8. ИМЕННЫЕ РЕАКЦИИ И РЕАКТИВЫ

Химики — и неорганики, и органики, и аналитики — часто упоминают имена своих коллег:

«Как будем получать вещество — по Гриньяру или по Виттигу?»

«У Вас готов реактив Швейцера?» «Я думаю, что хлор нам даст реакция Дикона.»

«Реактив Несслера нужен новый, так как старый уже пожелтел».

Подобного рода названия — своеобразная дань памяти химикам — первооткрывателям новых методов синтеза веществ и новых аналитических реагентов.

Всего известно более 1000 именных органических, неорганических и аналитических реакций. Их число продолжает увеличиваться, так как нет до сих пор общепринятой номенклатуры химических реакций. Название реакции по имени ее первооткрывателя дает возможность кратко передать смысл происходящего превращения. В этом разделе мы знакомим читателя только с наиболее простой и широко известной частью именных реакций и реактивов.


8.1. ОДИН ИЗ ШЕСТИ ДЮМА

Какой из знаменитых Дюма предложил метод определения азота?

Среди шести известных представителей фамилии Дюма есть видный деятель Французской революции, генерал Французской республики, два писателя — Дюма-отец и Дюма-сын, известный психолог и не менее известный химик. Химик Дюма (см. 2.20) был тонким и наблюдательным экспериментатором. В 1831 г. он предложил метод определения содержания азота в органических соединениях, сущность которого состоит в сожжении органического вещества в присутствии оксида меди CuO и металлической меди Cu. Кроме молекулярного азота N2 (см. 4.20) при реакции образуются диоксид углерода CO2 и вода. Эти побочные продукты реакции поглощают раствором гидроксида калия КОН, а объем азота измеряют. Расчет позволяет определить, сколько азота было в исходном органическом веществе.


8.2. ПРОБА БЕЙЛЬШТЕЙНА

Знаете ли вы, что русский химик Бейльштейн — не только составитель широко известного справочника по органическим соединениям, но и автор оригинального способа качественного определения галогенов в органических веществах?

Высокочувствительная «проба Бейльштейна» позволяет обнаружить наличие галогенов (см. 4.34) в органическом соединении с использованием минимального количества исследуемого вещества. Для ее проведения берут медную проволоку и на конце сгибают ее в небольшое колечко, которое прокаливают в пламени газовой горелки до тех пор, пока оно не перестанет окрашиваться (это делают для того, чтобы удалить все летучие соединения меди). Затем проволоку охлаждают и погружают в небольшое количество исследуемого вещества. Если теперь внести проволоку в огонь, то разрушение органического вещества, содержащего атомы галогенов — хлора, брома, иода, при высокой температуре приведет к образованию на поверхности проволоки галогенидов меди, которые окрашивают пламя в зеленый цвет.

Следует учесть, однако, что ряд органических веществ, не содержащих галогенов (например, карбамид, см. 8.5) тоже окрашивают пламя в зеленоватый цвет.


8.3. РЕАКЦИЯ БУНЗЕНА И РЕАКТИВ ФИШЕРА

Прямое назначение реактива Фишера (Карл Фишер — немецкий химик-аналитик) — определение содержания воды в органических и неорганических веществах. Реакция, положенная в основу этого метода, — взаимодействие иода I2 с диоксидом серы SO2:

I2 + SO2 + 2H2O ↔ 2HI + H2SO4

была открыта Бунзеном еще в 1853 г. В безводной среде I2 с SO2 не реагирует, но достаточно уже следов влаги, чтобы реакция началась. В 1935 г. Фишер сделал реакцию Бунзена аналитической, проходящей со 100%-м выходом, добавив к I2 и SO2 пиридин C5H5N и метанол CH3OH (см. 1.60). Пиридин связывает продукты реакции, а метанол служит растворителем исходных веществ:

2C5H5N∙I2 + C5H5N∙SO2 + H2O = 2C5H5N∙HI + C5H5N∙SO3.

Смесь метанола, пиридина, иода и диоксида серы получила название реактива Фишера.


8.4. НЕССЛЕР ИЛИ КЬЕЛЬДАЛЬ?

Агрохимическая лаборатория находилась неподалеку от животноводческого комплекса. Удивительно, но факт: в те дни, когда ветер дул от ферм в сторону лаборатории, все анализы на содержание азота в карбамиде (мочевине) и других азотсодержащих удобрениях были испорчены, так как показывали невероятное, почти стократное превышение. Почему определение азота зависело от направления ветра?

Чаще всего в лаборатории используют для анализа азотсодержащих веществ методы Несслера или Кьельдаля.

Юлиус Несслер (1827–1905) — немецкий химик-аналитик — предложил в 1868 г. для качественного и количественного определения примесей аммиака NH3 и солей аммония (например, хлорида аммония, см. 1.44) в различных веществах реакцию взаимодействия аммиака с щелочным раствором комплексного соединения тетраиодомеркурата калия K2(HgI4):

2K2(HgI4) + NH3 + 3КОН = (Hg2N)I∙H2O + 7KI + 2Н2O.

