ГЛАВА 3 Аксиоматизация физики

Первые годы нового века Гильберт работал в области вариационного исчисления и интегральных уравнений. Ему удалось придать форму новому ответвлению анализа — функциональному анализу. Кроме того, он сыграл ключевую роль в математической формулировке общей теории относительности и квантовой механики. Гильберт соревновался с Эйнштейном в поиске уравнений, которые связали бы гравитацию с теорией относительности.

Но это не все: так называемое гильбертово пространство стало в итоге математической структурой, распахивающей двери в квантовое пространство.

Одно из недавних открытий в области истории математики касалось безудержного интереса, который Гильберт проявлял к физике своего времени. Дружба с Минковским и знакомство с работами Герца оказались катализаторами его интереса в юные годы, а математическая традиция Гёттингена, без сомнения, сделала все остальное (Гаусс, Риман и Клейн разделяли его любовь к физике). Его научная деятельность совпала с рождением двух физических учений XX века — квантовой теории (1900) и теории относительности (1905), — что усилило его интерес в первые два десятилетия нового века.

С приезда в Гёттинген в 1895 году Гильберт вел множество курсов и семинаров, посвященных математической физике. Неудивительно, что на лекции в Париже в 1900 году, говоря о шестой проблеме, он отметил: исследования в области оснований геометрии подсказывают тот же — аксиоматический — подход к физическим наукам, в которых у математики заметная роль. Механика, оптика, а также термодинамика и теория электричества должны следовать скрупулезной модели, испробованной геометрией. Строгость — не сугубо математическое свойство. Физика может достичь абсолютной строгости по стандартам аксиоматического метода.

В 1905 году, избрав это направление, немецкий математик предложил аксиоматическое изложение механики, описав понятие силы через различные аксиомы векторного пространства. Затем он аксиоматизировал теорию вероятностей — в том виде, в каком она возникла в рамках кинетической теории газов. Ряд выпускников Геттингена, учеников Гильберта, внесли в это существенный вклад. В 1909 году Георг Гамель (1877-1954) аксиоматизировал классическую механику, а Константин Каратеодори (1873-1950) сделал то же для термодинамики. Сам Гильберт совершил гигантский шаг, в 1915 году сформулировав собственные уравнения для общей теории относительности. Наконец, в конце счастливых 1920-х годов в сотрудничестве с Лотаром Нордгеймом (1899-1985) и Джоном фон Нейманом (1903-1957) он попытался включить квантовую механику в аксиоматическую систему.

Однако его интерес к физике не может рассматриваться в отрыве от анализа. Его внимание к анализу сменялось вниманием к физике и обратно, и в первые два десятилетия века это происходило непрерывно. Гильберт сосредоточился на двух областях, довольно близких к анализу, — вариационном исчислении и интегральных уравнениях. Действительно, в 3 из 23 проблем, которые Гильберт представил в Париже, речь шла о вариационном исчислении и, в частности, о развитии теории уравнений в частных производных.


УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ

Довольно долгое время уравнения (алгебраические) отвечали требованию вычислять неизвестные числа, например корни многочлена. Но в математике нередко возникают качественно другие проблемы: те, в которых неизвестное — это не число, а функция, выражающая отношение между различными переменными (как в случае с движением планет — зависимость пространственных координат от времени). Особый класс здесь — так называемые дифференциальные уравнения, определяющие неизвестную функцию на основе одного или нескольких уравнений, в которых участвуют производные функции.

Основав исчисление (дифференциальное и интегральное), Ньютон сформулировал законы физики в том виде, который связывал между собой физические величины и скорости изменения. То есть пространство, пройденное движущимся телом с его скоростью, и скорость движущегося тела с его ускорением. Итак, законы физики оказались выраженными через дифференциальные уравнения, при этом дифференциалы и производные были мерами скорости изменения. Производная функции показывает, как изменяется значение функции, если она возрастает, убывает или остается постоянной. Ускорение, например, измеряет изменения скорости движущегося тела, вариацию скорости во времени, поскольку частное дифференциалов скорости и времени есть производная скорости относительно времени:

а = dv/dt

Однако решение дифференциальных уравнений, как и алгебраических, не всегда оказывается простым, вернее никогда. Если неизвестная функция зависит от единственной переменной, они называются обыкновенными дифференциальными уравнениями. Например, производная от функции синуса у = sin х равна у’ = cos х, где у’ обозначает первую производную. Эта последняя функция может быть дифференцирована, в свою очередь, для получения у" = -sin х> из чего можно вывести дифференциальное уравнение у" = -у. Это — дифференциальное уравнение второго порядка, поскольку появляется вторая производная.

Другой пример дифференциального уравнения второго порядка — второй закон Ньютона: F = m x а («сила равна произведению массы на ускорение»),

а = dv/dt = d²x /dt²,

где ускорение — это первая производная от скорости, но также вторая производная от положения, если x(t) обозначает положение движущегося тела в зависимости от времени.

Обратная ситуация — если неизвестная функция зависит от более чем одной переменной и появляются производные относительно этих переменных: это называется уравнениями в частных производных. Предположим, объем газа V — это функция от его температуры Т и давления на него Р, то есть V(T,Р). Когда Тили Р изменяются, V тоже изменяется. Производная V(T, Р) относительно Т называется частной производной относительно Т и записывается как

∂V(T,Р)/∂T.

Точно так же

∂V(T,Р)/∂P

является частной производной относительно Р. Как и в случае с обыкновенными производными, существуют вторая, третья и так далее частные производные; так, в качестве примера

∂2V(T,Р)/∂P2

представляет собой вторую частную производную относительно Р. Но дифференциальные уравнения, в которых участвуют частные производные, имеют особенные черты, принципиально отличающие их от обыкновенных. В изучении естественных явлений уравнения в частных производных появляются так же часто, как и обыкновенные дифференциальные уравнения, но обычно их намного сложнее решать.

В XVIII веке изучение физического явления в сущности было примерно тем же самым, что и нахождение дифференциального уравнения, которое им управляет. Так, после открытия Ньютоном знаменитого дифференциального уравнения «сила равна произведению массы на ускорение», которое управляет движением систем точек и твердых упругих тел, швейцарский математик Леонард Эйлер (1707-1783) сформулировал систему уравнений в частных производных, описывающую движение сплошных сред (воды, воздуха и других флюидов), не обладающих вязкостью. Через некоторое время французский математик Жозеф-Луи Лагранж (1736-1813) сосредоточился на музыке, на уравнении в частных производных, которое показывает распространение звуковых волн. Позже Жан-Батист Фурье (1768-1830) обратился к потоку тепла, предложив другое уравнение в частных производных, описывающее его распространение. В разгаре XIX века уравнения Навье — Стокса описало движение вязких флюидов, а уравнения Максвелла — электромагнетизм. Вся природа — твердые тела, флюиды, звук, тепло, свет, электричество — оказалась смоделированной посредством уравнений в частных производных. Но одно дело — найти уравнения рассматриваемого явления, а другое — решить их.


Физика слишком сложна для физиков.

Давид Гильберт


Парадигматические уравнения в частных производных — это три уравнения, полученные в области математической физики: уравнение волн, уравнение тепла и уравнение Лапласа.

Прежде чем рассмотреть последнее, введем обозначение, которое чрезвычайно упрощает его запись: лапласианом функции u = u(х,y,z,t) от пространственных координат и времени называют сумму следующих производных относительно х,y,z:

∆u = ∂²u/∂x² + ∂²u/∂y² + ∂²u/∂z²

Эту группу частных дифференциалов лапласианом назвал Джеймс Клерк Максвелл (1831-1879), хотя обозначение заглавной греческой буквой дельта восходит к трактату 1833 года.

