конце концов Гордан признал, что даже у теологии есть свое применение.

Гильберт бросил вызов и выиграл у тех, кто настаивал, будто математические доказательства должны базироваться на методе, рассматривающем сущности, наличие которых нужно доказать. Он доказал, что предположение о ложности гипотезы Гордана («существует базис инвариантов») ведет к противоречию. Этого было достаточно. Много лет спустя Гильберт объяснял своим студентам разницу между конструктивными доказательствами и теми, которые таковыми не являются (экзистенциальными), подчеркивая, что в аудитории есть кто-то, у кого на голове волос меньше, чем у других (никто из присутствующих не был абсолютно лысым), хотя мы не располагаем никаким способом выявить этого человека.


Это не математика! Это теология!

Гордан после ознакомления с доказательством Гильберта


На кон было поставлено не только будущее теории инвариантов (область исследования, которую Гильберт практически закрыл), но и нечто большее — противостояние двух подходов к математике: конструктивного — характерного для XIX века — и экзистенциального, свойственного XX столетию (когда слово «существовать» имело лишь одно значение: быть лишенным противоречия). Экзистенциальный подход Гильберта в дальнейшем обеспечил ему многие победы и многие споры.

Наконец, в 1892 году усилия Гильберта увенчались успехом, и он получил должность ординарного профессора Кёнигсбергского университета. Несмотря на то что в итоге он стал блестящим преподавателем, в начале его лекции едва привлекали студентов.


СОВРЕМЕННАЯ АЛГЕБРА И NULLSTELLENSATZ

Вавилоняне, египтяне и греки решали уравнения первой и второй степени, используя различные алгебраические техники. Следы греческой геометрической алгебры заметны по выражениям вроде «квадрат» и «куб» для второй и третьей степеней: «а в квадрате» — это квадрат со стороной а, а «а в кубе» — это куб с ребром а. Введение нового символьного аппарата (Диофант, Аль-Хорезми, Виет) определило настоящий прорыв в развитии алгебры и ее последующее отделение.

В эпоху Возрождения Тарталья (по- итальянски «заика») вывел формулу для решения уравнений третьей степени, но предпочел держать ее в секрете. Астролог и математик Джероламо Кардано убедил его открыть ее и затем опубликовал, выдавав за свою. Лодовико Феррари, бывший секретарь Кардано, получил другую формулу для решения уравнений четвертой степени, однако решение в радикалах полиномиального уравнения пятой степени им не далось. Через 300 лет Абель доказал, что это невозможно.

Гаусс в возрасте 52 лет. Литография из журнала «Астрономические новости», 1828 год.


Гаусс и основная теорема алгебры

Чтобы больше узнать о рождении современной алгебры, следует обратиться к докторской диссертации Гаусса, которую тот защитил в 1797 году. Гениальный Гаусс доказал то, что сегодня известно как основная теорема алгебры: любое полиномиальное уравнение степени п имеет ровно п решений среди комплексных чисел. Хотя этот результат допускал Декарт (различая действительные и мнимые корни), а также со множеством ошибок доказал Д’Аламбер, только доказательство Гаусса было исчерпывающим. Его работа радикально изменила облик алгебры. Именно этот долгий путь Гильберта сквозь теорию инвариантов определил Nullstellensatz, или теорему о нулях, — мощный результат, обобщивший основную теорему алгебры для того случая, когда вместо уравнения имеется система алгебраических уравнений.


Гильберт не впадал в отчаяние и расценивал этот период как процесс медленного, но стабильного созревания. Тогда же он женился на Кёте Ерош (его любимой партнерше по танцам), с которой был знаком с детства. Через год родился их единственный сын Франц, у которого еще в детстве проявилось серьезное умственное заболевание. Когда у юноши диагностировали шизофрению, отец поместил его в лечебницу для душевнобольных, где тот провел значительную часть своей жизни. С тех пор Гильберт держался так, будто у него никогда не было сына.

В 1895 году он кардинально изменил свою жизнь. В конфиденциальном письме его уведомили о назначении — по рекомендации Клейна — профессором престижного Гёттингенского университета, где до того работали два таких колосса математики, как Гаусс и Риман. Его не пришлось упрашивать, он переехал и никогда не покидал Гёттинген.

Между тем с теории инвариантов Гильберт уже переключился на теорию чисел — типично немецкую дисциплину с тех пор, как Гаусс опубликовал «Арифметические исследования» (1801) и назвал ее царицей математики. Немецкое математическое общество (основанное в 1890 году под председательством Георга Кантора (1845-1918)) поручило Гильберту и Минковскому разработать отчет о состоянии вопроса. Минковский сразу отказался, сославшись на занятость, зато Гильберт сделал намного больше, чем от него ожидали. Результатом была жемчужина математической литературы, ставшая в дальнейшем классикой в этой области знания, — Der Zahlbericht («Отчет о числах»), датированная 10 апреля 1897 года. В этой работе Гильберт объединил все имеющиеся данные, организовав их с новой точки зрения, переписал формулировки и доказательства. Он не только перераспределил детали головоломки, которую представляла собой алгебраическая теория чисел, но и заполнил лакуны оригинальными исследованиями. В предисловии к отчету он писал:

«Теория чисел — это здание редкой красоты и гармонии. [...] Целью данного отчета является описание с единой точки зрения результатов теории чисел с ее доказательствами, с ее логическим развитием, что должно приблизить тот день, когда достижения классиков в области теории чисел станут общим достоянием всех математиков».


