4. КАК ОТКРЫВАЛИСЬ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ И СОЗДАВАЛАСЬ ПЕРИОДИЧЕСКАЯ СИСТЕМА

В этом разделе читатель узнает об истории открытия химических элементов, происхождении их названий, о спорах, связанных с приоритетом открытия, о ложно открытых элементах, о формировании принципов построения системы химических элементов и других интересных исторических фактах, связанных с понятием «элемент».


4.1. ЭЛЕМЕНТ И ПРОСТОЕ ВЕЩЕСТВО

Элемент в обычном понимании — составная часть чего-нибудь. Уже в древности считали, что как слова состоят из букв, так и тела — из элементов. Французский химик А. Лавуазье (см. 2.28) применял термины «элемент» и «простое тело» как равнозначные. Д.И. Менделеев начал разделять эти термины. Он писал: «Понятия и слова простое тело и элемент нередко смешивают между собою… Простое тело есть вещество… с рядом физических признаков и химических реакций… Под именем элементов должно подразумевать те материальные составные части простых и сложных тел? которые придают им известную совокупность физических и химических свойств… Углерод есть элемент, а уголь, графит и алмаз суть тела простые».

Простое вещество — это форма существования конкретного химического элемента в том или ином агрегатном состоянии. Химический же элемент — это один атом или их разрозненная совокупность с одним и тем же зарядом ядра, с одним и тем же числом протонов в ядре. Когда между атомами одного и того же химического элемента появляются химические связи, то совокупность химически связанных атомов — уже простое вещество.


4.2. ЭЛЕМЕНТЫ ПО АРИСТОТЕЛЮ

Аристотель (384–322 гг. до н.э.) был почти 20 лет учеником знаменитого философа и математика Платона (см. 1.6) и только в возрасте 37 лет покинул стены платоновской школы, чтобы стать учителем Александра Македонского. В 335 г. до н.э. он основал в Афинах свою философскую школу — Ликей. В то время философы не имели никакого понятия о химических элементах, хотя им были известны семь металлов (см. 3.1) и два неметалла — уголь и сера.

Рис. 1. Элементы или стихии Аристотеля

Аристотель создал первую картину мира. Он был уверен, что первоосновой всего существующего является какая-то единая первоматерия, находящаяся в разных состояниях, появляющихся при комбинациях четырех стихий или элементов: земли, воды, воздуха и огня (рис. 1). Стихия земли может находиться в сухом и холодном состояниях, стихия воды — в холодном и влажном состояниях, и т. д. К четырем элементам Аристотель позднее присоединил пятый — эфир, из которого, как он полагал, состоят небеса, звезды и планеты. По его мнению, все шесть металлов образовались из ртути путем присоединения к ней того или иного элемента — земли, воды, воздуха или огня.


4.3. ПЕРВЫЙ МЕТАЛЛ ЧЕЛОВЕКА

Знаете ли вы:

C каким первым металлом познакомился человек еще в эпоху каменного века? Что из ртути можно получить золото?

Считают, что золото и железо были первыми металлами, знакомыми человеку еще в каменном веке. Золото встречается в природе в самородном состоянии, а железо было металлом, «упавшим с неба», метеоритным железом. В Древнем Египте железо называли «бе-нипет», что означало в буквальном переводе «небесный металл» (см. 1.55 и 5.27). За три тысячелетия до нашей эры человечеству уже были известны семь металлов, получивших название «семь металлов древности»: золото Au, железо Fe, серебро Ag, медь Cu, свинец Pb, олово Sn и ртуть Hg.

В IV в. до н.э. в Индии и Египте ртуть Hg и сера S были, по древним представлениям, как бы «родительской парой», порождавшей все металлы и минералы. Ртуть рассматривалась как символ металличности, как «душа металла» и «корень всех веществ». Поэтому ртуть называли в то время Меркурием по имени ближайшей к Солнцу — золоту — планеты Меркурий (см. 3.1). Отсюда и произошло название сложных соединений ртути — меркураты (например, тетраиодомеркурат калия K2(HgI4]).

Уже в нашем столетии выяснилось, что природная ртуть и ртуть, получаемая из минерала киновари, сульфида ртути HgS (см. 1.13), всегда содержит примесь золота в большем или меньшем количестве. Ртуть образует с золотом ряд соединений: Au3Hg, Au2Hg, AuHg2 и др. Некоторые из этих соединений способны переходить вместе с ртутью в пар и затем в ее конденсат. Поэтому от примеси золота ртуть не освобождается даже после многократной повторной перегонки. Только при длительном электрическом разряде в парах ртути можно выделить на стенках реакционной трубки черный налет мелкораздробленного золота. Это явление послужило причиной возрождения 60–70 лет тому назад старой алхимической версии о возможности превращения ртути в золото. Увы, золото было только примесью в ртути. Золото Au в исчезающе малых количествах можно получить из ртути Hg только в ядерных реакциях. Например, из радиоактивного изотопа ртути-197 в ядерной реакции

19780Hg(K, e-, γ) → 19779Au,

в которой в результате захвата ядром электрона (K-захват) один из протонов ядра превращается в нейтрон n0 с излучением фотона γ:

p+ + е- = n0 + γ.

4.4. ПОРЯДКОВЫЙ ИЛИ АТОМНЫЙ НОМЕР?

Порядковый номер и атомный номер химического элемента — синонимы, совпадающие понятия. В Периодической системе Менделеева (см. 2.13) элементы располагаются в порядке возрастания их номеров, начиная с водорода H, порядковый или атомный номер которого равен единице. Порядковый номер элемента равен заряду ядер его атомов в единицах элементарного электрического заряда или числу протонов в ядре, а для нейтрального атома — числу электронов в нем.

Термин «порядковый номер элемента» впервые ввел в употребление английский химик Ньюлендс в 1875 г. без какого-либо физического смысла (см. 2.16). Этот термин вначале не имел никакого отношения к Периодической системе Менделеева. Термин «атомный номер элемента» ввел в употребление английский физик Эрнст Резерфорд в 1913 г. вместо термина «порядковый номер элемента» и настойчиво его внедрял. Так как Периодическая система Менделеева — это система химических элементов, а не атомов, их составляющих, то в настоящее время предпочтение отдается термину «порядковый номер элемента».

Если символ элемента Э, то порядковый номер элемента Z обозначается подстрочным индексом слева от символа, а массовое число А, или число нуклонов в ядрах элемента (см. 4.60) — надстрочным индексом слева, например AZЭ. Для изотопа золота-157 обозначение будет таким: 19779Au, где 197 — массовое число А, 79 — порядковый номер Z.

Примечание. Эрнст Резерфорд (1871–1937) — английский физик, член Лондонского королевского общества, его президент, лауреат Нобелевской премии.


4.5. «ВЫМИРАЮТ» ЛИ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ?

Все вещества Земли образовались преимущественно из устойчивых атомов химических элементов. Но кроме них в земной коре, гидросфере и атмосфере присутствуют исчезающе малые количества радиоактивных элементов, таких как франций Fr, актиний Ac, технеций Tc (см. 4.42), радон Rn (см. 4.31), астат At (см. 4.40), полоний Po и некоторых других, которые относят к «вымершим» элементам. На ранних этапах формирования Земли их было много, но вследствие радиоактивного распада они постепенно превратились в устойчивые атомы ныне существующих элементов. В частности, технеций, элемент VIIB группы Периодической системы, существовавший около 4 млрд., лет тому назад, исчез в результате радиоактивного распада: Тс-99 (e-) Ru-99. Обнаруживаемые в некоторых минералах следы технеция порядка 10-9 г/кг — результат радиоактивного распада урана U и воздействия космических нейтронов n0 на минералы, содержащие молибден Mo, ниобий Nb и рений Re (см. 4.43).

Свои последние дни доживают в современную эпоху атомы калия-40, урана-235, актиния-235, астата-211 и некоторых других радиоактивных элементов.

В частности, было подсчитано, что в каждом килограмме урана через 100 млн. лет образуется 13 г свинца Pb и 2 г гелия He. А через 4 млрд., лет урана на Земле не останется. В бывших месторождениях его минералов найдут только соединения свинца, а атмосфера станет богаче гелием.


4.6. ЧТО В АТМОСФЕРЕ ВЕНЕРЫ, ЗЕМЛИ И МАРСА?

Атмосфера Венеры и Марса содержит преимущественно углерод в виде его диоксида CO2, а атмосфера Земли — азот N2. В атмосфере Венеры кроме диоксида углерода находятся в небольших количествах еще азот и аргон Ar. В атмосфере Марса после диоксида углерода наиболее распространенными являются диоксид серы SO2 и азот. В атмосфере Земли кроме азота содержатся кислород O2 и в очень небольших количествах аргон и диоксид углерода. Считают, что атмосфера Земли в начале ее эволюции состояла из диоксида углерода, а затем стала азотно-кислородной. Практически весь аргон атмосферы Земли образовался в результате радиоактивного распада ядер химического элемента калия-40.


4.7. «СЫРЬЕ» ДЛЯ ОБРАЗОВАНИЯ ЭЛЕМЕНТОВ

Звезды — водородно-гелиевая смесь. Не эта ли смесь — основное «сырье» для образования остальных химических элементов?

Все химические элементы образовались из ядер водорода Н, который вместе с гелием He является главной частью космического вещества. Остальные химические элементы могут рассматриваться как малая примесь. Большинство всех звезд, в том числе и наше Солнце, представляют собой водородно-гелиевую смесь. Только в звездах, называемых «белыми карликами», водород в результате ядерных реакций весь «выгорел» и вместо него появились более тяжелые элементы.

«Выгорание» водорода с превращением его в гелий происходит в основном у центра звезды, где температура выше. При этом ядро звезды сжимается, а оболочка расширяется. Температура поверхности звезды падает, и она становится «красным гигантом». В «выгоревшем» и сильно сжавшемся ядре и начинаются ядерные реакции, приводящие к образованию новых химических элементов. Прежде всего с участием ядер бериллия Be образуются атомы углерода C:

84Ве + 42Не → 126C.

Новые ядра легких элементов служат исходным материалом для последующего образования всех тяжелых ядер в процессах нейтронного захвата. Например, образование ядер азота N происходит при захвате нейтронов n0 ядрами углерода с выбросом электронов e-:

126C + 10n = 136C = 137N + e-

Непрерывно действующими источниками нейтронов служат ядерные реакции типа:

136C + 42He = 138O + 10n.

Некоторые химические элементы, видимо, образовались при помощи ядерных частиц, ускоренных переменными электромагнитными полями в атмосферах звезд.


4.8. ЭЛЕМЕНТЫ ВО ВСЕЛЕННОЙ

На Земле по убывающей распространенности химические элементы составляют ряд: О, Si, Al, Fe, Ca, …, H (9-е место), …, C (13-е место), …, Не (78-е место). Распространенность же элементов во Вселенной убывает в ряду: H>He>O>C>Ne>N>Si>S>…

В космосе было обнаружено присутствие аммиака NH3, воды H2O, циановодорода HCN, метанола CH3OH, муравьиной кислоты HCOOH и даже аминокислот. Среди метеоритов, падающих на Землю, встречаются так называемые углеродистые хондриты, в состав которых входит от 0,5 до 7,0% органических соединений. В частности, в метеорите «Мэрчисон» (Австралия, 1969 г.) было обнаружено 18 различных аминокислот. Поэтому считают, что образование органических и неорганических соединений — распространенный космический процесс.


4.9. ТРИАДЫ ДЁБЕРЕЙНЕРА

Иоганн-Вольфганг Дёберейнер (1780–1849), немецкий химик-технолог, свое химическое образование получил, работая помощником аптекаря в ряде городов Германии. Затем он стал владельцем небольшой фабрики медикаментов, но быстро разорился. Скопив капитал, Дёберейнер снова приобрел фабрику по отбеливанию тканей хлором, но в 1808 г. предприятие обанкротилось. Его спас от нищеты друг и покровитель, поэт и философ И.-В. Гёте, возглавлявший в то время правительство одного из герцогств Германии. Гёте предложил Дёберейнеру занять должность профессора химии и фармации в Иенском университете.