В результате реакции образуется вещество (Hg2N)I∙H2O, придающее анализируемому раствору желтый цвет, когда аммиака очень мало. При больших его количествах выпадает осадок бурого цвета.

Позднее, в 1883 г., Иохан-Густав-Кристоффер Кьельдаль (1849–1900), датский химик, разработал другой метод анализа, названный впоследствии его именем. Вещество, которое предстоит анализировать, он сначала разлагал кипячением с концентрированной серной кислотой, часто в присутствии катализаторов. При этом азот органического соединения превращался в сульфат аммония (NH4)2SO4, как, например, в случае анализа карбамида CO(NH2)2:

CO(NH2)2 + H2SO4 + H2O = CO2↑ + (NH4)2SO4.

После добавления к сульфату аммония раствора гидроксида натрия NaOH выделялся газообразный аммиак, который нагреванием удаляли из раствора:

(NH4)2SO4 + 2NaOH = 2NH3↑ + Na2SO4 + 2Н2О↑

и поглощали точно отмеренным количеством разбавленной серной кислоты. Можно для определения количества аммиака (или катиона аммония) в завершающей части анализа использовать и реакцию Несслера.

В воздухе животноводческого помещения всегда повышенное содержание аммиака; аммиак отлично поглощается водой и кислотами, а это приводит к большому искажению результатов химического анализа.


8.5. ВСЛЕД ЗА ВЁЛЕРОМ

Вёлер (см. 2.18) в 1828 г. случайно (см. 9.19) обнаружил, что при нагревании водного раствора цианата аммония NH4NCO образуется карбамид (NH2)2CO (мочевина). Это был первый синтез органического вещества из неорганического, проведенный чисто химическим методом в лаборатории:

NH4NCO ↔ (NH2)2CO,

а сама реакция получила название реакции Вёлера. Это пример обратимой реакции таутомерии — превращения одного структурного изомера в другой.

Прошло сорок лет, и карбамид стали получать по реакции Александра Ивановича Базарова (1845–1907), русского химика и агронома, директора Никитского ботанического сада в Крыму. Синтез карбамида по Базарову состоял во взаимодействии аммиака NH3 и диоксида углерода CO2 при 180°C в присутствии пара воды как катализатора (см. 6.5).:

2NH3 + CO2 = (NH2)2CO + H2O

Любопытно, что применение другой реакции Вёлера сохранилось до наших дней. Она лежит в основе современного промышленного способа получения белого фосфора (см. 4.26):

Ca3(PO4)2 + 5C + 3SiO2 = P2↑ + 5СО↑ + 3CaSiO3.

Фосфат кальция Ca3(PO4)2 (апатит, фосфорит, см. 10.49) смешивают с коксом C и диоксидом кремния SiO2 (песок), а затем прокаливают. Фосфор состава P2 возгоняется из реакционной смеси и конденсируется в холодильнике уже в виде белого воскообразного вещества состава P4 — белого фосфора. Вместе с ним удаляется и газообразный монооксид углерода СО, а в реакторе остается расплавленный метасиликат кальция CaSiO3.


8.6. СТАРЕЙШИЙ СПОСОБ

Знаете ли вы, что в основе одного из самых старых способов получения чистой ортофосфорной кислоты лежит реакция Маргграфа?

Маргграф (см. 1.61) предложил получать ортофосфорную кислоту H3PO4 нагреванием белого или красного фосфора с азотной кислотой:

P4 + 20HNO3 = 4Н3РO4 + 20NO2↑ + 4Н2O.

После удаления газообразного диоксида азота остается только водный раствор ортофосфорной кислоты (см. 5.75).


8.7. ЗНАМЕНИТАЯ БЕРТОЛЕТОВА СОЛЬ

Для получения триоксохлората калия KClO3 Бертолле (см. 2.41) предложил пропускать хлор Cl2 в горячий раствор гидроксида калия KOH в воде. Уже через несколько минут из раствора начинают выпадать белые пластинчатые кристаллы KClO3:

6КOН + Cl2 = KClO3 + 5КСl + 3Н2O.

Кристаллы отфильтровывают и высушивают при температуре не выше 100°С. Триоксохлорат калия применяют в производстве спичек (см. 1.30–1.32). Описанная выше простая реакция получила впоследствии название реакции Бертолле, а ее продукт — «бертолетова соль» (см. 9.39).


8.8. СМЕСЬ КИБАЛЬЧИЧА

Так называли смесь, состоящую из триоксохлората калия KClO3 и сахара C12H22O11. Ее использовали в качестве запала к кустарно изготовленным бомбам. Если смочить смесь каплей концентрированной серной кислоты H2SO4, то происходит сильная вспышка (см. 1.28):

3КСlO3 + H2SO4 = 2СlO2↑ + KClO4 + K2SO4 + H2O.

Выделяющийся диоксид хлора ClO2 тотчас же разлагается на хлор Cl2 и кислород O2:

2ClO2 = Cl2↑ + 2O2↑,

воспламеняя сахар:

C12H22O11 + 12O2 = 12СO2↑ + 11H2O.

