5. О НЕКОТОРЫХ УДИВИТЕЛЬНЫХ СВОЙСТВАХ ВЕЩЕСТВ

Известно, что люди могут быть похожими и непохожими друг на друга. Но каждый человек как личность уникален и неповторим. Подобным образом каждое вещество — «химический индивидуум» — тоже имеет свой собственный и неповторимый внешний облик, «характер», «привычки». О примечательных свойствах химических веществ пойдет речь в этом разделе.


5.1. ХРУПКАЯ ЗЕМНАЯ АТМОСФЕРА

Земная атмосфера сформировалась за счет выделения газов из горных пород и анаэробного фотосинтеза. Около 4 млрд., лет тому назад кислорода в атмосфере Земли не было. Она состояла из азота N2, диоксида углерода CO2 и водорода H2. Появление в воде океанов простейших живых организмов, в частности сине- зеленых водорослей, 2,5 млрд., лет тому назад стало началом появления и кислорода в атмосфере. Эти водоросли в ходе синтеза своих углеводов усваивали водород из воды, а углерод — из растворенного в воде CO2, одновременно выделяя кислород. Понадобилось около 20 000 лет, чтобы содержание кислорода в атмосфере достигло современного уровня.

В настоящее время в атмосфере содержится 21% (по объему) кислорода, или 1015 т. Несмотря на постоянное участие O2 в окислительных процессах, его содержание в атмосфере практически не изменяется из-за продолжающегося процесса фотосинтеза.

Если бы в атмосфере содержалось менее 15% O2, то обычный процесс горения стал бы невозможным. При концентрации O2 более 30% первый же удар молнии сжег бы все на Земле: в этом случае даже сырая древесина горит как порох.


5.2. ДИОКСИД УГЛЕРОДА В РОЛИ «НОСИЛЬЩИКА»

Диоксид углерода способен под землей перемещать тысячи тонн известняка. Как это происходит?

Диоксид углерода CO2 (углекислый газ) неплохо растворим в воде. Поэтому в природных речных, почвенных водах обычно высока концентрация растворенного CO2. В водном растворе он частично переходит в гидрат, который затем превращается в угольную кислоту:

CO2∙H2O ↔ H2CO3.

Среда этого раствора слабокислая из-за появления ионов оксония H3O+:

H2CO3 + H2O ↔ HCO-3 + H3O+ .

Однако и этой кислотности достаточно, чтобы при проникновении по трещинам породы грунтовых вод в толщу известнякового пласта (известняк — это карбонат кальция CaCO3) прошла реакция

CaCO3 + HCO-3 + H3O+ = Ca2+ + 2 HCO-3 + H2O

или

CaCO3 + H2CO3 = Ca(HCO3)2

с образованием хорошо растворимого в воде гидрокарбоната кальция Ca(HCO3)2. Так на месте известковых толщ образуются огромные полости в земной коре — карстовые пещеры.

Интересно, что гидрокарбонат кальция в свободном виде не существует; при попытке выделить его выпариванием воды кристаллизуется карбонат кальция:

Ca(HCO3)2 = CaCO3↓ + H2O + CO2↑.

Грунтовые воды, содержащие Ca(HCO3)2, могут перемещаться в земной коре на значительные расстояния и, испаряя в подходящих условиях воду, выделяют карбонат кальция — известняк, кальцит. Это происходит зачастую очень далеко от места растворения исходного карбоната кальция (см. 3.23).


5.3. ЧЕМ НАДУТ ТЕННИСНЫЙ МЯЧ?

Знаете ли вы, что теннисные мячи не надувают, а вводят в них специальные вещества — «вздуватели»?

«Вздуватели» — это вещества, которые при нагревании разлагаются с образованием газообразных продуктов. В теннисные мячи (заготовки которых в виде двух полусфер изготовлены предварительно и смазаны клеем) кладут таблетки, содержащие смесь нитрита натрия NaNO2 и хлорида аммония NH4Cl. Склеенные половинки мяча помещают в форму для вулканизации и нагревают. Происходит химическая реакция

NaNO2 + NH4Cl = NaCl + 2Н2O + N2↑.

Выделившийся азот создает в мяче повышенное давление.


5.4. «ПОРОШОК ЛИБИХА» ВМЕСТО ДРОЖЖЕЙ

«Порошок Либиха» (см. 2.17) применяли раньше для приготовления ржаного теста. В его состав входят пищевая сода — гидрокарбонат натрия NaHCO3 и лимонная кислота (НООССН2)2С(ОН)СООН (см. 3.28). Его действие, как и других заменителей дрожжей, заключается в выделении газообразного диоксида углерода, разрыхляющего тесто:

3NaHCO3 + (СН2СООН)2С(ОН)СООН = (CH2COONa)2C(OH)COONa + 3CO2↑ + 3Н2O.

Современные разрыхлители для теста включают в свой состав гидрокарбонат натрия и какие-либо пищевые кислоты, или гидрокарбонат аммония, который при нагревании разлагается с выделением диоксида углерода CO2, аммиака NH3 и воды:

NH4HCO3 = NH3↑ + CO2↑ + H2O.

Газообразные продукты этой реакции делают тесто пористым (см. 6.4).


5.5. ОБНАЖАЯ МЕТАЛЛ

При пайке металлов используют нашатырь и канифоль. Зачем?

