В 1883 году Георг Кантор опубликовал статью «Основы общего учения о многообразиях», которая стала кульминацией его математического творчества. В ней он впервые дал определение множеству бесконечных чисел, которые назвал ординальными. Зерно идей, изложенных в этой работе, уже присутствовало в статье, которую Кантор написал десятью годами ранее, но для того чтобы полностью развить их, ему требовалось преодолеть интеллектуальные предубеждения своей эпохи.
В подходе к математике Георга Кантора и Рихарда Дедекинда было много общего. В частности, оба соглашались с необходимостью ввести в нее понятие множества. Но что это такое — «понятие теории множеств»?
В статье 1883 года, озаглавленной «Основы общего учения о многообразиях» с подзаголовком «Математически-философский опыт учения о бесконечном» и изданной Кантором самостоятельно в виде отдельной монографии (с «самыми удивительными, самыми неожиданными идеями»), он отмечал:
«Mannigfaltigkeitslehre [учение о многообразиях]. Этими словами я обозначаю одну чрезвычайно обширную дисциплину, которую до этого я пытался разработать лишь в специальной форме арифметического или геометрического учения о множествах. Под «многообразием» или «множеством» я понимаю вообще всякое многое, которое можно мыслить как единое, то есть всякую совокупность определенных элементов, которая может быть связана в одно целое с помощью некоторого закона».
«Множество», таким образом, — это синоним «группы», в том смысле, в котором мы обычно употребляем это слово. Данное определение сыграло важнейшую роль в развитии математики, установив, что множество — это объект, отличный по своей сути от своих составляющих. Несколько лет спустя британский логик Бертран Рассел (1872-1970) проиллюстрировал это различие словами: «Табун лошадей — не то же самое, что лошадь».
Множество — как закрытый мешок, в котором содержатся абсолютно определенные вещи, но их нельзя увидеть, мы о них ничего не знаем, кроме того, что они существуют и они определены.
Рихард Дедекинд в письме немецкому математику Феликсу Бернштейну, 1899 год
Так, множество всех рациональных чисел, которое обычно обозначается буквой Q, имеет особые характеристики. Они относятся только к Q в целом, но не к рациональным числам по отдельности, например счетность. В случае, когда мы говорим о Q как о совокупности актуально существующей, определение множества подразумевает, что мы должны принять идею актуальной бесконечности.
Мы можем совершать операции с числами — складывать или умножать — так же, как с множествами (например, объединять). Если есть два множества, их объединение даст другое множество, включающее в себя все объекты, из которых состоят эти два множества. Если мы возьмем множество натуральных чисел N, членами которого являются 0, 1,2, 3, ..., и множество отрицательных целых чисел Ν', то их объединением будет множество целых чисел, которое обычно обозначается буквой Ζ (первой буквой немецкого слова Zahl, «число») и содержит одновременно члены N и Ν'. В записи математическими символами это выглядело бы так: N U Ν’ = Ζ (см. рисунок).
Одна из особенностей, которую Кантор описал в своей статье 1895 года, проиллюстрирована на рисунке: объединение двух счетных множеств всегда дает в результате счетное множество. Изучение свойств, которые относятся либо к множествам, либо к объектам самим по себе, составляет предмет так называемой теории множеств, и Кантор считается ее создателем, поскольку первым начал исследовать эти свойства. Одним из важнейших аспектов теории множеств является изучение мощности бесконечных множеств. Именно поэтому говорят, что теория множеств и теория математической бесконечности — это, в сущности, одна и та же теория.
Объединение двух множеств содержит одновременно элементы и того и другого.
Выходит, что теория множеств родилась в 1883 году? Почему же тогда задолго до этого, в 1872 году, Кантор и Дедекинд уже сошлись на том, что в математику необходимо ввести понятия множеств?
В 1872 году Кантор опубликовал статью, в которой было предложено решение проблемы континуума. Решение состояло в том, чтобы найти такое определение вещественных чисел, которое не опиралось бы на геометрические понятия. Важно отметить, что уже тогда Кантор знал: эта задача приведет его к актуально бесконечным множествам.
В том же году Дедекинд опубликовал решение вопроса континуума, близкое к предложенному Кантором и основанное на так называемых дедекиндовых сечениях. Теперь понятно, почему в 1872 году двое ученых сочли, что их взгляды на математику настолько схожи.