Примечание. Николай Иванович Кибальчич (1854–1881) — русский инженер, участник покушения на Александра II, создатель проекта реактивного летательного аппарата.


8.9. КАК ПОЛУЧИТЬ КИСЛОТУ КАРО?

Реакция Каро (Никодем Каро, 1871–1935, немецкий химик) — это реакция взаимодействия триоксохлоросульфата водорода HSClO3 с безводным пероксидом водорода H2O2 (см. 5.63):

HSClO3 + H2O2 = H2SO5 + НСl.

Один из продуктов реакции — пероксомоносерную кислоту H2SO5 — еще до сих пор называют кислотой Каро. Она образует легкоплавкие бесцветные красивые кристаллы, прикосновение которых к бензолу C6H6 сопровождается взрывом. Это один из сильнейших окислителей. Есть еще способ получения кислоты: надо смешать концентрированную серную кислоту с пероксодисульфатом калия K2S2O8, а затем добавить в полученную кашицу лед:

K2S2O8 + H2O = K2SO4 + H2SO5.

8.10. ЖИДКОСТЬ ВАККЕНРОДЕРА

Эта жидкость — смесь политионовых кислот состава H2SxO6, где x > 3, тонкодисперсной серы и небольших количеств серной кислоты H2SO4 (см. 1.49; 5.71).

В 1845 г. немецкий химик, врач и аптекарь Генрих-Вильгельм-Фердинанд Ваккенродер (1798–1854) установил, что при пропускании сероводорода H2S в охлаждаемый ниже 0ºC водный раствор диоксида серы SO2 образуется «необычная смесь», получившая впоследствии его имя. Образование одной из политионовых кислот такой смеси:

H2S + 3SO2 = H2S4O6.

8.11. ПРОБА ПО ГЕМПЕЛЮ

Вальтер Гемпель (1851–1916) — немецкий химик-аналитик — предложил проводить восстановление серосодержащих веществ натрием Na, магнием Mg или алюминием Al. Для этого исследуемый образец в сухом виде он помещал на листочек или пластинку металла, заворачивал в бумагу и обертывал тонкой проволокой, а затем поджигал. Серосодержащие вещества в процессе восстановления металлами превращались в сульфиды. Потом Гемпель растягивал проволоку и погружал продукты сгорания в пробирку с водой. Если теперь слегка подкислить раствор, произойдет выделение сероводорода H2S:

Al2S3 + 6HCl = 3H2S↑ + 2АlСl3,

который можно обнаружить по почернению фильтровальной бумажки, смоченной раствором нитрата свинца Pb(NO3)2 или сульфата меди CuSO4:

Pb(NO3)2 + H2S = PbSi + 2HNO3.

Образующиеся сульфиды свинца PbS или меди CuS вызывают появление на бумаге черных пятен (см. 9.33).


8.12. ДВА ОТКРЫТИЯ ГЛАУБЕРА

Немецкий алхимик Глаубер (см. 1.48; 2.25) впервые получил многие соли и кислоты. В истории химии наиболее известны две реакции Глаубера.

Первая реакция Глаубера — получение сульфата натрия при взаимодействии хлорида натрия NaCl с серной кислотой H2SO4 (см. 152):

2NaCl + H2SO4 = Na2SO4 + 2HCl↑.

Вторая из предложенных Глаубером реакций связана с синтезом трихлорида сурьмы SbCl3 («сурьмяного масла», см. 3.47):

3HgCl2 + Sb2S3 = 2SbCl3↑ + 3HgS↓.

При нагревании смеси хлорида ртути HgCl2 и сульфида сурьмы Sb2S3 хлорид сурьмы отгоняется и собирается в охлаждаемом приемнике.


8.13. СОПЕРНИЧЕСТВО КИСЛОРОДА И ХЛОРА

Генри Дикон (1822–1876) — английский химик-технолог — в 1867 г. разработал способ непрерывного получения хлора Cl2 путем каталитического окисления хлороводорода HCl кислородом воздуха при температуре 400°C с участием катализатора дихлорида меди CuCl2:

4HCl + O2 = 2Сl2 + 2Н2O.

Эта реакция получила название реакции Дикона, а промышленная технология — процесса Дикона. В процессе Дикона получают не чистый Cl2, а смесь воздуха с 11% Cl2. Из этой смеси Cl2 не выделяют, так как она им бедна, а используют смесь для производства хлорной извести CaCl(OCl) (см. 3.23):

Ca(OH)2 + Cl2 = CaCl(OCl) + H2O.

8.14. ДЛЯ ЧЕГО ИСПОЛЬЗУЮТ РЕАКЦИЮ ФОГЕЛЯ?

Вернер Фогель (р. 1925 г.) — немецкий химик-аналитик — предложил применять для открытия примеси соединений кобальта Co в анализируемых растворах реакцию образования тиоцианатного комплекса этого элемента, вызывающего синее окрашивание раствора. Реакция Фогеля заключалась в добавлении к исследуемому раствору концентрированного водного раствора тиоцианата аммония NH4NCS:

CoCl2 + 4NH4NCS ↔ (NH4)2[Co(NCS)4] + 2NH4Cl.