В 1817 г. Дёберейнер обнаружил, что некоторые элементы, обладавшие общностью химических свойств, можно расположить по возрастанию их атомных масс так, что атомная масса среднего из трех элементов окажется равной примерно среднему арифметическому из суммы атомных масс соседних элементов (правило триад). Он назвал такие семейства элементов триадами. Дёберейнер составил из известных в то время элементов четыре триады: литий Li—натрий Na—калий К; кальций Ca—стронций Sr—барий Ba; сера S — селен Se—теллур Те; хлор Cl—бром Br—иод I.

Работы Дёберейнера послужили началом в создании будущей Периодической системы, хотя взаимная связь триад так и осталась до Менделеева нераскрытой. Правило триад было использовано Менделеевым для классификации химических элементов.


4.10. МЕНДЕЛЕЕВ И МЕЙЕР

До сих пор в ряде зарубежных стран оспаривается приоритет открытия Периодического закона Менделеевым и преувеличивается роль Мейера в этом открытии. Первооткрывателями Периодического закона называют Мейера и Менделеева.

Лотар-Юлиус Мейер (1830–1895) — немецкий профессор химии, член-корреспондент Берлинской академии наук, иностранный член- корреспондент Петербургской академии наук с 1890 г., занимался проблемами физиологии, историей химических теорий и отчасти физической химией.

Одно время он пытался расположить химические элементы по возрастанию их степеней окисления. В 1864 г. в книге «Современные теории химии» Мейер предложил располагать элементы по группам, но дальше этого предложения не пошел и понятие «группа элементов» не раскрыл. Только в 1870 г., после опубликования Менделеевым Периодического закона, появилась статья Мейера, в которой он рассмотрел общую систему химических элементов, расположив их по возрастанию атомных масс, что сделал до него еще Ньюлендс (см. 2.16).

Сам Мейер признавал приоритет Менделеева в открытии Периодического закона. В одной из своих статей, опубликованных после 1870 г., он писал: «В 1869 г., раньше, чем я высказал свои мысли о периодичности свойств элементов, появился реферат статьи Менделеева…» о Периодической системе и Периодическом законе, позволявшем предсказывать свойства еще не открытых химических элементов.

Однако позднее, в 1880 г., Мейер опубликовал статью с претензией на приоритет открытия Периодического закона. Менделеев по этому поводу написал, что «… Лотар Мейер раньше меня не имел в виду периодического закона, а после меня нового ничего к нему не прибавил». Следует добавить, что Мейер считал долгое время основным свойством простых веществ степень окисления, а не атомную массу.


4.11. ЛЕГЧЕ ВОДОРОДА?

Менделеев считал, что легче водорода H могут быть два химических элемента, пока не обнаруженных в природе: элемент x, названный им ньютонием, и элемент y, которому он дал имя короний. Для ньютония Менделеев ввел в свою систему нулевой период, а элемент короний он поместил в I-й период до водорода. Оба элемента, по его мнению, должны находиться в нулевой группе Периодической системы.

Менделеев полагал, что ньютоний не только наилегчайший, но и химически наиболее инертный химический элемент, обладающий высочайшей проникающей способностью. После Менделеева отдельные исследователи пытались представить в качестве такого химического элемента нейтральную ядерную частицу нейтрон n0. Теперь мы знаем, что в Периодической системе элементов не может быть химических элементов легче водорода.


4.12. ФЕНОМЕН ПОЗИТРОНИЯ

Получены атомы позитрония, химический символ Ps, и атомы мюония, химический символ Mu. В атомах позитрония вообще нет ядра. Они состоят из электрона e- и позитрона e+ , перемещающихся вокруг некоторого геометрического центра.

Время жизни позитрония невелико, всего 10-6 с. Электрон и позитрон рано или поздно сталкиваются и исчезают, превращаясь в фотоны, кванты энергии. Позитроний может участвовать в различных химических реакциях. Он восстанавливает катионы железа Fe3+ до Fe2+ :

замещает иод в его молекуле:

Ps + I2 = PsI + I,

может присоединяться к атому водорода:

Ps + H = PsH.

Последнее соединение является не двухатомной молекулой, а атомом, в котором в поле действия протона p+ находятся два электрона e- и позитрон е+ .

Синтезированы атомы, состоящие из положительно заряженного мюона Mu+ и электрона, получившие название атомов мюония. Эти атомы напоминают атомы водорода, только вместо протона в ядре находится мюон с массой покоя в 200 раз большей массы электрона. Мюоний, как и позитроний, нестабилен и существует около 10-6 с. Позитроний и мюоний не относятся к атомам химических элементов Периодической системы Менделеева.


4.13. КАКОЕ НАЗВАНИЕ ХИМИЧЕСКОГО ЭЛЕМЕНТА САМОЕ КУРЬЕЗНОЕ?

Наверное, все согласятся, что это название элемента № 33 — мышьяка, символ As. Русское название произошло от слова «мышь». Ядовитые препараты мышьяка использовали в старину для истребления мышей и крыс. Не следует думать, что русское название этого элемента является каким-то исключительным. Сербы и хорваты называют элемент № 33 «мишомором», азербайджанцы и узбеки — «маргумушем»: «мушь» — мышь, а «мар» — убить. А арабское название «арса наки» означает «глубоко проникающий яд». Это слово созвучно латинскому названию элемента № 33 — «арсеникум» и греческому — «арсен и кон». Любопытно, что слово «арсен» по-гречески означает «мужественный, сильный». Поэтому в XIX в. выдвигалось предположение, что русское имя элемента происходит не от слова «мышь», а от слова «муж», будто бы существовал на Руси в древние времена термин «мужьяк», и лишь впоследствии он «переродился» в название мышьяк (см. 4.23).


4.14. ВПЕЧАТЛИТЕЛЬНЫЕ ХИМИКИ

Что больше отражено в названиях химических элементов: цвет простых веществ, их запах или вкус?

Если судить по названиям химических элементов, открытых химиками, то последних больше всего впечатлял цвет простых веществ и цвет спектральных линий в спектрах излучения соединений новых элементов. Так, хлор Cl в переводе с греческого слова «хлорос» означает желто-зеленый (см. 4.37). Иод I получил свое название по цвету своего пара. В переводе с греческого «иодес» означает — фиолетовый (см. 4.39). Твердой сере S8 дали имя, производное от древнеиндийского слова «сира» — светло-желтый цвет. Название элемента родия Rh произошло от греческого слова «родон» — роза, по розовому цвету ряда соединений родия, а иридия Ir — от греческого слова «ирис» — радуга, из-за разнообразия окраски солей иридия. Элемент хром Cr получил свое имя от греческого слова «хрома» — окраска, цвет. Соли хрома почти всегда окрашены.

После изобретения спектроскопа стало возможным устанавливать присутствие элемента по набору цветных линий в спектре излучения его соединений. Элемент таллий Tl назван по ярко- зеленой линии с длиной волны 535 нм. Греческое слово «таллос» означает молодую зеленую ветку. Элемент рубидий Rb получил название по двум темно-красным линиям 780 и 795 нм в спектре его солей. Латинское слово «рубидус» означает темно-красный. Название элемента цезия Cs произошло от слова «цезиум», что у древних римлян означало голубой цвет верхней части «небесного свода». В спектре излучения солей цезия обнаружены две голубые линии с длиной волны 455 и 459 нм. Название индий элемент № 49, символ In, получил по цвету синей линии в спектре излучения его солей, имеющей длину волны 451 нм, цвет которой был очень похож на цвет древней синей краски индиго.

Только два элемента названы по запаху их простых веществ: это бром Br, греческое слово «бромос» означает зловоние (см. 4.38), и элемент осмий Os, греческое слово «осме» в переводе означает запах (см. 4.48). Тетраоксид осмия OsO4 имеет резкий запах.

По вкусу простого вещества не назван ни один химический элемент.


4.15. СОБСТВЕННЫЕ ИМЕНА ИЗОТОПОВ

Изотопы (см. 4.60) всех химических элементов, кроме изотопов водорода, названий не имеют. Для изотопов же водорода AZH приняты следующие наименования: 11H — протий 21H = D — дейтерий, 31H = Т — тритий. Только четвертый изотоп 41H, неизвестный в природе, не получил специального названия и символа.

Ядра первых трех изотопов также носят специальные названия: протон p+ , дейтрон d и тритон t. Тритий, в отличие от протия и дейтерия, радиоактивен, он испускает мягкие β-лучи с периодом полураспада 12,3 года, превращаясь в атомы гелия 32He. В обычной воде один атом трития приходится на 1018 атомов протия. Это означает, что во всей гидросфере Земли находится не более 100 кг трития.

Земной тритий — космического происхождения: нейтроны космоса превращают атомы азота в атомы углерода и трития:

147N + 10n = 126C + 31H(T).

Искусственный тритий получают в ядерных реакторах при взаимодействии атомов лития Li с нейтронами:

63Li + 10n = 73Li = 42He + Т.

4.16. ЕСТЕСТВЕННО РАДИОАКТИВНЫЕ

Это калий K и рубидий Rb, создающие ту фоновую радиацию, в которой человечество жило тысячелетиями.

Элемент K (порядковый номер 19), встречающийся в природе в значительном количестве (2,5%), имеет три изотопа (см. 4.60): 39K (93,26%), 41K (6,73%), 40K (0,01%). Только последний изотоп радиоактивен. Половина атомов изотопа распадается за 1,3∙109 лет. Такое время называют периодом полураспада:

4019K = 4020Ca + e-↑; 4019Ca + e- = 4018Ar.

При распаде ядра 40K в 88% случаев испускается электрон e- и образуется изотоп кальция 4020Ca, а в 12% — происходит захват ядром электрона с нижнего энергетического уровня (K-захват) и появляется изотоп аргона 4018Ar. При захвате ядром электрона протон ядра превращается в нейтрон, в результате чего атомный номер (см. 4.4) элемента уменьшается на единицу, т. е. ядро калия превращается в ядро аргона. Ежегодно из 1 г калия образуется около 4∙10-12 мл аргона, поступающего в атмосферу (см. 4.6, 4.29). Миллиарды лет назад изотоп 40K был одним из главных генераторов теплоты в земной коре. Его тогда было много, примерно 2%.

Рассеянный; природе элемент Rb (порядковый номер 37) обнаружен во всех минералах и водах, содержащих калий. Рубидий является тенью калия. У нею есть два изотопа: 85Rb (72,2%) и 87Rb (27,8%). Последний изотоп радиоактивен:

8737Rb = 8738Sr + е-↑.

Период полураспада этого изотопа равен 5∙1010 лет. Найдено, что 1% всего земного стронция Sr образовался в результате распада ядер 87Rb, который, кстати, помог установить, что Земля «живет на свете» уже приблизительно 4,5 млрд. лет.


4.17. ИМЕНА ЭЛЕМЕНТОВ — ОТ НАЗВАНИЙ МИНЕРАЛОВ

Так, элемент цирконий Zr был назван по имени минерала циркона ZrSiO4, ортосиликата циркония. В русской химической литературе до начала XX в. элемент Zr называли цирконь и циркон.

Элемент бериллий Be получил свое имя от имени минерала берилла состава Be3Al2(Si6O13). Драгоценная разновидность берилла — изумруд (см. 10.22) известная всем, хотя имеют и видели его немногие. Имя элемента марганца Mn произошло от немецкого слова «манганерд» — марганцевая руда.

Элемент бор B назван по имени минерала буры, латинское название которого «боракс».

Элемент натрий Na получил свое имя от арабского слова «натрун», означающего соду, карбонат натрия Na2CO3, а вот элемент литий Li был назван с использованием греческого слова «литое», что означает камень. От древних названий, встречающихся в природе веществ, происходят имена элементов калия K и кальция Ca. Первое является производным от арабского названия поташа, карбоната калия K2CO3 — «аль-кали», а второе — от латинского названия извести, карбоната кальция CaCO3 — «кальке» (см. 3.23).


4.18. «БОЛОНСКИЙ ФОСФОР»

В 1602 г. болонский сапожник и алхимик В. Касциароло нашел в горах около г. Болонья (Италия) очень тяжелый плотный камень серого цвета. Алхимик заподозрил в нем наличие золота. Чтобы выделить его, он прокаливал камень вместе с углем и олифой. К удивлению Касциароло, охлажденный продукт реакции стал светиться в темноте красным светом. Алхимик дал найденному камню название «ляпис соларис» — солнечный камень. Известие о светящемся камне произвело сенсацию среди алхимиков (см. 1.2). Камень стали называть «болонским самоцветом», «болонским фосфором».