В данных обстоятельствах ∆u = 0 — это уравнение Лапласа, или уравнение непрерывности, выражающее, что идеальный флюид, в котором нет завихрений, неразрушим. Это уравнение математически кодирует прописную истину: если флюид несжимаем, из сколь угодно малого объема в момент времени должно выйти столько же жидкости, сколько ее содержится в нем. Однако французский математик и физик Пьер-Симон Лаплас (1749-1827) обнаружил его в небесной механике, изучая гравитационный потенциал, то есть функцию, измеряющую гравитационную силу, с которой тело — какой бы формы оно ни было — притягивает внешнюю точечную частицу. В результате это уравнение Лапласа также получило название уравнения потенциала. Как уже можно догадаться, один из гениальных вкладов Гильберта в анализ был связан со строгим решением этого уравнения в частных производных.


УРАВНЕНИЕ ВОЛН И УРАВНЕНИЕ ТЕПЛА

Уравнение волн, которое описывает распространение волн звука или света, а также физических волн, производимых колеблющейся струной или мембраной, следующее:

∂²u/∂t² = c²∆u .

В свою очередь, уравнение тепла, которое регулирует распространение тепла (то, как оно движется из зон, где температура выше, в зоны, где она ниже), соответствует следующему виду:

∂u/∂t = k∆u .

Оба уравнения кажутся обманчиво похожими, за исключением того, что в первом вместо первой производной появляется вторая производная относительно времени. Эта тонкая математическая разница имеет чрезвычайное значение для физики: уравнение волн обратимо — в том смысле, что оно остается неизменным, если мы изменим направление течения времени. Математически: если мы заменим t на -t, уравнение останется прежним, поскольку при двойном дифференцировании знаки отрицания взаимно уничтожаются. Следовательно, уравнение не упорядочивает решения с течением времени, в связи с чем можно восстановить информацию о прошлом (по этой причине мы используем световые или звуковые сигналы для общения). Уравнение тепла, наоборот, необратимо (если заменить t на -t, мы не получим то же самое уравнение). Распространение тепла ориентировано темпорально, оно зависит от оси времени. Эта необратимость проявляется в том, что уравнение упорядочивает решения стечением времени, поэтому обычно невозможно восстановить информацию о прошлом (решение, соответствующее пику тепла, в итоге смягчается таким образом, что через некоторое время невозможно узнать, где и как возник взрыв или пожар, поскольку тепло распространилось по всему пространству).


ОТ ПРОБЛЕМЫ К ПРИНЦИПУ ДИРИХЛЕ

Одной из проблем уравнения Лапласа, которая не давала покоя математикам и физикам XIX века, была так называемая проблема Дирихле, названная в честь немецкого математика Петера Густава Лежёна Дирихле (1805-1859). Она состояла в том, чтобы найти гармоническую функцию в области пространства, то есть функцию u, удовлетворяющую уравнению Лапласа Δu = 0 в этой области пространства, при этом на границе области (см. рисунок 1) она принимает заданные значения (например, u = ƒ на границе). То есть если обозначить область как Ω и границу области как γ,

Δu = 0 в Ω

u = ƒ в γ

РИС. 1

В проблеме Дирихле ищут функцию и, которая принимает определенные значения на границе, и лапласиан, которой равен нулю внутри области.


Эта математическая проблема была связана со множеством физических проблем. Одна из них заключалась в ее решении. Представим себе упругую мембрану, равномерно растянутую над областью плоскости Ω, ограниченную кривой γ. Теперь предположим, что контур деформируется так, что каждая точка γ занимает некоторый уровень, заданный функцией ƒ. Естественно, вследствие деформации контура мембрана изогнется и начнет колебаться. Если позволить ей свободно колебаться, по истечении некоторого времени она достигнет равновесия, приняв некоторое положение (см. рисунок 2). Требуется вычислить величину деформации каждой точки внутри мембраны относительно плоскости, то есть высоту, которую сейчас занимает то, что переместилось. Функция u(х, у), измеряющая эти величины, соответствует проблеме Дирихле (в двух измерениях).

С точки зрения физики должна существовать функция u, являющаяся решением проблемы, кроме того, она должна быть единственной, поскольку рано или поздно мембрана остановится, и произойдет это единственным способом. Однако математически вопрос не настолько очевиден. В лекциях по данной теме Дирихле — как и Гаусс, Джордж Грин (1793-1841) и Уильям Томсон (1824-1907) — разработал метод решения проблемы и нахождения неизвестной функции и. Риман позже назвал этот метод принципом Дирихле.

Дирихле допустил, что в положении стабильного равновесия решение — функция u — должно обладать наименьшей энергией, то есть давать наименьшее значение для следующего интеграла {энергия Дирихле):

РИС. 2

Возможное положение равновесия мембраны через некоторое время.



Другими словами, функция, которую мы ищем, должна давать — в сравнении со всеми возможными функциями, определяющими то же самое граничное условие, — наименьшее возможное значение для энергии. На физических основаниях оказывается возможным, что при любой заданной замкнутой кривой в пространстве существует поверхность с наименьшей энергией, которая ее заполняет, поскольку любая поверхность или мембрана будет стремиться принять конфигурацию, требующую наименьшей энергии.

Так как интегрируемое J(u) всегда положительно (является суммой квадратов), интеграл J(u) всегда больше или равен нулю. Поэтому Дирихле показалось рациональным, что должна существовать функция u, которая имела бы наименьшее значение. Заметьте, что если бы не было этой нижней границы, предполагающей нуль, могло бы оказаться так, что получаемые значения с каждым разом становились бы все меньше (0, -1, -2, -3...), причем это необязательно должно быть наименьшее значение. Предполагая существование этой минимизирующей функции u из J(u)> Дирихле доказал, что функция u гармоническая и, следовательно, удовлетворяет исходной проблеме, которую нужно решить.

Но оставалось неясно, действительно ли существует этот минимум, эта функция u, в которой интеграл Дирихле достигал бы своего наименьшего значения. Стоит подумать, например, о множестве всех действительных положительных чисел: они все больше или равны нулю, но нет ни одного, которое было бы наименьшим (для любого выбранного нами числа всегда будет меньшее число). Нижней границы множества (нуля) невозможно достичь в рамках самого множества (положительных чисел), так что нет и минимума. Усилия Вейерштрасса и его математической школы, направленные на строгое обоснование существования u, разбились об этот вопрос. Однако физики продолжали считать, что так называемый принцип Дирихле гарантирует решение проблемы Дирихле.

И лишь Гильберту — около 1904 года — удалось возродить принцип и доказать несомненное существование минимума. Но чтобы объяснить его доказательство, мы должны погрузиться в пограничную область вариационного исчисления, которое стремится определить, какие функции делают интеграл наименьшим.


ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ

Проблема брахистохроны, или кривой с самым быстрым спуском, исторически была первой проблемой в развитии вариационного исчисления. Среди всех кривых, соединяющих две точки, нужно найти ту, вдоль которой частица, двигаясь под действием силы тяжести, падает за меньшее время. При рассмотрении всех возможных кривых, соединяющих точку А с точкой Ву ищется минимизирующая время падения, что может быть выражено в виде интеграла. То есть ведется поиск кривой или функции, которая делает наименьшим значение этого интеграла. Данная проблема была предложена в 1696 году Иоганном Бернулли (1667-1748) и была решена независимо Ньютоном, Лейбницем, Иоганном и Якобом Бернулли. Решением оказалась не прямая линия и не дуга окружности, а дуга кривой под названием циклоида (см. рисунок 3).

Базовые понятия новой ветви анализа принадлежат Эйлеру и Лагранжу. Первый ввел название вариационное исчисление, а второй создал «метод вариации», который позволяет решить многие проблемы в рамках этой дисциплины. Основа вариационных проблем следующая: предполагается множество С любых элементов (чисел, геометрических точек, функций и так далее), которые обозначаются как м, и каждому элементу и назначается число F(u). Если С — это числовое множество, то F(u) — это функция от одной переменной; если С — это множество точек на плоскости, то F(u) — это функция от двух переменных, и так далее. Но если С — это множество функций, то F(u) — это то, что называется функционалоМу который в одной из различных функций, входящих в состав множества, может принимать значение экстремума (максимума или минимума).