Математик Бернард Больцано родился в Праге в 1781 году. В сочинении «Парадоксы бесконечного», опубликованном в 1851-м, спустя три года после его смерти, он предвосхитил некоторые идеи Кантора, обнародованные гораздо позже, пусть даже он не упомянул о существовании нескольких уровней бесконечности и не создал полноценную теорию математической бесконечности.
Тем не менее до середины 1880-х годов и Кантор, и Дедекинд допускали только существование групп, образованных числами или геометрическими точками, а не любыми объектами. Таким образом, отвечая на поставленный вопрос, мы можем сказать, что хотя в 1870-е годы Кантор и Дедекинд уже использовали связанный со множествами понятийный аппарат в своих работах, эти термины еще не были развиты до конца, так как применялись только к группам, состоящим из чисел или геометрических точек. Возможность того, что множество может состоять из любых объектов, Кантор принял во внимание только в 1883 году, но и то ограничился множествами, образованными числами, хоть и особого вида.
Необходимо подчеркнуть, что концептуальный переход к принятию идеи того, что множества могут быть образованы любыми объектами, уже был заложен в определении мощности, которое Кантор обнародовал в 1877 году. Утверждая, что мощность — это свойство группы, коллекции, которое возникает при абстрагировании от природы составляющих его членов, он подчеркивает: не важно, какими членами оно образовано.
Если мы возьмем любую группу и заменим, например, числа или точки буквами, идеями или любыми другими объектами, то ее мощность останется такой же, поскольку понятие мощности не зависит от природы членов коллекции.
Статья 1883 года «Основы общего учения о многообразиях» стала кульминацией научной карьеры Кантора. К сожалению, этот период его жизни был также отмечен серьезными личными проблемами.
Эдуард Гейне, руководивший первыми исследованиями Кантора в Галле, умер 21 октября 1881 году. Тогда ученый задался амбициозной целью. Раз ему не удавалось перейти в престижный университет вроде Берлинского или Геттингенского, он решил привести в Галле знаменитых ученых, которым было близко его учение о бесконечности, и создать исследовательский центр. В качестве первого шага он убедил дирекцию университета предложить одно освободившееся место Дедекинду.
К большому удивлению и разочарованию Кантора, тот отклонил это предложение, и место было отдано Альберту Вангерину — второстепенному геометру, далекому от идей Кантора.
Причины, побудившие Дедекинда отказаться, нам точно не известны. К тому времени он уже 20 лет жил в родном Брауншвейге, где возглавлял коллегиум, в котором когда-то учился сам, и занимался исследовательской работой в своем темпе, без давления со стороны. Поэтому, возможно, причиной было банальное нежелание менять стиль жизни.
Я представляю себе множество как пропасть.
Георг Кантор — немецкому математику Феликсу Бернштейну, 1899 год
В любом случае Кантора этот отказ очень обидел, и дружба стала быстро угасать, а в конце 1882 года десятилетняя переписка и все прочие контакты были полностью прерваны.
Практически в тот же самый период, когда завершились отношения Кантора с Дедекиндом, он завязал переписку со шведским ученым Іестой Миттаг-Леффлером (1846— 1927) — известным математиком, который, как и Дедекинд, интересовался областью бесконечного. Тогда же, в 1882 году, Миттаг-Леффлер основал журнал Acta Mathematica. И Кантор обрел подходящую платформу для публикации своих работ, не попадая в зону влияния Кронекера. С 1883 по 1885 год в Acta Mathematica были опубликованы три статьи, в которых Кантор рассматривал вопросы, связанные с решением задачи контиуума.
Однако отношения с Миттаг-Леффлером не продлились долго. В 1884 году тот убедил Кантора отозвать одну из статей, будучи уверенным в том, что действует в пользу автора. Миттаг-Леффлер понимал, что статья, озаглавленная «Принципы теории порядковых типов», слишком умозрительна, ей недостает ясных и четких результатов, и она может навредить репутации теории множеств. Он ответил Кантору, что тот написал слишком много, но так и не предъявил конкретных результатов, а это может дискредитировать теорию, и в этом случае потребуется еще сто лет, прежде чем на его идеи вновь обратят внимание. Кантор плохо воспринял совет Миттаг-Леффлера, посчитав, что тот намекает, будто ему надо подождать еще сто лет с публикацией своих идей:
«Если верить Миттаг-Леффлеру, мне придется ждать до 1984 года, что кажется слишком строгим требованием! [...] Разумеется, я и знать больше ничего не желаю об Acta Mathematical.»
