В одном письме 1902 года английский логик Бертран Рассел сформулировал очень простой вопрос, спровоцировавший, тем не менее, глубокий «кризис» в математической науке. Он затянулся почти на 30 лет, а его последствия ощутимы и сегодня. Вопрос Рассела был таков: «Является ли это множество, о котором я говорю, частью самого себя?»
В 1883 году, когда Кантор написал статью «Основы общего учения о многообразиях», он уже понимал, что его теория содержит как минимум один парадокс. Но что такое парадокс? На самом деле это слово используется в литературе и разговорном языке в разных значениях, не всегда совпадающих друг с другом. В логике парадокс обнаруживается, когда в рамках одной теории можно одновременно доказать существование и несуществование какого-либо объекта или когда свойства чего-либо противоречат друг другу. Таким образом, парадокс означает, что с точки зрения логики теория несостоятельна. В этом смысле можно утверждать, что Кантор действительно обнаружил в своей теории парадокс, или логическое противоречие, а это всегда плохой признак, поскольку он означает, что в основе теории есть ошибка — лакуна, которую надо обнаружить и устранить.
Иногда же слово «парадокс» используется как синоним «удивительного» или «противоречащего ожиданиям», а никак не «логического противоречия». Например, X0 + 1 = X0 «парадоксально», поскольку мы воспринимаем только конечные количества и думаем, что при добавлении нового элемента к определенному множеству в результате их количество увеличится. С другой стороны, X0 + 1 = X0 свидетельствует о том, что в случае с бесконечностью количество останется прежним.
Хоть это и удивительно, но равенство X0 + 1 = X0 не является парадоксом в смысле логики, поскольку оно не таит в себе никакого логического противоречия. Оно просто подчеркивает, что правила, по которым существуют бесконечные количества, отличаются от конечных.
Мы будем использовать термин «парадокс» в первом значении, имея в виду логическое несоответствие какой-либо теории. Вернемся же к парадоксу, который Кантор обнаружил в 1883 году. Он заключался в том, что последовательность ординальных чисел порождается в соответствии с двумя принципами. Первый гласит, что за каждым ординалом идет непосредственно следующий; по этому принципу сразу за ω идет ординал ω + 1.
У бесконечных множеств есть некоторые любопытные свойства, которые иногда назывались парадоксальными. На самом деле они не парадоксальны, а просто немного удивительны, когда сталкиваешься с ними впервые.
Рэймонд Смаллиан, американский логик, «Сатана, Кантор и бесконечность, в также другие головоломки», 1992 год
Второй принцип утверждает, что если дана произвольная бесконечная последовательность ординальных чисел, непосредственно за ней всегда будет идти еще один ординал, который не является членом этой последовательности. Данный принцип гарантирует, что, например, за бесконечной последовательностью 0, 1,2, 3, 4,... идет новый ординал ω, а за бесконечной последовательностью ω, ω + 1, ω + 2, ω + 3,... — новый ординал ω + ω. Парадокс появляется, когда мы пытаемся применить второй принцип порождения к последовательности, образованной всеми ординалами, назовем ее С. Действительно, согласно второму принципу, если мы возьмем последовательность всех ординалов С, то сразу же за ней будет идти новый ординал, который не является частью С. Обозначим его как О (греческая буква омикрон). Поскольку С содержит все ординалы, то в нем будет и О. Но ведь его там нет. Получается, что О обладает двумя противоречащими друг другу характеристиками: он не является частью С, но одновременно является. Мы обнаружили парадокс (см. рисунок).
Чтобы решить эту проблему, Кантор ввел третий принцип порождения — третье правило, по которому второй принцип не может применяться к полной последовательности всех ординальных чисел. Другими словами, Кантор заявил, что О не существует.
Схематичное изображение парадокса ординальных чисел.
Хотя это правило действительно решает парадокс, оно не кажется удовлетворительным. Мы как бы даем пациенту обезболивающее, но не находим причину его болезни. Для того чтобы обнаружить эффективное решение, нужно узнать, какой недуг вызвал боль, то есть какая ошибка лежит в основе теории, приведшей к парадоксу.