Продукт реакции тетратиоцианатокобальтат аммония — синего цвета. Чувствительность реакции Фогеля повысится, если к раствору добавить амиловый спирт C5H11OH. Полученный комплекс практически полностью перейдет в слой спирта, который не смешивается с водным раствором, а интенсивность окраски возрастает (см. 5.16).


8.15. ФЕЛИНГОВЛ ЖИДКОСТЬ

Реактив Фелинга («фелингова жидкость») — это раствор сульфата меди CuSO4 и тартрата калия-натрия KNa(C4H4O6) в 10%-м водном растворе гидроксида натрия NaOH. Все указанные вещества взаимодействуют следующим образом:

CuSO4 + 2NaOH = Cu(OH)2 + Na2SO4,
Cu(OH)2 + 2KNaC4H4O6 = Na2[Cu(C4H4O6)2] + 2KOH.

В первой реакции образуется гидроксид меди Cu(OH)2, который в осадок не выпадает, а тотчас же вступает в реакцию образования растворимого дитартратокупрата натрия Na2[Cu(C4H4O6)2], придающего жидкости синий цвет. Таким образом, реактив Фелинга содержит этот комплекс, сульфат натрия Na2SO4 и гидроксиды натрия и калия КОН. Реактив Фелинга применяют для обнаружения соединений мышьяка:

Na3AsO3 + 2Na2[Cu(C4H4O6)2] + 4NaOH = Cu2O↓ + Na3AsO4 + 4Na2(C4H4O6) + 2Н2O,

а также альдегидов, моносахаридов и др. соединений, с которыми при нагревании он образует желто-оранжевые, красные вещества или красновато-желтый осадок оксида димеди Cu2O. «Фелингову жидкость», в частности, используют для диагностики диабета путем определения содержания сахара в моче больных.

Реактив был предложен немецким химиком-органиком и технологом Германом-Христианом Фелингом (1812–1885) в 1849 г.


8.16. ПРОБА БЕТТЕНДОРФА

Антон-Йозеф-Губерт Беттендорф (1839–1902), немецкий химик, предложил в 1869 г. для обнаружения мышьяка As (см. 4.23) в растворе добавлять к концентрированной хлороводородной кислоте HCl несколько капель анализируемого раствора, а затем 0,5 мл концентрированного раствора дихлорида олова SnCl2 в той же кислоте. В этом случае жидкость, если в ней содержится соединение мышьяка, например его трихлорид AsCl3, быстро буреет, и через некоторое время выпадает черный осадок мышьяка, а в растворе остается гексахлоростаннат водорода H2[SnCl6]:

2AsCl3 + 3SnCl2 + 6HCl = 2As↓ + 3H2[SnCl6].

Сурьма в тех же условиях не выделяется.


8.17. РЕАКЦИЯ МАРША

Как определяют наличие мышьяка при судебно-медицинской экспертизе?

В этом случае применяют реакцию, предложенную в 1836 г. Джеймсом Маршем (1790–1846), английским химиком-аналитиком. Реакция Марша служит для качественного открытия очень малых количеств мышьяка As. Все соединения мышьяка в кислом растворе восстанавливаются металлическим цинком до арсина AsH3:

K3AsO3 + 3Zn + 9HCl = 3ZnCl2 + AsH3↑ + 3H2O + 3KCl.

Образующийся очень ядовитый бесцветный газ арсин пропускают через нагретую стеклянную трубку. Арсин разлагается на водород и мышьяк, оседающий на холодных частях трубки в виде буро-черного зеркала:

2AsH3 = 2As + 3Н2↑.

8.18. АРГЕНТОМЕТРИЯ ПО МОРУ И ФОЛЬГАРДУ

При количественном определении содержания галогенид-ионов титрованием анализируемой пробы раствором нитрата серебра AgNO3 очень трудно зафиксировать точку эквивалентности, когда пора прекратить добавление раствора AgNO3.

Карл-Фридрих Mop (1806–1879) — немецкий химик и фармацевт — предложил для определения конца титрования добавлять в анализируемый раствор хромат калия K2CrO4. Как только все галогенид-ионы будут израсходованы в реакции осаждения галогенида серебра, например хлорида серебра AgCI:

Ag+ + Cl- = AgCl↓,

начнется выделение более растворимого хромата серебра Ag2CrO4 кирпично-красного цвета. Это и будет сигналом появления точки эквивалентности (см. 5.38).

По способу Фольгарда (см. 2.68) окончание реакции осаждения галогенида серебра замечают по появлению красной окраски раствора, вызванной образованием тиоцианата железа [Fe(NCS)3]. Фольгард предложил добавлять в титруемый раствор тиоцианат калия KNCS и нитрат железа Fe(NO3)3. В точке эквивалентности тиоцианат серебра AgNCS превращается в галогенид серебра, а освободившиеся тиоцианат-ионы NCS- немедленно образуют с катионами железа ярко-красный тиоцианат железа:

Ag+ + NCS- = AgNCS↓,
AgNCS + Cl- = AgCl↑ + NCS-,
Fe(NO3)3 + 3KNCS ↔ [Fe(NCS)3] + 3KNO3.