ПЕРВАЯ НАУЧНАЯ РЕВОЛЮЦИЯ

Древние вавилонская и египетская цивилизации имели значительные знания в области геометрии. Но их, если можно так выразиться, «математика» не вышла за пределы технической стадии, основываясь на сборниках инструкций для решения повседневных проблем, которые были связаны с трудом землемеров и в которых едва прослеживалось понятие доказательства. Геометрические теоремы Фалеса Милетского (ок. 624 — ок. 546 до н.э.) заставили бы улыбнуться египетских землемеров ввиду их простоты и бесполезности («Диаметр делит круг на две равные части»). Однако мы говорим о первых теоремах, которые являются истинными спустя более чем 2000 лет. Фалесу удалось измерить высоту пирамиды Хеопса с использованием простого правила пропорциональности.

Пифагору также удалось установить логическую связь с наследием вавилонян и египтян. Под руководством Платона Афинская академия систематизировала пифагорейскую математику, особенно заметен вклад Теэтета (ок. 417 — ок. 369 до н.э.) и Евдокса (ок. 390 — ок. 337 до н.э.). Первому приписывают теорему, гласящую, что существует только пять правильных многогранников, пять Платоновых тел. Тогда же геометров того времени завораживали три классические проблемы: трисекция угла, квадратура круга и удвоение куба. Перейдя из Афинской академии в Александрийский мусейон, мы встретились бы с Евклидом, работа которого (наряду с работой Аполлония и Архимеда) завершает золотую эпоху греческой геометрии.

Идеализированный портрет Евклида. Юстус ван Гент, 1474 год.


«Отчет о числах» перенес Гильберта в авангард европейской математики. Конечно, анализируя его раннюю математическую деятельность, можно подумать, будто это отличный исследователь, но в узкой сфере знаний. Почти невозможно было предвидеть дальнейшее восхождение Гильберта на вершину математического Олимпа и общую убежденность в том, что, как и Пуанкаре, он является одним из последних математиков-универсалов, ориентирующихся во всех областях науки, включая его следующее завоевание — геометрию. Но чтобы показать вклад Гильберта в этой области, нужно вспомнить об исторической подоплеке, о том толчке, который XIX век обеспечил геометрии, о том, как открытие неевклидовых геометрий изменило аксиоматический метод.


НЕЕВКЛИДОВЫ ГЕОМЕТРИИ

Греческая геометрия была краеугольным камнем математики в течение нескольких веков. В «Началах» — трактате, восходящем к 300 году до н.э., — Евклид предложил аксиоматическое, чрезвычайно упорядоченное и структурированное представление о корпусе знаний, переданных математиками школ Пифагора и Платона. Его изложение, на которое повлияли размышления Аристотеля о логике, обладало очень примечательной характеристикой — чрезвычайной строгостью при доказательстве каждой теоремы.

«Начала» состоят из 13 книг и содержат 465 геометрических пропозиций, от базовых принципов до самых проработанных выводов. Евклид начинает Книгу I списком из 23 определений основных геометрических терминов (точка, прямая, треугольник, окружность и так далее). Например: «Точка есть то, что не имеет частей». Затем Евклид приводит пять постулатов, на которых базируется вся его геометрия. Эти постулаты представлены без доказательства и обоснования, их просто нужно принять как предпосылки к изложенному дальше. Например: «Между двумя любыми точками можно провести прямую линию». После определений и геометрических постулатов Евклид уточняет ряд общих понятий и неоспоримых истин. Например: «Целое больше части» или «Равные одному и тому же равны и между собой». С этого момента Евклид начинает углубляться в предмет. Так, в первой пропозиции «Начал» показано, как построить равносторонний треугольник на заданном линейном отрезке.

В то время как общие понятия имеют чисто логическое происхождение, постулаты (или аксиомы) обладают геометрической природой. Они уточняют правила работы с математическими объектами, которые Евклид определил до этого. Эти пять постулатов, или аксиом, следующие.

1. От всякой точки до всякой точки можно провести прямую.

2. Ограниченную прямую можно непрерывно продолжать по прямой.

3. Из всякого центра всяким раствором может быть описан круг.

4. Все прямые углы равны между собой.

Иллюстрация пятого постулата Евклида.


5. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых (см. рисунок на предыдущей странице).

В отличие от прочих, пятый постулат Евклида довольно неочевиден, и это привело к тому, что многие математики — например, Птолемей (II век), Джон Валлис (1616-1703) и Иероним Саккери (1667-1733) — безуспешно пытались доказать его через остальные постулаты. В попытках доказательства каждый из них превосходил другого по утонченности и находчивости. Но единственным, чего они добились, стали формулировки, равносильные пятому постулату. Одна из них — знаменитая аксиома параллельных прямых. «Через точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной» (см. рисунок выше). Другая версия провозглашает, что «Сумма углов треугольника равна 180°». Однако историю о пятом постулате, или аксиоме параллельных прямых, ждал удивительный финал.