Нашатырь (см. 1.44) — это хлорид аммония NH4Cl, его используют для травления — очистки поверхности паяльника и спаиваемого изделия от оксидов металлов. Применение его основано на том, что при повышенной температуре хлорид аммония подвергается термическому разложению на аммиак NH3 и хлороводород HCl (см. 1.44):

NH4Cl = NH3 + НСl.

Образующиеся аммиак и HCl реагируют с оксидом меди на горячей поверхности медного паяльника:

3CuO + 2NH3 = 3Cu + N2↑ + 3H2O↑,
CuO + 2HCl = CuCl2 + H2O↑.

В результате обнажается чистая поверхность металла, которая может «смачиваться» расплавленным оловом или сплавом — припоем.

Канифоль представляет собой сложную смесь органических кислот и ненасыщенных углеводородов, ее получают после отгонки скипидара из смолы хвойных растений. Взаимодействие компонентов канифоли с оксидами металлов при высокой температуре ведет к восстановлению этих оксидов до металла. Кроме того, расплав канифоли защищает поверхность «жала» паяльника и спаиваемое изделие от контакта с воздухом, а значит, и от окисления.


5.6. ВОДА НА ЛЮБОЙ ВКУС

Кроме хорошо известной всем воды состава H2O, существуют и другие «воды»: хлорная, бромная, сероводородная. Это водные растворы хлора Cl2, брома Br2 и сероводорода H2S. Есть и совсем таинственные названия. Так, «лабарракову воду» получают, пропуская хлор в разбавленный водный раствор гидроксида натрия NaOH (см. 3.39). При этом протекает реакция с образованием хлорида натрия NaCl и оксохлората натрия NaClO:

Cl2 + 2NaOH = NaCl + NaClO + H2O.

Используют «лабарракову воду» для отбеливания тканей. Отбеливание основано на окислении загрязняющих веществ оксохлоратом водорода HClO (хлорноватистой кислотой), образующимся при действии угольной кислоты H2CO3, всегда присутствующей в воде, при ее контакте с воздухом:

NaClO + H2CO3 = NaHCO3 + HClO.

Если пропускать хлор в раствор гидроксида калия КОН, то получается «жавелевая вода», которую используют для тех же целей:

Cl2 + 2KOH = KCl + KClO + H2O.

«Фагеденическая вода» — это фармацевтический препарат, который готовят, смешивая известковую воду (см. 3.23) с раствором хлорида ртути HgCl2:

Ca(OH)2 + HgCl2 = CaCl2 + HgO↓ + H2O.

После смешения образуется суспензия (взвесь) тонкодисперсного желтого оксида ртути HgO в водном растворе хлорида кальция CaCl2. «Фагеденическую воду» используют при лечении кожных болезней.


5.7. НЕ ПОТУШИТЬ ВОДОЙ

Во время лабораторной работы загорелись кусочки магния. Их пытались залить водой, но произошел взрыв и пламя усилилось. Тогда стали засыпать чашку с горящим магнием песком, но горение не прекратилось. Что же в таком случае делать?

Горящий магний Mg активно взаимодействует с водой:

Mg + H2O = MgO + H2

с выделением водорода H2, который с кислородом воздуха O2 дает взрывоопасные смеси. Песок SiO2 также вступает в реакцию с горящим магнием с выделением большого количества энергии в форме теплоты с образованием оксида магния MgO и аморфного кремния Si:

2Mg + SiO2 = 2MgO + Si.

Только асбестовая вата (см. 10.27) и мелкая железная стружка тушат горящий магний.


5.8. АКТИВНЫЕ МЕТАЛЛЫ

Один из лаборантов, зная, что литий и калий взаимодействуют с кислородом и влагой воздуха, решил их сохранить в сосудах, заполненных азотом. Что он обнаружил через неделю?

Вместо блестящих серебристых кусочков лития он увидел в сосуде рыхлые зеленовато-черные комочки. Калий же сохранил свой первоначальный металлический блеск. Литий Li, в отличие от калия K и остальных щелочных металлов, реагирует с азотом N2 в обычных условиях с образованием нитрида:

6Li + N2 = 2Li3N.

Поэтому хранить литий можно только в атмосфере аргона Ar или под слоем обезвоженного вазелинового или парафинового масла, а также в тонкостенных герметичных оболочках — тубах из алюминия или меди.


5.9. «ТЕСТО» ПРЕВРАЩАЕТСЯ В КАМЕНЬ

Какой «гипс» твердеет при добавлении воды?

Порошок природного минерала гипса CaSO4∙2Н2O при смешении с водой не затвердевает. При нагревании до 150–170° C он теряет 3/4 содержащейся в нем воды:

CaSO4∙2Н2O = CaSO4∙0,5Н2О + 1,5Н2О↑

и превращается в «жженый гипс», который часто называют строительным гипсом, или просто алебастром. Если тонкоразмолотый алебастр — полугидрат сульфата кальция CaSO4∙0,5Н2О — замесить с водой, то полученное жидкое «тесто» скоро застывает в твердую массу тонковолокнистых кристаллов гипса CaSO4∙2Н2O, переплетенных между собой. Этот процесс широко применяют при изготовлении копий скульптур, моделей, барельефов, а также в медицине для гипсования при переломах конечностей. Надо отметить, что гипс, потерявший всю воду, превращается в безводный сульфат кальция CaSO4 и уже не обладает способностью быстро «схватываться» при взаимодействии с водой. Безводный сульфат кальция (в природе он присутствует в виде минерала ангидрита, см. 3.40) в контакте с водой лишь очень медленно присоединяет воду, превращаясь в гипс CaSO4∙2Н2O. При этом, как и при затвердевании алебастра, объем исходной смеси увеличивается.