Кантор написал это в 1885 году, прекратил всякое общение с Миттаг-Леффлером и больше не отправил в Acta Mathematica ни одной статьи. «Принципы теории порядковых типов» так и не были опубликованы. Ученый переживал один из самых тяжелых периодов своей жизни. Потеряв Дедекинда, в глазах которого, как считал Кантор, его оклеветали, не имея возможности создать исследовательский центр в Галле или попасть в желанные университеты Берлина или Геттингена, в мае 1884 года он впал в депрессию. Ему потребовалось немало времени, чтобы выйти из нее. Его математическое творчество, так ярко раскрывшееся в «Основах общего учения о многообразиях» 1883 года, угасло вплоть до 1890-х годов. В этот переходный период Кантор опубликовал несколько статей, в которых с переменным успехом исследовал философские последствия и возможные применения в физике своей теории бесконечности. Он также увлекся идеей о том, что произведения Шекспира были на самом деле написаны Фрэнсисом Бэконом. Эта теория появилась во второй половине XVIII века, и хотя большинство ученых считают ее абсурдной, даже сегодня у нее есть сторонники. Кантор потратил много денег на приобретение старинных изданий Шекспира и написал три монографии по этой теме.
Но вернемся к самому блестящему периоду в карьере Кантора, к статье «Основы общего учения о многообразиях» 1883 года. История ее создания началась еще в 1869 году, когда Георг Кантор приехал в Галле и в качестве темы исследования Эдуард Гейне предложил ему задачу, связанную с тригонометрическими рядами Фурье. Что такое тригонометрический ряд? Представим себе закрепленную сверху пружину, к нижнему концу которой подвешен определенный груз. Исходное положение пружины на рисунке 1 обозначено буквой А. Теперь потянем груз вниз, пока не достигнем положения ß, и отпустим его. Пружина расширится и сожмется, пройдя через точки С, Д Е и F, а также через все промежуточные. Предположим, что перед нами идеальная ситуация, и пружина никогда не перестанет двигаться и всегда будет возвращаться в положение максимального сжатия (D на рисунке 1) и максимального растягивания (В и F). Если мы соединим последовательные положения пружины кривой линией, то получим математическое описание ее движения (см. рисунок 2). Заметим, что поскольку груз несколько раз проходит через одни и те же точки, график повторяется.
Магнус Гёста Миттаг-Леффлер родился в Стокгольме (Швеция) 16 марта 1846 года. Его талант проявился уже в ранней юности; у него было много интересов, среди которых — наука и литература. В1865 году он записался в Уппсальский университет (опять же в Швеции), намереваясь стать государственным чиновником, но вскоре перешел на математический факультет и в 1872 году защитил докторскую диссертацию. Миттаг-Леффлер внес большой вклад в область исчисления, в аналитическую геометрию, теорию вероятностей, теорию функций; он был членом почти всех математических обществ Европы и получил несколько званий почетного доктора наук в таких университетах, как Оксфордский, Кембриджский, Болонский и университет Осло. В 1882 году он основал журнал Acta Mathematica, который курировал до самой смерти 7 июля 1927 года. Журнал издается до сих пор.
В таком случае его называют периодическим. В XVIII веке математики обратили внимание на то, что очень многие физические явления — например, связанные с распространением звука или тепла — могут быть описаны при помощи периодических графиков. Они также заметили, что иногда эти графики оказываются прерывистыми, то есть в них наблюдаются резкие скачки. Например, на рисунке 3 представлен график, состоящий из последовательности косых линий. Чтобы изобразить его, мы должны отметить «скачок» от верхнего края каждой линии к нижнему краю следующей. Этот график описывает не физическое движение, а интенсивность звукового сигнала; горизонтальная линия обозначает нулевую интенсивность или тишину. Рассмотрим, как можно интерпретировать график при этих условиях. В начале — тишина, а затем появляется звуковой сигнал, который постепенно увеличивает интенсивность (это видно по тому, как возрастает первая косая линия); звук достигает своей максимальной интенсивности, а затем наступает тишина, но тут же опять начинает увеличиваться интенсивность звука, как в предыдущий раз, и снова достигает максимального уровня (мы видим, что вторая косая линия такая же, как первая). Опять наступает тишина, а затем повторяется та же схема, снова и снова.