Иллюстрация аксиомы параллельных прямых.


Как математикам удалось освободиться от цепей евклидовой геометрии? Более 2000 лет они были убеждены, что это единственно возможная геометрия, единственное убедительное описание мира, поскольку изучалось только одно физическое пространство. Но в XIX веке открытие различных геометрий (в которых не выполнялась аксиома параллельных прямых) усилило их тревогу и заставило признать ошибку. Этот животрепещущий вопрос касался формы мира (если он действительно имеет какую-то форму).

Первой неевклидовой геометрией, с которой смирились математики, оказалась, как ни странно, старая знакомая — проективная геометрия. Она начала свой путь в эпоху Возрождения, когда художники заинтересовались проецированием пространства на холст. Тогда было открыто одно из отличительных свойств проективной геометрии (которое радикально отличает ее от неевклидовой): две прямые, которые в трехмерном пространстве представлены как параллельные, на двумерном холсте предстают как пара прямых, пересекающихся на линии горизонта, в бесконечности. Точно так же железнодорожные рельсы, параллельные по всей длине, на фотографиях кажутся пересекающимися в точке схода. Так что в проективной геометрии две любые точки всегда пересекаются: либо в конкретной точке, либо в бесконечности. Следовательно, проективная геометрия противоречит аксиоме параллельных прямых, поскольку через точку, не лежащую на данной прямой, не проходит ни одной прямой, параллельной первой.

В начале XIX века в проективной геометрии наметился прорыв, и совершил его французский математик Виктор Понселе (1788-1867). Этот наполеоновский офицер, оказавшись в российском плену, посвятил себя усовершенствованию идей в данной области и по возвращении домой опубликовал «Трактат о проективных свойствах фигур» (1822). В нем Понселе ввел понятие проективной геометрии как сферы знания, рассматривающей свойства фигур, которые сохраняются при проецировании, то есть свойств, общих для фигур с их тенями и проекциями. Эти свойства включают в себя отношения принадлежности, но не отношения расстояния или размера. Так, если три точки лежат на одной прямой, при проецировании они на одной прямой и остаются, но очень вероятно, что расстояние между ними изменится. Точно так же тень, которую отбрасывает каждый из нас, не равна нам по размеру. Через некоторое время немецкий математик Юлиус Плюккер (1801-1868) включил в проективную геометрию координаты, что позволило ему алгебраизировать ее и доказать многочисленные результаты с аналитической точки зрения.

В результате проективная геометрия составляла особый случай неевклидовой геометрии. Аксиома параллельных прямых не выполнялась (поскольку на проективной плоскости не существовало параллельных прямых), но проективная геометрия отрицала не только аксиому параллельных прямых, но и параметры углов и расстояние (поскольку при проецировании они не сохраняются). Не выполнялся не только пятый, но и четвертый постулаты Евклида (об углах). Поэтому математики не стали рассматривать проективную геометрию как настоящую неевклидову геометрию.

Казавшаяся недостижимой цель заключалась в том, чтобы с нуля построить новую геометрию, которая выполняла бы евклидовы аксиомы, кроме аксиомы параллельных прямых. Поскольку она отрицалась, оставалось два пути: либо отрицать существование параллельных прямых («не существует параллельных прямых»), либо отрицать единственность прямой, параллельной данной, проходящей через точку, не лежащую на ней («существует более одной параллельной прямой»).


ПРОГРАММА ЭРЛАНГЕНА

Феликс Клейн (1849-1925), учитель Гильберта, проповедовал четкое видение геометрии. Любая геометрия состоит из пространства и группы трансформаций. Для Клейна геометрия заключалась в изучении свойств объектов, которые остаются инвариантными к некоторой группе трансформаций, или предварительно заданных движений. Уверовав в роль проективной геометрии, он доказал, что раз она задана группой проекций — наибольшей группой, — то представляет собой основную геометрию, базирующуюся на минимальном числе начальных гипотез. Все прочие геометрии проистекают из нее, порождая дополнительные гипотезы. Именно так произошло с евклидовой геометрией, которая наследовала все проективные свойства.

Этот тезис он развивал в своей инаугурационной речи, когда в 1872 году заступал на должность главы кафедры Эрлангенского университета.

Феликс Клейн.


Как Карл Фридрих Гаусс (1777-1855), так и Янош Бойяи (1802-1860) и Николай Лобачевский (1792-1856) приняли существование параллельных прямых и отрицали их единственность: через одну точку, не лежащую на прямой, проходит более одной параллельной прямой. Этим трем математикам удалось вывести достаточный ряд теорем воображаемой геометрии, не столкнувшись ни с абсурдом, ни с каким-либо парадоксом.