По мнению Кантора, его глубинной причиной была необходимость сделать различие, которое он ввел в статье 1883 года, между трансфинитным и абсолютно бесконечным. Ученый писал, что к области трансфинитного относятся все бесконечные множества, которые может познать человеческий разум и которыми он может оперировать, как, например, множество вещественных чисел или ординальных чисел первого, второго или третьего классов или еще какой-либо определенный класс. В области абсолютного мы сталкиваемся с множествами, которые «слишком велики» для нашего ума; среди них находится множество, образованное всеми ординальными числами, и универсальное множество (которое включает в себя абсолютно все и о котором речь шла в предыдущей главе). По этому поводу в статье 1883 года Кантор писал так:
«Однако существенное различие состоит в том, что я раз и навсегда закрепляю в соответствии с понятием различные градации собственно бесконечного [так Кантор называет актуальную бесконечность] при помощи числовых классов (I), (II), (III) и так далее и лишь тогда ставлю задачу не только математически исследовать отношения сверхконечных чисел, но указать и проследить их всюду, где они встречаются в природе. Что на этом пути нам, продвигаясь все дальше, не удается достичь никакой непереходимой границы, получить хотя бы только приближенное постижение абсолютного, — это не подлежит для меня никакому сомнению. Абсолютное можно лишь признать [то есть признать его существование], но никогда не познать, хотя бы приближенно».
Абсолютное, считает Кантор, подчиняется другим правилам, нежели трансфинитное, — правилам, которые мы даже не можем сформулировать, потому что не можем их познать. Следовательно, парадокс рождается, в сущности, из-за ошибочной попытки применить к абсолюту правила трансфинитного. Третий принцип порождения ординальных чисел, состоящий в том, что определенное правило трансфинитного не применимо к определенному абсолютному множеству, таким образом, создан не специально для конкретного случая, а является следствием философии, на которой основывается теория множеств. Аналогично решение парадокса Кантора (см. предыдущую главу) заключается, по мнению самого ученого, в том, чтобы просто-напросто заявить, что к универсальному множеству, относящемуся к области абсолюта, нельзя применить теорему, которая утверждает, что за каждым множеством идет еще одно с большей мощностью (см. рисунок). Надо сказать, что в действительности в работе 1883 года замечания об абсолютном, подобные приведенному выше, чаще встречаются в примечаниях, внесенных в основной текст позже, и наличие в теории множеств противоречий было на тот момент только что открыто. Сдержанность Кантора, возможно, должна была предотвратить нападки на его теорию и была результатом трезвого расчета. Об этом свидетельствует письмо, которое Кантор написал Гильберту 15 ноября 1899 года. В нем, говоря о своей философии и о различии между трансфинитным и абсолютным, он упоминает следующее: «Философия, которую вы можете найти в «Основах», изданных в 1883 году, особенно на последних страницах, выражена довольно ясно, но частично непонятно, и это сделано намеренно».
Дедекинд, который тоже работал в то время с понятиями теории множеств, казалось, не замечал никаких парадоксов, и сам Кантор после депрессии, поразившей его в 1884 году, полностью оставил эту тему на продолжительное время. Вопрос парадоксов теории множеств канул в Лету и был «открыт вновь» в 1897 году.
Схема парадокса Кантора, по которому существует множество, большее, чем то, которое уже содержит в себе все.
С 9 по 11 августа 1897 года в Цюрихе (Швейцария) проходил Первый международный конгресс математиков, в котором приняли участие более 200 ученых из 16 стран мира, в том числе Гильберт и Кантор. На этом конгрессе теория множеств получила международное признание, а многие выступления были посвящены применению понятий теории множеств — в основном в области исчисления.
Кто из нас не обрадовался бы, если бы ему удалось поднять пелену, скрывающую будущее, увидеть будущий прогресс нашей науки и тайны ее развития в последующие века?!
Давид Гильберт на Втором международном конгрессе математиков
В беседах, которые участники вели между заседаниями, постоянно проявлялся волнующий всех вопрос... об открытии парадокса в теории множеств. В марте 1897 года в бюллетене Палермитанского математического кружка итальянский логик и математик Чезаре Бурали-Форти (1861-1931) опубликовал статью под названием «Вопрос о трансфинитных числах», в которой вновь открывал парадокс об ординальных числах. В 1883 году Кантор не дал точной формулировки парадокса, и он стал известен только после знаменитой работы Бурали- Форти, посему и получил его имя. Интересно, что итальянский ученый тоже присутствовал на конгрессе и выступил с докладом, правда по геометрии.