РИС.1
РИС. 2
РИС. 3
В начале XIX века французский математик Жозеф Фурье (1768-1830) разработал метод, который позволил ему записать любой график как сумму особых, при этом очень простых кривых, которые математически выражаются при помощи функций, названных тригонометрическими. Эти суммы, в свою очередь, обычно предполагают бесконечное (потенциально) количество кривых, и, так как в математике бесконечные суммы обычно называют рядами, этот метод сегодня известен как разложение на тригонометрические ряды, или ряды Фурье. Благодаря ему Фурье смог успешно изучить большое количество физических явлений, и он по-прежнему остается важным инструментом во многих областях математики, физики и инженерного дела.
Каков результат операции 1-1 + 1-1 + 1-..., которая продолжается бесконечно? Немецкий математик Готфрид Вильгельм фон Лейбниц (1646-1716) утверждал, что результатом этого «бесконечного вычисления» будет 1/2. Рассмотрим ход его рассуждений. Обозначим результат буквой S. Следовательно,
1-1 + 1-1 + 1-...=S
1-(1-1 + 1-1-...)=S.
Портрет Готфрида Вильгельма фон Лейбница, музей герцога Антона Ульриха в Брауншвейге (Германия), около 1700 года.
Поэтому результат выражения в скобках также будет равен S. Таким образом, получается, что 1 - S = S, откуда можно вывести, что S равно 1/2. Но мы можем сгруппировать члены выражения и по-другому:
1-1 + 1-1 + 1-.. . = (1-1)+(1-1)+(1-1)+... = 0 + 0 + 0+.. . = 0.
В этом случае мы получим 0. Или же мы можем сгруппировать так:
1-1 + 1-1 + 1-... = 1-(1-1)-(1-1)-... = 1-0-0-... = 1,
и результат будет равен 1. Какой же результат правильный: 1/2,0 или 1? Такие парадоксы мучили математиков на протяжении десятков лет, пока наконец в XIX веке не были выведены правила оперирования бесконечных сложений и вычитаний. На самом деле выражение 1-1+1-1+1-... не имеет никакого результата. Другими словами, предполагаемый результат на самом деле не существует. Рассуждения Лейбница неверны именно потому, что числа S нет.
В 1860-е годы в Галле Эдуард Гейне решил проверить, всегда ли будет одинаковым разложение такого периодического графика, как ряд Фурье. Другими словами, Гейне хотел узнать, может ли один периодический график быть записан в виде двух разных тригонометрических рядов.
Ему удалось доказать, что если в графике нет «скачков» или прерывностей, то он в самом деле будет иметь только один возможный вариант разложения. Но Гейне не нашел общего доказательства, которое было бы действительным для всех возможных ситуаций. Так, он не доказал единственность в случае, если в периоде — так называется классический постоянно повторяющийся график — бесконечное (потенциально) количество разрывов. Когда в 1869 году Кантор прибыл в Галле, Гейне предложил ему разобраться, будет ли разложение периодического графика всегда единственным, даже если количество «скачков» продолжит расти до бесконечности.
Кантор занялся этой задачей и в 1870 году получил первый результат: разложение будет единственным только при условии, что скачки распределены определенным образом, то есть отвечают особым требованиям. Точки графика имеют две координаты — абсциссу и ординату. Именно абсциссы должны выполнять эти условия. Однако Кантору было непросто выразить их конкретным, точным и изящным способом. Разумеется, он хорошо понимал, что это за условия, но не находил ясных и понятных слов для их описания.
С 1870 по 1872 год Кантор опубликовал пять статей, в которых окончательно сформулировал свое решение задачи единственного способа разложения ряда Фурье. В процессе помимо прочего он нашел ответ на проблему континуума, и поэтому его определение вещественных чисел через фундаментальные последовательности было опубликовано в рамках работы по тригонометрическим рядам.
Как же он смог сформулировать условие, которому должны соответствовать абсциссы прерывных точек периодического графика, чтобы их разложение на ряд Фурье было единственно возможным? Для этого Кантор разработал понятие производного множества, очень важное для нас, поскольку оно направило его на путь, который в итоге привел его к знаковой статье 1883 года. Рассмотрим, что такое производное множество и как с его помощью ученому удалось решить заданную Гейне задачу.