Впоследствии выяснилось, что Касциароло нашел минерал барит, или сульфат бария, BaSO4. При взаимодействии BaSO4 с углем образуется сульфид бария BaS:

BaSO4 + 2С = BaS + 2СО2↑,

который обладает способностью светиться после того, как его подержат на солнце. Фосфоресценция присуща не самому сульфиду бария, а его смеси с сульфидами других металлов (см. 9.25).

В 1774 г. шведский химик Шееле (см. 2.7) и его друг Юхан-Готлиб Ган (1745–1818), шведский химик и минералог, установили, что в найденном алхимиком камне содержится новый химический элемент, который они назвали баритом, что в переводе с греческого означает «тяжелый». Однако шведские химики открыли не новый элемент, а его оксид BaO. В XIX в. название барит осталось за минералом, а новый элемент получил имя барий. Впервые барий в виде металла удалось получить только в 1808 г. английскому химику Дэви (см. 2.44) путем электролиза увлажненного гидроксида бария Ba(OH)2.

Барий химически очень активен. Он легко самовоспламеняется на воздухе, окрашивая пламя в зеленый цвет, энергично взаимодействует с водой. Поэтому приходится его хранить под слоем безводного керосина.


4.19. ЭКАСИЛИЦИЙ ИЛИ ГЕРМАНИЙ?

В письме Менделеева немецкому профессору химии Винклеру, открывшему новый элемент германий, содержались такие слова: «Вы отец открытия, Вам одному и принадлежит право дать имя своему детищу».

В Периодической системе элементов в IVA группе между кремнием Si и оловом Sn пустовала клетка неизвестного элемента, которому Менделеев дал временное название «экасилиций». Клеменс-Александр Винклер (1838–1904), анализируя редкий, недавно найденный в Саксонии минерал аргиродит, обнаружил в нем в 1886 г. присутствие нового элемента. Винклер выделил элемент в виде простого вещества и получил его соли. Он назвал открытый им элемент германием Ge в честь своей родины. Это название вызвало резкие возражения со стороны некоторых химиков. Одни стали обвинять Винклера в национализме, другие — в присвоении приоритета, принадлежавшего Менделееву, предсказавшему существование этого элемента. Вот тогда растерявшийся Винклер и обратился за советом к Менделееву. Менделеев решительно поддержал Винклера.

Позднее был установлен состав минерала аргиродита. Это оказался двойной сульфид серебра и германия 4Ag2S∙GeS2.

Для получения германия Винклер сначала прокаливал минерал на воздухе; при этом сульфиды превращались в оксиды серебра и германия Ag2O и GeO2. Затем смесь оксидов он обрабатывал водным раствором аммиака NH3, который переводил в раствор только оксид дисеребра в виде гидроксида диамминсеребра:

Ag2O + 4NH3 + H2O = 2[Ag(NH3)2]OH.

Остаток (а это был диоксид германия) Винклер отфильтровывал и нагревал в атмосфере водорода:

GeO2 + 2Н2 = Ge + 2Н2O↑.

4.20. САМОЕ НЕУДАЧНОЕ НАЗВАНИЕ

Это азот — элемент № 7 (символ N). Название дал элементу французский химик Лавуазье (см. 2.53), произведя его от греческих слов «альфа» — отрицание и «зоэ» — жизнь: «а-зоос» означает «безжизненный», «непригодный для дыхания». Лавуазье было известно, что слово «азот» употребляли еще алхимики, вкладывая в это слово совсем другой смысл, отвечающий больше «жизненной силе», исцеляющей больных и делающей некрасивых красивыми. В библейской мифологии также применялось слово «азот», означающее начало и конец всего сущего, суть жизни, первое и последнее деяние. Таким образом, получалось, что азот в одно и то же время элемент «безжизненный» и «исцеляющий», «жизнь утверждающий» и «жизнь отрицающий». Неудачное название элемента привело к попыткам дать ему другое название. Так появилось второе имя у азота — «нитрогениум» и «нитроген», означающее «рождающий селитру», нитрат калия KNO3 (см. 1.33, 1.34).

Разные названия элемента вызвали появление и разных названий его соединений: азотная кислота HNO3 — производное от слова «азот», а название ее солей — «нитраты» — образовалось от слова «нитроген».


4.21. ПЕТУХ И ФРАНЦИЯ

Галлий открыл в 1875 г. французский химик, член Парижской академии наук Поль-Эмиль Лекокк де Буабодран (1838–1912) и, как полагают, дал ему имя в честь своей родины Франции. Латинское название Франции — «Галлия», Но в названии элемента есть намек и на имя самого де Буабодрана. Латинское слово «галлус» означает петух, а по-французски петух — «ле кок» — название, идентичное имени первооткрывателя. Что имел в виду де Буабодран, когда давал название элементу: себя или свою страну? Этого, видимо, уже никогда не выяснить.

Одной из особенностей металла галлия является его необычно низкая температура плавления — около 30° С. Кусочек галлия превращается в жидкость уже в человеческой ладони. Он остается в жидком состоянии в очень большом интервале температур: кипит галлий при 2200° С.


4.22. ПУТАНИК ВИСМУТ

Знаете ли вы, что происхождение названия элемента № 83 висмута Bi трактуют по-разному?

Одни считают, что слово «висмут» древнегерманского происхождения. Немецкое слово «висмут» означает «белый металл». Другие утверждают, что название элемента произошло от двух немецких слов: «вайзе» — луг и «мутен» — рудник, поскольку в немецкой Саксонии висмут издавна добывали в рудниках, расположенных на лугах округа Шнееберг.

Есть еще одна версия: название элемента происходит от арабского слова «би исмид», что означает «обладатель свойств сурьмы». Висмут во многом напоминает сурьму, свой аналог по VA группе Периодической системы (см. 4.24, 4.25). Вплоть до XVIII в. висмут путали не только с сурьмой, но и со свинцом и оловом. Только в первой половине XVIII в. два химика: швед Бергман (см. 3.5) и немец Иоганн-Генрих Потт (1692–1777) — охарактеризовали висмут как простое вещество, отличающееся по своим свойствам от сурьмы, олова и свинца. В России висмут долгое время называли то «нимфой», то «глаурой», то «демогоргоном», то «стекловидным оловом».

Висмут — последний по порядку в Периодической системе химический элемент, не обладающий естественной радиоактивностью, и самый диамагнитный металл, с одинаковой силой отталкивающийся от обоих полюсов постоянного магнита.


4.23. ЕПИСКОП И МЫШЬЯК

Мы не знаем имена первооткрывателей углерода и серы, семи металлов древности (см. 3.1).

Рукописи и церковные книги донесли до нас имя человека, впервые получившего в 1250 г. химический элемент мышьяк As в виде простого вещества. Считают, что им был немецкий монах, философ Альберт фон Больштедт (1193–1280), прозванный Альбертом Великим, «универсальным доктором», который был убежденным алхимиком. Папа римский сделал его епископом, но уже через два года фон Больштедт отказался от этого сана ради занятий алхимией. До нашего времени дошло только одно из его сочинений — «Малая книга об алхимии». Больштедт получил мышьяк из природных его сульфидов: аурипигмента As2S3 и реальгара As4S4.

Мышьяк был известен в глубокой древности. Предполагают, что еще до фон Больштедта арабские алхимики получали мышьяк нагреванием его оксида с углем:

2 As2O3 + 3С = 4As + 3CO2↑.

Однако письменных источников, упоминающих об этом, не сохранилось (см. 4.13).


4.24. «АНТИМОНИУМ» — ПРОТИВОМОНАШЕСКИЙ МЕТАЛЛ

Речь идет о серебристо-белом металле, легко истирающемся в порошок и называемом сурьмой Sb. Черный сульфид сурьмы Sb2S3, или «сурьмяный блеск», был известен в глубокой древности. Археологи установили, что уже в Вавилоне за 3000 лет до н.э. из сурьмы делали сосуды. В 1604 г. монах-алхимик Василий Валентин первый описал в своей книге «Триумфальная колесница антимония» получение сурьмы из ее соединений. Он вначале обжигал сульфид сурьмы и собирал летучий триоксид:

2Sb2S3 + 9O2 = 2Sb2O3↓ + 6SO2↑,

затем триоксид дисурьмы Sb2O3 смешивал с древесным углем и прокаливал:

2Sb2O3 + 3C = 4Sb + 3CO2↑.

Василий Валентин применял соединения сурьмы «для очистки человеческого организма от вредоносных начал». Действие своих «лекарств» он испытывал на монахах бенедиктинского ордена, и некоторые монахи, приняв снадобье Валентина, умирали в муках. Отсюда пошло и другое название сурьмы — «антимониум», что означало «противомонашеский». В частности, в качестве рвотного средства Валентин применял вино, выдержанное некоторое время в чашах из сурьмы. Из сурьмы он готовил «вечные пилюли», которые после прохождения пищевого тракта монахов снова использовались для «врачевания».

Считают, что под псевдонимом «Василий Валентин» скрываются разные лица. В списках монахов ордена бенедиктинцев брат Василий Валентин никогда не числился.


4.25. СУРЬМА И КОСМЕТИКА

Русское название элемента № 51 сурьма (символ Sb) берет свое начало от турецкого слова «сюрме», что переводится как «натирание», «чернение бровей». Вплоть до XIX в. в России бытовало выражение «насурьмить брови», хотя «сурьмили» их далеко не всегда соединениями сурьмы. Только одно из соединений сурьмы — черный сульфид сурьмы Sb2S3 — применялось как краска для бровей и ресниц. Интересно, что в средневековых книгах сурьму обозначали фигурой волка с открытой пастью. Вероятно, такой «хищный» символ дали элементу за то, что сурьма при плавлении растворяет («пожирает») многие металлы, образуя с ними сплавы (см. 4.24).


4.26. «СВЕТОНОСЕЦ»

«Его огромная пасть… светилась голубоватым пламенем, глубоко сидящие дикие глаза были обведены огненными кругами. Я дотронулся до этой светящейся головы и, отняв руку, увидел, что мои пальцы тоже засветились в темноте. Фосфор — сказал я».

(А. Конан-Дойл. «Собака Баскервилей»)

В 1669 г. солдат-алхимик Хённиг Бранд (1630–1710) в поисках «философского камня» (см. 1.3) занялся упариванием человеческой мочи. Он собрал около тонны мочи из солдатских казарм и упаривал ее до тех пор, пока не получил небольшое количество тяжелой и красной жидкости. Эту жидкость Бранд нагревал до полного превращения ее в твердый остаток. Затем он смешал остаток с углем и стал прокаливать. Вскоре Бранд заметил появление в сосуде белой пыли, которая ярко светилась в темноте. Так впервые было получено новое простое вещество — белый фосфор P4.

Название «фосфор» в переводе с греческого означает «светоносец». Моча содержит ортофосфат натрия Na3PO4, карбамид (NH2)2CO и мочевую кислоту H4N4C5O3. Последние два вещества при прокаливании разлагаются на углерод, его диоксид и воду, аммиак NH3 и азот. Углерод восстанавливает ортофосфат натрия до парообразного фосфора P2:

4Na3PO4 + 10C = 2P2↑ + 6Na2O + 10CO↑.

При конденсации пара фосфора образуется белый фосфор, медленное окисление которого на воздухе вызывает зеленоватое свечение, связанное с выделением световой энергии (см. 5.72; 5.88; 6.13, 6.14; 6.42; 9.4).

До 1737 г. получение белого фосфора оставалось секретом алхимиков, которые считали, что ими открыт «философский камень». Они пытались при помощи фосфора превращать металлы в золото, но только наблюдали вспышки и взрывы этого вещества, получали ожоги и другие травмы. Фосфор не открывал своих секретов. Только работы Либиха (см. 2.17) вскрыли тайну фосфора. Его кислородные соединения — фосфаты — стали незаменимыми для повышения урожайности сельскохозяйственных культур, фосфор оказался элементом жизни человека.