Чтобы решить проблему вариационного исчисления, сравнивали пробную функцию и со всеми ближайшими функциями, то есть с теми, которые получаются при легком варьировании пробной функции и (отсюда название «вариационное исчисление»), и вычисляли функционал F для каждой функции. Для функции, являющейся решением, характерно, что функционал для всех ближайших функций всегда больше (если мы ищем минимум). В этом суть «метода вариации». Эйлер и Лагранж обнаружили: для того чтобы функция и множества С предоставляла экстремальное значение (максимум или минимум) функционалу, F(ü) должно удовлетворять некоторому дифференциальному уравнению (уравнениям Эйлера — Лагранжа). Однако удовлетворение данному уравнению — необходимое, но недостаточное условие.

РИС. 3:

Дуга циклоиды между А и В.


РИС. 4:

Какую из трех возможных траекторий выберет частица, чтобы из А попасть в В? Принцип наименьшего действия устанавливает, что это траектория, минимизирующая величину под названием действие.


Мерой успеха этой плеяды идей является то, что многие математики XVIII и XIX веков стремились истолковать появлявшиеся в физике дифференциальные уравнения как экстремальные условия определенных функционалов. Законы физики можно было переписать в терминах принципов минимума, поскольку природа всегда стремится к оптимизации. Эту же цель преследовали Пьер Луи де Мопертюи (1698-1859) в механике по принципу наименьшего действия (см. рисунок 4), а также Пьер де Ферма (1601-1665) в оптике: траектория, которой следует луч света, проходя из точки А в другую точку В другой среды, — это траектория, требующая наименьшего времени. Физические трактаты конца XIX века были полны подобных принципов, утверждающих, что определенные физические процессы всегда протекают так, чтобы минимизировалось некое количество. Это были так называемые вариационные принципы.

Данная уважаемая область анализа была видом продолжения анализа бесконечно малых. Если традиционный анализ показывал, как найти максимумы или минимумы функции, вариационное исчисление демонстрировало, как определить функцию, максимизирующую или минимизирующую определенный функционал, который обычно выражен в виде интеграла. Однако эта проблема оказалась намного сложнее, и в конце XIX века еще нельзя было определить ряд критериев, гарантировавших существование экстремума (максимума или минимума). Таким образом, неудивительно, что вариационное исчисление касается 3 из 23 проблем Гильберта.

В то время как в проблеме 23 Гильберт задался вопросом о возможном обобщении вариационных методов, в проблемах 19 и 20 он озаботился свойствами и существованием решений проблем вариационного исчисления. Два вопроса оставались открытыми. Первый — существование или отсутствие решения (проблема 20), и второй — свойства, которым в случае своего существования это решение удовлетворяет. Если отбросить техническую оболочку, в проблеме 19 Гильберт спрашивал, должны ли физические проблемы, которые обычно позиционируются как проблемы вариационного исчисления (проблема Дирихле, например), всегда иметь решения с наилучшим поведением: всегда ли решения такие же плавные и регулярные, как аналитические функции (которые можно продифференцировать бесконечное число раз)? Эта проблема была решена в 1904 году российским математиком Сергеем Бернштейном (1880-1968) в его докторской диссертации (одним из руководителей которой был Гильберт). Бернштейн доказал, что решения уравнений в частных, интересовавших Гильберта производных (включая решения уравнения потенциала Лапласа), были, в случае их существования, регулярными, с идеальным поведением, если они удовлетворяли некоторым довольно простым условиям об их трех первых производных. Становилось очевидным, что, например, если интеграл Дирихле достигал своего минимума, то происходило это обязательно в допустимой функции.

Но в том же 1904 году Гильберт удивил математический мир, восстановив доверие к принципу Дирихле, которое тот утратил после критики Вейерштрасса. До Вейерштрасса предполагалось, что в вариационном исчислении у любого функционала есть минимум. Гильберт доказал, что в конкретном случае энергии ДирихлеJ(u) действительно есть минимум. Он построил минимизирующую последовательность функций, значения которой для интеграла были каждый раз все более низкими и сходились к наименьшему значению. И на ее основе он получил минимум, то есть функцию иу которая де факто достигала этого наименьшего значения. Физики и математики могли вздохнуть с облегчением.


НАУКА НА РАСПУТЬЕ

В конце XIX века физики работали в рамках совместного опыта. Классическая механика (созданная Ньютоном) и классическая электродинамика (завершенная Максвеллом) предоставляли абсолютно удовлетворительный для понимания окружающего нас мира материал. С увеличением точности измерительных приборов и возможности осуществлять все более сложные эксперименты физики начали изучать явления в не самых привычных условиях: при очень высоких скоростях (близких к скорости света) и на макрокосмическом или микроскопическом уровне. Именно тогда стали возникать расхождения с прогнозами, которые давала классическая физика, что привело к пересмотру ее оснований и породило две великие физические теории прошлого века: теорию относительности и квантовую теорию. Первая ставила своей целью объяснить явления, происходящие при высоких скоростях (специальная теория относительности) и космических масштабах (общая теория относительности), вторая же изучала явления атомного масштаба (квантовая механика).

К 1900 году ясность классической физики скрывали всего четыре тучи — проблемы, которые она не могла объяснить: излучение черного тела, фотоэлектрический эффект, спектры химических элементов и эфирный ветер. Первые три проблемы дали дорогу квантовой, а последняя — релятивистской физике. Классический принцип относительности, обязанный своим рождением Галилею, не был способен дать объяснение некоторым электромагнитным явлениям, измеряемым интерферометром (эксперимент Майкельсона — Морли). В 1905 году Альберт Эйнштейн (1879-1955) заложил основы специальной теории относительности в своей статье «К электродинамике движущихся тел». Чтобы решить мнимое противоречие, которое проявлялось при изучении поведения уравнений Максвелла в трансформациях Галилея (не прибегая к гипотетическому эфирному ветру), Эйнштейн предложил поддержать теорию Максвелла, изменив механику Ньютона. Нужно было оставить трансформации Галилея, заменив их на трансформации Лоренца, и принять революционную гипотезу: инвариантность скорости света. Среди его выводов были следующие: отказ от эфира, относительность одновременности, сжатие пространства, замедление времени и так далее. Специальная теория относительности вмиг перечеркнула иллюзию об абсолюте пространства и времени классической физики.

Специальная теория относительности, хотя и была чрезвычайно дерзкой с позиции физики, не требовала математики, неизвестной на тот момент физикам и лежавшей в основе работ Пуанкаре и Хендрика Лоренца (1853-1928). В своем озарении Эйнштейн применил не очень требовательную математику. Однако некоторые физики и математики посчитали, что столь радикальные физические и философские идеи должны быть подкреплены новыми математическими формулировками. И здесь вступил в игру старый товарищ Гильберта, Герман Минковский.


ГИПОТЕЗА ВАРИНГА

Как для Минковского, так и для Гильберта теория чисел была самым чудесным порождением человеческой мысли. В 1908 году, взяв перерыв в работе, чтобы поправить здоровье, Гильберт доказал гипотезу, предложенную британским математиком Эдуардом Варингом (1734-1798):

«Любое целое число представимо как сумма максимум девяти кубов; любое число можно представить в виде не более 19 четвертых степеней, и так далее». Другими словами, без каких- либо доказательств утверждалось, что для любой степени к существует некоторое минимальное число таких степеней (назовем его g(k), поскольку оно зависит от степени выбранного к), которое позволяет выразить любое число л в виде суммы ровно g(k) к-х степеней:

n =х1k + х2k + ... + xg(k)k.

В 1770 году Жозеф-Луи Лагранж доказал, что любое число — это сумма четырех квадратов, то есть что g(2) = 4. Но до Гильберта прогресса в этом вопросе не наблюдалось. Для некоторых конкретных значений k(k = 3, 4, 5, 6, 7 и 8) удалось ограничить значение g(k); так доказали, что g(4)≤53, но было еще далеко до доказательства, что для записи любого числа достаточно всего 19 четвертых степеней, то есть что g(4) = 19.

Эдуард Варинг.