Но не ожидали ли они их за углом? Разве можно быть уверенными в том, что пойди они дальше, их выводы не разбились бы о какое-нибудь противоречие? В середине века назрела необходимость в модели этой новой геометрии в рамках евклидова учения, чтобы даже в случае скрытого в ней противоречия она так же оставалась частью почитаемой евклидовой геометрии (что казалось невозможным). С этой позиции можно было раз и навсегда доказать, что справедливость новой геометрии заключается именно в справедливости евклидовой геометрии, которая считалась надежной. Поставленную задачу частично решил Эудженио Бельтрами (1835-1900), предложив в 1868 году локальную модель — псевдосферу. Через два года Клейн открыл первую полноценную модель неевклидовой геометрии.


Ради Бога, молю тебя, оставь эту материю, потому что она может лишить тебя всего твоего времени, здоровья, покоя, всего счастья твоей жизни.

Письмо, отправленное Фаркашем Бойяи своему сыну Яношу после того, как он узнал, что тот работает над пятым постулатом Евклида


Рассмотрим модель Клейна. Допустим, что наше пространство свелось к внутренности круга (за исключением его краев), и создадим что-то вроде словаря, в котором будет установлено поочередное соответствие ряда терминов — как в обычном двуязычном словаре, в котором значение слов то же. Когда Евклид говорит: «точка», мы думаем о точках внутри этого круга, когда он говорит: «прямая», подразумеваются отрезки, которые начинаются и заканчиваются на краю круга. Такой перевод позволяет построить модель неевклидовой геометрии внутри собственно евклидова пространства. Что происходит с аксиомой параллельных прямых. При заданной прямой r и не лежащей на ней точке А существует более одной прямой, параллельной r, которая проходит через А. Действительно, прямые s и t параллельны прямой r внутри круга, поскольку они никогда не пересекаются в нашем пространстве (см. рисунок 1). Буквально из ничего была создана новая странная вселенная. Евклид был серьезным образом потеснен.

РИС. 1


Сомнения касательно неевклидовой геометрии не рассеялись, даже когда распространились идеи диссертации «О гипотезах, лежащих в основе геометрии», написанной Бернхардом Риманом (1826-1866). В 1854 году он прочитал ее 80-летнему Гауссу, который не скрыл своего энтузиазма в отношении услышанного, однако опубликована эта работа была лишь после его смерти. Основываясь на исследованиях Гаусса в области дифференциальной геометрии, Риман предположил, что в каждом пространстве может быть определена различная форма измерения расстояния, так что прямая в этом пространстве (которая по определению является «самым коротким путем между двумя точками») не совпадает с имеющимися у нас представлениями о ней. Итоговая особенная кривая, так называемая геодезическая, будет играть в этом пространстве роль, которую прямая линия играет в евклидовой геометрии. Согласно Риману, для евклидова пространства характерна постоянная нулевая кривизна, где есть единственная параллельная прямая (см. рисунок 2 [1]). Но если изменить значение кривизны, мы получим другой тип пространства, который окажется моделью неевклидовой геометрии. Если кривизна отрицательная, мы получим гиперболическую геометрию Гаусса — Бойяи — Лобачевского, где через точку, не лежащую на прямой, проходит более одной параллельной ей прямой [2]. И наоборот, если кривизна положительная, мы получим эллиптическую геометрию, в которой нет параллельных прямых [3].

РИС. 2


Риман помог истолковать сферу в качестве модели эллиптической геометрии, а следовательно — неевклидовой геометрии, в которой аксиома параллельных прямых ложная, в том смысле, что нет параллельных прямых (как, допустим, в проективной геометрии). В сфере роль прямых берут на себя наибольшие круги. То есть если мы назовем прямыми наибольшие круги, то получим евклидову модель эллиптической геометрии.

Два любых наибольших круга всегда пересекаются. Это случай меридианов Земли, которые всегда пересекаются на полюсах. Поскольку аксиома параллельных прямых не выполняется, сумма углов треугольника не составляет 180°, что показано на сферическом треугольнике на рисунке 3, углы которого в сумме дают 230°. Однако локально, в небольшом масштабе, евклидова геометрия, похоже, выполняется (см. рисунок 4, сумма углов треугольника составляет 180°). Эти открытия позволили Риману рассматривать проективную плоскость в контексте сферической геометрии.

Так что неевклидовы геометрические модели, извлеченные на свет математиками XIX века, только вернули данный вопрос в рамки евклидовой геометрии. Если последняя раньше считалась единственно справедливой, теперь же странные неевклидовы геометрии рассматривались наравне с евклидовой геометрией (которая оказывалась их особым случаем), и возникал правомерный вопрос: в чем же справедливость евклидовой геометрии? Можно ли с уверенностью утверждать, что она не содержит никаких противоречий?

Важнейшим следствием из признания неевклидовых геометрий была необходимость рассмотреть проблему справедливости геометрии и всей математики с точки зрения оснований. До тех пор связность евклидовой геометрии обеспечивало то, что она соответствовала физическому пространству, в котором нет противоречий. Кроме интересных результатов, количество которых постоянно возрастало, внимание также привлекали и основополагающие вопросы. Аксиоматический подход последней трети XIX века, во главе которого стояли Мориц Паш (1843-1930) и Джузеппе Пеано (1858-1930), обозначил их особенно остро, и только Гильберт смог дать определенный ответ. Но прежде требовалось найти подходящую аксиоматику евклидовой геометрии, которая закрыла бы постепенно открывающиеся логические бреши.