8.19. РЕАКТИВ И РЕАКЦИЯ ЧУГАЕВА

Для осуществления реакции Чугаева (см. 2.38) к анализируемому раствору прибавляют аммиак NH3 до слабощелочной реакции, а затем несколько капель спиртового раствора диметилглиоксима (CH3)2C2(NOH)2. Если в растворе содержится примесь никеля (см. 4.44), то появляется красно-фиолетовая окраска. При большом содержании никеля выпадает осадок красного цвета:

NiCl2 + 2(CH3)2C2(NOH)2 + 2NH3 = [Ni{(CH3)2C2(NOH)NO}2] + 2NH4Cl.

Образующееся в этой реакции комплексное соединение носит название бис(диметилглиоксимато)никель(II).


8.20. ЧТО ТАКОЕ РЕАКТИВ ШВЕЙЦЕРА?

В 1857 г. швейцарский химик Матиас-Эдуард Швейцер (1818–1860) обнаружил, что концентрированный водный раствор гидроксида тетраамминмеди(II) [Cu(NH3)4](OH)2, получаемый в реакции

Cu(OH)2 + 4NH3 = [Cu(NH3)4](OH)2

при взаимодействии гидроксида меди Cu(OH)2 и водного раствора аммиака NH3, растворяет целлюлозу (см. 1.36 и 1.62). Если полученный раствор целлюлозы пропускать через фильеры (отверстия малого диаметра) в ванну с разбавленной серной кислотой, то получаются тонкие «шелковые» нити медно-аммиачного волокна — чистой регенерированной целлюлозы, не содержащей ни меди, ни азота: реактив Швейцера в серной кислоте разрушается:

[Cu(NH3)4](OH)2 + 3H2SO4 = CuSO4 + 2(NH4)2SO4 + 2Н2O

и выделяет растворенную в нем целлюлозу. В растворе остаются сульфат меди CuSO4 и сульфат аммония (NH4)2SO4.


8.21. УНИВЕРСАЛЬНАЯ РЕАКЦИЯ ГРИНЬЯРА

Франсуа-Огюст-Виктор Гриньяр (1871–1935) — французский химик-органик, лауреат Нобелевской премии — предложил свою реакцию для синтеза металл органических соединений. Например, получение диметилцинка (CH3)2Zn осуществляют прямым взаимодействием в среде органического растворителя иодметана и цинка:

2CH3I + 2Zn = (CH3)2Zn + ZnI2.

Так как цинкорганические соединения самовоспламеняются на воздухе, то значительно удобнее использовать для работы магнийорганические соединения, которые чаще всего и называют реактивами Гриньяра. C помощью реактивов Гриньяра можно получить спирты, карбоновые кислоты, насыщенные углеводороды — алканы. В частности, чтобы синтезировать этан C2H6, на бромэтан C2H5Br действуют магниевым порошком Mg, а затем выделенный бром-магнийэтан (бромид этилмагния) разлагают водой:

C2H5Br + Mg = C2H5MgBr,
C2H5MgBr + H2O = C2H6↑ + Mg(OH)Br.

8.22. КАК «ВЫРАСТИТЬ» ОРГАНИЧЕСКУЮ МОЛЕКУЛУ?

Химики-органики любят говорить, что они в состоянии строить молекулы веществ, как строители складывают здание из кирпичей или блоков. Как им это удается?

Если в качестве реагентов использовать органические вещества, одно из которых содержит атом металла, а другое — атом галогена, и при этом создать условия, благоприятные для возникновения новых химических связей металл — галоген, то можно добиться соединения остающихся фрагментов молекул исходных реактивов между собой. Такие процессы характерны, например, для реакции Вюрца. Реакция была открыта Вюрцем в 1855 г. и является одной из важнейших для получения насыщенных углеводородов (алканов). Например, для получения этана C2H6 к раствору иодметана CH3I в этиловом эфире (C2H5)2O добавляют металлический натрий (см. 6.44):

2CH3I + 2Na = C2H6↑ + 2NaI.

Здесь происходит соединение двух фрагментов — метальных радикалов CH3 — и удлинение углеводородной цепочки, при этом образуется этан. А для синтеза ароматических соединений используют «модификацию Фиттига»:

C6H5Br + CH3Br + 2Na = C6H5CH3 + 2NaBr.

В этой реакции на смесь бромбензола C6H5Br и бромметана CH3Br действуют металлическим натрием Na. Продукт реакции — толуол C6H5CH3. Фиттиг открыл эту реакцию в 1885 г.

Если в подобном процессе участвует алкоголят металла, например этилат натрия C2H5ONa, то можно «выстроить» мслекулу эфира в соответствии с реакцией Уильямсона. Александер Уильямсон (1824–1904), английский химик-органик, президент Лондонского королевского общества, открыл эту реакцию в 1852 г. Она позволяет получать простые эфиры (см. 6.50) из алкоголятов металлов и алкилгалогенидов. Например, синтез метилэтилового эфира C2H5OCH3 проводят смешиванием этилата натрия с иодметаном CH3I:

C2H5ONa + CH3I = C2H5OCH3 + NaI.