5.10. ЧУДЕСА ОБЕЗВОЖИВАНИЯ

Гидроксиды почти всех металлов при нагревании до высоких температур разлагаются, теряя молекулы воды. Удивительно, но удаление последних порций воды при прокаливании гидроксида хрома CrO(OH) ведет к самопроизвольному разогреву образца.

Еще Берцелиус (см. 2.19) наблюдал, что в момент удаления последних следов воды из гидроксида хрома происходит резкое повышение температуры, приводящее к тому, что вещество раскаляется докрасна. Дальнейшие исследования показали, что это явление вызвано внезапной кристаллизацией оксида хрома Cr2O3. Кристаллическая решетка этого соединения очень прочна, и при ее образовании выделяется много энергии в форме теплоты. Кристаллизация происходит ниже температуры плавления Cr2O3, составляющей около 2200° С. Подобное явление наблюдается при обезвоживании гидроксидов скандия Sc, титана Ti, циркония Zr, тантала Та и железа Fe.


5.11. КАКОЙ ЛЕД ТОНЕТ?

Если замораживать водный раствор диоксида серы SO2, то сначала кристаллизуется не обычный лед, а соединение включения (клатрат) диоксида серы состава SO2∙(6±x)H2O. Молекулы воды при помощи водородных связей образуют своеобразную «клетку», во внутренней полости которой находится молекула SO2. Плотность такого клатрата в твердом состоянии на 25% больше плотности воды. Значит, «клатратный лед» тонет в воде.


5.12. НЕЗВАНЫЙ ГОСТЬ

Пропускание газообразного хлора в ледяную воду приводит к выделению желтозеленых кристаллов. Это кристаллический гидрат хлора состава 8Сl2∙46Н2O, устойчивый при температуре ниже 9,6° С. Подобные вещества относят к клатратам, или соединениям включения. Они образованы путем внедрения молекул хлора («гостей») в полости кристаллического каркаса, состоящего из молекул воды («хозяев»). Впервые с этим явлением столкнулся Дэви в 1811 г. (см. 9.16). Гидраты способны образовывать и другие газы: оксид диазота N2O, ацетилен C2H2, метан CH4, азот N2, кислород O2 и даже благородные (инертные) газы аргон Ar, криптон Kr и ксенон Xe.


5.13. ЧЕМ ДЫМИТ «ДЫМЯЩАЯ СЕРНАЯ КИСЛОТА»?

Серная кислота H2SO4 (см. 1.49) может растворять свой ангидрид (см. 3.40) — кислотный оксид, триоксид серы SO3; при этом образуются полисерные кислоты:

H2SO4 + nSO3 = H2Sn+1O4+3n.

К ним относят дисерную H2S2O7, трисерную H2S3O10 и другие кислоты. Полисерные кислоты называют еще «олеумом» (т. е. маслообразной жидкостью) или «нордгаузенским купоросным маслом». Это и есть «дымящая серная кислота». Полисерные кислоты выделяют на воздухе газообразный SO3, который, взаимодействуя с влагой воздуха, и вызывает появление «дыма», или тумана мельчайших капелек серной кислоты:

SO3 + H2O = H2SO4.

5.14. ЦВЕТНОЙ СИЛИКАГЕЛЬ

Зачем в оптические приборы помещают мешочки с синими гранулами?

Для обнаружения и поглощения примеси влаги из воздуха используют силикагель (гранулированный пористый диоксид кремния SiO2), пропитанный хлоридом кобальта CoCl2 и тщательно высушенный. Когда хлорид кобальта безводный — гранулы силикагеля синие или голубые, при поглощении влаги образуется аквакомплекс [Со(Н2O)6]Сl2, и цвет гранул меняется на розовый.


5.15. ПОМОЩНИК РЕВИЗОРА

Во время ревизии на складе реактивов проверяющие мгновенно обнаружили, что бутыль с надписью «абсолютный этиловый спирт» содержит не безводный спирт, а его водный раствор.

Один из ревизоров взял из бутыли небольшую по объему пробу спирта и добавил к ней щепотку бесцветного обезвоженного сульфата меди CuSO4 (см. 1.47) и слегка встряхнул пробирку с пробой. Бесцветные кристаллы сразу же стали голубыми:

CuSO4 + 5Н2O = CuSO4∙5Н2O.

Вода превращает белый порошок сульфата меди в ярко-голубой пентагидрат сульфата меди… А ведь в «абсолютном» спирте воды быть не должно!


5.16. ПОЧЕМУ СИНЕЕТ ХЛОРИД КОБАЛЬТА?

Гексагидрат хлорида кобальта CoCl2∙6Н2O как в кристаллическом состоянии, так и в виде водного раствора имеет розовый цвет, но его раствор в ацетоне синий.

Ацетон извлекает из аквакатиона [Co(H2O)6]2+ две молекулы воды, непосредственно связанной с кобальтом, при этом образуется аквакатион другого состава — [Co(H2O)4]2+ :

[Со(Н2O)6]Сl2 = [Со(Н2O)4]Сl2 + 2Н2O.

Это и ведет к изменению окраски раствора.


5.17. ЕСЛИ ПОСОЛИТЬ «ГАЗИРОВКУ»

Если в стакан с газированной водой бросить щепотку соли, то растворенный газ — диоксид углерода CO2 — сразу начнет выделяться. Почему?