Заслуженная премия

Гильберт напрямую не оценивал значения g(k) (это было сделано в XX веке) и косвенно доказал, что функция g(k) четко определена, то есть для каждого к она принимает конечное значение (никогда не принимает бесконечных значений, из чего можно сделать вывод: всегда существует минимальное число степеней, необходимых для записи любого числа). Это достижение принесло ему в 1910 году премию Яноша Бойяи. Как член жюри Пуанкаре отдал должное работе немецкого математика не только потому, что она относилась к теории чисел, но и за широкий спектр затронутых в ней тем: инварианты, аксиоматические основания геометрии, принцип Дирихле и так далее. Он также оценил строгость и простоту примененных методов, в которых проявился талант Гильберта как преподавателя.


Друзья снова встретились в 1902 году. Гильберт отказался от кафедры в Берлине, чтобы остаться в Гёттингене, но добился должности для своего дорогого коллеги. Гёттинген в одночасье превратился в Мекку для математиков. Здесь жили сразу три пророка — Клейн, Гильберт и Минковский. С 1902 по 1909 год последние двое вместе читали несколько курсов по математической физике, в частности по электродинамике движущихся тел (сегодня известной как теория относительности). Минковский очень внимательно отнесся к пререлятивистским теориям Пуанкаре и Лоренца и сразу же откликнулся на подход Эйнштейна. Его очень удивило, что этот революционный подход принадлежит его бывшему ученику в Цюрихе, в математических знаниях которого он несколько сомневался.

Минковский рассматривал время как четвертое измерение. Между пространством и временем есть нерушимая связь, они формируют единое целое — пространство-время. Все, что у Эйнштейна казалось туманным, в псевдоевклидовом четырехмерном мире, который вообразил Минковский, становилось ясным. Это геометрическое обрамление способствовало распространению специальной теории относительности. Его воздействие было очень сильным, хотя его приняли не сразу (настораживал тот факт, что чтобы оперировать физическими понятиями, требовалось обращаться к геометрии с ее отрицательными векторами). Эйнштейну это показалось поверхностной эрудицией, и в ответ Гильберт возразил: «Любой мальчик на улицах Гёттингена понимает в четырехмерной геометрии больше, чем Эйнштейн». Минковский изложил свою позицию в нескольких лекциях 1908 года, но не дождался их публикации и не успел насладиться успехом: в 1909 году ученый умер в результате осложнений после операции по удалению аппендикса. Эта потеря усилила депрессию, в которой Гильберт находился из-за нервного истощения.


ЭЙНШТЕЙН, ГИЛЬБЕРТ И УРАВНЕНИЯ ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

С 1911 года Эйнштейн направлял усилия на то, чтобы включить гравитацию в свою специальную теорию относительности. Он искал общую теорию. Несмотря на природное упрямство, Эйнштейн признал пользу выкладок Минковского, ведь они навели его на мысль, что ключ находится в геометрии. То есть чтобы представить эффекты гравитации посредством геометрической структуры пространства-времени, объекты должны располагаться в предусмотренном виде. Нужно было геометризовать гравитацию.

Как простыня, которую держат два человека, деформируется, когда на нее падает какой-то предмет, так и тело с огромной массой, как Земля, искривляет пространство- время вокруг него, и эта кривизна является причиной движений гравитационного притяжения, которое мы ощущаем на его поверхности.


В первых попытках математические выкладки Эйнштейна были довольно примитивными, и результаты их были незначительными. Если геометрия пространства-времени должна была зависеть от ее энергетико-материального содержания, то есть если гравитация должна была искривлять пространство-время, требовалась изменчивая геометрия, не заданная изначально и существенно отличающаяся от обычной. Знакомый математик указал Эйнштейну на классические работы Гаусса, Римана и в особенности на публикации Грегорио Риччи (1853-1925) и Туллио Леви-Чивита (1873-1941) в 1901 году. Последние содержали большую часть элементов геометрии Римана, необходимых для общей теории относительности. Вместе со своим другом Марселем Гроссманом (1878-1936) Эйнштейн начал изучать эти работы и обнаружил, что в них содержится необходимый ему математический аппарат, о котором он раньше не подозревал. В конце 1913 года физик и математик совместно опубликовали 28-страничную брошюру «Набросок обобщенной теории относительности и теории гравитации». Их целью было смоделировать Вселенную как геометрическую четырехмерную разновидность, снабженную римановой метрикой, или расстоянием, заданным тензором:

4

ds2= Σ gijdxidxj.

i,J=1

Этот метрический тензор, который определял геометрические свойства (естественно, неевклидовы), характеризовал также гравитационное поле (см. рисунок на предыдущей странице). Однако уравнения гравитационного поля, содержащиеся в статье, не были верны, и вскоре от них отказались. Тогда для Эйнштейна начался долгий и утомительный период, прежде чем к концу ноября 1915 года он начал различать свет истины. Эйнштейн боролся с тензорным исчислением, чтобы получить правильные уравнения. Он внедрялся в область, куда осмелились ступить лишь некоторые математики. Одним из них был наш герой, Давид Гильберт.

С 1909-го и практически до 1920 года Гильберт демонстрировал большую склонность к теоретической физике, применяя к ней методы вариационного исчисления. Итогом этих лет стала книга, написанная в 1924 году в соавторстве с Рихардом Курантом. Учебник «Методы математической физики» в течение десятилетий пользовался огромным успехом. Гильберт направил свое внимание на насущные физические проблемы — атома и теории относительности. Благодаря поддержке Пауля Вольскеля, богатого немецкого промышленника, увлекавшегося математикой, Гильберт периодически организовывал в Гёттингене исключительные лекции и принимал знаменитых академиков из других стран (он шутил, что единственная причина, по которой он все еще не доказал последнюю теорему Ферма, состоит в задаче не получить 100 000 марок, назначенных за доказательство премии, и не сразить одним ударом курицу, несущую золотые яйца). Среди первых гостей были Пуанкаре и Лоренц, прочитавшие лекции по вопросам, связанным с релятивистской механикой. Но, пожалуй, самым нашумевшим событием стал приезд Эйнштейна в начале лета 1915 года. Это была их первая встреча. Эйнштейн читал цикл из шести лекций в Гёттингене и остановился в доме Гильбертов. Проведя несколько дней в его компании, Гильберт загорелся поставить свои математические способности на службу новым идеям гравитации. В течение последующих месяцев они оба лихорадочно работали, часто обмениваясь письмами. Они преследовали одну и ту же цель: найти уравнения общей теории относительности.

В какой-то момент Эйнштейна обеспокоила столь пылкая вовлеченность Гильберта в этот процесс, и когда в конце ноября 1915 года Гильберт предложил в письме Эйнштейну свои уравнения, тот, недавно нашедший итоговые уравнения общей теории относительности, сразу же обозначил собственное первенство. Гильберту оставалось только послать письмо с поздравлением.


УРАВНЕНИЯ ПОЛЯ В ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

Пространство-время Минковского четырехмерное. Материя искривляет его так, что объекты перестают двигаться по прямым линиям и начинают двигаться по кривым, по геодезическим, под действием гравитации или некоторого ускорения. Чем больше массы или энергии мы введем, тем больше искривится пространство-время Минковского. Отношение между присутствием массы-энергии и формы четырехмерного пространства-времени задано уравнениями поля Эйнштейна:

Gμν = (8πG)/(c4·Tμν).

В левой части уравнения появляется Gμν, то есть тензор кривизны Эйнштейна: он измеряет деформацию пространства и зависит, в свою очередь, от метрического тензора, от gij. расстояния. В правой части, кроме числа π, постоянной всемирного тяготения G и скорости света с, появляется тензор энергия-импульс Τμν, который воплощает материю. Подводя итог: пространство диктует материи, как она должна двигаться, а материя обозначает для пространства, как оно должно искривляться. Отметим, что в 1917 году Гильберту удалось доказать: евклидова геометрия является настоящей геометрией Вселенной только тогда, когда тензор энергия-импульс точно равен нулю, то есть при отсутствии материи. В любом случае то, что евклидова геометрия была сброшена с пьедестала в глобальном отношении, ни в коем случае не означает, что она не несет локальной пользы в нашем окружении.