АКСИОМАТИЧЕСКИЙ ПОДХОД ГИЛЬБЕРТА

Как это было с теорией инвариантов, настал день, когда Гильберт устал и оставил теорию чисел, переключившись на основы геометрии. Никто не ожидал такого, пусть даже он и вел два курса по этому предмету в Кёнигсберге. Эта новость застала врасплох всех его новых коллег по Гёттингену. Однако в своем «Отчете о числах» Гильберт подчеркивал, что современная математика развивается под знаком числа, и потому призывал к арифметизации геометрии, ориентированной на логический анализ последней. В этом угадываются зачатки его знаменитых Grundlagen der Geometrie («Основания геометрии»), публикация которых в 1899 году была приурочена к открытию в Гёттингене статуи Гаусса и Вебера в память об изобретении ими телеграфа. Эта работа сразу же обозначила новую парадигму исследования оснований и аксиоматическую практику в XX веке, как «Начала» за несколько веков до этого.

В книге излагалась аксиоматика геометрии, которая на голову превосходила аксиоматику не только Евклида, но и предложенные Пашем и Пеано. Гильберт заявил, что работа по установлению минимального числа гипотез, из которых можно вывести всю геометрию, осуществлена не полностью, и сформулировал 21 аксиому. Эти аксиомы возникли не из ниоткуда, их скрыто или открыто применяли еще в древности. Они были продуктом не чистой мысли, а скорее интуиции (это логично, учитывая, что книгу открывает цитата из Канта). В том виде, как ее задумывал Гильберт, геометрия была ближе к механике и физике, чем к алгебре и теории чисел.

Гильберт сформулировал свои аксиомы для трех систем неопределенных объектов. Объекты первой системы он назвал точками; второй — прямыми; а третьей — плоскостями. Но, в отличие от Евклида, он не дал определений элементарным геометрическим понятиям. Сами аксиомы определяют их, устанавливая внутренние отношения. В них самих содержатся утверждения о точках, прямых и плоскостях и о том, что с ними можно делать. По Гильберту, нужно избавиться от налета толкований элементарных объектов. Аксиомы, и только они (без каких-либо предварительных определений или рисунков), характеризуют элементарные объекты через их взаимоотношения. «Следует добиться того, чтобы с равным успехом можно было говорить вместо точек, прямых и плоскостей о столах, стульях и пивных кружках», — писал он. Аксиомы допускают множественные толкования, и в этом коренное различие материальной аксиоматики Евклида и новой формальной аксиоматики Гильберта.

Используя все свое математическое умение, 21 аксиому евклидовой геометрии он классифицировал по пяти группам:

— аксиомы принадлежности, которые связывают между собой различные объекты, например позволяют утверждать, что «эта точка принадлежит этой прямой» или «эта прямая принадлежит этой плоскости»;

— аксиомы порядка, которые позволяют утверждать, что, например, «эта точка лежит между этими двумя» (как отметил Паш, данный тип аксиом полностью отсутствовал среди евклидовых постулатов);

— аксиомы конгруэнтности, определяющие соразмерность отрезков;

— аксиома параллельности имеет знаменитую формулировку о параллельных прямых;

— аксиомы непрерывности, их две: так называемая аксиома Архимеда, которая гласит, что если последовательно повторять любой из двух заданных произвольных отрезках, мы можем построить отрезок большего размера, чем первый, за конечное число шагов; и аксиома полноты линии, или непрерывности прямой, она гласит, что точки одной прямой образуют систему, неподверженную какому- либо расширению при условии сохранения линейного порядка и отсутствии противоречия аксиоме конгруэнтности и аксиоме Архимеда.

Без аксиомы непрерывности нельзя утверждать, что две окружности пересекутся в точке С и,следовательно, что можно построить равносторонний треугольник со стороной АВ (как это заявлено в Пропозиции I Книги I «Начал» Евклида).


Последней аксиомы в «Началах» не было, хотя необходимость в ней возникает даже при доказательстве Пропозиции I Книги I. То, что Гильберт извлек ее на свет, составляет один из важнейших его вкладов. Без нее Q2 (то есть плоскость, в которой у точек есть только рациональные координаты) было бы моделью евклидовой геометрии, поскольку она бы удовлетворяла всем предыдущим аксиомам. Однако, как подчеркнул Рихард Дедекинд (1831-1916), в этой дырявой плоскости две окружности, каждая из которых проходит через центр другой, необязательно должны пересекаться (что предполагалось в Пропозиции I), потому что это возможно в точке с иррациональными координатами (в дырке). Аксиома полноты линии, или непрерывности прямой, позволяет определить любую прямую с действительными числами R и, следовательно, плоскость R2 (то есть полную плоскость со всеми точками с рациональными и иррациональными координатами), где две окружности гарантированно пересекутся (см. рисунок). Это мост между синтетической геометрией, основанной на диаграммах и чертежах, и аналитической, выстраиваемой на вычислениях.