Объяснение этому обыденному явлению будет не таким уж простым. Вспомним, что в чистой воде газ растворим лучше, чем в растворе соли, а газированная вода — это пересыщенный раствор диоксида углерода CO2 (углекислого газа) в воде. Чтобы избыток газа выделился, нужны «зародыши», например микропузырьки воздуха. Однако добавление к газированной воде речного песка не приведет к выделению газа. Правильное объяснение включает два механизма процесса: как только кристаллы соли попадут в стакан, они начнут растворяться, и вокруг них образуется пленка концентрированного раствора; в результате растворимость газа вблизи кристаллов резко уменьшается, появляются маленькие пузырьки газа — «зародыши». Как только «зародыши» вырастают, они отрываются от кристаллов, и в соприкосновение с солью приходят новые порции раствора. Этот процесс продолжается до тех пор, пока вся соль не растворится или пока не выделится весь диоксид углерода.

Если посолить нагретую до 70–80° C водопроводную воду, она «вскипает» от выделившихся пузырьков растворенного воздуха. Объяснение этому явлению — то же.


5.18. ЭТО ВСЕГО ЛИШЬ КАРБОНАТЫ

И стеклянные, и хрустальные вазы покрываются изнутри налетом, если в них слишком долго держать в воде цветы. Чтобы избавиться от налета, рекомендуют обработать стекло слабым раствором кислоты.

Налет на стекле — это карбонат кальция CaCO3, частично — магния MgCO3 или железа FeCO3, которые появляются из-за взаимодействия гидрокарбонатов этих металлов [M(HCO3)2, где M = Mg, Ca, Fe], всегда присутствующих в воде («солей жесткости»), аммиаком NH3 (см. 1.44) и органическими аминами сока растений например, CH3NH2, которые в водной среде дают щелочную реакцию:

NH3 + H2O ↔ NH3∙H2O ↔ NH+4 + OH-,
CH3NH2 + H2O ↔ CH3 NH+3 + OH-.

Появление в воде ионов ОН- приводит к осаждению на стекле карбонатов:

Ca(HCO3)2 + OH- = CaCO3↓ + HCO-3 + H2O.

Осадки карбонатов, в частности карбонат кальция, могут быть разрушены многими кислотами, в том числе даже уксусной CH3COOH (см. 1.50):

CaCO3 + 2СН3СООН = Ca(CH3COO)2 + CO2↑ + H2O.

5.19. «ХИМИЧЕСКАЯ ГРЕЛКА»

Известно несколько видов «обыкновенных химических грелок». Устройство их очень простое: обычно это два пакета (маленький и большой) из водонепроницаемого и химически стойкого материала (пленки, ткани). Внутри маленького пакета — вещество или смесь веществ. Чтобы грелка начала работать, сюда надо добавить немного воды и перемешать содержимое пакета. Потом пакет закрывают, вставляют в большой и еще раз тщательно закупоривают; теперь грелкой можно пользоваться. Одна из самых простых химических грелок содержит оксид кальция CaO (негашеную известь), который взаимодействует с водой с образованием гидроксида кальция (см. 3.23):

CaO + H2O = Ca(OH)2.

Реакция сопровождается тепловыделением. Температура грелки может достигать 70–80° С. В химической грелке другого вида используют взаимодействие металлов (в виде стружки) и солей. Совершенно сухую смесь железной (Fe) или алюминиевой (Al) стружки с солями меди (например, CuCl2) можно хранить довольно долго, а при добавлении воды температура сразу же повышается почти до 100ºC за счет реакции:

Fe + CuCl2 = FeCl2 + Cu↓.

При этом грелка, в которой хлорид меди CuCl2 превращается в хлорид железа FeCl2, сохраняет тепло около десяти часов.


5.20. УДИВИТЕЛЬНЫЙ БОЛОТНЫЙ ГАЗ

Грибники нашли в лесу небольшое болото, из которого вырывались местами пузырьки какого-то газа. От спички газ вспыхнул, и слабосветящееся пламя стало блуждать по болоту.

Этот газ — метан CH4, бесцветный горючий газ, малорастворимый в воде. Он образуется при разложении органических веществ без доступа воздуха. Раньше этот газ так и называли — «болотный газ». Смесь метана с воздухом, или «рудничный газ», нередко накапливается в угольных шахтах и представляет большую опасность для шахтеров (см. 7.13). Горение метана сопровождается большим выделением энергии в форме теплоты:

CH4 + 2O2 = CO2↑ + 2Н2O↑.

В лаборатории метан можно получить нагреванием смеси ацетата натрия CH3COONa и гидроксида натрия NaOH:

CH3COONa + NaOH = CH4↑ + Na2CO3.

Метан добывается вместе с другими легкокипящими углеводородами в очень больших количествах на газовых промыслах и используется как топливо и как химическое сырье.


5.21. КАКОГО ЦВЕТА ПОВАРЕННАЯ СОЛЬ?

Чистая поваренная соль бесцветна (см. 10.51). «Деликатесная», или «царская», поваренная соль нежно-розового цвета и с приятным ароматом, содержит микроскопические водоросли, попавшие в нее из воды соляного озера. Встречается и соль синего цвета.