Считалось, что Гильберт вывел уравнения теории относительности гравитационного поля раньше, чем Эйнштейн, хотя он никогда не оспаривал его первенство. Гильберт отправил свою статью в печать 20 ноября 1915 года, за пять дней до Эйнштейна. Воспользовавшись своими обширными математическими знаниями, он сформулировал вариационный принцип, из которого выводились уравнения гравитации и электромагнетизма (Эйнштейн, наоборот, ограничился гравитационным взаимодействием.) Он утверждал, что законы физики определяются тем, что некоторый интеграл достигает своего минимума. С другой стороны, некоторая функция, зависящая от римановой метрики, остается инвариантной к произвольным трансформациям координат. С гравитацией и электромагнетизмом он хотел сделать то же самое, что уже было сделано для геометрии: четко установить основания и вывести результаты из минимального числа аксиом или базовых принципов. Аксиоматическая структура, дедуктивный метод и вариационное исчисление — это три основных составляющих вклада Гильберта в физику.

Но если статья Гильберта содержала уравнения общей теории относительности в виде, где была геометризована не только гравитация, но и электромагнетизм, и была отправлена в печать на пять дней раньше, чем статья Эйнштейна, разве не означает это, что честь открытия общей теории относительности принадлежит Гильберту, пусть даже Эйнштейн подготовил ему почву? Ответ на этот вопрос отрицательный по двум причинам. Первая: теория Гильберта не идентична теории Эйнштейна. Формально они равносильны, но различались по физической интерпретации. Для Эйнштейна аксиоматический метод не имел большой пользы в материи; кроме того, в отличие от большинства своих коллег, он не был сторонником идеи, что любая физическая теория должна быть выражена через вариационный принцип. Хотя сегодня имя Эйнштейна ассоциируется у нас с физиком-теоретиком, зацикленным на крайне абстрактных вопросах, следует понимать, что как в годы учебы, так и в период творческого расцвета он всегда был очень близок к экспериментальной реальности. Ему была в большей степени свойственна индукция, чем дедукция.


НАУКА И ВОЙНА

В 1914 году большая часть европейцев в эйфории приветствовала начало Первой мировой войны. Гильберт, наоборот, с первых дней не скрывал, что война кажется ему абсурдной. В августе этого года 93 знаменитых немецких интеллектуала направили манифест «К цивилизованному миру» в ответ на возрастающее возмущение действиями немецкой армии. Под влиянием националистической пропаганды Феликс Клейн подписал это обращение, поддерживающее политику кайзера. Попросили его подписать и Гильберта, но тот отказался, объясняя это тем, что не знает наверняка, являются обвинения в адрес немецких войск ложными или нет. Эта позиция сблизила его с пацифистом Эйнштейном, который тоже отказался подписывать манифест. В разгар войны, в 1917 году, Гильберт опубликовал некролог Жану Гастону Дарбу(1842-1917), выдающемуся французскому математику, в котором превозносил этого ученого. Когда студенты окружили его дом, требуя переписать заметку, Гильберт потребовал у них извинений (и получил их). В результате европейские коллеги увидели в нем человека свободного духом, презирающего традиции и условности. Так что по окончании войны, когда Германия была разгромлена, его репутация сохранилась, и на первом международном конгрессе математиков, состоявшемся в межвоенный период (Болонья, 1928, VIII Международный конгресс математиков), он не колеблясь настаивал на универсальном характере математики, поскольку любые границы — это против природы.

Жан Гастон Дарбу.



Вторая причина, более важная, состоит в том, что, как недавно выяснил историк математики Лео Корри, содержание статьи, представленной Гильбертом в Академию наук 20 ноября, не совпадает с опубликованным. Гильберт внес исправления 6 декабря с учетом представленного Эйнштейном 25 ноября. Похоже, Гильберт изменил свои уравнения, чтобы приспособить их к уравнениям Эйнштейна. Так что этот небольшой спор не вылился в долгосрочную вражду.

У нас произошла размолвка, причины которой я не хочу анализировать. [...] Просто стыдно подумать, что двое приличных людей, сумевших отчасти отрешиться от мелких страстей человечества, не могут наслаждаться общением друг с другом.

Альберт Эйнштейн в письме Гильберту от 20 декабря 1915 года


ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ

Если исследовательский этап Гильберта в области вариационного исчисления привел его к разработке общей теории относительности, то период между 1904 и 1910 годами, который он посвятил интегральным уравнениям, позволил ему сделать то же с квантовой механикой. Речь, конечно же, о самом важном вкладе Гильберта в математический анализ и опосредованно в физику, о ряде статей, которые позже он объединил в монографии «Основания общей теории линейных интегральных уравнений» (1912), содержащей не только строгую математическую теорию, но и множество разнообразных физических применений — от кинетической теории газов до теории излучения.

Но начнем сначала. Для интегрального уравнения характерно, что неизвестная функция также появляется внутри интеграла. Например:

b

x(t) + ∫K(t,s)x(s)ds = ƒ(t),

a

где функция K(t, s) является ядром интегрального уравнения. При заданном ядре K(t, s) и функции ƒ(t) (непрерывные функции) требуется найти неизвестную функцию x(t).

В XIX веке было сформулировано несколько интегральных уравнений по физическим вопросам, таким как проблема брахистохроны или проблема Дирихле. Но только в 1888 году Поль де Буа-Реймон (1831 — 1889) ввел термин «интегральные уравнения» для их обозначения и заявил о необходимости разработать общую теорию этих уравнений в качестве альтернативного метода решения задач с дифференциальными уравнениями.

В 1900 году шведский математик Ивар Фредгольм (1866- 1927) позаимствовал внешне безобидное замечание итальянского математика Вито Вольтерры (1860-1940) и предложил новый способ решения проблемы Дирихле с использованием интегральных уравнений. Изучив уравнения потенциала, или уравнения Лапласа с граничными условиями, Фредгольм трансформировал проблему в интегральное уравнение, как приведенное выше, и воспользовался схожестью этого интегрального уравнения и системы бесконечных линейных уравнений, когда интеграл заменяется суммами Римана. Интеграл — это процесс вычисления площади, ограниченной кривой. Сумма Римана — по сути, всего лишь равносильный способ вычисления значения интеграла: проводится конечное число прямоугольников внутри площади, ограниченной кривой, и эта площадь приближается к сумме площадей каждого из этих прямоугольников (см. рисунок). Когда число прямоугольников стремится к бесконечности, суммы Римана сходятся в точном значении интеграла. В этой технике интегральное уравнение разрастается в систему бесконечных линейных уравнений. Следовательно, решить отправное интегральное уравнение — значит решить всю систему бесконечных линейных уравнений.

Сумма Римана — это сумма площадей прямоугольников на рисунке, которая служит для приближения к площади, ограниченной кривой, то есть к интегралу функции ƒ(x) от a до b.


Сенсационные результаты Фредгольма распространились со скоростью звука. Зимой 1900-1901 года гостивший в Гёттингене преподаватель провел аналогию между интегральными уравнениями и системами линейных уравнений на семинаре Гильберта, и тот живо заинтересовался данной темой и направил на нее всю свою производительность (в пылу он даже предсказал, что новый инструмент позволит в итоге доказать гипотезу Римана). Шесть работ на эту тему, опубликованные им между 1904 и 1910 годами, содержали зачатки нового ответвления анализа (функциональный анализ) и привели к понятию гильбертова пространства, основанию всей квантовой механики.


И СВЕРШИЛСЯ ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ!

Функциональный анализ изучает функции в совокупности, то есть пространства функций. Наиболее явные его истоки находятся в интегральных уравнениях, которые определяют алгебраизацию анализа (типичный подход функционального анализа), но также присутствуют в вариационном исчислении, где впервые появляются идеи множества функций, допустимых для решения проблемы и расстояния между функциями (через функционал). Математический аппарат, утвердившийся с функциональным анализом, в конце 1920-х годов обратился в столп целой физической дисциплины — квантовой механики. Благодаря этому ключевому факту его мощные формулировки, связанные с распространением квантовых выкладок, постоянно обновлялись.