Гильберт, большой сторонник теории множеств, был крайне обеспокоен выявлением парадокса и в 1897 году начал интенсивную переписку с Кантором. В ходе этого обсуждения Кантор вновь выразил свою убежденность в том, что всех парадоксов в теории множеств можно было избежать, проведя различие между трансфинитным и абсолютным, хотя в письмах он не использовал эти термины, а говорил о «доступном» и «недоступном» (а иногда о «существенных» и «несущественных» множествах).
По Кантору, доступные множества — это такие множества, которые мы можем назвать и свойства которых мы можем изучить; недоступные же находятся вне нашего понимания, поэтому если мы будем пытаться анализировать их, то рискуем столкнуться с противоречиями. Проблема была не во множествах самих по себе, а в конечном и ограниченном рассудке, неспособном понять определенный тип множеств. Гильберта не убеждала такая постановка вопроса, он полагал, что если мы в состоянии постичь определение множества, то должны быть в состоянии и познать все его свойства. Мысль о том, что существуют непознаваемые математические объекты, была противна философии математики Гильберта, которую можно охарактеризовать его знаменитой максимой «Мы должны знать. Мы будем знать», произнесенной на конференции в честь открытия Второго международного конгресса математиков в 1900 году. Она выражает его твердую уверенность в том, что неразрешимых математических задач не существует. Интереснейший спор в письмах между Гильбертом и Кантором трагически прервался в 1899 году, так и не завершившись решением, которое устроило бы обе стороны.
Бурали-Форти родился в Ареццо, в Италии, 13 августа 1861 года. Он изучал математику в Пизанском университете, где в 1884 году защитил диплом.
Докторскую степень ему получить не удалось, поскольку диссертационный комитет отверг его предложение рассматривать геометрию с алгебраической точки зрения (сегодня общепринятой), а ученый не стал настаивать на своем. До 1887 года он был учителем математики в пизанской школе, а потом переехал в Турин, где преподавал в военной академии до конца своей карьеры. Отсутствие докторской степени не позволило ему работать в высших школах, однако в Туринском университете он прочитал несколько лекций, получивших высокую оценку. Там же он установил контакты, хотя и неформальные, со многими учеными. Бурали-Форти написал более 200 статей по геометрии, логике и о преподавании математики. Он умер в Турине 21 января 1831 года.
В конце 1899 года Кантор готовил третью часть своей статьи «Обоснование учения о трансфинитных множествах», которую хотел посвятить главным образом изложению своего решения парадоксов теории множеств, но 16 декабря 1899 года его работу прервала трагическая гибель младшего сына Рудольфа. Ему было всего 13 лет.
Эта ужасная потеря, от которой Кантор так никогда и не оправился, повлекла за собой серьезное душевное расстройство. А может, болезнь скрыто протекала и до этого, а трагедия сделала ее явной. В последующие годы периоды просветления сменялись депрессией. Несколько раз ученый оказывался в психиатрической лечебнице в Галле. В годы болезни Кантор вернулся к теме авторства Шекспира и Бэкона, которую он на самом деле никогда не оставлял. Об этом свидетельствует фраза в письме Гильберту 15 ноября 1899 года: «Этой зимой я дам пять уроков в Берлине и пять в Лейпциге на ту же тему [вопрос о Шекспире и Бэконе], в которой я разобрался до конца; господа филологи будут поражены».
В подтверждение того, что после 1900 года его интерес к этому вопросу стал настоящим «помешательством», можно привести случай, произошедший в 1911 году. В сентябре того года Кантор как почетный академик был приглашен в Шотландию на празднование 500-летия Сент-Эндрюсского университета. После обнаружения в 1902 году так называемого парадокса Рассела вопрос о логических противоречиях в теории множеств в математике вышел на первый план. Поэтому, когда Кантор взошел на трибуну университета, чтобы прочитать доклад, все ожидали услышать рассуждения о парадоксах бесконечности. Кантор же стал говорить о Бэконе как авторе шекспировских пьес. Тем не менее в следующем году Сент- Эндрюсский университет присудил Кантору степень почетного доктора, но ученый в тот момент был уже серьезно болен и не смог присутствовать на церемонии.
Сущность математики состоит в ее свободе.