4.27. ЭЛЕМЕНТ БОГИНИ ВЕСНЫ И КРАСОТЫ

«Я был настоящим ослом, что проглядел новый элемент в руде, и прав был Берцелиус, когда смеялся над тем, как неудачно и слабо, без упорства, стучался я во дворец богини Ванадис».

(Из письма немецкого химика Вёлера, 1831 г.)

В начале 1830 г. Вёлер (см. 2.18) подверг анализу неизвестный по составу минерал, привезенный ему из Мексики. Он обнаружил в минерале присутствие нового химического элемента. Из-за болезни Вёлеру пришлось прервать исследование минерала. Образец минерала и результаты неоконченного анализа он направил своему другу шведскому химику Берцелиусу (см. 2.19), отметив признаки нового элемента вопросительным знаком.

В конце 1830 г. профессор Горного института в Стокгольме Нильс-Габриэль Сефстрём (1787–1845) открыл в шлаке, полученном при выплавке чугуна из железной руды, новый химический элемент, названный ванадием по имени древнескандинавской богини красоты Ванадис. Элементу присвоили символ V.

Когда Берцелиус провел полный анализ присланного ему Вёлером минерала, то оказалось, что неизвестный элемент, отмеченный вопросительным, знаком, является ванадием. Опубликованное Сефстрёмом описание свойств ванадия совпало со свойствами неизвестного элемента, записанными в лабораторный журнал Вёлером. Берцелиус так сообщил об этом Вёлеру: «Однажды, когда Ванадис отдыхала, кто-то постучался к ней в дверь. Усталая богиня решила подождать, не повторится ли стук снова, но повторения не было. Любопытство взяло верх, и богиня, подбежав к окну, увидела Фридриха Вёлера, удаляющегося в раздумье от ее двери. Через некоторое время ее снова побеспокоил стук в дверь, который настойчиво повторялся, пока она, наконец, не отворила дверь. На пороге стоял Нильс Сефстрём. Они полюбили друг друга, и у них вскоре появился сын, которого они назвали Ванадием».

В действительности ванадий был открыт еще раньше, в 1801 г. мексиканским химиком-минералогом Андреасом-Мануэлем дель Рио (1764–1849) в том же минерале, который анализировал Вёлер. Рио даже получил оксиды и соли неизвестного ему химического элемента, названного им эритронием, что в переводе с греческого означает красный. Соли эритрония становились красными при нагревании и действии кислот. Однако дель Рио усомнился в правильности своих анализов и сделал вывод, что эритроний не новый химический элемент, а оксид хрома. В 1831 г. Вёлер доказал, что эритроний и ванадий — один и тот же химический элемент. Тем не менее приоритет открытия ванадия остался за Сефстрёмом. Минерал же, присланный Вёлеру и впервые проанализированный дель Рио, был назван ванадинитом. Его состав Pb5(VO4)3Cl. Это хлорид-ортованадат пентасвинца.

Металлический ванадий удалось получить только в 1869 г. английскому химику, президенту Лондонского химического общества Генри Энфилду Роско (1833–1915) при действии водорода на нагретый трихлорид ванадия VCl3:

2VCl3 + 3Н2 = 2V↓ + 6НСl↑.

В чистом виде ванадий — ковкий металл, в полтора раза легче железа, плавящийся при 1900° С.


4.28. ЗАГАДОЧНЫЙ МЕДИКАМЕНТ

Немецкий врач Ролов однажды ревизовал аптеки г. Хильдесхаймера и в одной из них обнаружил оксид цинка ZnO не белого цвета, а бледно-коричневого. Заподозрив, что препарат содержит мышьяк As, Ролов провел его анализ. Он превратил оксид цинка в хлорид действием хлороводородной кислоты НСl:

ZnO + 2HCl = ZnCl2 + H2O,

а затем через олученный раствор хлорида цинка ZnCl2 пропустил сероводород H2S:

ZnCl2 + H2S = ZnSi + 2НСl.

Ролов увидел образование не белого сульфида цинка ZnS, а осадка бледно-желтого цвета. Желтый цвет характерен для сульфида мышьяка As2S3. Продажа оксида цинка была запрещена. Владелец фабрики, выпускавшей этот препарат, опротестовал решение Ролова и направил образцы продукции генеральному инспектору аптек провинции Ганновер профессору химии Фридриху Штромейеру (1776–1835). Проведя в 1817 г. полный анализ оксида цинка, Штромейер обнаружил в нем новый элемент, который назвал кадмием (символ Cd).

Слово «кадмий» по одной из легенд происходит от имени финикийца Кадма, который будто бы первым нашел цинковую руду и обнаружил ее способность придавать меди при ее плавке золотистый цвет. Напомним, что сплав меди с цинком — латунь — имеет такой цвет. По другой легенде герой древнегреческой мифологии Кадм победил Дракона и в его владениях построил крепость Кадмею, вокруг которой затем вырос семивратный город Фивы.

Ролов был близок к открытию нового элемента. Желтая нацветка сульфида цинка, выделенного им, была вызвана не присутствием сульфида мышьяка, как он думал, а примесью сульфида нового химического элемента кадмия CdS, имеющего также желтый цвет. Коричневый же оттенок оксида цинка всегда появляется при загрязнении этого вещества примесью оксида кадмия CdO (см. 7.40). Ролов пытался оспаривать приоритет Штромейера в открытии кадмия, но его претензии были отвергнуты химиками того времени.


4.29. КАКОМУ ЭЛЕМЕНТУ НЕ БЫЛО МЕСТА В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ?

Это элемент аргон Ar, самый распространенный на Земле элемент из группы благородных (инертных) газов. В земной атмосфере содержание аргона достигает 1,3%.

Присутствие неизвестного газа в воздухе первым установил английский химик Кавендиш (см. 2.3). Он удалил химическим способом из сосуда с воздухом весь азот и весь кислород, а оставшийся газ не мог связать никаким химическим элементом. Что это был за газ, Кавендишу выяснить не удалось.

В 1892 г. директор Кавендишской лаборатории в Кембридже, физик Джон-Уильям Стратт, лорд Рэлей (1842–1919) снова обнаружил присутствие неизвестного газа в азоте воздуха: азот воздуха был тяжелее, чем азот, выделенный из его соединений. Английский химик Рамзай (см. 2.27), ознакомившись с сообщением Рэлея, удалил из воздуха кислород многократным пропусканием его над раскаленной медью:

2Cu + O2 = 2CuO.

Оставшийся азот Рамзай заставил проходить много раз над нагретой магниевой стружкой:

3Mg + N2 = Mg3N2.

Так как азот взаимодействует с магнием Mg с образованием нитрида Mg3N2, то после этой реакции не должно оставаться во взятом объеме воздуха никакого газа. Тем не менее у Рамзая из 100 л атмосферного азота остался 921 мл неизвестного газа, более инертного, чем азот. В 1894 г. Рэлей и Рамзай выступили с публичным сообщением об открытии ими в воздухе нового газа, нового химического элемента. Элементу дали имя аргон, которое в переводе с греческого означает бездеятельный, ленивый.


4.30. СЕКРЕТ РЭЛЕЯ И РАМЗАЯ

Американский миллионер Годкинс оставил завещание, согласно которому за наиболее важные открытия, связанные с исследованиями атмосферы, был установлен приз в размере 10 000 долларов. В завещании было сказано, чтобы предварительные публикации исключались, а рукопись об открытии в единственном экземпляре должна была быть представлена призовому комитету.

Поэтому Рэлей и Рамзай старались точно установить природу аргона. Они боялись, что этот газ — не новый элемент, а одна из модификаций азота (см. 4.33).


4.31. САМЫЙ РЕДКИЙ И САМЫЙ ТЯЖЕЛЫЙ РАДИОАКТИВНЫЙ ГАЗ

Этот газ — радон Rn, входящий в VIIIA группу благородных газов (инертных) Периодической системы химических элементов. Радон — бесцветный газ, один литр которого имеет массу 10 г. При -62° C и атмосферном давлении он превращается в бесцветную жидкость, флуоресцирующую ярким голубым или фиолетовым светом. Около -71° C радон становится твердым непрозрачным веществом, излучающим голубое сияние. Радон — ядовитый газ, вдобавок он опасен своей радиоактивностью (см. 7.56). Впервые открыл этот элемент английский физик Э. Резерфорд (см. 4.4) в 1900 г., назвавший его эманацией (производное от латинского слова «истечение»). В ходе одного из опытов Резерфорд отобрал из пробирки, где был бромид радия RaBr2, часть воздуха и исследовал его. Результат оказался неожиданным: воздух испускал α-частицы. В воздухе содержалась примесь газа радона, образовавшегося при радиоактивном распаде радия Ra. Было найдено, что в запаянной ампуле с радием образуется 0,65 мм3 радона на 1 г радия, а дальше его количество не растет. Образование радона приходит в равновесие с радиоактивным распадом радия.

Название «радон» дал газу английский физик Дорн в 1900 г. Слово «радон» является производным от слова «радий». Радон образуется при радиоактивном распаде не только радия, но и урана U, тория Th, актиния Ac и других радиоактивных элементов. Поэтому раньше называли радон тороном, актиноном и нитоном.

Радон в небольших концентрациях содержится во всех минеральных водах. Некоторые из них называют радоновыми.


4.32. СОЛНЕЧНЫЙ ЭЛЕМЕНТ

Какой химический элемент был сначала открыт на Солнце и лишь затем на Земле?

Этим элементом был гелий He, редкий и рассеянный газ, химически наиболее инертное вещество, газ, второй по легкости после водорода, наилучший среди газов проводник электричества.

В 1868 г. французский астроном Жюль Жансен и английский астроном Норман Локьер наблюдали солнечное затмение: Жансен — в Индии, а Локьер — в Англии. Используя спектроскоп, они одновременно обнаружили в спектре солнечной короны яркую желтую линию, положение которой не совпадало с положением желтой линии в спектре натрия. Жансен и Локьер поняли, что эта линия принадлежит новому элементу. Их письма об открытии были зачитаны одно за другим на заседании Парижской академии наук. Локьер предложил назвать новый элемент гелием. Гелиос по-гречески означает Солнце.


4.33. ОБИДА РЭЛЕЯ

«Я хочу вернуться обратно от химии к физике. Человек второго сорта, по-видимому, лучше знает свое место». C чем связаны эти горькие слова лорда Рэлея, одного из первооткрывателей аргона?

Рэлей и Рамзай после открытия ими нового химического элемента аргона Ar (см. 4.29) подверглись необоснованной критике со стороны ряда химиков, которые не могли поверить, что аргон действительно новый химический элемент, одноатомный газ с относительной атомной массой, равной 40, большей, чем атомная масса следующего за ним элемента калия К. Между элементом хлором Cl и калием К для аргона не было места в Периодической системе (см. 4.29). Даже Менделеев сказал, что относительную атомную массу аргона нельзя совместить с периодической классификацией, что, видимо, аргон — аллотропная форма азота, устойчивый трехатомный азот N3. Французский химик Бертло (см. 2.42) сообщил, что присланные ему Рамзаем образцы аргона взаимодействуют с парами бензола. Рамзай пытался повторить опыты Бертло, но безуспешно. Рэлей, естественно, не мог согласиться с утверждением Менделеева и сообщением Бертло. Отсюда и появилось приведенное выше его высказывание.


4.34. ГАЛОГЕНЫ, СОЛЕРОДЫ ИЛИ ГАЛОИДЫ?

В 1811 г. редактор одного немецкого химического журнала И.-К. Швейгер (1779–1857) предложил элемент хлор называть галогеном, произведя это слово от греческих слов «соль» и «рождаю», так как было известно соединение хлора с натрием — поваренная соль NaCl. Для соединений же хлора с неметаллами Швейгер предложил общее название галоиды, что в переводе с греческого означало «похожий на соль».

C легкой руки Швейгера фтор F, бром Br и иод I также стали называть в Европе галогенами, и это название превратилось в групповое. В России академик Герман Иванович Гесс (1812–1850), один из основоположников термохимии, ввел в 1831 г. в употребление вместо слова «галогены» его русский перевод — «солероды». Групповое название элементов от фтора до иода «солероды» сохранилось в России до 1870 г. Но параллельно со словом «солероды» стали применять по непонятным причинам как синоним этого слова совершенно бессмысленное слово «галоиды», забыв, что в переводе это слово означает «похожий на соль». Разве хлор или бром похожи на соль? Тем не менее это «мусорное» слово употребляют до сих пор.