Функциональный анализ обобщает геометрические понятия w-мерного пространства (расстояние, теорема Пифагора и другие) до функциональных пространств бесконечной размерности. Среди этих пространств бесконечной размерности выделяется так называемое гильбертово пространство, построенное в области интегральных уравнений самим Гильбертом, но аксиоматизированное в связи с квантовой механикой его талантливым учеником Джоном фон Нейманом, который назвал пространство именем своего учителя около 1930 года.

Гильбертово пространство в зачаточном виде появляется в статье 1906 года (четвертой из шести статей об интегральных уравнениях и первой настоящей статье о функциональном анализе). Можно сказать, что гильбертово пространство образуют функции, являющиеся решением интегральных уравнений. Когда Гильберт изучал интегральное уравнение, ему в голову пришла идея рассмотреть особую систему функций, которая выполняла бы некоторые свойства (для тригонометрической системы — быть базисом функционального пространства) и свести решение уравнения к определению коэффициентов неизвестной функции относительно этой системы (точнее, координат неизвестной функции относительно этого базиса пространства). Рассматривая тригонометрическую систему, он старался найти неизвестную функцию, представив ее с помощью коэффициентов Фурье (бесконечной последовательности чисел, позволяющих выражать функцию интегрируемого квадрата в виде суммы тригонометрических функций, умноженных на эти числа). Коэффициенты, как он заметил, удовлетворяли условию конечности суммы их квадратов. После подстановки этих отождествлений (или разработок) в интегральное уравнение проблема преобразилась в проблему решения бесконечного числа линейных уравнений с бесконечными неизвестными (коэффициентами функций из суммируемого квадрата). Продолжая данный пример, если в уравнении

b

x(t) + ∫K(t,s)x(s)ds = ƒ(t),

a

представить функции x(t), ƒ(t) и K(t, s) их коэффициентами Фурье, то это уравнение записывается как бесконечная система уравнений:

xp + ∑kpqxq = ƒp p = 1, 2, 3...

g=1

при условии, что сумма различных коэффициентов в квадрате конечна, то есть

∑x2p < ∞.

p=1

Таким образом, при переходе из царства непрерывного в царство дискретного интеграл преобразуется в сумму (аналогичную операцию).

Пространство всех последовательностей действительных чисел суммируемого квадрата (сегодня обозначаемое l2), где нужно искать решение, — это и есть гильбертово пространство. В этом пространстве числовых последовательностей, по аналогии с обычным евклидовым пространством, Гильберт определил расстояние и распространил на него классические понятия предела, непрерывности и так далее. Как Гильберт, так и его лучшие ученики (в особенности Эрхард Шмидт) досконально исследовали это геометрическое сходство функционального пространства l2 с обычным геометрическим пространством R". Вся теория о гильбертовых пространствах способствовала выходу на сцену первого известного пространства с бесконечным числом измерений в его каноническом представлении об l2.

Эти годы были решающими, прежде чем появилась возможность общего анализа пространств функций. В 1906 году увидела свет докторская диссертация Мориса Фреше (1878— 1973), которая имела огромное влияние, поскольку в ней в абстрактном виде было введено понятие расстояния во множестве функций, а также остальные связанные геометрические понятия.

Через некоторое время, в 1907 году, два молодых математика — бывший ученик Минковского Эрнст Фишер (1875-1954) и Фридьеш Рис (1880-1956), в ту пору учитель средней школы из венгерского городка, — независимо друг от друга открыли неожиданную связь между расцветающим функциональным анализом и другим великим математическим открытием того времени — теорией интегрирования Анри Лебега (1875-1941), которая была призвана залатать прорехи классических теорий интегрирования Коши и Римана. Теорема Фишера — Риса гласит, что существует соответствие, или изоморфизм, между пространством Гильберта l2 и пространством функций интегрируемого квадрата (которое сегодня мы называем L2). В одночасье родилась вторая модель гильбертова пространства. Эти работы позволили ввести новые функциональные пространства, такие как обобщение уже известных: пространств lр и Lp при р > 1 (например, если р = 3, пространство последовательностей/функций суммируемого/интегрируемого куба, и так далее).


Групповой портрет. Слева направо: Альфред Хаар, сын Гильберта Франц, его неразлучный друг Герман Минковский, неизвестная женщина, Кёте Г ильберт, Давид Гильберт и Эрнст Хеллингер.

Эйнштейн в гостях у Лоренца в Лондоне в 1921 году. Для установления теории относительности немецкий физик воспользовался работой Лоренца и Пуанкаре, а также математической помощью Г ильберта.

Джон фон Нейман, ученик Гильберта, который дал имя своего учителя гильбертову пространству.



Официально функциональный анализ был введен в 1922 году, когда вышла из печати книга «Лекции по функциональному анализу» Поля Леви (1886-1971). В том же году была опубликована докторская диссертация поляка Стефана Банаха (1892-1945), в которой тот стремился доказать ряд теорем, справедливых для различных функциональных пространств, не останавливаясь на конкретной природе этих пространств (на конкретных функциях, которые входят в их состав).

Любопытно, что многие открытия Банаха в области функционального анализа были сделаны в шуме «Шотландского кафе» во Львове (в то время считавшемся территорией Польши), где он нацарапывал заметки на мраморной крышке стола или на салфетке. Результатом этих заметок Банаха и других известных математиков, его компаньонов, стала «Шотландская книга» — один из самых важных математических документов XX века.


КВАНТЫ, МАТРИЦЫ И ВОЛНЫ

После тысячи и одной неудачной попытки объяснить излучения черного тела (то есть тела, находящегося в закрытой полости) немецкому физику Максу Планку (1858-1947) наконец это удалось. Он заявил, что излучение и поглощение энергии всегда происходит пучками, в прерывистом, или «квантизованном», виде. Энергия, как и деньги, не принимает значения внутри непрерывного диапазона, а только в дискретных единицах. «Дискретизация», объявленная Планком, была настоящим актом отчаяния. Рождение квантовой теории относится к 14 декабря 1900 года, когда его закон об излучении черного тела был представлен публично.

Но в числе действующих лиц старой квантовой теории, кроме Планка, присутствуют Альберт Эйнштейн и Нильс Бор (1885-1962). В 1905 году, ставшем чудесным годом, Эйнштейн применил квантовую гипотезу к изучению света: световые волны состоят из мельчайших частиц (которые позже получили название фотонов), как это видно из фотоэлектрического эффекта. До середины XIX века корпускулярное видение материи, наследство Ньютона, доминировало над волновым видением. До 1900 года существовала гибридная концепция: твердые тела и флюиды (жидкости и газы) считались состоящими из частиц, а электромагнитное излучение понималось как волны. Теперь же выяснилось, что физикам нужно отказаться от классической концепции материи (волна или частица) ради новой концепции: волна и частица (как в случае со светом).

В 1913 году Бор, стипендиат (благодаря поддержке фонда пивоваренной компании) лаборатории Эрнеста Резерфорда (1871-1937), квантизовал атом с целью объяснить атомные спектры. Прерывистые линии спектров были следствием квантизации энергии электронов внутри атома. К несчастью, модель атома Бора потерпела крах при применении ее к многоэлектронным атомам, и ученые постепенно приходили к выводу, что необходимо радикальное изменение в основаниях физики: появление нового вида механики (Макс Борн (1882-1970) назвал ее квантовой), который содержал бы связную аксиоматику, независимую от классических теорий, и преодолел бы мешанину из принципов, законов и вычислительных инструкций, составлявших старую квантовую теорию.


У Зоммерфельда я научился оптимизму, у гёттингенцев — математике, а у Бора — физике.

Вернер Гейзенберг


В 1925 году молодой физик Вернер Гейзенберг (1901-1976), приват-доцент в университете Геттингена, вывел основы квантовой механики, выздоравливая после приступа сенной лихорадки на острове Гельголанд. Гейзенберг настаивал, что множество всех частот и амплитуд излучения, испускаемого атомом, может считаться полным описанием системы атома, даже если невозможно истолковать его в смысле электронной траектории, которая вызывает излучение, поскольку орбиты электронов внутри атома ненаблюдаемы.