Георг Кантор, 1883 год
Несмотря ни на что в первые годы своей болезни Кантор не оставлял занятия математикой. Он продолжал преподавать в Галле, хотя периодически подолгу отсутствовал из-за болезни (например, весь 1909 год), он выступил с лекциями о парадоксах теории множеств на собрании Немецкого математического общества в сентябре 1903 года, а также в Гейдельберге (Германия) в августе 1904 года. Однако он так и не закончил третью часть своих «Обоснований» и не опубликовал больше ни одной статьи по математике.
В 1913 году Кантор вышел на пенсию. В последние годы жизни из-за Первой мировой войны он столкнулся с нехваткой питания. Из-за войны же широкое празднование, которое его немецкие коллеги планировали устроить по случаю 70-летая ученого, вследствие экономического кризиса свелось к небольшой вечеринке в узком дружеском кругу. В июне 1917 года Кантор в последний раз оказался в психиатрической клинике в Галле, где и скончался от сердечного приступа 6 января 1918 года.
В Галльском университете установлен памятник в виде большого бронзового куба. Каждая из четырех его граней посвящена профессору, работавшему в этом учебном заведении.
Одна из них, разумеется, — дань уважения Кантору. На ней изображен рельефный портрет ученого, а справа высечена надпись: «Георг Кантор, математик, создатель теории множеств, 1845-1918». Под портретом стоит равенство с = 2X0 , где с — первая буква латинского слова «континуум» (continuo), обозначающая мощность вещественных чисел. Справа от равенства — схема доказательства счетности всех рациональных чисел. Наконец, под равенством с = 2X0 приведена фраза из статьи Кантора 1883 года: «Сущность математики состоит в ее свободе».
Но нам не нужен монумент, чтобы помнить о Канторе, потому что он ясно говорит с нами со страниц своих писем и статей.
Пока существует математика, он будет жить в своей теории бесконечности.
Что же произошло с парадоксами теории множеств? Как они были решены и были ли? В 1880-е годы Дедекинд, а позже и Кантор предложили определять натуральные числа и операции между ними на основе понятий теории множеств. Это предложение было равнозначно тому, чтобы обосновать все области математики теорией множеств. Как возможно, что исчисление остается основанным на понятиях множеств, если натуральные числа определяются исходя из этих же понятий? Это объясняется тем, что на основе натуральных чисел можно определить целые, а целые, в свою очередь, определяют рациональные, рациональные — вещественные (говоря языком теории множеств), а вещественные являются основой исчисления.
Немецкий логик и математик Готлоб Фреге (1848-1925) задумался над той же задачей: привести всю математику к понятиям теории множеств. Таким образом он соглашался с Кантором и Дедекиндом, но стиль его математической аргументации был другим. На протяжении веков образцом математических рассуждений было сочинение Евклида «Начала» — фундаментальный труд по древнегреческой геометрии, созданный в III веке до н.э. Логическая структура «Начал» опирается на аксиомы — утверждения, которые считаются верными без доказательства, а на основе аксиом посредством логических рассуждений выводятся все остальные истины, в данном случае геометрические свойства.
Евклид разделил свои аксиомы на две группы: к первой относятся постулаты, утверждения о конкретных геометрических объектах, а ко второй — так называемые «общие понятия», общие правила логики, которые можно применить к любой ситуации, не только в геометрии. Примером общего понятия является утверждение, что если два объекта равны третьему, это значит, что они равны между собой (см. рисунок).
Система аксиом Евклида относится не только к геометрическим объектам как таковым, а дает нам и более общие правила для объектов. Другими словами, система аксиом говорит не только о свойствах геометрических объектов, но и позволяет нам сделать выводы из этих свойств.
Теория множеств Кантора, на которую опирался и Дедекинд, не имела такой изящной логической структуры: в ней не было аксиом. В отличие от Евклида, Кантор не составил никакого списка фундаментальных свойств, на которых основывал свои доказательства. Он ограничивался тем, что давал определения (например, ординальных чисел), часто используя разговорный язык, и на их основе делал выводы, продиктованные ему более или менее интуитивной логикой. Для Фреге это было неприемлемо. Он считал, что теория множеств должна иметь евклидову структуру, то есть начинаться с четкого и ясного списка определений и аксиом (а также общих понятий), чтобы на их основе можно было строго вывести все утверждения теории.
Некоторые общие понятия Евклида и их перевод на язык современной математики.