Номенклатурная комиссия ИЮПАК с 1957 г. закрепила за элементами VIIA группы Периодической системы только одно групповое название — галогены.


4.35. «НЕЧИСТЫЙ ГАС»

Впервые азот получили почти одновременно два химика: швед Шееле (см. 2.7) и англичанин Кавендиш (см. 2.3) в 1772 г., пропуская воздух через раскаленный уголь, а затем через водный раствор гидроксида натрия NaOH:

C + O2 = CO2, NaOH + CO2 = NaHCO3.

Уголь связывал кислород воздуха в диоксид углерода CO2, который поглощался раствором гидроксида натрия с образованием гидрокарбоната натрия NaHCO3. В оставшемся газе гасла горящая лучина, это был азот, не принимавший участия в приведенных выше реакциях.

Оба химика своевременно не опубликовали результаты своих исследований. В том же 1772 г. шотландский химик, ботаник и врач Даниэль Резерфорд (1749–1819) написал в своей диссертации «О так называемом фиксируемом и мофитическом воздухе» о получении и некоторых свойствах азота. Слово «мофитический» означало «испорченный». Резерфорду и была приписана честь открытия азота {см. 4.20).

В России ни один элемент не имел в XVIII–XIX вв. столь многочисленных названий, как азот: нечистый гас, удушливый гас, септон, мофитический воздух, огорюченный воздух, селитрород, гнилотвор, смертельный гас, нитроген, испорченный воздух и др. В это же время применяли и название азот, которое и закрепилось постепенно в химической литературе.


4.36. ТРИЖДЫ ОТКРЫТЫЙ ЭЛЕМЕНТ

Кислород впервые получили многие химики, не зная, правда, что это за газ. За кем же закрепили приоритет его открытия?

C кислородом химики сталкивались давно, но установить природу газа им не удавалось. Полагают, что первым кислород получил голландский алхимик-технолог Корнелиус-Якобсон Дреббел (1572–1633) нагреванием нитрата калия:

2KNO3 = 2KNO2(ж.) + O2↑.

Дреббел установил, что в кислороде, который он назвал «воздухом», вспыхивает тлеющий уголь, а человек спокойно дышит. В 1615 г. он построил первое подводное судно, наполнил его кислородом и вместе с двенадцатью мужчинами опустил на дно Темзы около Лондона на три часа. Предполагают, что в подводном судне находился и король Англии Джеймс I. В 1665 г. ассистент Бойля (см. 2.4), английский физик Роберт Гук (1635–1703) в книге «Микрография» писал, что воздух состоит из газа, который находится в селитре (нитрате калия KNO3), и большого количества какого-то инертного газа. Позднее, в 1678 г. датский химик Оле Борх снова установил, что при нагревании селитры действительно выделяется газ, з котором вспыхивает тлеющий уголь. В 1721 г. священник Стефен Гейле (1667–1761), повторив опыт Борха, собрал этот газ над водой, но принял его за очищенный воздух.

В 1772 г. Шееле (см. 2.7) выделил кислород, используя реакцию взаимодействия диоксида марганца MnO2 с серной кислотой:

2MnО2 + 2H2SO4 = 2MnSO4 + 2Н2O + O2↑.

Полученный газ Шееле назвал «огненным воздухом». Через два года английский священник Пристли (см. 2.11), ничего не зная о работах своих предшественников, снова открыл кислород, нагревая оксид ртути:

2HgO = 2Hg + O2↑.

В полученном газе ярко вспыхивала тлеющая лучинка, горела железная проволока, рассыпая искры. Полученный им газ Пристли назвал «дефлогистированным воздухом». Приоритет открытия кислорода был закреплен за Шееле и Пристли.

В том же 1774 г. Лавуазье (см. 2.28), проводя опыты с нагреванием оксида ртути и горением фосфора, пришел к выводу, что в воздухе находится газ, поддерживающий горение (см. 1.43). Сначала он назвал его «жизненным газом», но впоследствии дал газу название «кислотообразующий принцип», или «оксиген». Последнее название в России постепенно трансформировалось в слова «кислород» и «кислотвор». Закрепилось в химической литературе только первое слово.


4.37. ЖЕЛТО-ЗЕЛЕНЫЙ ГАЗ

Шведский химик Шееле так описал один свой опыт, выполненный в 1774 г.: «Я поместил смесь черной магнезии с муриевой кислотой в реторту, к горлышку которой присоединил пузырь, лишенный воздуха, и поставил ее на песчаную баню. Пузырь наполнился газом, окрасившим его в желтый цвет… Газ имел желто-зеленый цвет, пронзительный запах».

Газ, полученный Шееле (см. 2.7) — хлор Cl2. Шееле оказался первооткрывателем химического элемента хлора.

Черная магнезия — минерал пиролюзит MnO2 (см. 3.44), химическое название которого — диоксид марганца. «Муриевой кислотой» в то время называли хлороводородную кислоту HCl (см. 1.52; 3.12). Реакцию, о которой сообщил Шееле, записывают сейчас так:

MnO2 + MHCl = Cl2↑ + MnCl2 + 2Н2O.

Полученный газ Шееле назвал «дефлогистированной муриевой кислотой». Только в 1812 г. французский химик Гей-Люссак (см. 1.45) дал этому газу современное название — хлор, что в переводе с греческого означает желто-зеленый.

В России в XIX в. хлор называли по-всякому: солетвор, солерод, хлорин, солеперекислый гас, обезгорюченная соляная кислота и т. п.


4.38. ЭЛЕМЕНТ, ОТКРЫТЫЙ СТУДЕНТОМ?

Считают, что бром — единственный жидкий неметалл — впервые получил в 1825 г. студент Гейдельбергского университета в Германии Карл Левиг (1803–1890), работавший под руководством химика Леопольда Гмелина (1788–1853). При действии хлора на воду одного из минеральных источников Левиг получил жидкость желтого цвета. Он извлек этиловым эфиром (C2H5)2O вещество, придававшее жидкости желтый цвет, отогнал эфир и выделил жидкое вещество красно-бурого цвета с резким неприятным запахом. Его руководитель посоветовал ему получить побольше нового вещества. Пока студент приготовлял для исследования достаточное количество неизвестного вещества, появилось сообщение Антуана-Жерома Балара (1802–1876), двадцатичетырехлетнего лаборанта профессора химии Ж. Ангада, о получении им нового простого вещества. Балар изучал маточные рассолы южных соленых болот Франции. Во время одного из опытов, когда он подействовал на рассол хлором, он заметил появление весьма интенсивной желтой окраски. Балар установил, что она была вызвана реакцией взаимодействия содержащегося в рассоле бромида натрия с хлором:

2NaBr + Cl2 = Br2 + 2NaCl.

Через несколько лет интенсивной работы Балар выделил необходимое количество темно-бурой жидкости, названной им муридом. По совету Ангада он передал свою работу в Парижскую академию наук, где ее проверка была поручена двум профессорам химии: Гей-Люссаку (см. 1.45) и Тенару (см. 1.45). Они подтвердили открытие Баларом нового простого вещества, но нашли название неудачным и предложили свое — «бром», что в переводе с греческого означало зловонный.

В том же 1326 г. немецкий химик Либих (см. 2.17) получил также бурую жидкость, но принял ее за монохлорид иода ICl. Через месяц Либих узнал об открытии Балара и был, как и студент Левиг, страшно огорчен. Позднее Либих с несправедливой едкостью говорил, что не Балар открыл бром, а бром открыл Балара. Но с этого времени Либих зарекся делать выводы без достаточных экспериментальных данных.


4.39. ТВЕРДЫЙ ГАЛОГЕН

«В маточном растворе щелока, полученного из водорослей, содержится достаточно большое количество необычного и любопытного вещества… Новое вещество превращается при нагревании в пары великолепного фиолетового цвета».

(Из статьи французского химика Куртуа)

Этим веществом был иод I2. В 1811 г. французский химик-технолог и фармацевт Бернар Куртуа (1777–1838), изучая состав золы морских водорослей (см. 1.58), заметил, что медный котел, в котором выпаривались зольные растворы, разрушается слишком быстро. Куртуа начал исследовать свойства таких растворов и однажды (см. 9.8) обнаружил, что при добавлении к ним серной кислоты H2SO4 происходит выделение фиолетового пара неизвестного вещества:

2NaI + 2H2SO4 = I2↑ + SO2↑ + Na2SO4 + 2Н2O.

Куртуа опубликовал свои наблюдения, но природу выделенного им вещества не установил (см. 9.8). Только в 1813 г. другой французский химик Гей-Люссак (см. 1.45) доказал, что вещество Куртуа сходно с хлором и принадлежит к группе галогенов (см. 4.34). Он дал ему имя «иод», что в переводе с греческого означает фиолетовый, темно-синий (см. 1.58). Гей-Люссак синтезировал впоследствии многие производные иода: иодоводород HI, монохлорид иода ICl, пентаоксид дииода I2O5, триоксоиодат водорода HIO3 и др.


4.40. НЕУСТОЙЧИВЫЙ АНАЛОГ ИОДА

Возможность существования элемента № 85 было предсказано Менделеевым, давшим ему имя «экаиод». Элемент оказался неуловимым. В 30–40-е годы нашего столетия появилось несколько сообщений об открытии этого элемента, но каждый раз открытия оказывались ложными. Поэтому одно название элемента сменялось другим. То это был «дакин» — от названия древней страны даков, современников готтов в Средневековой Европе; то «алабамий» — по имени штата Алабама в США; то «гельвеций» — в честь старинного имени Швейцарии; то «лептин» — в переводе с греческого — слабый, шаткий.

Астат был открыт только в 1940 г. итальянским физиком Эмилио-Джино Cerpe (р. 1905 г.) вместе с американскими физиками Д. Корсоном (р. 1914 г.) и К. Мак-Кензи (р. 1912 г.). Они использовали для получения астата ядерную реакцию, в которой ядра висмута Bi подвергались бомбардировке ядрами гелия Не:

20983Bi + 42He = 21185At + 2(10n).

Свое название элемент № 85 получил позднее, в 1947 г. В переводе с греческого «астатос» означает неустойчивый. Самый долгоживущий изотоп (см. 4.60) астата имеет период полураспада всего 8,3 ч.

В земной коре в каждый данный момент времени находится не более 30 г астата. Он образуется при радиоактивном распаде атомов полония Po, урана U и тория Th. Химическим путем природный астат удалось выделить американским радиохимикам Э. Хайду и А. Гиорсо из продуктов радиоактивного распада атомов редкого щелочного элемента франция Fr.


4.41. «МАЗУРИЙ» — ЭТО ОШИБКА

«Во время войны В. Ноддак был назначен оккупационными властями профессором неорганической химии в Страсбурге. Когда в 1945 г. вернулись французские химики, они обнаружили символ «Ma» в «крупном изображении Периодической системы, нарисованной на стене главной химической аудитории».

(Из воспоминаний Панета, 1947 г.)

Речь идет о ложно открытом немецкими химиками, супругами Ноддак, элементе, названном ими мазурием, символ «Ма». Они считали, что открыли элемент № 43, экамарганец, существование которого было предсказано Менделеевым. Еще до Ноддаков в 1908 г. японский химик М. Огава сообщил, что ему удалось в минерале молибдените MoS2, сульфиде молибдена, открыть элемент № 43, который он назвал ниппонием. Через несколько лет выяснилось, что Огава открыл не новый, а один из известных элементов.

В 1925 г. супруги Ноддак и Берг известили европейских химиков о том, что ими открыт элемент № 43 в уральской самородной платине (см. 10.14). Они поспешили назвать элемент мазурием Ma. (Напомним, что в 1914 г. русская армия генерала Самсонова была полностью разбита и окружена в районе Мазурских болот.)

Несмотря на то что Ноддакам так и не удалось представить весомых доказательств этого открытия, они никогда не испытывали сомнений в своей правоте. Даже в 1969 г. Ида Ноддак выражала надежду, что открытие мазурия еще может подтвердиться (см. 4.42).