В природе синяя поваренная, или каменная, соль (хлорид натрия NaCl) — большая редкость. А в лаборатории ее получить не так уж трудно. Для этого в плотно закрытом сосуде нагревают смесь металлического натрия и хлорида натрия. Металл способен растворяться в соли. При этом атомы натрия Na проникают в кристаллическую решетку, состоящую из ионов Na+ и Cl-. Атомы натрия достраивают решетку, занимая подходящие места и превращаясь в катионы Na+. А освободившиеся электроны располагаются в тех узлах кристаллической решетки, где полагалось бы находиться анионам Cl-. Такие необычные узлы решетки, занятые электронами, называют вакансиями, или F-центрами (от немецкого Farbe — цвет). При охлаждении кристалла некоторые F-центры объединяются, образуя ассоциаты, включающие 10–1000 атомов натрия, — это и служит причиной появления окраски кристаллов. Кстати, при растворении синих кристаллов в воде образуется бесцветный раствор — совсем как из обычной поваренной соли. В природной каменной соли F-центры образуются под действием излучения, сопровождающего радиоактивные превращения.


5.22. ЦЕПИ КНЯЗЯ БАГРАТИОНА

Какое отношение имеет прославленная семья Багратионов к гальваническим элементам?

Князь Петр Романович Багратион (1818–1876) — племянник знаменитого полководца — начинал свою службу в инженерных войсках. В 1840 г., будучи в чине лейтенанта и в адъютантской должности, он изобрел гальванический элемент, впоследствии получивший название «цепь князя Багратиона постоянного действия». Этот элемент представлял собой горшок с землей, пропитанной концентрированным раствором хлорида аммония NH4Cl (нашатыря), в которую на некотором расстоянии втыкали медную (Cu) и цинковую (Zn) пластины. Такой элемент давал ток на протяжении нескольких месяцев. Позднее Багратион сделал несколько крупных изобретений в области металлургии (например, он разработал цианирование — способ извлечения золота из руд, см. 6.3; 10.13).


5.23. ЗАРЯЖЕННЫЕ КРИСТАЛЛЫ

Можно ли добиться электризации ионных кристаллов солей механическим путей?

Можно. Установлено, что при раскалывании кристаллов фторида лития LiF меньший обломок, как правило, приобретает отрицательный, а больший — положительный заряд.


5.24. НЕРЖАВЕЮЩАЯ ЖЕЛЕЗНАЯ КОЛОННА

Близ г. Дели в Индии стоит железная колонна без малейшего пятнышка ржавчины, хотя ее возраст почти 2800 лет.

Это знаменитая Кутубская колонна высотой около семи метров и массой 6,5 т. Надпись на колонне говорит о том, что она была поставлена в IX в. до н.э. Ржавление железа — образование метагидроксида железа FeO(OH) — связано со взаимодействием его с влагой и кислородом воздуха:

4Fe + 2Н2O + 3O2 = 4FeO(OH).

Однако эта реакция при отсутствии в железе различных примесей, и прежде всего углерода, кремния и серы, не протекает. Колонна была изготовлена из очень чистого металла: железа в колонне оказалось 99,72%. Этим и объясняется ее долговечность и коррозионная устойчивость.


5.25. СЕРА ВРЕДНАЯ И ПОЛЕЗНАЯ

В сталелитейной промышленности во избежание «красноломкости» (снижения прочности при высоких температурах) допустимое содержание серы S в стали не должно превышать 0,01%. Примесь серы находится там в виде сульфида железа FeS, практически нерастворимого в стали при обычной температуре. Он-то и вызывает растрескивание металла при прокатке и ковке.

Если речь идет о стали, содержащей марганец и бор, которую используют в машиностроении, то примесь серы в количестве около 0,015% приводит к тому, что такую сталь легче обрабатывать, причем режущий инструмент при этой обработке меньше изнашивается. В таких сталях сера содержится в виде сульфида марганца MnS, который играет роль твердой смазки, предотвращающей вырывы металла резцом.

При обкатке двигателей внутреннего сгорания в цилиндры добавляют специальные присадки, содержащие коллоидную серу. Срок технологической операции в этом случае сокращается, так как на поверхности металла цилиндра и поршня тоже образуется сульфид марганца.


5.26. «ЦВЕТАСТАЯ» МЕТАЛЛУРГИЯ

Знаете ли вы, что в английских патентах вплоть до конца XIX в. содержались рекомендации добавлять в закалочную жидкость при обработке железа полевые цветы?

Эту курьезную рекомендацию породило незнание действительных причин закаливания стали (см. 3.45; 530). Кстати, твердость закаленной стали долгое время объясняли превращением содержащегося в ней углерода в алмаз. Более того, в конце XVIII в. французский ученый Гитон де Морво (см. 2.28) получал сталь (наверное, самую дорогую в мире во все времена!) сильным нагреванием чистого железа с алмазами.


5.27. ОРУЖИЕ ИЗ «НЕБЕСНОГО КАМНЯ»

Почему эмиру Бухары не удалось использовать металл «небесного камня» (метеоритное железо) для изготовления оружия?

Согласно легенде, оружейники не смогли отковать из «небесного камня» меч для эмира, и их умертвили. Оружейники не знали, что никелистое метеоритное железо куется только холодным, а при нагревании становится хрупким (см. 155). Однако оружие из уникального «металла с неба» было у индийских властителей в XVII в., у российского царя Александра I и у латиноамериканского героя, легендарного Боливара.


5.28. ЛУННАЯ МЕТАЛЛУРГИЯ

В образцах лунного грунта, доставленных на Землю, обнаружено поразительно большое количество самородного железа.