Но Фреге пошел еще дальше: он сожалел, что в математике вообще, а не только в теории множеств, использовался разговорный язык и что в ней часто взывали к «практическому разуму», что он называл «психологизмом». Он считал, что у математики должен быть свой особый язык со специально созданными для него символами и правила логической дедукции (по которым, исходя из определенных посылок, мы можем прийти к неким выводам) должны выражаться с максимальной точностью, используя этот язык.
Как мы сказали, эта обеспокоенность Фреге «психологизмом» относилась к математике вообще, а не только к теории множеств, его первые предложения по созданию математического языка были сделаны еще до нее. Тем не менее, когда во второй половине 1880-х годов одновременно с Дедекиндом Фреге задумал обосновать всю математику теорией множеств, он сконцентрировался на применении созданного им языка именно к этой теории. Ученый посвятил годы разработке символов и правил четкого языка и впервые рассказал о нем в своей книге Begriffsschrift («Исчисление понятий») 1878 года. Язык Фреге отличается от привычного нам со всех точек зрения, в записи он больше похож на линейный рисунок, чем на текст. Возможно, так было задумано специально, чтобы как можно больше отдалить математический язык от разговорного. Тем не менее это имело негативное последствие, так как предложенную систему было чрезвычайно трудно понять, и сочинение Фреге не получило такого распространения у заинтересованной публики, какое могло бы.
В 1902 году Фреге только что отправил в печать второй том своих «Основ арифметики» (в этой работе он развивал идею основания математики на теории множеств), когда получил письмо от английского логика Бертрана Рассела (1872-1970). Оно было отправлено 16 июня 1902 года из Фрайдей Хилла (Хаслмир, Великобритания) и занимало чуть меньше страницы. Рассел писал, что прочитал первый том «Основ», хвалил его и заявлял, что полностью разделяет задумку Фреге. «И тем не менее, — добавлял Рассел, — я нашел небольшое осложнение».
В чем же оно состояло? Одна из аксиом, которую Фреге подводил под теорию множеств, заключалась в так называемом принципе выделения. Другими словами, согласно ей, каждому свойству соответствует множество, состоящее из всех объектов, которые обладают этим свойством. Например, свойство «быть книгой по математике» соответствует множеству, образованному всеми книгами по математике; свойству «быть рациональным числом» соответствует множество всех рациональных чисел и так далее. В письме Фреге Рассел сформулировал следующий вопрос: что произойдет, если мы рассмотрим свойство «быть множеством, которое не является членом самого себя?»
По аксиоме Фреге, говорит Рассел, этому свойству соответствует множество — назовем его F, — образованное всеми множествами, которые соблюдают параметр не быть членами самих себя. Таким образом, вопрос звучит так: «F — член самого себя?»
Если да, то, как и все члены, оно обладало бы свойством, определяющим множество, но F не должно быть членом самого себя. Мы приходим к противоречию, так как исходим из одного предположения, а получаем противоположный вывод. Таким образом, эта предпосылка не может быть верной. Тогда F не является членом самого себя.
Но в этом случае оно не соответствует свойству, определяющему F, так как должно быть членом самого себя. Мы сталкиваемся с еще одним противоречием (см. рисунок).
Резюмируем: F не может быть членом самого себя, но не может и не быть им. Это невозможно с точки зрения логики. Множество Fy существование которого гарантирует принцип выделения, не может существовать, потому что это порождает логическое противоречие. Принцип выделения, казавшийся таким невинным, ведет к парадоксу. Сегодня парадокс множеств, которые не являются членами самих себя, известен как парадокс Рассела.
Парадоксы Бурали-Форти и Кантора, конечно, вызвали обеспокоенность в научном сообществе, но это не было неподконтрольным волнением.
Действительно, проблема парадоксов требовала решения, но оба они относились к таким объектам, как множество всех ординальных чисел и универсальное множество, которые никогда не фигурировали в какой-либо другой области математики, использующей понятия теории множеств. С другой стороны, помимо предложенного Кантором решения, многие другие ученые полагали, что чтобы устранить парадоксы, достаточно внести в теорию множеств технические поправки, например в определение. В общем, хотя все и признавали наличие проблемы, казалось, что она касается очень ограниченной области теории множеств и, разумеется, имеет решение.
Схема парадокса Рассела. Стрелки указывают порядок логических выводов.