В нашем случае необходимо рассматривать последовательности, состоящие из бесконечного количества чисел, различных между собой.
Возьмем множество рациональных чисел. Очевидно, что π как иррациональное число не принадлежит к этой группе, и тем не менее его можно представить в виде последовательности рациональных чисел. Мы можем найти такую последовательность, состоящую исключительно из рациональных чисел, что по мере продвижения вперед будем получать числа все ближе к π. В примере из предыдущей главы последовательность 3,1; 3,14; 3,141; 3,1415;... получается путем прибавления к каждому последующему числу одного знака после запятой в числе π.
Это справедливо и для любого другого иррационального числа: мы всегда сможем приблизиться к нему через последовательность рациональных чисел. То же распространяется и на рациональные последовательности. Например, если мы возьмем число 0,75, то последовательность 0,751; 0,7501; 0,75001; 0,750001;... будет все ближе подходить к нему. То есть приближение любого вещественного числа возможно через последовательность рациональных чисел (что по сути и является решением Кантора задачи о континууме).
Математики XIX века, корпевшие над логическим обоснованием исчисления и открывшие ряды, то есть бесконечные суммы, выработали свои правила, которые существенно отличаются от тех, которые используются для привычных конечных сумм. В 1854 году немецкий математик Бернхард Риман (1826-1866) доказал: некоторые бесконечные суммы не обладают коммутативностью; другими словами, они могут быть реорганизованы так, что получится другой результат. Например, в ряде
сумма которого равна 0,6931471..., слагаемые могут быть распределены так, чтобы получился любой желаемый результат.
Георг Фридрих Бернхард Риман, 1862 год.
Если Р — произвольное множество чисел, то производным от Р множеством Кантор называл группу чисел, которые можно аппроксимировать через последовательности, состоящие из элементов Р. Он обозначил такое множество Р. Если Q — множество рациональных чисел, то предыдущий пример показывает, что Q' = R, где R обозначает множество всех вещественных чисел.
Труды Кантора — прекрасный плод математического гения и одно из высочайших достижений человеческого интеллекта.
Давид Гильберт, немецкий математик
В статьях начала 1870-х годов Кантор представлял определение производного множества в терминах потенциально бесконечных множеств. Но сама структура Q' отсылает к актуальной бесконечности, поскольку Q заключает в себе все рациональные числа. С другой стороны, определение Q' приводит нас к последовательностям и к определению вещественных чисел. Рассмотрим теперь, как проблема тригонометрических рядов подтолкнула Кантора к двум основным темам его последующих математических исследований — к актуальной бесконечности и к задаче о континууме.
Теперь возьмем множество Р, состоящее исключительно из чисел 0, 1 и 2. Множество Р, по определению Кантора, содержит все числа, которые можно аппроксимировать посредством последовательностей, состоящих из бесконечных различающихся элементов Р. Очевидно, что бесконечных и различающихся элементов Р не существует, поскольку их в этом множестве всего три.
Так как создать даже одну последовательность элементов Р невозможно, то в Р ничего нет. В этом случае, как писал Кантор, Р аннулируется. Сегодня мы бы сказали, что Р — пустое множество, то есть в нем нет составляющих, но мы оставим выражение Кантора. Чтобы понять условие единственности, найденное Кантором, вернемся к примеру производного Q' и убедимся, что оно также является множеством чисел, а значит, мы можем рассчитать его производное. Кантор записывал производное от производного Q как Q". Поскольку оно тоже является множеством, то мы можем рассчитать и его производное, которое будет записано как Q(3); а его производное — как Q(4), и так далее.
В случае с Q эта цепь производных не дает интересного результата, потому что Q', Q", Q(3), Q(4),... являются множествами вещественных чисел, а значит, продолжая получать их производные, мы не достигнем ничего нового. Но существуют такие множества Р (о них мы не будем говорить подробно), производные которых Р', Р", Р(3), Р(4) ... являются разными множествами или такими, что в конце концов процесс получения производных Р', Р", Р(3), Р(4) ... аннулируется. Например, можно найти множество Р, для которого Р состоит из чисел 0, 1 и 2. В этом случае Р", производное от Р', аннулируется. В других случаях аннулируется Р' в третьих — Р(3)или Р(4) и так далее. Разумеется, для Q этот процесс никогда не закончится, потому что на всех его этапах мы получим множество вещественных чисел R. Условие единственности, найденное Кантором, состоит в следующем: если Р — множество абсцисс точек прерывания периодического графика, то для того чтобы был всего один способ разложить его в тригонометрический ряд, достаточно, чтобы процесс Р', Р", Р(3), Р(4),... рано или поздно заканчивался. Так Кантор смог ясно и точно изложить условие, обеспечивающее единственно возможный способ разложения на ряд Фурье, и решил задачу, поставленную перед ним Гейне в 1869 году.