В первую очередь это остатки метеоритов, которые беспрепятственно достигают поверхности нашего безатмосферного спутника Луны. На их долю приходится 30% лунного железа. А остальные 70% следовало бы назвать «селеническим железом»: хотя на Луне нет залежей каменного угля, необходимых для естественного доменного процесса (см. 6.31), но нет и атмосферы, содержащей кислород. В условиях кислородного голодания на Луне все элементы находятся в низших степенях окисления. Глубокий вакуум (10-7–10-9 атм) и высокая температура (несколько тысяч градусов) сами по себе служат восстановителями железа; значит, при извержении расплавленных лунных пород всегда самопроизвольно образуется самородное железо. Не правда ли, «лунометаллургия» эффективнее земной?


5.29. МОЖЕТ ЛИ МЕТАЛЛ ВЗРЫВАТЬСЯ?

В 1855 г. была получена одна из модификаций сурьмы Sb (см. 4.24), названная «взрывчатой». Это стекловидно-аморфное вещество, похожее на графит. Если его потереть каким-либо твердым предметом, то оно распадается на мельчайшие частицы обычной сурьмы с выделением белого дыма и энергии в форме теплоты. Полагают, что неустойчивость аморфной сурьмы связана с наличием в ее структуре примеси хлоридов, содержащих ионы SbCl2 + , SbCl2 + и Cl-.

Получена и «взрывчатая» модификация металла висмута Bi (см. 4.22).


5.30. НЕ ВСЕГДА РЖАВЧИНА ВРЕДНА

Статья, опубликованная в 1834 г. в «Горном журнале», называлась «Улучшение железа и стали посредством ржавления в земле».

Способ превращения железа в сталь через ржавление в земле известен людям с глубокой древности. Например, черкесы на Кавказе закапывали полосовое железо в землю, а откопав его через 10–15 лет, выковывали из него свои сабли, которые могли перерубить даже ружейный ствол, щит, кости врага.

В земле железо Fe, естественно, ржавело, превращаясь в метагидроксид железа:

4Fe + 2H2O + 3O2 = 4FeO(OH),

но одновременно насыщалось углеродом и азотом при контакте с различными органическими веществами почвы. Ржавчина [метагидроксид железа FeO(OH)] обладает хорошей сорбционной способностью к различным органическим веществам. После выкапывания ржавое железо вместе с органическими веществами нагревали в горнах, ковали, а затем охлаждали водой — закаливали. Углерод и азот появлялись в поверхностном слое откованного металла, упрочняя его и сообщая ему особую твердость. В слое при термической обработке образуется очень твердое соединение: карбид железа Fe3C — цементит (см. 3.45):

3Fe + C = Fe3C.

Впоследствии для получения твердой стали вместо длительного пребывания железа в земле перешли к плавке железа под слоем древесного угля.


5.31. МНОГОЦВЕТНЫЕ МЕТАЛЛЫ

Считается, что металлический цвет — это серебристо-белый или серый. Все ли металлы такого цвета?

Широко известно, что медь Cu имеет ярко выраженный розово-красный цвет. Очень чистое золото Au — желто-зеленого цвета. Щелочной металл цезий Cs — светложелтый, а тяжелый металл из семейства платины осмий Os — светло-голубого цвета. Искусственно полученный металл технеций Tc имеет серебристый цвет с коричневым оттенком.


5.32. ЗОЛОТИСТАЯ СТАЛЬ

Обычная сталь — серого цвета, есть даже выражение «стальной цвет». Но можно изменить цвет этого материала на золотистый путем нанесения на сталь покрытия из нитрида титана TiNx. В вакуумной камере в среде азота плазменная дуга испаряет титан Ti, а его пары, прореагировав с азотом, превращаются в нестехиометрические нитриды титана, которые, оседая на поверхности быстрорежущей стали, образуют прочное износостойкое покрытие золотистого цвета. Инструменты из такой стали почти не имеют конкуренции — разве только с алмазсодержащими хромированными изделиями.

Кстати, этим методом делают и тонированные «под золото» зубные протезы.

Алхимики для окраски металлов применяли «божественную воду», которой был водный раствор полисульфида кальция CaSx (x≥2) и сульфита кальция CaSO3 зеленовато-желтого цвета. После погружения в такой раствор пластинки или изделия из хрома, свинца или олова приобретали желтовато-золотистый цвет. «Божественную воду» алхимики получали кипячением смеси серы S, гидроксида кальция Ca(OH)2 и воды H2O:

5S + 3Са(ОН)2 = 2CaS2 + CaSO3 + 3Н2O.

5.33. СТРАННЫЙ НИТИНОЛ

Кусок проволоки при комнатной температуре был упруг как сталь. В холодной же воде проволока вдруг стала мягкой. Ее согнули, и она осталась согнутой… Когда же ее погрузили в горячую воду, то произошло невероятное: проволока распрямилась с силой, как пружина, и приняла первоначальную форму, которую имела до обработки ее холодной водой.

Проволока была изготовлена из никелево-титанового сплава Ni—Ti. Такой сплав называют нитинолом. Пластину и проволоку из нитинола используют для изготовления тепловых двигателей, позволяющих тепловую энергию превращать непосредственно в механическую в результате перехода от одних кристаллических структур к другим. Такие двигатели могут использовать тепловую энергию океанов, морей, тепловых морских течений, подобных Гольфстриму, преобразуя ее в движение турбин, насосов, роторов генераторов электрической энергии и т. п.