Парадокс Рассела, напротив, вызвал гораздо более глубокий кризис, так как аксиому, утверждающую, что каждому свойству соответствует множество, использовали на протяжении нескольких лет все ученые, применявшие понятия теории множеств. Доказав, что эта аксиома противоречива, Рассел не только обрушил всю систему Фреге, но и заставил усомниться во всех достижениях, основанных на теории множеств. В частности, была поставлена под вопрос верность исчисления. Более того, принцип выделения в действительности кажется очевидным, а если такое невинное на первый взгляд утверждение оказывается настолько противоречивым, какие опасности таятся в других аксиомах или предположениях, которые так или иначе математики доверчиво использовали в своих утверждениях?
Фридрих Людвиг Готлоб Фреге родился в Висмаре (Германия) 8 ноября 1848 года. В 1869 году он поступил на математический факультет Йенского университета, также в Германии, но в 1871 году перевелся в Геттинген, где кроме математики изучал физику, химию и философию. В 1872 году удостоился докторской степени, предложив новый логически точный геометрический язык. В 1902 году Фреге получил письмо от Рассела, в котором говорилось о парадоксе множеств, не являющихся членами самих себя, и впал в глубокое уныние. Он попытался перестроить всю систему и для этого изменил аксиому, порождавшую парадокс, но тогда она породила еще несколько — Фреге понадобился не один год, чтобы заметить их. Большая часть его работ по логике и философии на момент его смерти были еще не опубликованы. Фреге завещал их своему приемному сыну Альфреду с такими словами:
«Не пренебрегай моими рукописями. Если не все в них золото, то золото там все же есть. Думаю, придет время, и многое в них будет оценено гораздо выше, чем теперь. Смотри, чтобы ничто из них не потерялось. В них я оставляю тебе значительную часть самого себя».
Фреге умер в Бад-Клайнене (Германия) 26 июля 1925 года.
Что на этом пути нам, продвигающимся все дальше, не удается достичь никакой непереходимой границы, получить хотя бы только приближенное постижение абсолютного — это не подлежит для меня никакому сомнению.
Георг Кантор, 1883 год
Кризис, вызванный парадоксом Рассела, вышел за границы теории множеств: ученые поставили под вопрос все свои рассуждения и даже стали спрашивать себя, что же на самом деле изучает математика. Этот глубокий кризис известен сегодня под названием «кризиса оснований». Он вызвал множество споров, иногда очень горячих, продлившихся почти 30 лет.
В начале XX века многие математики были уверены, что для решения проблемы парадоксов теории множеств достаточно добиться верной формулировки ее аксиом. Первый шаг в этом направлении сделал немецкий математик Эрнст Цермело (1871-1953). В 1919 году немецкий математик Абрахам Френкель (1891-1965) усовершенствовал систему аксиом Цермело, добавив к ней неучтенные прежде необходимые аксиомы. Сегодня она называется системой Цермело — Френкеля, а в специальной литературе по теории множеств обозначается аббревиатурой ZF. Эти аксиомы составляют стандартные формулировки теории множеств и позволяют решить все известные парадоксы. Слово «известные» было добавлено чешским математиком Куртом Гёделем (1906-1978), который доказал, что не существует безошибочного способа гарантировать, что система аксиом не содержит парадоксов. Таким образом, хотя в глубине души математики убеждены, что ZF не приведет к логическим противоречиям (и действительно, с 1919 года они не были выявлены), не существует математически точного доказательства того, что они никогда не возникнут.
Каждая сторона этого памятника в Галльском университете посвящена профессору, работавшему здесь. Сторона слева — Виктору Клемпереру (1881-1960), профессору философии, сторона справа — Кантору.
Сторона памятника, посвященная Кантору. Под изображением ученого высечено равенство x = X02 . а внизу — фраза из его работы 1883 года: «Сущность математики состоит в ее свободе».
Перечислим аксиомы Цермело — Френкеля.
1. Два множества равны, если в них одинаковое количество членов.
2. Существует пустое множество.
3. Если даны х и y, всегда существует пара, состоящая из них обоих.
4. Объединение двух или больше множеств также является множеством.
5. Существует по крайней мере одно бесконечное множество.
6. Только свойства, которые можно выразить исходя из остальных аксиом, могут быть использованы для определения множества.
7. Если дано произвольное множество, всегда существует множество, образованное его частями (см. главу 5).