8.23. КАК «ЗАМКНУТЬ» ЦИКЛ?

Примером реакции, превращающей линейные молекулы в циклические, является реакция образования бензола из ацетилена — реакция Бертло и Реппе. В 1868 г. Бертло (см. 2.42) установил, что при пропускании ацетилена C2H2 через раскаленную до 500°C железную трубку можно получить бензол C6H6:

3H2C2 = C6H6.

В настоящее время эта реакция представляет лишь исторический интерес: бензола здесь образуется мало, и он загрязнен смолами и нафталином. Реакцией Реппе называют реакцию превращения ацетилена в бензол при давлении 1,5 МПа и температуре 60°C в присутствии катализатора — цианида никеля Ni(CN)2 или тиоцианата никеля Ni(NCS)2. Эту реакцию предложил в 1948 г. Вальтер-Юлиус Реппе (1892–1969), немецкий химик-органик, директор концерна «ИГ Фарбен индустрии.


8.24. ХЛОРИД АЛЮМИНИЯ «ВЫБРАСЫВАЕТ» ХЛОРОВОДОРОД

Если прибавить хлорид алюминия AICl3 к смеси бензола C6H6 (см. 9.21) и алкил галогенида, например хлорметана CH3CI, то происходит энергичное выделение хлороводорода HCl и образование толуола C6H5CH3:

C6H6 + CH3Cl = HCl + C6H5CH3.

Хлорид алюминия выполняет здесь функцию катализатора, и в этом сущность реакции Фриделя — Крафтса. Напомним, что Шарль Фридель (1832–1899) — французский химик-органик, член Парижской академии наук, а Джеймс-Мейсон Крафте (1839–1917) — американский химик-органик, член Национальной академии наук США.


8.25. ПИРИДИН РАМЗАЯ И ЧИЧИБАБИНА

Рамзай (см. 2.27) обнаружил, что при пропускании через раскаленные железные трубки смеси ацетилена и циановодорода HCN образуется пиридин:

2С2 + HCN = C5H5N.

Реакция, открытая им в 1877 г., получила название реакции Рамзая. В 1914 г. Чичибабин (см. 2.34) открыл две реакции, получившие его имя. Он обнаружил, что при действии на нагретый пиридин C5H5N амидом натрия NaNH2 наблюдается выделение водорода H2:

C5H5N + NaNH2 = C5H4N(NHNa) + H2↑.

Если затем продукт реакции обработать водой, то можно получить 2-аминопиридин, необходимый для производства ряда лекарств:

C5H4N(NHNa) + H2O = C5H4(NH2) + NaOH.

Вторая реакция Чичибабина — это образование 2-оксипиридината калия при пропускании пара пиридина над нагретым до 400°C гидроксидом калия КОН:

C5H5N + KOH = C5H4N(OK) + H2↑.

8.26. «РАЗБОРКА» ОРГАНИЧЕСКОЙ МОЛЕКУЛЫ

«Разборка» органической молекулы происходит при полном окислении или горении вещества; при этом выделяются диоксид углерода СО2, вода Н2О и другие вещества. Однако такой процесс можно сравнить скорее с полным уничтожением (до фундамента) «здания» органической молекулы. А осторожная «разборка» с отщеплением одной молекулы СО2 характерна для реакции Бородина (см. 2.36). Она была открыта в 1861 г. и заключается в декарбоксилировании серебряных солей алифатических карбоновых кислот под действием галогенов (хлора Cl2, брома Br2 или иода I2) (см. 4.34) в безводном органическом растворителе. Например, превращение ацетата серебра CH3COOAg в бром метан СН3Br происходит при его взаимодействии с бромом (см. 4.38):

CH2COOAg + Br2 = СН3Br + AgBr + CO2↑.

Диоксид углерода и азот отщепляются от вещества и в реакции Шмидта. Реакция открыта немецким химиком-органиком Карлом Шмидтом (1887–1958) в 1924 г. Он добавил к уксусной кислоте СН3СООН азид водорода HN3, а затем концентрированную серную кислоту H2SO4 и увидел выделение газов, один из которых оказался азотом N2, а второй — диоксидом углерода СО2. Анализ раствора показал, что в нем содержится метиламин CH3NH2:

CH3COOH + HN3 = CH3NH2 + CO2↑ + N2↑.

8.27. ПОЛЕЗНЫЙ ЦИАНИД КАЛИЯ

В соответствии с реакцией Кольбе взаимодействие иодметана СН3I с цианидом калия KCN (см. 6.2) в среде органического растворителя при нагревании приводит к образованию ацетонитрила CH3CN:

CH3I + KCN = CH3CN + KI.

Ацетонитрил разлагается водой с образованием уксусной кислоты и аммиака:

CH3CN + 2Н2O = CH3COOH + NH3↑.

В настоящее время получение ацетонитрила ведут, не используя такого вредного и ядовитого реактива, как цианид калия; применяют дегидратацию ацетата аммония:

CH3COONH4 = CH3CN + 2Н2O.