Примечание: Фридрих-Адольф Панет (1887–1958) — немецкий химик, директор Химического института Макса Планка в Майнце. Вальтер-Карл-Фридрих Ноддак (1893–1960) — немецкий физикохимик, директор Института геохимии в Бамберге. Ида Ноддак-Таке (1896–1978) — немецкий физикохимик, супруга Вальтера


4.42. КАК БЫЛ ОТКРЫТ ЭЛЕМЕНТ № 43?

В 1937 г. американский физик Эрнст Лоуренс (1901–1958) на циклотроне Калифорнийского университета в Беркли подверг длительному облучению дейтронами D ≡ 21Н (см. 4.15) молибденовую пластинку. Молибден Mo — сосед элемента № 43 по Периодической системе. В результате облучения прошла ядерная реакция:

A42Mo + 21Н = A43 + 1Tc + 10n.

Лоуренс передал облученную пластинку, обладающую сильной радиоактивностью, итальянцам: химику Карло Перье (1886–1948) и физику Сегре (см. 4.40) для дальнейшего исследования. Перье и Сегре обнаружили в молибденовой пластинке атомы нового химического элемента в количестве около 10-10 г. Они назвали элемент технецием Tc, что в переводе с греческого означает искусственный. Все изотопы (см. 4.60) технеция оказались радиоактивными.

В 1940 г. Сегре и его ассистентка By Цзянь-сюн обнаружили, что изотоп технеция-99 присутствует в продуктах деления урана в результате облучения его нейтронами.

В земной коре Tc практически нет, и поэтому поиски Ноддаков (см. 4.41) были бесплодны (см. 4.5). Технеций присутствует в исчезающе малых количествах только в продуктах радиоактивного распада других элементов. Так, при спонтанном делении урана-238 образуется около 6% Тс-99. Отсюда следует, что в 20-километровой толще земной коры находится всего 1,5 кг Tc. Основным источником получения Tc являются тепловые элементы атомных электростанций. При 50%-м «выгорании» 1 кг урана-235 образуется около 0,6% Тс-99. При получении в ядерном реакторе 10 кг плутония Pu появляется 140 г Тс. Поэтому ядерные реакторы стали «фабриками» по производству технеция.


4.43. КТО ЖЕ ОТКРЫЛ РЕНИЙ?

В 1846 г. появилось сообщение химика-неорганика Иосифа Рудольфовича Германна (1805–1879) об открытии им элемента, названного ильмением, в минерале ильмените (Fe,Ti)O3, триоксиде титана-железа. Герман привел ряд доказательств индивидуальной природы выделенного им нового металла ильмения. Однако все они были отвергнуты немецким химиком Г. Розе (см. 2.43) и швейцарским химиком Шарлем Галиссаром де Мариньяком (1817–1894).

Спустя тридцать лет С. Ф. Керн сообщил об открытии им в природной платине, привезенной с острова Борнео, нового химического элемента, названного дэвием. Дэвий по свойствам напоминал предсказанный Менделеевым элемент № 75. Некоторые химики воспроизвели опыты Керна и в основном их подтвердили.

Керн отправил выделенный им металл дэвий в Парижскую академию наук. Опыты Керна были воспроизведены английским химиком В.Р. Ходжкинсоном и некоторыми немецкими химиками. Тем не менее Керн не получил никакого ответа от Парижской академии наук и бороться за приоритет своего открытия не стал.

Ноддак (см. 4.41), его лаборантка Ида Таке (см. 4.41), ставшая впоследствии женой Ноддака, и спектроскопист фирмы «Сименс и Хальске» О. Берг, не зная ничего о работах Германа и Керна, снова открыли в 1928 г. элемент № 75 в минерале молибдените (дисульфиде молибдена MoS2), выделив около 120 мг нового металла. Приоритет открытия этого элемента остался за Ноддаками и Бергом, которые назвали его рением в честь Рейнской провинции, родины И. Таке.

Супругам Ноддак и Бергу пришлось неоднократно доказывать, что они действительно открыли новый химический элемент. Они явно поспешили назвать дату своего открытия (1925 г.) и указать, что элемент № 75 они обнаружили в уральской самородной платине и минерале колумбите, двойном оксиде ниобия Nb, тантала Та, железа Fe и марганца Mn, состава (Fe, Mn)(Nb, Ta)2O6.

Русский химик Орест Евгеньевич Звягинцев (1898–1967) в том же 1925 г., проведя тщательный анализ самородной платины, никакого нового элемента не обнаружил. Свои ошибки затем признали и Ноддаки. Попытки немецкого химика В. Прандтля воспроизвести эксперименты супругов Ноддак и Берга по обнаружению рения в минерале колумбите также не имели успеха. Дата открытия рения оказалась ложной. В течение 1925–1927 гг. Нодцакам так и не удалось выделить рений ни из платины, ни из колумбита. Только в 1928 г., как отмечалось выше, они смогли выделить рений из молибденита. Совершенно независимо от Ноддаков и Берга в 1925 г. рений открыли чешские химики И. Друце, Я. Гейровский и В. Долейжек, умерший в 1945 г. в концентрационном лагере в Терезине, а также английский химик Ф. Лоринг, погибший в 1944 г. при воздушном налете немецких бомбардировщиков на Лондон. И. Друце и Ф. Лоринг обнаружили элемент № 75 в минерале пиролюзите MnO2, а Я. Гейровский и В. Долейжек — в других соединениях марганца.

По-видимому, приоритет в открытии рения не должен принадлежать только немецким химикам. Его по праву разделили русские, чешские и английские химики. Рений был последним стабильным химическим элементом, найденным в природе.


4.44. ОБМАНЩИК «НИКОЛАУС»

Почему элемент никель получил столь странное название? «Никкел» — ругательное слово на языке немецких металлургов. Оно образовалось от слова «николаус», которым называли двуличных людей, бездельников и обманщиков.

Никель входит в состав минерала никелина NiAs, арсенида никеля, имеющего медно-красный цвет. Минерал напоминает по внешнему виду и цвету самородную медь и некоторые медные руды типа куприта Cu2O. Металлурги Саксонии принимали никелин за медную руду и не могли, естественно, выплавить из него медь Си. Они считали, что гном Старый Ник нарочно им подсовывал этот минерал. Поэтому в конце XVII в. минерал никелин получил название «купфер-никель», что означало — «дьявольская руда».

В 1751 г. никелин исследовал шведский химик-аналитик Ак- сель-Фредерик Кронстедт (1722–1765). Он получил из минерала зеленый оксид никеля NiO, а затем, восстанавливая оксид водородом H2, выделил никель в виде металла:

NiO + H2 = Ni + H2O.

Так был открыт новый химический элемент никель Ni, в названии которого сохранилось бранное слово немецких металлургов. Кронстедт умер, так и не дождавшись признания своего открытия. В России в начале XIX в. элемент № 28 называли «николан» и «николь».


4.45. ЦАРИЦА ЭЛЬФОВ И ТИТАН

В 1791 г. английский священник Уильям Грегор (1761–1817) нашел около своего прихода в Корнуэлле странный песок черного цвета с металлическим блеском. Как впоследствии выяснилось, это был минерал ильменит (Fe,Ti)O3, триоксид титана железа.

Грегор был химиком-любителем, и он сразу же принялся за исследование необычного песка. Сначала он обработал его хлороводородной кислотой HCl и обнаружил в полученном растворе присутствие железа в виде дихлорида FeCl2:

(Fe, Ti)O3 + 2HCl = FeCl2 + TiO2↓ + H2O.

На остаток красно-бурого цвета TiO2 Грегор подействовал нагретой концентрированной серной кислотой H2SO4 и получил раствор какого-то вещества:

TiO2 + H2SO4 = TiO(SO4) + H2O.

Он посчитал, что им открыт новый химический элемент, который и назвал менаканитом по имени села Менакан, около которого был найден минерал. Грегор доказывал, что в последней реакции им получен сульфат менаканита. На самом деле в растворе находился сульфат оксотитана TiO(SO4).

В 1795 г. немецкий химик-аналитик Клапрот решил исследовать состав драгоценного камня, известного под названием «красный венгерский шерл». Клапрот обнаружил, что камень является оксидом неизвестного элемента, которому он дал имя «титан» в честь Титании, царицы эльфов, духов природы, легких воздушных существ в человеческом облике, благожелательных к людям.

Выделить новый элемент из оксида Клапрот не смог. Приоритет открытия титана закрепили за Клапротом, хотя он, как и Грегор, новый элемент в виде простого вещества не выделил.

Металлический титан был получен впервые только в 1825 г. шведским химиком Берцелиусом (см. 2.19) восстановлением синтезированного им из «красного венгерского шерла» гексафторотита- ната калия K2[TiF6] натрием Na:

K2[TiF6] + 4Na = Ti + 4NaF + 2KF.

4.46. МЕТАЛЛ ИМЕНИ РОССИИ

«… Изучая платину для выделения из нее металлов, ранее открытых англичанами, я натолкнулся на еще один новый металл, который назвал вестием по планете Веста».

(Из письма Снядецкого, 1808)

Енджей Снядецкий (1768–1838) — польский химик и врач из Вильно — проанализировал около 400 г платиновой руды, привезенной из Южной Америки, и обнаружил, что кроме платины Pt, палладия Pd, родия Rh, иридия Ir и осмия Os руда содержала еще один металл, более легкий, чем платина, но такой же тугоплавкий и химически инертный. Новый металл взаимодействовал только с «царской водкой» (см. 3.13). Снядецкий назвал его «вестием» по имени астероида Веста, который в то время считали новой планетой. Снядецкий опубликовал свое открытие в ряде журналов, в частности в «Мемуарах Петербургской академии наук» в 1810 г. Никто из русских химиков не высказал сомнений в открытии Снядецкого, но и не поддержал его. Французские же химики не нашли вестия в образцах той же руды. На их критику Снядецкий не ответил, и открытие было предано забвению.

В 1844 г. профессор химии Казанского университета Клаус (см. 252), исследуя уральскую платиновую руду и платиновые отходы Петербургского монетного двора, вновь выделяет металл, открытый ранее Снядецким, и дает ему название «рутений» Ru (от старого латинского слова «Рутения» — Россия). Клаус вел обширную дискуссию с критиками его открытия, прежде всего с французскими химиками и Берцелиусом (см. 2.19). В конце концов он доказал, что выделенный им металл действительно представляет собой новый химический элемент (см. 4.1). Приоритет в открытии рутения остался за Клаусом.


4.47. «ПЛУРАН» ИЛИ «ПОЛИН»?

Клаус использовал название «рутений» для открытого им химического элемента, предложенное еще в 1828 г. Озанном. Готфрид Озанн (1796–1866), немецкий профессор химии и физики, одно время работал в Тартуском университете (Эстония), где он занимался исследованием уральской платиновой руды, и, как он считал, открыл в ней три новых металла, названных им рутением, плураном (от слов «платина» и «Урал») и полином (от греческого слова «полное» — серый). Шведский химик Берцелиус, проверив анализы Озанна, признал их ошибочными. Озанн согласился с мнением Берцелиуса и позторных анализов больше не производил. Однако, узнав об открытии рутения, Озанн предъявил претензии на приоритет, полагая, что открытый Клаусом элемент — это тот «плуран», который ему не удалось повторно выделить. Но Клаус объяснил Озанну, что плуран не новый металл, а оксид рутения Ru2O3, загрязненный различными примесями. Дальнейших возражений со стороны Озанна не последовало.


4.48. САМЫЙ ТЯЖЕЛЫЙ И «АРОМАТНЫЙ» МЕТАЛЛ

Французские химики Луи-Никола Воклен (1763–1829) и Фуркруа не раз замечали, что при действии на природную платину смеси азотной HNO3 и хлороводородной HCl кислот выделяется черный дым. Они решили, что ими открыт новый химический элемент, и дали ему имя «птен», что по-гречески означает крылатый, летучий. Вскоре, в 1804 г., английский профессор химии Смитсон Теннант (1761–1815) сумел разделить «птен» на два разных металла. Один он назвал иридием Ir — за разнообразие цветов его солей, а другой — осмием Os, поскольку его тетраоксид OsO4, выделяющийся при действии на металл смеси кислот, имел раздражающий запах, похожий одновременно на запахи хлора и подгнившей редьки. Порошок осмия, окисляясь на воздухе до OsO4, также издает подобный «аромат». Пары OsO4 ядовиты, они поражают глаза и легкие.