8. Если дана семья — конечная или бесконечная — непустых множеств (то есть каждое из них содержит как минимум один член), всегда существует множество, которое содержит по члену из каждого множества этой семьи (см. рисунок на следующей странице).
9. Ни одно множество не является членом самого себя.
Аксиома 9 подразумевает, что универсального множества не существует, потому что оно содержало бы само себя, а аксиома это запрещает. Действительно, если записать аксиомы подходящим символическим языком, то можно доказать, что, исходя из аксиомы 6, универсальное множество даже не может быть определено. Парадокс Кантора возникает, когда речь заходит именно о мощности универсального множества. Но если его не существует, то нет и парадокса.
Парадокс Рассела связан с множеством F, образованным всеми множествами, которые не являются членами самих себя. Но аксиома 9 гласит, что все множества соблюдают условие, определяющее F; следовательно, F будет множеством всех множеств. Но поскольку оно и само является множеством, по аксиоме 9, то не может существовать (на самом деле, как и в случае с универсальным множеством, можно доказать, что даже нельзя определить теоретически). А раз оно не существует, то не будет и парадокса Рассела.
Парадокс Бурали-Форти решается аналогичным способом — через доказательство того, что множества всех ординальных чисел не существует.
Схема, объясняющая аксиому выбора. От каждого множества выбирается по члену и из них формируется новое множество.
Несмотря на успех ZF, в XX веке были предложены и другие системы аксиом для теории множеств. Обычно они обозначаются инициалами ученого, который сформулировал их первым. Так, существует система NBG (Джона фон Неймана, Пола Бернайса и Курта Гёделя) и система МК (Роберта Ли Морза и Джона Лероя Келли). Эти системы не равнозначны. Это не просто разные формулировки одной и той же идеи — различия лежат в самих их основаниях. В частности, не все системы предлагают одно и то же решение парадоксов. Самой популярной система ZF стала отчасти потому, что она же и самая простая, но и у других есть свои сторонники. Прочие системы сводятся к тому, что множеств, которые Кантор называл «недоступными», не существует, как в ZF, либо, как в NBG и МК, существование «недоступных» множеств допускается, но провозглашается, что они подчиняются правилам, отличным от других множеств.
Таким образом, современная теория множеств возвращается к идее Кантора о том, что решение парадоксов должно опираться на различие между «доступными» и «недоступными» множествами. Но значит ли все это, что существует несколько разных теорий множеств? И существуют ли недоступные множества? На эти вопросы пока нет ответов, которые бы удовлетворили всех математиков. Обобщая, можно выделить два подхода к их решению: платонизм и формализм.
Платонизм — это течение, согласно которому математические объекты действительно существуют вне зависимости от человеческого разума, и сущность работы математиков состоит в том, чтобы открыть характеристики этих объектов. Согласно данному подходу, есть одна верная теория множеств. Тот факт, что на сегодняшний день существует несколько систем аксиом, говорит о том, что математики пока не смогли определить, какая из них является верной. Платоники считают, что как только будет определена настоящая теория множеств, то, что она будет говорить о недоступных множествах, и станет правдой.
Формалисты, напротив, полагают, что математика — плод человеческой мысли и во многом похожа на музыку или литературу. Согласно этой точке зрения, математика, в сущности,— это «языковая игра», в которой есть твердые основы, аксиомы и такие же четкие логические правила, позволяющие, опираясь на них, приходить к неким выводам. Работа математика состоит в том, чтобы понять, куда нас ведут правила игры. Она не отличается от того, что делает шахматист, когда ищет удачный ход, находясь на определенной клетке доски.
В рамках формализма вопрос о существовании «недоступных» множеств лишен смысла: по правилам одних систем они существуют, по правилам других — нет; это все, что можно сказать по данной теме. В обоих подходах есть свои нюансы, сильные и слабые стороны, и оба используются сегодня математиками. Спор между платонистами и формалистами — следствие кризиса оснований. Кантор не дожил до него, но если бы он знал об этой дискуссии, чью сторону принял бы? Он полагал, что математики абсолютно свободны в определении понятий и в расстановке приоритетов — с одним лишь условием: в результате не возникает логических противоречий. Такой подход приближал его к формализму. Однако в то же время в некоторых работах он как будто отстаивал мнение о том, что понятия, определенные математиками, имеют собственное объективное существование в разуме Бога. Это сближает его с платонизмом.