Уксусную кислоту можно синтезировать проще, применяя реакцию Делепина. В 1909 г. Марселей Делепин (1871–1965), французский химик-органик, член Парижской академии наук, предложил получать карбоновые кислоты окислением их альдегидов действием оксида серебра Ag2O в водном растворе гидроксида натрия NaOH. Например, уксусная кислота образуется при окислении уксусного альдегида CH3CHO:

CH3CHO + Ag2O = CH3COOH + 2Ag.

Естественно, что кислота будет тотчас же превращаться в щелочной среде в ацетат натрия:

CH3COOH + NaOH = NaCH3COO + H2O,

из которого ее выделяют действием серной (H2SO4) или фосфорной (H3PO4) кислот при нагревании:

2NaCH3COO + H2SO4 = 2СН3СООН + Na2SO4.

8.28. ДВА СИНТЕЗА НИТРОМЕТАНА

Хорошо известен способ получения нитросоединений — реакция нитрования: взаимодействие органического вещества с азотной кислотой HNO3. Реакция получила имя Коновалова. Михаил Иванович Коновалов (1858–1906), русский химик-органик, был ректором Киевского политехнического института.

Например, метан CH4 в такой реакции, протекающей при повышенном давлении, превращается в нитрометан:

CH4 + HNO3 = CH3NO2 + H2O.

А можно ли обойтись без применения азотной кислоты при нитровании?

Виктор Мейер (1848–1897) — немецкий химик, президент Немецкого химического общества — предложил получать алифатические нитросоединения действием нитрита серебра на алкилгалогениды. Например, бромметан превращается при помощи реакции Мейера в нитрометан CH3NO2:

CH3Br + AgNO2 = CH3NO2 + AgBr↓.

8.29. ВОЛШЕБНЫЙ ПОЛИСУЛЬФИД

Мало кому знакомо удивительное свойство полисульфидов (см. 6.46) «съедать» кетоны.

Конрад Вильгеродт (1841–1930), немецкий химик-органик, открыл в 1887 г., что кетоны превращаются в амиды карбоновых кислот с тем же числом атомов углерода под воздействием водного раствора полисульфида аммония (NH4)2Sx Например, из ацетона (CH3)2CO (см. 6.49) можно получить амид пропионовой кислоты (пропан-амид):

2(СН3)2СО + 2(NH4)2Sx = 2C2H5CONH2 + (NH4)2S2x-3 + 3H2S↑.

Реакции такого рода стали называть реакциями Вильгеродта.

Сульфид аммония помог Зинину (см. 2.32) в 1842 г. превратить нитробензол C6H5NO2 в анилин C6H5NH2. Эта реакция осталась в химии под названием реакции Зинина.


8.30. ДРЕВЕСНЫЙ СПИРТ КАННИЦЦАРО

Знаете ли вы, что реакция Канниццаро — это реакция диспропорционирования формальдегида до метанола и формиат-иона?

В 1853 г. итальянский химик Канниццаро (см. 2.9) обнаружил, что при действии на формальдегид HCHO (см. 6.55) гидроксида калия KOH образуются метанол CH3OH (см. 1.60) и соль муравьиной кислоты — формиат калия НСООК:

2НСНО + KOH = CH3OH + НСООК.

8.31. ФОРМИАТ ГОЛЬДШМИДТА

Виктор-Мориц Гольдшмидт (1888–1947) — норвежский геохимик, директор Геологического музея в Осло, один из основоположников геохимии — предложил теперь уже хорошо известную реакцию образования формиатов из монооксида углерода СО и гидроксидов щелочных металлов:

KOH + CO = HCOOK.

Реакция протекает с количественным выходом под давлением 0,7 МПа и температуре 120–150°C. В реакции Гольдшмидта CO ведет себя как кислотный оксид, хотя обычно его рассматривают как несолеобразующий, т. е. ни кислотный, ни основный оксид.


8.32. ГЛИКОЛИ ВАГНЕРА

В 1887 г. русский химик-органик Егор Егорович Вагнер (1849–1903) разработал общий способ окисления этиленовых углеводородов разбавленным водным раствором перманганата калия KMnO4 (см. 5.47). Продуктами окисления оказались гликоли — двухатомные спирты, содержащие две группы ОН у насыщенных атомов углерода. Например, этилен C2H4 (см. 9.37) превращается в этиленгликоль CH2(OH)CH2OH, а из раствора осаждается черно-бурый осадок диоксида марганца MnO2:

2Н4 + 2 KMnO4 + 4Н2O = 3СН2(ОН)СН2ОН + 2MnО2↓+ 2КОН.

Мировое производство этиленгликоля сейчас превышает 15 млн. т в год.


8.33. МОЖНО ЛИ ПОЛУЧИТЬ СПИРТ БЕЗ БРОЖЕНИЯ?

В 1854 г. Бертло (см. 2.42) открыл способ получения этилового спирта C2H5OH без применения брожения пищевого сырья: зерна, картофеля, сахара — и без гидролиза растительных материалов вроде древесины. Он использовал реакцию, получившую его имя, — реакцию Бертло:

C2H4 + H2O = C2H5OH.