АКСИОМЫ, ДОКАЗАТЕЛЬСТВА, ТЕОРЕМЫ И ТЕОРИИ

С аксиоматической точки зрения аксиома — это высказывание, по той или иной причине (обычно из-за ее плодотворности) помещенное в основание математической теории, чтобы из него в дальнейшем можно было вывести теоремы. Но чтобы вывести теоремы, необходим свод правил выведения. Математики обычно оперируют двумя классическими правилами. Первое, modus ponens, заключается в том, чтобы из импликации «Если Р, то Q» и из истинности Р вывести, что истинно также Q. Второе, modus tollens, состоит в том, чтобы из импликации «Если Р, то Q» и из того, что Q ложно, вывести, что Ртакже ложно. Таким образом, формально доказательство — это цепочка рассуждений, которая позволяет получить новые результаты с применением аксиом и правил выведения. Конечным результатом доказательства называется теорема. Если на основе множества аксиом S мы смогли вывести теорему T, обычно это записывается как S ├ T («T доказуемо на основе S»), где знак ├ обозначает синтаксическое отношение выведения или доказательства. Теорией называют множество всех теорем, которые могут быть доказаны. Модель теории — математическая структура, в которой аксиомы истинны, они выполняются. Если М — это модель множества аксиом S, это записывается как М ╞ S («М выполняет S», то есть «аксиомы S истинны в М»). Знак ╞ обозначает семантическое отношение истинности или выполнения. Один из главных вопросов, которые поставил Гильберт, состоит в том, какое математическое отношение существует между отношением доказательства и отношением истинности (между ├ и ╞): истинно ли все доказуемое? Доказуемо ли все истинное?


Помимо формулировки аксиом, Гильберт стал первым, кто с чисто математического уровня в основе геометрии поднялся на метаматематический, или метагеометрический, уровень, где рассматриваются свойства любой аксиоматической системы, в частности той, которую он определил для геометрии. Какими свойствами должна обладать аксиома? Гильберт выделил три характеристики: независимость, непротиворечивость и полнота.

Аксиоматическая система является независимой, если ни одна аксиома не может быть выведена из другой, то есть если система максимально экономична, не избыточна. И пусть не все сформулированные им аксиомы оказались независимыми (как выяснилось позже), Гильберт доказал независимость между различными группами аксиом. Он утверждал, что аксиома параллельных прямых независима от прочих аксиом, то есть она не может быть выведена на их основе, чем закрыл вопрос, остававшийся открытым несколько столетий. Это стало возможным с применением метода, ставшего вскоре классическим: построить модели геометрий, которые выполняют все желаемые аксиомы, кроме той, независимость которой проверяется, и тогда последняя не может быть следствием из других (поскольку если бы это было так, мы получили бы противоречие — аксиому и ее отрицание). Для доказательства независимости аксиомы параллельных прямых Гильберт создал модель неевклидовой геометрии. А для доказательства независимости аксиомы Архимеда он построил модель неархимедовой геометрии, в которой существуют бесконечно малые величины. Так Гильберт, по примеру Джузеппе Веронезе (1845-1917), распахнул двери для исследования геометрии нового типа.

Давид Гильберт, 1886 год.

Скульптурная группа, воздвигнутая в память о Гауссе и Вебере в Гёттингене. Гильберт опубликовал свои«Основания геометрии» (1899) по случаю ее торжественного открытия.

Кёнигсбергский университет, около 1890 года. Гильберт поступил сюда десятью годами ранее.


Вторым требованием, которое Гильберт предъявлял к своей аксиоматической системе, была непротиворечивость. Система аксиом является непротиворечивой, если не порождает разногласий, если нельзя вывести никакого противоречия на ее основе. Такую систему аксиом называют когерентной, или совместимой. Модели Бельтрами, Клейна, Пуанкаре и Римана доказали относительную непротиворечивость неевклидовых геометрий в отношении к евклидовой, поскольку эти неевклидовы модели содержались внутри собственно евклидова пространства. Но была ли непротиворечивой евклидова геометрия? Гильберт доказал непротиворечивость евклидовой геометрии относительно арифметики, впервые предложив чисто числовую модель. Он вывел числовое множество, в котором выполняются все геометрические аксиомы, в котором точки — это некоторые пары алгебраических чисел, а прямые — некоторые тройки этих чисел, в котором принадлежность какой-то точки прямой означает, что соблюдается некое числовое уравнение, и так далее. Таким образом, любая противоречивость его аксиоматической системы геометрии привела бы к противоречивости арифметики. Любое противоречие в выводах, cделанных на основе геометрических аксиом, было бы признано арифметическим (например, 0=1).