Противостояние платонизма и формализма также связано с решением проблемы континуум-гипотезы. Напомним, что она была сформулирована Кантором и утверждает, что 2X0 = X1.
В 1940 году Курт Гедель доказал, что в рамках любой из обычно используемых систем аксиом для теории множеств невозможно доказать ложность этого равенства. А в 1963 году американский математик Пол Коэн (1934-2007) доказал, в свою очередь, что невозможно доказать и то, что оно верное. Таким образом, континуум-гипотеза не может быть ни доказана, ни опровергнута ни одной из использующихся сейчас систем аксиом. Так верная она или ложная? Для формалистов этот вопрос не имеет смысла: аксиомы — всего лишь правила игры, установленные произвольно, они не описывают никакую внешнюю «истину».
Согласно этой точке зрения, к любой теории множеств можно добавить новую аксиому, которая позволит или подтвердить, или опровергнуть континуум-гипотезу. Платоники же считают, что вне зависимости от наших аксиом равенство 2X0 = X1 является либо объективно верным, либо ложным, и рано или поздно будет найдена такая система аксиом, которая решит этот вопрос однозначно. Таким образом, в рамках формализма этот вопрос закрыт, в рамках платонизма — остается открытым.
В 1935 году впервые собрался Николя Бурбаки. Эта фраза кажется странной, но в действительности Николя Бурбаки — не человек, а коллективный псевдоним, который взяла себе группа преимущественно французских математиков. Целью первой встречи группы было установление способов достижения назначенной цели (над которыми Бурбаки работает и сейчас, хотя члены группы, разумеется, сменились).
Как мы увидели, аксиомы Цермело — Френкеля (речь только об этих конкретных аксиомах, потому что они чаще всего используются) позволили наконец решить проблему парадоксов теории множеств, расчистив путь для программы Фреге по обоснованию математики на понятиях множеств. Его попытался возобновить Рассел, но безуспешно. Целью Бурбаки было завершить проект Фреге. Для этого на первом собрании в 1935 году математики договорились написать серию томов под названием «Начала математики», каждый из которых был бы посвящен отдельной области этой науки. В каждой книге разбираемые понятия рассмотрены с максимально возможной логической строгостью, чтобы создать устойчивую базу для дальнейшего развития. Так или иначе, основой этих определений была теория множеств.
На сегодняшний день из-под пера Бурбаки вышло более дюжины томов. Несмотря на критику слишком сухого стиля, они имели и продолжают иметь огромное влияние на установление логических основ современной математики. С другой стороны, хотя сочинения Бурбаки должны были стать базой для работы других ученых — исследователей, которые создают и открывают новые понятия и теоремы, — их влияние распространилось и на преподавание математики, особенно во второй половине XX века, посредством так называемой «современной математики».
Согласно вымышленной биографии, Николя Бурбаки был генералом французской армии греческого происхождения. Уйдя в отставку, он якобы посвятил себя изучению математики и жил в несуществующем городе Нанкаго: скорее всего, это название является комбинацией городов Нанси во Франции и Чикаго в США, так как некоторые создатели Бурбаки были тесно связаны с тамошними университетами. «Николя Бурбаки» — это коллективный псевдоним, который избрала себе в середине 1930-х годов группа математиков, в основном французских.
Считается, что они выбрали его отчасти в шутку, отчасти чтобы не подписывать длинным списком фамилий работы, сделанные несколькими учеными.
Несмотря на то что почти все члены группы стремились сохранить в тайне свою принадлежность к ней, сейчас нам известно, что под псевдонимом Бурбаки скрывались от 10 до 20 участников, а среди создателей группы были такие известные французские математики, как Андре Вейль (1906-1998), Жан Дьедонне (1906-1992) и Клод Шевалле (1909-1984).
Портрет вымышленного генерала Николя Бурбаки.
В то время в рамках этого направления было предложено преподавать все математические понятия исходя из идей теории множеств, даже в начальной школе (что вызвало прямо противоположные мнения). Однако это педагогическое течение утратило почти весь свой авторитет и полностью заброшено.
И тем не менее теория множеств жива и прекрасно себя чувствует. Как и задумывали Кантор, Дедекинд и Фреге и благодаря работе Бурбаки, сегодня она стала основой всей математики.