5.34. КАПРИЗНЫЙ ТИТАН

Титан Ti получают восстановлением тетрахлорида титана TiCl4 магнием Mg:

TiCl4 + 2Mg = Ti↓ + 2MgCl2.

Образующийся титан очень пористый, напоминает губку. Если реакцию вели в атмосфере аргона, то получается пластичный и весьма химически активный металл, который реагирует с хлороводородной кислотой с выделением водорода H2 и образованием фиолетового раствора, содержащего трихлорид титана TiCl3:

2Ti + 6HCl = 2TiCl3 + 3Н2↑.

Если в реактор вместе с аргоном попадает воздух, на поверхности металла образуется тонкий, но прочный слой нитрида титана TiNx и оксидов состава TiO2n-1, не поддающихся воздействию разбавленных кислот; такой титан еще и хрупок (см. 4.45).


5.35. ЧТО ТАКОЕ «ПЕВКАЯ МЕДЬ»?

«Певкая медь» на самом деле не медь, а бронза — сплав меди, олова и свинца. Такой сплав прочен, легкоплавок и текуч в жидком состоянии, а после отвердения — достаточно музыкален: из него отливали колокола. Содержание меди в колокольной бронзе 75–78%, олова 20–21%, свинца 2–3%. Иногда в расплав для звонкости добавляли и серебро.


5.36. КАКУЮ БОЛЕЗНЬ НАЗЫВАЮТ «ОЛОВЯННОЙ ЧУМОЙ»?

«Оловянная чума» — это не болезнь, а своеобразное явление, связанное с существованием двух аллотропных модификаций олова. У «серого олова» («модификация) кристаллическая структура сходна со структурой алмаза и устойчива ниже 13,2° С. «Белое олово» (β-модификация) имеет тетрагональную структуру. C этим оловом мы обычно имеем дело. При температуре 13,2° C обе модификации находятся в равновесии, а на сильном морозе β-модификация переходит в α-модификацию. Поскольку плотность и кристаллическая структура модификаций разные, оловянные изделия разрушаются. Остановить начавшийся процесс невозможно, поэтому его и назвали «оловянной чумой». Правда, этот процесс на слабом морозе идет медленно. Он быстро нарастает только при температуре ниже — 25° C и достигает максимальной скорости при — 48° C (см. 9.22).


5.37. ЕГИПЕТСКИЙ ГОРШОК

Как выплавляли золото в Древнем Египте?

Производство металлов, а особенно золота Au, в Древнем Египте считалось священным искусством, а металлургические знания были покрыты тайной. Много лет спустя выяснилось, что египтяне обрабатывали золотую руду расправленным свинцом Pb, растворяющим благородные металлы, и таким образом извлекали остатки золота (а заодно и серебра) из руд. Затем расплав подвергали окислительному обжигу в горшках, свинец переходил в оксид PbO. Главный технологический секрет этого обжига — материал горшков: их делали из костной золы. При плавке PbO впитывается в стенки горшка, увлекая с собой случайные примеси, а на дне остается очищенный сплав золота и серебра (см. 1–56; 10.9–10.13).


5.38. ИНДИКАТОР СЕРЕБРА

Для распознавания серебра на поверхность изделия наносят каплю слабого раствора дихромата калия в серной кислоте.

Серебро Ag — металл благородный, поэтому взаимодействия его при контакте с разбавленными кислотами не происходит. Иное дело, если в кислоте присутствует сильный окислитель — дихромат калия K2Cr2O7. В этом случае серебро переходит в нерастворимый дихромат серебра Ag2Cr2O7 ярко-красного цвета, по которому и распознают наличие в сплаве серебра:

6Ag + 7H2SO4 + 4K2Cr2O7 = 3Ag2Cr2O7↓ + Cr2(SO4)3 + 4K2SO4 + 7Н2O.

Если серебра в сплаве меньше 25%, то дихромат серебра не образуется. Проба очень чувствительна и практически не портит изделия из исследуемого сплава, иногда, правда, остается светлое пятнышко там, где наносили каплю раствора.


5.39. ЗАГАДКА О ЦАРЕ МЕТАЛЛОВ

Два оксида реагируют между собой, и при этом получаются две кислоты, одна ~ сильная, другая — слабая, к тому же неустойчивая, при разложении превращающаяся в первую. Сильная кислота, если ее посолить, растворяет царя металлов. Какие оксиды вступили в реакцию?

Прежде всего определим, какой металл — «царь металлов». Это, безусловно, золото; растворить его можно в «царской водке» (см. 3.13) — смеси концентрированных азотной и хлороводородной (соляной) кислот [именно такая смесь получится, если посолить — добавить хлорид натрия NaCl (поваренную соль) — концентрированную азотную кислоту HNO3]. Оксиды, о которых шла речь вначале, — это диоксид азота NO2 и вода H2O (оксид диводорода). Их взаимодействие и дает смесь сильной HNO3 и слабой HNO2 кислот:

2NO2 + H2O = HNO3 + HNO2.

Слабая азотистая кислота постепенно разлагается с выделением монооксида азота NO, превращаясь в HNO3:

3HNO2 = HNO3 + 2NO↑ + H2O.

При добавлении хлорида натрия к HNO3 протекает реакция

HNO3 + NaCl ↔ HCl + NaNO3.

Золото взаимодействует с полученной смесью кислот с образованием тетрахлороаурата водорода:

Au + HNO3 + 4HCl = H[AuCl4] + NO↑ + 2Н2О.