Генрих Эдуард Гейне родился в Берлине, в Германии, 16 марта 1821 года и был восьмым из девяти детей. В 1838 году он поступил в Геттингенский университет и начал изучать математику, но в следующем году перешел в Берлинский университет, где 30 апреля 1842 года получил степень доктора. Два года спустя он стал преподавателем в университете в Бонне, а в 1856 году — в Галле. Там он читал различные лекции в разных областях вычисления и физики; его высоко ценили за ясность изложения. Гейне внес большой вклад в область логического обоснования вычисления. Он умер в Галле 21 октября 1881 года.
В 1860-е годы Гейне доказал, что способ разложения периодического графика будет единственным, если он непрерывен, а также если в каждом его периоде конечное количество «прерываний». Решение Кантора подходит для обоих результатов и для случаев бесконечного количества прерываний в каждом периоде.
То есть если наблюдается непрерывность, разложение будет единственным, если в каждом периоде конечное количество прерываний — результат будет тем же. Продолжая эти рассуждения, Кантор создавал гипотезы, которые звучали примерно так: «Если в каждом периоде есть бесконечное количество прерываний, но их «немного», то разложение будет единственным». «Бесконечные, но их немного» — эта фраза может показаться противоречивой, но не для Кантора. Для него «немногое бесконечное» означало «счетное бесконечное», то есть прерывания бесконечны, но их мощность при этом должна быть меньше мощности вещественных чисел.
Впечатление, которое производит на нас писанина Кантора, просто ужасно. Читать ее — настоящая пытка.
Шарль Эрмит, французский математик, 1883 год
Итак, Кантор постулировал — и доказал это в своих «Основаниях общей теории многообразий» 1883 года, — что процесс получения производных Р', Р", Р(3), Р(4) ... в определенный момент аннулируется именно в тех случаях, когда оба множества Р и Р' конечны или счетны. Надо отметить, что Кантор уже высказывал такое предположение в 1872 году. Почему на доказательство ему потребовалось десять лет? На самом деле трудность была не столько технической, сколько психологической.
Сколько этапов потребуется преодолеть, чтобы процесс Р', Р", Р(3), Р(4) ... аннулировался? Это может произойти и на первом этапе, и на втором, и на третьем и так далее, но не все так просто.
Вернемся к последовательности 3,1; 3,14; 3,141; 3,1415;..., которая постепенно все больше приближается к числу π.
Обычно в таких случаях говорят, что последовательность «приближается к числу π бесконечно»; причем «бесконечно» должно пониматься потенциально, то есть числа 3,1; 3,14; 3,141; 3,1415;... стремятся к π, но никогда его не достигнут.
В ходе своих исследований Кантор нашел пример, в котором Р', Р", Р(3), Р(4) ... были разными множествами, но процесс получения их производных не аннулировался ни при каком конечном количестве переходов. Так он смог выявить множество P(∞). Символ ∞, введенный Джоном Валлисом в 1655 году, обычно использовался в исчислении для обозначения потенциальной бесконечности. Так же как числа 3,1; 3,14; 3,141; 3,1415;... все больше походят на число π, к множеству F“) все больше приближаются последовательные множества Р', Р", Р(3), Р(4) ... Однако в приведенном примере Кантор также обнаружил, что ix°°) состоит из чисел 0, 1 и 2, а следовательно, его производное аннулируется. Но каково же производное множества P(∞)? Если производное от Р(3) — это Р(4), а производное от Р(4) - Р(5), логично было бы предположить, что производное от P(∞) — это P(∞+1). Это означало бы, что процесс аннулируется после
∞ + 1 переходов. Что означает «∞ + 1»?