Русский химик Клаус (см. 2.52) при работе с платиновыми отходами часто дышал воздухом, содержащим OsO4. Он повредил себе легкие и вынужден был лечиться на юге.

Среди всех простых веществ металл осмий имеет наибольшую плотность, равную 22,5 г/см3 — вдвое большую, чем свинец. Осмий обладает очень высокой твердостью и тугоплавкостью: его температура плавления около 3000° С. При 25° C «всеядный» фтор F2 на осмий не действует, но в парах серы S порошок осмия вспыхивает как спичка, превращаясь в сульфид OsS2.


4.49. МЕТАЛЛ — «ПОЖИРАТЕЛЬ ОЛОВА»

Слово «вольфрам» существовало задолго до открытия этого металла. Еще немецкий врач и металлург Георгиус Агрикола (1494–1555) называл вольфрамом некоторые минералы. Слово «вольфрам» имело много оттенков значения; оно, в частности, означало и «волчью слюну» и «волчью пену», т. е. пену у пасти разъяренною волка. Металлурги XIV–XVI вв. заметили, что при выплавке олова примесь какого-то минерала вызывает значительные потери металла, переводя его в «пену» — в шлак. Вредной примесью был минерал вольфрамит (Mn, Fe)WO4, похожий внешне на оловянную руду — касситерит (диоксид олова SnO2). Средневековые металлурги называли вольфрамит «вольфрамом» и говорили, что он «похищает олово и пожирает его, как волк овцу».

Впервые вольфрам получили испанские химики братья де Элуяр в 1783 г. Еще раньше — в 1781 г. — шведский химик Шееле (см. 2.7) выделил триоксид вольфрама WO3 из минерала состава CaWO4, впоследствии получившего название «шеелит». Поэтому одно время вольфрам называли шеелием.

В Англии, США и Франции вольфрам именуют иначе — тунгстен, что означает в переводе со шведского «тяжелый камень». В России в XIX в. вольфрам называли волчец. Температура плавления вольфрама примерно 3400° С.


4.50. «ПАРАДОКСАЛЬНОЕ ЗОЛОТО»

В XVIII в. в Трансильвании (Румыния) и Тироле (Германия) нашли новую золотосодержащую руду серого цвета, названную «белым», или «парадоксальным золотом». В 1782 г. горный инженер и директор горных приисков Ференц-Иожеф Мюллер (1740–1825) исследовал эту руду и выделил из нее хрупкое, похожее на сурьму серебристо-белое вещество с металлическим блеском, которое, как он полагал, было новым неизвестным металлом. Чтобы удостовериться в своем открытии, он послал пробу металла шведскому химику-аналитику Бергману (см. 3.5), который был в это время тяжело болен. Тем не менее Бергман провел анализ присланного образца и успел только установить, что он отличается по химическим свойствам от сурьмы. После смерти Бергмана никто новым металлом не заинтересовался; став бароном фон Рейхенштейном, забыл о нем и его первооткрыватель.

В 1786 г. венгерский профессор химии Китаибель, не зная ничего об исследованиях Мюллера и Бергмана, снова выделил из аналогичной руды золото и какой-то новый металл. Свои исследования он не опубликовал, но о них каким-то образом узнал немецкий химик-аналитик Юшпрот. Он провел обстоятельные исследования «парадоксального золота» и в 1798 г. выступил с сообщением перед Берлинской академией наук об открытии им нового элемента теллура Те, названного так в честь нашей планеты Земли. «Теллус» — латинское название древнеримской богини, матери Земли. «Парадоксальное» же золото оказалось теллуридом золота AuTe2.


4.51. «СЕРЕБРО» ИЗ ГЛИНЫ

«Профессор, я получил его!» — с таким криком вбежал к американскому химику Иветту в 1886 г. молодой инженер Холл, держа на протянутой ладони двенадцать маленьких шариков алюминия — первого алюминия, полученного электрохимическим методом.

Приоритет открытия алюминия Al, который одно время называли «серебром из глины», принадлежит датскому физику Гансу-Христиану Эрстеду (1777–1851), известному больше своими работами по электромагнетизму. Чтобы получить алюминий, Эрстед нагревал безводный хлорид алюминия с амальгамой натрия (раствором натрия в ртути):

AlCl3 + 3Na(Hg) = Al + 3NaCl + Hg.

Продукты реакции он обработал водой для растворения хлорида натрия NaCl, а из остатка, содержащего амальгаму алюминия, удалил нагреванием ртуть. Так в 1825 г. впервые был получен алюминий. Название «алюминиум» дал новому металлу английский химик Дэви (см. 2.44). «Алюмен» в переводе с латинского языка означает квасцы — сульфат калия-алюминия, — известные с давних времен и имеющие состав KAl(SO4)2∙12Н2O (см. 1,51; 3.21).

В 1827 г. немецкому химику Вёлеру (см. 2.18) также удалось выделить алюминий, используя реакцию восстановления гексафтороалюмината натрия металлическим калием:

Na3(AlF6) + 3К = Al + 3NaF + 3KF.

Алюминий в этом случае легко отделяется от фторидов калия KF и натрия NaF, хорошо растворимых в воде. Все это были лабораторные способы получения очень небольших количеств алюминия.

В 1845 г. два химика независимо друг от друга — немец Бунзен и француз Анри-Этьен Сент-Клер-Девилль (1818–1881) — разработали первый промышленный метод получения алюминия, основанный на восстановлении расплава тетрахлороалюмината натрия Na(AlCl4) натрием:

Na(AlCl4) + 3Na = Al + 4NaCl.

На Парижской всемирной выставке в 1855 г. демонстрировалось «серебро Девилля» — слиток алюминия ценой 2400 марок за 1 кг. Алюминий стоил дороже, чем золото и серебро.

Наполеон III (племянник Наполеона I), узнав об алюминии, задумал снабдить своих солдат нагрудниками и касками, сделанными из этого металла. По его приказу Сен-Клер-Девиллю были выделены большие средства для получения нужного количества алюминия. Однако Наполеону III пришлось ограничить свое желание изготовлением алюминиевых кирас только для небольшой группы его личной охраны. Способ Сен-Клер-Девилля все еще имел лабораторные масштабы.

Современный промышленный метод получения алюминия, основанный на электролизе расплава Na3(AlF6), был разработан молодыми инженерами французом Полем Эру (1863–1914) и американцем Чарльзом Холлом (1863–1914). Они почти одновременно выяснили, что метагидроксид алюминия AlO(OH) хорошо растворяется в расплаве Na3(AlF6). Расплав такого состава оказался наилучшим электролитом для электрохимического получения алюминия, и он используется до сих пор на всех алюминиевых заводах.

В России в XIX в. алюминий называли по-разному: глинистость, глиний, глинозем, квасец, алумий. К началу XX в. осталось только одно название — алюминий.


4.52. СТРАННОЕ ОБЪЯВЛЕНИЕ ВУЛЛАСТОНА. ФИАСКО ХИМИКА ЧЕНЕВИКСА

В 1803 г. в одной из лондонских газет появилось странное объявление, сообщавшее, что в магазине торговца минералами Форстера можно приобрести новый металл палладий, о котором еще не слышал ни один химик мира. Химик Ричард Ченевикс купил небольшой слиток этого металла с тем, чтобы после его анализа публично высмеять анонимного лжехимика, якобы открывшего новый металл. Ченевикс вскоре всем сообщил, что палладий не новый химический элемент, а всего-навсего сплав платины Pt с ртутью Hg. Однако другие химики-аналитики в металле, купленном у Форстера, не обнаружили ни платины, ни ртути. Уязвленный Ченевикс, оправдываясь, утверждал, что в сплаве платина настолько прочно связана с ртутью, что их разделить практически невозможно.

Но в 1804 г. на заседании Лондонского королевского общества (см. 1.6) его секретарь, а затем и президент, известный химик и врач Уильям-Хайд Вулластон (1766–1828) сообщил, что при анализе платины он обнаружил в ней новый химический элемент, названный им палладием Pd по имени недавно открытого в Солнечной системе астероида Паллада. Вулластон признался, что это он получил новый металл и предложил его Форстеру для продажи, с тем чтобы проверить, как химики отнесутся к его открытию и сумеют ли его подтвердить. После этого заявления Вулластона потрясенный неудачей Ченевикс забросил всякие занятия химией.

Палладий обладает удивительной способностью растворять водород H2 (см. 5.86). Водный раствор хлорида палладия PdCl2 при действии монооксида углерода СО выделяет мелкодисперсный палладий:

PdCl2 + CO + H2O = Pd↓ + CO2↑ + 2НСl.

4.53. ОДИН ИЗ ЛАНТАНОИДОВ

Химический элемент самарий, символ Sm, открыл в 1879 г. французский химик Лекокк де Буабодран (см. 4.21) в уральском минерале самарските при помощи спектрального анализа по двум новым голубым линиям в спектре, имеющим длину волны 442 и 443 нм. Он назвал новый элемент самарием, чтобы все помнили минерал, в котором он был обнаружен. Минерал же самарскит нашел русский горный инженер Василий Ефграфович Самарский в Ильменских горах Южного Урала. Минерал красивого бархатно-черного цвета имеет сложный состав, радиоактивен, содержит до 17% урана. Минерал назвали в честь Самарского, так что можно считать, что не только минерал, но и элемент самарий носят фамилию Самарского.


4.54. ТРУДНЫЙ ПУТЬ К ПРОМЕТИЮ

Прометий Pm, элемент № 61, относится к семейству лантаноидов. Попытки найти его в природе предпринимались неоднократно. В 1926 г. американские физики Гаррис, Гопкинс и Инкма осуществили, как им показалось, выделение соли этого элемента из соединений неодима Nd и самария Sm. Они дали своему элементу название иллинй. В этом же году итальянские химики Ролла и Брунетти попытались после 3000 перекристаллизаций солей неодима и празеодима Pr получить чистое соединение элемента № 61. Они были настолько уверены в своих результатах, что назвали этот элемент флоренцием. Однако иллиний и флоренций оказались ложно открытыми элементами.

К 1938 г. стало ясным, что элемент № 61 является радиоактивным и в природе его найти трудно. В этом году американские физики Пул и Квилл решили синтезировать атомы элемента № 61 при помощи бомбардировки пластинки из неодима или самария атомами дейтерия (см. 4.15). Они поддались самообману и решили, что ими действительно получены атомы нового элемента, который они поспешили назвать циклонием. Это название элемента № 61 сохранилось в химической литературе до 1951 г.

Элемент № 61 удалось открыть только в 1947 г. американским радиохимикам Джейкобу Маринскому (р. 1918 г.), Лоренсу Гленденину (р. 1918 г.) и Чарльзу Кориэллу (р. 1920). Они выделили его изотопы (см. 4.60) из продуктов деления урана. Жена Кориэлла предложила назвать новый элемент прометием, по имени Прометея — мифического героя Древней Греции. В 1948 Га Маринскому и его коллегам удалось получить 3 мг прометия.

Первооткрыватели прометия так объясняли его название: «Это название не только символизирует драматический путь получения нового элемента в заметных количествах в результате овладения людьми энергией ядерного деления, но и предостерегает человечество от грозящей опасности — стервятников войны».


4.55. В ЧЕСТЬ ПЛАНЕТЫ УРАН

В серебряных копях чешских Рудных гор часто встречались тяжелые камни со смоляным блеском. Ни серебра, ни свинца выплавить из этих камней не удавалось. Поэтому они получили название смоляной обманки.

Это был радиоактивный минерал, названный впоследствии урановой смоляной рудой, урановой смолкой. Он содержал октаоксид триурана U3O8. В 1789 г. немецкий химик Клапрот при восстановлении минерала углем получил черную спекшуюся массу с вкраплениями в нее маленьких крупинок, похожих на металл. Он назвал эти крупинки ураном по имени недавно открытой планеты Уран и считал, что им открыт новый химический элемент. Клапрот умер, так и не узнав, что им получен не металл, а его диоксид UO2. Более тридцати лет диоксид урана принимали за металл. Только в 1841 г. французский химик-органик Эжен-Мелькьор Пел иго (1811–1890) получил металлический уран при восстановлении тетрахлорида урана UCl4 калием К:

UCl4 + 4К = U + 4КСl.