ОДНА ПРОБЛЕМА, ДВА РЕШЕНИЯ

Посмотрим, как квантовые механики решали проблему нахождения различных энергетических уровней электрона атома водорода. В матричной механике нужно было «диагонализовать» матрицу Гамильтона Н, измеряющую общую энергию системы, то есть определить матрицу S так, чтобы матрица W = S-1HS была диагональной; так диагональные элементы Еn — это энергетические значения электрона:


В свою очередь, в волновой механике требовалось решить волновое уравнение Шрёдингера, то есть следующее уравнение в частных производных:

-Δψ + Vψ = Εψ,

где ψ — волновая функция (независимая от времени), V — потенциал, а Е — энергия. Если определить оператор Гамильтона как Η = -Δ + V (то есть кинетическая энергия плюс потенциальная энергия), предыдущее уравнение можно переписать, чтобы оно приняло вид Ηψ = Εψ и представляло собой то, что известно как проблема собственных значений, или проблема Штурма — Лиувилля, поскольку ею занимались французские математики Жак Шарль Франсуа Штурм (1803-1855) и Жозеф Лиувилль (1809-1882). Она называется так, поскольку это последнее уравнение допускает решение для некоторых значений ψ и Е, которые получают название собственных функций и собственных значений, соответственно.

Собственные значения

В классической физике собственные значения определяли, например, характерные частоты колебания упругой мембраны, так что любое колебание могло выражаться как наложение этих базовых видов колебания. В квантовой физике собственные значения Еп — это как раз возможные уровни энергии электрона атома водорода. Разницы между этими собственными значениями дают частоты испускаемых квантов света (фотонов), описывая таким образом структуру спектра излучения атома. В свою очередь, различные состояния электрона заданы собственными функциями ψn, соотносящимися с собственными значениями. В математике множество собственных значений Еn матрицы или оператора называется спектром. В результате чудесного совпадения математический спектр (название для которого Гильберт выбрал случайно) в итоге стал ключевым для объяснения физических спектров атомов. Ученый говорил: «Я разработал теорию о бесконечных переменных и даже назвал ее спектральным анализом, совсем не предполагая, что позже она найдет применение для настоящего физического спектра». Это была счастливая случайность.

Жак Шарль Франсуа Штурм

Жозеф Лиувилль.



Кроме того, он выяснил, что эти множества чисел (соответствующие коэффициентам Фурье классического выражения движения электрона) не коммутируют. Другими словами, в отличие от классических величин, квантовые в целом выполняют QP ≠ PQ. Через несколько месяцев двое коллег из Геттингена, физик Макс Борн и математик Паскуаль Йордан (1902-1980), признали, что эти множества чисел Q и Р ведут себя как математические матрицы (хотя сам Гейзенберг, по его словам, даже не знал, что такое матрица). Матричная квантовая механика выросла в саду, возделанном Гильбертом. Однако Геттинген разделился на две группы: Гильберт и его сторонники верили в большой успех, обусловленный введением матричного исчисления в физику, а их противники отмахивались от утомительной метаматематики, наполнившей атомную физику.

В рождественские каникулы 1925-1926 года Эрвин Шрё- дингер (1887-1961) осветил волновую квантовую механику, пока наслаждался обществом своей последней возлюбленной (по словам Германа Вейля, его коллеги по Цюриху). В отличие от юных физиков и математиков Геттингена, но как представителю значительной части старой гвардии, Шрёдингеру не очень импонировала квантовая механика Гейзенберга, Борна и Йордана. В поисках интуитивно более понятной теории, в которой бы применялись только классические математические инструменты, он вывел свое знаменитое волновое уравнение. Идея возникла при изучении движения электрона, как если бы речь шла о волновом движении, волновая функция Ψ которого отвечала бы за описание состояния системы. Его работа была принята с воодушевлением, потому что решить дифференциальное уравнение — чем физики занимались уже несколько веков — казалось намного проще, чем найти решение некоторых матричных уравнений.

Итак, панорама, которая была представлена физикам в начале весны 1926 года, не могла быть более парадоксальной: в их распоряжении имелись две механики, которые объясняли и прогнозировали одни и те же явления, несмотря на то что в каждой использовался абсолютно разный подход и намечалась абсолютно разная концепция микрокосмоса. Если Шрёдингер называл матричную механику «противоестественной», то Гейзенберг не сдавался и окрестил волновую механику «отталкивающей». Некоторые физики — сам Шрёдингер, Карл Эккарт (1902-1973) и Вольфганг Паули (1900-1958) — стремились прояснить формальные отношения между обеими механиками. Они пришли к выводу, что оба механизма математически эквивалентны, хотя их доказательство того, что можно построить матрицы Q и Р на основе волновых функций Ψ и наоборот, было не совсем корректным.

В признании сходства между двумя механизмами есть заслуга Гильберта. Он посмеивался над Борном и Гейзенбергом, так как, открыв матричную механику, они столкнулись с теми же трудностями, с которыми, конечно же, сталкиваются все математики, работающие с бесконечными матрицами. Когда они обратились за помощью к Гильберту, он сказал им (вспомнив свою работу над интегральными уравнениями 20-летней давности), что единственный раз он столкнулся с матрицами, когда те появлялись как побочный продукт изучения собственных значений дифференциального уравнения с граничными условиями (то есть когда интегральное уравнение преобразовывалось в систему бесконечных линейных уравнений). Он предположил, что если они найдут дифференциальное уравнение, порождающее эти матрицы, то, возможно, получат больше информации. Гейзенберг и Борн подумали, что он сказал это для того, чтобы отвязаться от них, а на самом деле не знал решения этого вопроса. Позже Гильберт шутил, указывая на то, что если бы они его тогда послушали, то открыли бы волновую механику Шрёдингера на полгода раньше него. Это был путь, по которому шли Шрёдингер, Эккарт и Паули, чтобы показать идентичность обеих теорий с математической точки зрения.


Единственная цель теоретической физики состоит в вычислении результатов, которые могут быть сравнены с опытом, и вовсе нет необходимости в утвердительном описании всего хода явлений.

Поль Дирак


Осенью 1926 года Паскуаль Йордан и британский физик Поль Адриен Морис Дирак (1902-1984) независимо друг от друга начали разрабатывать теорию преобразований, чтобы раз и навсегда объединить квантовые механики. Так как квантовые величины, введенные Гейзенбергом, определяли новый тип алгебры (для него умножение не было коммутативным), Дирак решил назвать q-числами величины, которые так себя ведут (хотя q здесь происходило не от слова quantum, а от английского queer, то есть «странный», «необычный»). Итак, абстрактная алгебра #-чисел допускает различные представления или образы (так же как одна и та же система аксиом может допускать разные модели), два из которых — матричная и волновая механика.



ДЕЛЬТА-ФУНКЦИЯ ДИРАКА

В матричной механике речь шла о поиске матрицы S, чтобы матрица W = S-1HS была диагональной. Если выделить HS в этом уравнении, получается HS = SW. И если, применяя правило умножения матриц, записать то, что означает это последнее уравнение для элементов каждой матрицы, можно получить систему бесконечных линейных уравнений (напоминает получившуюся при преобразовании интегрального уравнения):

∑hpqSqn = EnSpn. [1]

q=1

С другой стороны, в волновой механике пытались решить волновое уравнение Шрёдингера Ηψ = Εψ, определяя собственные значения, являющиеся решением. Если в уравнение ввести собственную функцию ψn, назначенную собственному значению Еn , получается:

Ηψn = Εnψn. [2]

Как Гильберт, так и Дирак, переформулировав обе проблемы в таком виде, перешли к их сравнению и заметили, что [1] и [2] представляют собой схожую структуру: Гамильтониан x ΧΥΖ = Энергия x ΧΥΖ. Следовательно, вопрос, которым они задались, звучал так: какие условия следует допустить, чтобы приравнять член к члену уравнения [1] матричной механики к уравнению [2] волновой механики? Так как «интегрирование» в царстве непрерывного — это аналог «сложения» в царстве дискретного (символ ∫ происходит от последовательной деформации прописной S), они решили: то, что должно заменить (при переходе от дискретного к непрерывному) первый член в [1], будет выглядеть как ∫h(х,у)ψn(у)d(у). Значит, объединение между обеими квантовыми механиками было бы достигнуто, если бы последнее выражение совпадало с первым членом в [2] в виде:

Ηψn(x) =∫h(x,у)ψn(у)dy,

то есть если бы любой оператор Гамильтона мог быть записан как интегральный оператор.