ВЛИЯНИЕ ГЕРЦА

Не исключено, что Гильберт не был близко знаком с аксиоматическими работами итальянской школы Пеано, зато он знал о достижениях немецкой школы — как в области геометрии (Паш), так и в области механики. Генрих Рудольф Герц (1857-1894) скончался в возрасте 37 лет, но за свою короткую жизнь он успел удивить современников как физик-экспериментатор (он открыл электромагнитные волны и фотоэлектрический эффект) и физик-теоретик. В 1894 году он опубликовал работу «Принципы механики, изложенные в новой связи», в которой аксиоматически изложил знания в этой области. К собственной аксиоматической системе у него имелось два требования: допустимость и корректность. Допустимость совпадает с непротиворечивостью, с отсутствием противоречий. А корректность — с полнотой, с возможностью доказать в рамках этой теории все, что является истинным в мире. Эти два понятия перекликаются с введенными Давидом Гильбертом.

Генрих Рудольф Герц, около 1893 года.


Следовательно, Гильберт свел непротиворечивость евклидовой геометрии к непротиворечивости арифметики, что на тот момент было чем-то само собой разумеющимся, хотя вскоре он признал: проблема остается открытой и имеет высокий приоритет (и вскоре мы в этом убедимся). Неевклидовы геометрии основывались на евклидовой, которая, в свою очередь, держалась на арифметике действительных чисел. Как во сне индийского мудреца, мир покоится на спинах слонов, а те стоят на спине черепахи. Ну а черепаха? Вопрос о непротиворечивости арифметики сразу же обрел остроту. В своей книге Гильберт этот вопрос не затронул, тем не менее он считал, что совместимость арифметических аксиом может быть доказана довольно просто (как же он ошибался!).

Наконец, третье требование, которое Гильберт выдвинул через несколько лет,— это, по возможности, полнота (хотя она едва намечена в «Основаниях»). Аксиоматическая система называется полной, если в рамках системы мы можем доказать все пропозиции, являющиеся истинными относительно объектов системы, то есть если ни одна из истин не избегает доказательства, если все истины доказуемы. Когда непротиворечивость убеждает нас в том, что все доказуемое верно («все теоремы — истины»), полнота гарантирует нам обратное: все истинное доказуемо («все истины — теоремы»). Если система аксиом, которую он предложил для евклидовой геометрии, была полной, она позволяла вывести все известные ныне и в будущем результаты евклидовой геометрии.

Не будем опережать события, но ответ на этот вопрос не был пустяком. В итоге Гильберт убедился, что любая аксиоматическая система, представляющая минимальный интерес, является неполной. В ней истинное не совпадает с доказуемым. Существуют истинные пропозиции, которые не могут быть доказаны. Данная парадоксальная ситуация напоминает положение следователя, который точно знает, кто убийца, но неспособен доказать это. К счастью, в 1951 году польский логик Альфред Тарский (1902-1983) выяснил, что элементарная версия евклидовой геометрии является полной — очевидно, что эта версия не содержит арифметики, поэтому не противоречит знаменитым теоремам о неполноте арифметики Курта Гёделя (1906-1978).

Подведем итог. Гильберт предъявлял своей геометрической аксиоматике три требования: независимость, непротиворечивость и полнота. Немецкий математик был убежден, что его аксиоматика минимальна, доказав, в частности, что аксиома параллельных прямых и аксиома Архимеда независимы от прочих. Кроме того, он частично разрешил задачу непротиворечивости, доказав относительную непротиворечивость геометрии арифметике. Таким образом были заложены основы, на которых можно аксиоматически изучать любую геометрию — евклидову или неевклидову, архимедову или неархимедову, — и показано, как можно вывести известные геометрические результаты в зависимости от того, какие группы аксиом приняты.


КРИКИ БЕОТИЙЦЕВ

В письме, адресованном одному коллеге в 1829 году, Гаусс признавался, что в жизни не опубликует ничего по неевклидовой геометрии, так как опасается «криков беотийцев». Немецкий математик намекал на кантианцев, для которых евклидова геометрия была единственно возможной, поскольку единственность пространства предполагала единственность геометрии. Физическое пространство — математическая геометрия. Гаусс не отправил в печать результаты своих исследований, боясь скандала, поскольку открытие неевклидовых геометрий поставило бы под сомнение всю кантианскую философию. Если существует более одной логически мыслимой геометрии, задаваться вопросом об истинности определенной одной — все равно что выяснять, является ли десятичная система более истинной, чем двоичная, а декартова — более истинной, чем полярная. Относительность геометрии подчеркивала, в противовес идеям Канта, что пространство аморфно, и нет смысла спрашивать, какая геометрия истинна. Гаусс был не единственным математиком, испытывавшим антипатию к великому Канту. Георг Кантор признавался, что чтение его работ вызывает у него недомогание, и называл прусского мыслителя «софистом-филистером, который так мало знает о математике».

Как и у Гаусса, у Гильберта были свои позитивные и негативные моменты при взаимодействии с одним философом, которые были следствием идей, изложенных им в «Основаниях геометрии». Речь о логике и философе Готлобе Фреге (1848-1925). Этот угрюмый преподаватель Йенского университета считался отцом современной логики (см. главу 4), одним из самых упрямых защитников аксиоматического подхода Античности. Реакция Фреге на книгу Гильберта не заставила себя долго ждать. Так началась переписка, и так стало нарастать недопонимание.