Взаимодействие нагретых UCl4 и калия было столь бурным, что платиновый тигель, в котором протекала реакция, раскалился добела.

Уран оказался очень активным серебристо-белым металлом, легко окисляющимся на воздухе. Уже при незначительном нагревании он воспламеняется, выбрасывая искры, превращаясь при этом в U3O8.

В 1912 г. при раскопках древнеримских развалин близ Неаполя была обнаружена стеклянная мозаика бледно-зеленоватого цвета удивительной красоты. Анализ показал, что стекло радиоактивно и содержит уран. Очевидно, древние римляне были знакомы с минералами урана и пользовались ими для окраски стекла, ничего не зная о их радиоактивности.


4.56. ЗА КЕМ ПРИОРИТЕТ?

В 1957 г. Нобелевский институт физики в Стокгольме сообщил, что его сотрудники при помощи ядерной реакции

24496Cm + 136C = 253102Э + 2 (10n)

с участием ядер кюрия Cm и углерода получили, как им показалось, новый элемент № 102. Шведские физики поспешили назвать этот элемент нобелием в честь Нобеля, основавшего фонд Нобелевских премий (см. 2.31). Однако их открытие не подтвердили потом ни они сами, ни другие физики мира.

В 1963 г. советские физики из лаборатории ядерных реакций, возглавляемой академиком Георгием Николаевичем Флёровым (1913–1990), действительно получили элемент № 102 в ядерной реакции с участием урана-238 и неона-22 и назвали его жолиотием Jl в честь французского физика Фредерика Жолио-Кюри (см. 2.26):

23892U + 2210Ne = 256102Jl + 4(10n).

Результаты советских физиков были подтверждены физиками других стран. От «нобелия», как потом говорили, остался только символ No, «ноу», означающий по-английски «нет». Однако зарубежные ученые название элемента менять не захотели. Более того, американский физик Гиорсо с письме Флёрову писал 21 марта 1967 г.: «В конце концов мы пришли к выводу, что простейшим решением проблемы названия элемента будет оставить эту проблему в покое» (см. 4.19).

В 1961 г. американские физики из Беркли сообщили о синтезе атомов элемента № 103 при помощи ядерной реакции с участием ядер калифорния Cf и бора В:

250-25298Cf + 10-115B = 257103Э + X(10n).

Реакция не отличалась определенностью, так как атомы Cf и В представляли разные изотопы и химическую идентификацию полученных ядер провести не удалось. Тем не менее американские физики широко оповестили весь мир о своем «открытии» и назвали элемент № 103 лоуренсием Lr. Советские физики опровергли довольно быстро это «открытие», что подтвердили повторные исследования самих американских физиков.

В 1965 г. группа физиков Флёрова действительно впервые синтезировала атомы элемента № 103 при помощи ядерной реакции:

24395Am + 188C = 256103Rf + 5(10n).

в которой атомы америция Am-243 подвергались бомбардировке атомами кислорода-18. Их результаты были подтверждены физиками других стран. Элемент № 103 группа физиков Флёрова назвала резерфордием Rf в честь английского физика Резерфорда (см. 4.4). Поэтому авторы этой работы с полным правом считают себя первооткрывателями элемента № 103. Они справедливо настаивают на снятии с этого элемента американского названия «лоуренсий», на непризнании этого названия и использовании во всей технической и учебной литературе только одного названия — резерфордий.


4.57. ЧЕМ ЗНАМЕНИТ ГОРОДОК ИТТЕРБЮ?

В 1787 г. в заброшенном карьере городка Иттербю на маленьком острове Руслагене около Стокгольма лейтенант шведской армии Карл Аррениус нашел черный блестящий минерал, похожий на каменный уголь, и назвал его иттербитом. Финский химик Юхан Гадолин (1760–1852) обнаружил в этом минерале оксид нового химического элемента, названного впоследствии иттрием Y. После этого открытия минерал переименовали из «иттербита» в «гадолинит».

В 1843 г. шведский химик и хирург Карл-Густав Мосандер (1797–1858) установил, что оксид иттрия, выделенный из иттербита, не является чистым и содержит еще два оксида новых элементов — тербия Tb и эрбия Er. Оба названия — также производные от «Иттербю».

В 1878 г. швейцарский химик де Мариньяк (см. 4.43) открыл в оксиде эрбия примесь нового химического элемента — иттербия Yb, название которого снова является производным от слова «Иттербю». Через год шведский химик Клеве в том же оксиде эрбия находит еще одну примесь — новый химический элемент тулий Tm. В этом же году в оксиде эрбия обнаруживают третью примесь еще одного нового элемента — скандия Sc, существование которого предсказал Менделеев и которому дал имя «экабор». Открытие Sc принадлежит шведскому химику Ларсу-Фредерику Нильсону (1840–1899). Свое название элемент получил в честь Скандинавии.

В 1907 г. в том же минерале иттербите французский химик Жорж Урбен (1872–1938), живописец, музыкант и скульптор, открывает еще один элемент — лютеций Lu. Свое название элемент получил уже в честь Парижа, старое латинское название которого «Лютеция».

Таким образом, в минерале иттербите-галодините были открыты Y, Tb, Er, Yb, Sc, Tm и Lu. Городок Иттербю увековечен в названиях четырех химических элементов: иттрия, тербия, эрбия и иттербия.


4.58. ЗАБЛУЖДЕНИЕ ВЕЛИКОГО ХИМИКА

«…Я вовсе не склонен… признавать даже гипотетическую превращаемость элементов друг в друга и не вижу никакой возможности происхождения… радиоактивных веществ из урана».

(Менделеев)

Менделеев до конца своей жизни так и не признал возможность превращения одних элементов в другие в результате их радиоактивного распада, хотя ему были известны достоверные факты такого превращения, полученные его современниками.

Менделеев отверг и теорию электролитической диссоциации, и электронную теорию строения атома. Он всегда враждебно относился к попыткам связать область электрических явлений с областью химических явлений. Менделеев был твердо уверен в неизменяемости атомов и считал, что взаимопревращаемость элементов подрывает открытый им Периодический закон.

Менделеев велик, но его высказывания не догма, не истина в последней инстанции. Никто не застрахован от ошибок, не миновал их и Менделеев.


4.59. СИНОНИМЫ ЛИ ТЕРМИНЫ «ВАЛЕНТНОСТЬ» И «СТЕПЕНЬ ОКИСЛЕНИЯ»?

Некоторые химики часто путают два совершенно различных термина: валентность и степень окисления. Валентность — способность атома элемента образовывать в конкретном соединении определенное число химических связей с окружающими атомами. Количественной мерой валентности служит число ковалентных химических связей, образованных атомом. Степень же окисления атома элемента — формальный заряд, приобретаемый этим атомом в данном соединении в том случае, если бы все электронные пары его химических связей сместились в сторону более электроотрицательных атомов. В молекуле алгебраическая сумма степеней окисления атомов с учетом их числа равна нулю.

Например, в азотной кислоте HNO3 валентность атома азота равна четырем, а степень окисления — +V. Атом азота может выделить для образования связей с окружающими его атомами кислорода только три неспаренных электрона, находящихся на p-атомной орбитали, и одну неподеленную пару s-электронов. В молекуле монооксида углерода

степень окисления атома углерода +II, а валентность равна трем — у атома углерода три химические связи с атомом кислорода.


4.60. НУКЛИД, НУКЛОН, ИЗОТОП

К изотопам относят различные виды ядер одного и того же химического элемента — элемента с одним и тем же порядковым номером (см. 4.4), — различающихся по числу нейтронов.

Нуклон — ядерная частица, двумя состояниями которой являются протон p+ и нейтрон n0, взаимодействующие в ядре между собой путем обмена π-мезонами, пионами, имеющими массу в 270 раз большую, чем масса электрона. Например, в атоме бора 105B десять нуклонов: пять протонов и пять нейтронов.

Нуклиды — ядра, различающиеся как по числу нейтронов, так и по числу протонов. Нуклиды — это конкретные виды ядер различных элементов. Нуклидом называют ядро изотопа свинца 20782Pb с 82 протонами и 125 нейтронами, ядро изотопа кислорода 168O с 8 протонами. Три различных ядра атома углерода 126С, 136C и 146С содержат 12, 13 и 14 нуклонов. Эти ядра называют изотопами, или изотопными нуклидами. Каждый изотоп есть нуклид, ядро атомов элемента с определенным числом нейтронов и протонов.


4.61. ЕДИНСТВЕННЫЙ ИЗОТОП?

В природе насчитывается 21 элемент, у которых всего один стабильный изотоп. Такие элементы называют изотопночистыми. Среди них бериллий Be, фтор F, натрий Na, алюминий Al, фосфор Р, иод I, золото Au, висмут Bi, торий Th и др. Наибольшее число изотопов (десять) имеет элемент олово Sn.


4.62. НЕВИДИМАЯ И НЕУЛОВИМАЯ, НО ОЩУТИМАЯ ЧАСТИЦА

Все физики уверены в существовании самых элементарных частиц в ядрах атомов — кварков, находящихся внутри протонов, нейтронов и других частиц ядер. Выделить же кварки в свободном виде пока никак не удается, кварк остается неуловимым.

Кварки — универсальный «строительный материал» сильновзаимодействующих частиц ядра. Все окружающие нас вещества можно создать из трех «кирпичей»: электрона, кварка и антикварка, а в качестве «цемента» понадобятся еще три частицы, не имеющие массы, — фотон, глюон и гравитон. Фотоны привязывают электроны к ядру атома, глюоны склеивают кварк и антикварк в ядре, а гравитоны «цементируют» космические объекты: планеты, звезды и галактики.

Например, протон состоит из трех кварков. При взаимодействии двух любых кварков один из них испускает глюон, другой его поглощает. Кварки и глюоны несут особый «склеиватель» — цветовой заряд, не имеющий ничего общего с электрическим зарядом. Глюоны — удивительные частицы. Они обладают свойством самоликвидации и саморазмножения: глюон может испускать и поглощать глюоны.

Интересно, что действие глюонов на кварки увеличивается по мере их удаления от порождающих их кварков. Кварки связаны глюонами слабее всего, когда они находятся близко друг к другу. Если же кварки пытаются разойтись, то сразу же возрастает стягивающее их глюонное поле. Другими словами, кварки становятся свободными не вне протонов и нейтронов ядра, а наоборот, глубоко внутри этих частиц. Этим, видимо, и объясняется невозможность разделить кварки, выбить какой-либо из них из ядра атома.


4.63. ЧАСТИЦА, ПРОНИКАЮЩАЯ СКВОЗЬ ЗЕМЛЮ И СОЛНЦЕ

Такой частицей является нейтрино (символ ν, греч. буква «ню») — стабильная частица, не имеющая ни массы, ни заряда, обладающая скоростью света. Чтобы отличить ее от тяжелого нейтрона, также не имеющего заряда, итальянский физик Энрико Ферми (1901–1954) назвал эту частицу «нейтрино» как нечто исчезающе малое, нейтральное.

При радиоактивном распаде ядер атомов выбрасываемый позитрон е+ всегда сопровождается нейтрино νe, а выбрасываемый электрон e- — двойником нейтрино, называемым антинейтрино ν-e. Антинейтрино отличается от нейтрино только характером своего движения — он вворачивается в направлении полета как штопор.

Появление нейтрино и антинейтрино из распадающихся ядер связано с ядерными реакциями:

n0 → p+ +e-↑ + ν-e↑; p+ → n0 + e+↑ + νe

Нейтрино и антинейтрино не содержатся в ядре, а образуются в момент вылета из него позитрона или электрона.

Вся земная кора за счет радиоактивного распада атомов излучает в секунду 2∙1026 антинейтрино, которые пронизывают Землю и живущих на ней людей, не причиняя им никакого вреда. Каждую секунду через человеческое тело пролетает 1750 антинейтрино. C веществом нейтрино и антинейтрино не взаимодействуют и поэтому в нем не задерживаются. На нашем Солнце в результате ядерного «горения» атомов водорода вместе с позитронами рождается в секунду 2∙1038 нейтрино, обрушивающихся на Землю. В любой части Вселенной существуют огромные потоки нейтрино и антинейтрино, есть и «нейтринные звезды».


Загрузка...