Но это было невозможно даже для такого простого оператора, как тождество (определяемое как Ηψ = ψ для любой волновой функции). Дирак не спасовал перед трудностями и, чтобы преодолеть их, прибегнул к функции δ. Эта своеобразная функция определена δ(z)=0 для любого z≠0[3] и, как ни парадоксально, ∫δ(z)dz= 1 [4]. Как представить себе функцию, которая равна 0 во всех точках, кроме одной, и интегрирует 1?

Итак, приняв эту функцию и рассматривая h(x,y)=δ(x-y) как ядро вышеприведенного интегрального уравнения, можно выразить тождество, например, как интегральный оператор, просто применив магические свойства δ:

[3] [4]

Ηψ(x)=∫h(х,у)ψ(у)dy=∫δ(х-у)ψ(у)dy= ψ(x)∫δ(x-y)dy=ψ(x)·1=ψ(x).

С помощью подобных вычислений можно доказать, что любой оператор может быть представлен как интегральный оператор, так что обе квантовые механики оказываются принудительно унифицированными.

Схематическая диаграмма дельты Дирака: «функция», которая равна 0 во всех своих точках, кроме начала, где она равна бесконечности, чтобы таким образом интегрировать 1.


Для того чтобы все преобразования между представлениями квантовой механики работали корректно, Дирак был вынужден прибегнуть к использованию вымышленной математической сущности — дельта-функции, которая на самом деле функцией не была. Для физиков это стало полезной идеализацией, привести которую к строгому виду должны были математики. Для математиков, наоборот, это понятие оказалось подозрительным и не обладающим математической реальностью, его использование оправдывалось только физическими применениями. Дельта-функцию Дирака ждала печальная участь, поскольку лишь в 1950 году она нашла свое место в рамках теории распределений, созданной Лораном Шварцем (1915-2002). До этого из-за отсутствия у нее строгости она оставляла равнодушными математиков Гёттингена.

И именно тогда в Гёттинген приехал молодой Джон фон Нейман, чтобы поработать в качестве помощника Гильберта. Блестяще защитив докторскую диссертацию по теории множеств, он начал читать лекции по функциональному анализу вместе с Эрхардом Шмидтом в Берлине. В то время Гильберт пытался найти рациональную математическую модель для квантовой механики; но его аксиоматический подход развивался медленно, потому что ученый страдал злокачественной анемией (смертельным заболеванием, от которого он исцелился благодаря нетрадиционным методам). В 1926-1927 году Гильберт попросил своего ассистента по физике Лотара Нордгейма разложить для него по полочкам суть последних исследований, чтобы иметь возможность читать курс квантовой механики, применяя свой любимый аксиоматический метод. Фон Нейман вдохнул жизнь в проект. Под предводительством Гильберта они втроем ринулись искать строгое математическое оформление. Так, в 1927 году они вместе написали статью «Об основаниях квантовой механики». Гильберт хотел заставить работать интегральную формулировку физических проблем, более практичную, чем дифференциальный вариант, выраженный посредством волнового уравнения или дискретной версии в матричных терминах. Так же как и венгерский физик Корнелий Ланцош (1893-1974) в 1926 году (что любопытно, за месяц до того, как Шрёдингер опубликовал свое знаменитое уравнение), Гильберт, Нордгейм и фон Нейман разработали квантовую механику, пользуясь интегральными уравнениями. Однако результат этого первого приближения не был удовлетворительным, поскольку они не смогли избежать тупика дельты Дирака, чтобы перейти от одной формулировки к другой.

Фон Нейман закончил работу по аксиоматическому обоснованию квантовой механики в одиночку. Он сделал это в период с 1928 по 1932 год, опубликовав серию из пяти статей и монументальный трактат «Математические обоснования квантовой механики». Чтобы придать прочную математическую основу квантовой теории, он отказался от использования дельта-функций Дирака и от предпочтения интегральных уравнений Гильберта. У него было другое оружие: функциональный анализ. Он создал абстрактное аксиоматическое обрамление, гильбертово пространство, которое включало в себя частные матричный и волновой случаи.



«ОСНАЩЕННЫЕ» ГИЛЬБЕРТОВЫ ПРОСТРАНСТВА

Квантовая механика фон Неймана, безупречная для математиков, столкнулась с тем, что физики предпочитали квантовую механику Дирака, которая оказалась более полезной, несмотря на отсутствие строгости. Благодаря работам Лорана Шварца и Александра Гротендика по функциональному анализу, в 1950-1960 годы дельта-функции приобрели статус математической природы, формализовавшись как обобщенные функции, или распределения. Так формализм Дирака перестал быть математически подозрительным, поскольку вошел в состав «оснащенных»гильбертовых пространств (или триплетов Гельфанда). Идея состоит в том, чтобы связать лучшее в формализме фон Неймана (строгое гильбертово пространство) и лучшее в формализме Дирака (полезная дельта-функция) внутри одной непротиворечивой математической структуры. С этой целью пытаются пойти дальше гильбертова пространства и включить такие своеобразные объекты, как дельта-функция, но не теряя в то же время хорошей геометрии гильбертова пространства. Решение заключается в рассмотрении структуры вокруг пространства, следуя духу теории распределений: взять обычное гильбертово пространство и оснастить его двумя другими пространствами — одним поменьше и другим побольше, — которые содержат соответственно все хорошие функции (тестовые функции) и все плохие функции (своеобразные функции, такие как δ Дирака). Множество из этих трех пространств называют«оснащенным»гильбертовым пространством, или триплетом Гельфанда.



Математические пространства, на которых были построены матричная и волновая механика, были очень разными: одно было дискретным и алгебраическим, другое — непрерывным и аналитическим. Как убедился фон Нейман, нет ничего удивительного в том, что их унификация не может быть достигнута без некоторого насилия над формализмом и математикой. Однако он заметил, что пространства функций, определенных в них, были в основном идентичными. Состояния атома были представлены в матричной механике посредством последовательностей чисел суммируемого квадрата, так что функциональное пространство, которое стояло за этим, было i2, то есть гильбертовым пространством по определению. Волновые функции волновой механики всегда относились к интегрируемому квадрату, то есть принадлежали функциональному пространству Lr И для этих двух пространств действовала теорема Фишера — Риса, хорошо известная математикам с 1907 года и гласящая, что оба эти пространства изоморфны. Так фон Нейман решил головоломку математической эквивалентности квантовых механик, показав, что механика Гейзенберга (сосредоточенная на матрицах и суммах) и механика Шрёдингера (сосредоточенная на функциях и интегралах) математически эквивалентны, поскольку являются вычислениями в двух изоморфных, идентичных гильбертовых пространствах.

До этого времени под гильбертовым пространством понималось одно из двух конкретных пространств £2 или Lr Фон Нейман первым задумал абстрактное гильбертово пространство в современном его понимании. Избегая конкретных представлений, он работал с понятиями, полученными из аксиом, и пришел к распространению спектральной теории Гильберта в соответствии с квантовыми потребностями.

Гильберт еще в начале века установил основы пространства бесконечной размерности. Но волей судеб такая абстрактная математическая теория, задуманная с опережением в 20 лет, подошла к замку квантовой механики. С тех пор математическая структура квантовой физики сопряжена с гильбертовым пространством. Описание состояния квантовой системы делается через вектор этого пространства. И физические величины изучаются с помощью операторов, определенных в гильбертовом пространстве. В результате появления квантовой механики теория гильбертовых пространств оказалась аксиоматически обоснованной, чему Гильберт был свидетелем.


Загрузка...