Кантор нашел случаи, в которых процесс аннулировался на этапе ∞ + 2, или ∞ + 3, или ∞ + ∞, но не мог объяснить эти символы. Точнее, признать их тем, чем они были на самом деле, ему мешал уже упомянутый психологический барьер.
«[...] по воле всемогущего Бога меня озарили самые удивительные, самые неожиданные идеи о теории ансамблей и теории чисел. Скажу больше, я нашел то, что бродило во мне в течение долгих лет».
В этом письме Дедекинду Кантор сообщает: в 1882 году он понял, что символы ∞, ∞ + 1, ∞ + 2, ..., ∞ + ∞, ∞ + ∞ + 1, ... являются не чем иным, как трансфинитными числами, то есть такими, которые позволяют считать за пределами натуральных чисел. В первую очередь, он назвал их ординальными и, чтобы подчеркнуть, что они являются актуально бесконечными, символ оо, ассоциирующийся с потенциальной бесконечностью, заменил греческой буквой ω.
Что такое ординальные числа? Как утверждал Кантор в своей работе 1883 года, существуют два принципа порождения ординальных чисел. Первый состоит в том, что за каждым ординальным числом непосредственно идет следующее. Согласно второму принципу, если есть последовательность ординальных чисел, то и за ней сразу же идет ординальное число.
Первое ординальное число — 0, за ним идет, разумеется, 1, потом 2, 3 и так далее. Ординальные числа 0, 1,2, 3,... являются конечными, или, как говорил Кантор, числами «первого класса».
По второму принципу порождения, за последовательностью 0, 1,2, 3, 4,... стоит ординальное число: имеется в виду ω, первое трансфинитное ординальное число. Затем следуют ω + 1, ω + 2, ω + 3, ...; дальше, опять применив второй принцип порождения, мы получим новое ординальное число ω + ω, а после него — ω + ω + 1, ω + ω + 2,...
Резюмируя, ряд ординальных чисел начинается так: 0,1,2, 3,...,ω,ω + 1,ω + 2,...,ω + ω+1,ω + ω + 2,...,ω + ω + ω + 1,...,где многоточие обозначает бесконечное количество членов.
Теперь вернемся к ординалу ω и подумаем о множестве всех предшествующих ему чисел, то есть обо всех ординальных числах меньше ω. Это множество состоит из чисел 0, 1,2, 3,..., и поскольку оно счетное, Кантор утверждает, что ω — ординал «второго класса». У ординалов первого класса конечное количество предшественников, а у второго класса — счетное. Ординальное число, например ω + 1, всегда будет числом второго класса, потому что ему предшествуют числа 0,1,2,3,..., ω, образующие счетное множество. Ординальные числа ω, со + 1, ω + 2, ..., ω + ω+ 1, ω + ω + 2,..., ω + ω + ω + 1,... относятся ко второму классу. Теперь обратимся к последовательности всех ординалов второго класса: согласно второму принципу порождения, сразу же за ними идет еще одно ординальное число. Обычно оно обозначается символом Ω. Возникает вопрос: к какому классу относится Ω?
В статье 1883 года Кантор смог доказать, что все числа, предшествующие Ω, то есть и первого, и второго классов, составляют несчетное множество. Следовательно, число Ω не принадлежит ко второму классу, а является первым ординалом «третьего класса». Еще большую важность имеет тот факт, что Кантор доказал: множествам первого и второго классов соответствует кардинальное число, идущее непосредственно за кардинальным числом натуральных чисел.
Обратим внимание на изящество системы Кантора (см. рисунок): множество ординальных чисел первого класса счетное, а его кардинальное число — самое маленькое из всех бесконечных кардинальных чисел. Если мы добавим числа второго класса, то получим следующее непосредственно за ним кардинальное число. Если добавим числа третьего класса — следующее и так далее для четвертого, пятого и других классов. В 1883 году у этих кардинальных чисел еще не было отдельного названия. Кантор дал им имя в 1895 году.
В «Основаниях общей теории многообразий» математик писал, что всегда предполагал существование кардинальных чисел, больших, чем у вещественных чисел, но до того момента ему не удавалось найти никакого примера. Эта система ординалов («изящная спираль ординалов и кардиналов», по определению историка Хосе Феррейроса) позволила ему наконец доказать существование бесконечного числа уровней бесконечности.