В первом письме, отправленном в конце 1899 года, Фреге обрушился на «Основания геометрии» с суровой и педантичной критикой. Раздраженный, но взявший себя в руки Гильберт ответил другим развернутым посланием. В дальнейшем он был более лаконичным, и когда Фреге предложил ему опубликовать переписку, Гильберт категорически отказался. И все же эта полемика представляет собой большой интерес, поскольку демонстрирует открытое столкновение двух концепций аксиоматического метода — старой и традиционной, представляемой Фреге, и новой, начатой Гильбертом.

Фреге никогда не оспаривал кантианский анализ геометрии и не допускал никаких других методов, кроме аксиоматического, описанного Аристотелем во «Второй аналитике» и задействованного Евклидом в «Началах». Аксиомы были очевидными истинами, связанными с реальностью. Следовательно, аксиома параллельных прямых была либо истинной, либо нет. Но и того и другого одновременно быть не могло. В одном из писем немецкий философ возмущался:

«Никто не может служить двум хозяевам разом: если евклидова геометрия истинна, нужно вычеркнуть неевклидову геометрию из списка наук и поставить ее в ряд с алхимией и астрологией».

Позиция ретрограда помешала ему понять, что для Гильберта аксиомы — всего лишь абстрактные схемы, сформулированные с практической целью как начала математической теории.

Недовольство Фреге возросло, когда тот прочитал, что Гильберт готов называть «точками», «прямыми» и «плоскостями» любые три произвольных множества, которые удовлетворяли его аксиомам, пусть даже это будут столы, стулья и пивные кружки. Фреге считал, что аксиомы касаются реальных вещей и, следовательно, едва ли у них может быть более одной интерпретации. Гильберт парировал в ответном письме:

«Каждая теория — всего лишь набор понятий и некоторых связывающих их отношений, ее базовые элементы могут быть произвольными. Если под точками и прочим я понимаю любую систему вещей, например систему, образованную любовью, законом, щеткой для чистки труб и так далее, и сочту, что для этих вещей все мои аксиомы справедливы, то справедливыми для этих вещей окажутся и мои теоремы, как, например, теорема Пифагора. Другими словами, каждая теория может быть применена к бесконечному числу систем базовых элементов».

Когда Фреге опубликовал пару крупных статей, в которых назвал его шарлатаном, через Алвина Корсельта (1864-1947), Гильберт ответил: «Мы можем озаглавить ее как «пустая и бессмысленная игра знаков» или как-то в этом духе; но как законной связи между пропозициями ей не нужно никакое другое специальное название».

Любопытно, что употребление терминов в аксиомах смутило и Анри Пуанкаре. Французский математик подключился к критике Гильберта, поскольку ему были неприятны те, кто стремился свести математику к чистым формальным отношениям символов. Он написал подробную рецензию, обвинив немца в мошенничестве, поскольку аксиоматический метод не является созидательным. Этот неоригинальный концептуализирующий инструмент маскирует или прячет то, что должен аксиоматизировать. По мнению Пуанкаре, в «Основаниях геометрии» всегда подразумевается евклидова геометрия, хотя Гильберт это и отрицал. Пусть его аксиоматика и претендует на то, чтобы представлять собой ряд скрытых определений, она происходит из уже существующей теории и ограничивается лишь ее реорганизацией. Французский титан вновь потеснил немецкого титана.

Фреге не понял интереса Гильберта к аксиоме полноты линии, или непрерывности прямой, в которой постулируется, что не существует другой большей системы объектов, которая также выполняла бы аксиомы. Философ заявил математику, что это похоже на теологическое заключение на основе аксиомы, которая гласила бы: «Аксиома 3. Существует по крайней мере один Бог». По иронии судьбы Гильберта уже во второй раз обвинили в тяготении к теологии. Однако он был не теологом, а скорее мистиком, поскольку предугадывал будущее математики.

Противостояние Фреге и Гильберта, как и в случае с Горданом, — ключ для понимания отличия математики XIX века от математики XX столетия. Для Фреге математическое существование было связано с тем, какие материальные или идеальные объекты существуют в мире. Раз есть только один мир, должна быть только одна геометрия. Аксиоматические системы изначально были пустыми. Гильберт же, наоборот, считал, что аксиомы не просто кодируют поведение математических объектов, но также могут создавать новые математические объекты, если не вступают в противоречие. Следовательно, в математике есть больше одной геометрии, при этом каждая из них непротиворечива (относительно арифметики).

«Основания» оказались своего рода знаком ферматы над геометрией, открыв путь другим возможным геометриям (неевклидовым, неархимедовым и так далее). Кроме того, они стали первым столпом современной аксиоматики. С 1900 года, взяв на вооружение новый метод, Гильберт начал внедрять аксиоматизацию в другие научные дисциплины. Раз аксиоматика так хорошо себя показала в геометрии, почему бы ее не задействовать в арифметике, анализе или физике?


Загрузка...