В этой реакции этилен C2H4 подвергается гидратации в присутствии серной кислоты H2SO4 и катализатора — ртути (см. 9.37).


8.34. ВМЕСТО ПИЩЕВОГО СЫРЬЯ — АЦЕТИЛЕН

Уксусный альдегид, уксусную кислоту, этиловый спирт даже для технических целей раньше приходилось получать из пшеницы и сахара. Кому удалось приспособить для этого такое непищевое сырье, как ацетилен?

Русский химик-органик Михаил Григорьевич Кучеров (1850–1911) в 1881 г. открыл реакцию, носящую теперь его имя. Она заключается в получении уксусного альдегида CH3CHO из ацетилена H2C2 в присутствии катализатора оксида ртути HgO:

H2C2 + H2O = CH3CHO.

Ацетилен для проведения этой реакции получить не так уж трудно: сначала ведут обжиг известняка — карбоната кальция CaCO3 (см. 3.23):

CaCO3 = CaO + CO2↑,

а затем спекают оксид кальция CaO с углем (см. 9.50):

2СаО + 5С = 2СаС2 + CO2

и разлагают полученный карбид кальция водой:

CaC2 + 2Н2О = Ca(OH)2 + H2C2.

Из полученного уксусного альдегида можно получить и этиловый спирт (восстановлением), и уксусную кислоту (окислением).

Позднее для получения альдегидов стали использовать реакции Сабатье и Адкинса.

В 1912 г. Поль Сабатье (1854–1941) — французский химик, член Парижской академии наук, лауреат Нобелевской премии — установил, что уксусная кислота CH3COOH (см. 1.50) может быть превращена в уксусный альдегид CH3CHO при действии муравьиной кислоты HCOOH в присутствии нагретого до 300–350°C диоксида марганца MnO2:

CH3COOH + HCOOH = CH3CHO + H2O + CO2↑.

Это реакция Сабатье.

В 1931 г. американский химик-органик Гомер Адкинс (1892–1949) предложил получать формальдегид HCHO (см. 6.55) окислением метанола CH3OH (см. 1.60) кислородом воздуха при 250–400°C в присутствии катализатора триоксида дижелеза Fe2O3. Формальдегид образуется в реакции Адкинса практически без примеси метанола:

2СН3ОН + O2 = 2НСНO + 2Н2O.

8.35. ПОЛУЧЕНИЕ ФЕНОЛА — НЕЛЕГКАЯ ЗАДАЧА

Немецкий химик-технолог Фридрих Рашиг (1863–1928) разработал промышленный метод получения фенола C6H5OH. Сначала хлорируют бензол в присутствии катализатора оксида алюминия Al2O3, а затем полученный продукт подвергают гидролизу водяным паром при участии катализатора ортофосфата кальция Ca3(PO4)2:

C6H6 + Cl2 = C6H5Cl + НСl, C6H5Cl + H2O = C6H5OH + HCl.

Эти реакции стали называть одним именем — реакции Рашига.


8.36. САХАР ИЗ ФОРМАЛЬДЕГИДА

Бутлеровым (см. 2.33) была предложена реакция для получения смеси сахаров («формозы») из формальдегида HCHO (см. 6.55) при воздействии на него гидроксида кальция Ca(OH)2 (см. 3.23):

6НСНO = C6H10O5 + H2O.

Реакция сложная (она протекает через ряд промежуточных стадий), аутокаталитическая (сама себя катализирует) и ускоряется под действием ультрафиолетового излучения (см. 1.61).


8.37. ПРЕОДОЛЕНИЕ ДЕФИЦИТА

Один из самых главных способов превращения твердого топлива в жидкое подсказала реакция Орлова. Егор Иванович Орлов (1865–1944) — русский химик-неорганик и технолог, создатель проекта первого в России завода для производства формалина (1909 г.). В 1908 г. Орлов получил этилен C2H4 при пропускании смеси монооксида углерода СО и водорода H2 над никель-палладиевым катализатором (Ni-Pd) при температуре около 100°С:

2СО + 4Н2 = C2H4 + 2Н2O.

Немецкие химики Франц Фишер (1877–1947) — директор Института кайзера Вильгельма по изучению угля, и Ганс Тропш (1889–1935), сотрудник того же института, в 1923 г. предложили получать смеси углеводородов состава CnH2n+2 гидрированием монооксида углерода СО под давлением примерно 1 МПа и температуре 200–400°C в присутствии катализатора (никеля Ni, железа Fe или рутения Ru):

СО + (2n+1)Н2 = CnH2n+2 + nH2O.

Реакция протекает со значительным выделением энергии в форме теплоты.

Кстати, процесс Фишера — Тропша позволяет также получать из смеси (СО и H2) метанол (см. 1.60):

CO + 2Н2 = CH3OH.

Эта реакция проводится в присутствии катализатора оксида хрома Cr2O3 при температуре 300°C и давлении 30 МПа.


Загрузка...