Где в этой системе располагается кардинальное число вещественных чисел? Как мы видели, чтобы получить кардинальное число, идущее непосредственно за кардинальным числом натуральных чисел, надо прибавить первый класс ко второму. Напомним также: континуум-гипотеза гласит, что это кардинальное число вещественных чисел. Это значит, что если бы континуум-гипотеза была верной, то вся наша теория обрела бы элегантную последовательность, так как первый класс дал бы нам кардинальное число натуральных чисел, а второй класс — вещественных чисел. Сделав это открытие, Кантор понял, что континуум-гипотеза — краеугольный камень его теории, и стал одержим ее доказательством. Однако это ему не удалось, и, возможно, разочарование от неудачи стало одной из причин депрессии, поразившей его в мае 1884 года. Кантор не дожил до того момента, когда смог бы удостовериться, верна гипотеза или нет.
Одно из возражений, предъявленных Кантору тогда, состояло в том, что ординальных чисел просто-напросто не существует.
Каждый раз, прибавляя целый класс ординальных чисел, мы переходим к следующему кардинальному.
В ответе Кантор опирался на свою философию математики, в соответствии с которой любой объект, получивший определение от математика, существует по той простой причине, что его определили, с одним лишь условием, что это определение не должно вести к логическим противоречиям. Но верно ли то, что свойства ординальных чисел не ведут к противоречиям? Вернемся ко второму принципу порождения: если дана любая последовательность ординальных чисел, то всегда будет еще одно ординальное число, большее, чем все ее составляющие. В свете этого принципа, если мы берем последовательность, состоящую из всех ординальных чисел, то должно быть еще одно ординальное число, большее, чем все они. Но как может существовать еще один ординал, если все они уже входят в последовательность? Мы сталкиваемся с логическим противоречием. Кантор обнаружил его в 1882 году.
Дабы разрешить это противоречие, в статье 1883 года он ввел третий принцип порождения ординалов, по которому второй принцип не может применяться к последовательности всех ординальных чисел. Это была своеобразная «заплатка», чтобы устранить парадокс.
Логические противоречия в математической теории — всегда плохой признак, так как они свидетельствуют об ошибке в самом ее основании. И хотя в данном случае парадокс можно было решить, как это Кантор и сделал, добавив третий принцип, само его появление служит сигналом тревоги. Однако ученый не выказал волнений по этому поводу — напротив, принял это с облегчением и радостью.
В одной из статей, опубликованных в Acta Mathematica, Кантор предлагал определение множества, описывающего последовательные переходы. При первом переходе имеется отрезок, который мы определим как множество всех вещественных чисел между 0 и 1. При втором переходе отрезок делится на три равные части и центральная (вторая строка на рисунке) убирается. При третьем переходе мы повторяем этот процесс для каждой из оставшихся частей, делим их натрое, убираем среднюю часть и так далее. Канторово множество состоит из всех точек, оставшихся после бесконечного количества переходов. На первый взгляд может показаться, что не осталось ни одной точки, однако Кантор смог доказать существование взаимно однозначного соответствия между троичным множеством и множеством всех вещественных чисел. Другими словами, исходя из понятия мощности, после бесконечных переходов останется столько точек, сколько их существует на всей прямой.
Уже говорилось, что Святой Августин и ряд богословов считали бесконечность исключительно божественной характеристикой, а попытки человеческого разума понять ее — ересью. Эта мысль терзала Кантора, который всегда был религиозен. Но парадокс — таким, как понимал его он, — освобождал его от этого груза.
Кантор разделил бесконечное на два уровня: нижний относится к трансфинитному и включает в себя множества натуральных, вещественных, ординальных чисел класса I, II, III,... и все понятия его теории, за исключением множества всех ординальных чисел. Последнее находилось на абсолютном уровне бесконечности, которое относилось к сфере божественного.
Кантор считал, что человеческий разум может постичь трансфинитное. Но возникающий парадокс указывал на то, что абсолютный, божественный, уровень — выше его способностей. Он появляется не из-за ошибки в теории, а из-за попытки человека удержать понятие, которое превосходит его умственные возможности. Так, оставляя уровень бесконечности Богу, Кантор — в первую очередь человек, а потом уже математик — смог успокоить свою религиозную совесть. И если говорить о логических нестыковках в теории Кантора, многие математики, в том числе и его сторонники, не соглашались с подобной интерпретацией парадоксов.