5.40. ГДЕ ПРЕДЕЛЫ БЛАГОРОДСТВА ЗОЛОТА?

Золото может по праву гордиться своим упорным химическим характером (см. 10.9–10.13). Известно очень мало химических веществ, с которыми оно желает взаимодействовать. Прежде всего это смесь концентрированных азотной HNO3 и хлороводородной HCl кислот (см. 5.39), водный раствор цианида калия KCN (см. 6.3), раствор хлора Cl2 в хлороводородной кислоте, расплав селеновой кислоты H2SeO4 и водный раствор смеси иодида калия KI и дииодоиодата калия К[I(I)2]. Последние две реакции протекают так:

2Au + 6H2SeO4 = Au2(SeO4)3 + 3SeO2 + 6Н2O,
2Au + K[I(I)2] + KI = 2K[AuI2].

В первой реакции золото превращается в селенат золота Au2(SeO4)3, а часть селеновой кислоты восстанавливается до диоксида селена SeO2. Во второй реакции образуется дииодоаурат калия. Эту реакцию используют для извлечения золота из бедных по его содержанию руд.


5.41. ХРУПКОЕ ЗОЛОТО

Золото, содержащее всего 1% примеси свинца, при ударе разлетится на куски. Даже при содержании свинца 0,01% золото уже теряет свою замечательную ковкость.


5.42. СЕРЕБРЯНЫЙ ЛЕС

Вы добавили к капле ртути, находящейся под водой, водный раствор нитрата серебра и с удивлением обнаружили, что поверхность ртути словно ожила. На ней появились сверкающие ростки, которые начали ветвиться и постепенно превратились в сверкающие деревца.

В сосуде протекала реакция вытеснения серебра Ag из его нитрата AgNO3 ртутью Hg:

2AgNO3 + Hg = 2Ag↓ + Hg(NO3)2.

Выделяющееся серебро образует на капле ртути нитевидные кристаллы. Причина протекающей реакции заключается в том, что серебро — менее активный металл, чем ртуть, поэтому ртуть восстанавливает серебро из растворов его солей в виде металла.


5.43. КАК БЬЕТСЯ «РТУТНОЕ СЕРДЦЕ»?

Если каплю ртути поместить на часовое стекло в водный раствор серной кислоты H2SO4, содержащий небольшое количество дихромата калия K2Cr2O7, а потом прикоснуться к поверхности ртутной капли иголкой, то капля ртути начнет пульсировать, попеременно прикасаясь к иголке и отходя от нее, принимая то сферическую, то плоскую форму. Такая пульсация может длиться долго; при этом кажется, что капля ртути напоминает живое сердце.

На границе ртуть — раствор серной кислоты образуется своеобразный микроконденсатор — двойной электрический слой, состоящий из ионов. Поверхность ртути получает электрический заряд, который придает капле более плоскую форму из-за взаимного отталкивания одноименно заряженных частиц. Прикосновение острия иглы снимает этот заряд, и капля становится сферической, отдаляясь при этом от острия иглы. Затем капля ртути снова приобретает заряд и, растекаясь, прикасается к игле. Заряд «стекает», капля принимает сферическую форму, и процесс снова повторяется.


5.44. МАСТЕР АМАЛЬГАМА

Маленькая девочка решила подновить мамин латунный наперсток и намазала его ртутью из недавно разбитого термометра. Чудеса! Старый наперсток заблестел как серебряный! Но недолго пришлось им пользоваться: ровно через неделю наперсток разломился на две половинки.

На поверхности латуни образовалась амальгама, и это привело к потере прочности металла. Что же такое «амальгама»?

Способность жидкой ртути Hg растворять другие металлы и образовывать сплавы — амальгамы — поражала воображение алхимиков и заставляла их делать фантастические выводы о свойствах этого вещества (см. 4.3). Особенно этому способствовало то, что при образовании амальгамы даже желтые и красные металлы (например, медь Cu) приобретают серебристо-белый блеск. Как правило, амальгамы — это просто растворы других металлов в ртути, жидкие или твердые, но они иногда содержат и соединения металлов с ртутью строго определенного состава и с определенными свойствами. Не образуют амальгам только металлы, которые не смачиваются ртутью, — кобальт Co, марганец Mn, никель Ni, молибден Mo, рений Re и некоторые другие. Не существует и амальгамы железа Fe — поэтому ртуть можно перевозить в железных цистернах. Амальгамы были известны давно: так, зеркала в старину делали, покрывая стекло амальгамой олова Sn (см. 1.27); золото издавна извлекали из бедных руд, обрабатывая их жидкой ртутью (см. 10.13). Полученную амальгаму золота разлагали, испаряя ртуть, причем все растворенное золото оставалось в виде мельчайших кристалликов. Из амальгам серебра и меди делали зубные пломбы: амальгама серебра химически инертна и в обычных условиях является твердым веществом, но легко размягчается при нагревании.


5.45. СУЩЕСТВУЕТ ЛИ АМАЛЬГАМА АММОНИЯ?

Электролиз сильно охлажденного концентрированного водного раствора хлорида аммония NH4Cl с ртутным катодом или воздействием на NH4Cl амальгамы натрия NaHgt дает амальгаму аммония (NH4)Hgx:

NH4Cl + NaHgx = (NH4)Hgx + NaCl,

которая выделяется в виде твердого вещества, устойчивого только при температуре ниже -85° С. При нагревании до комнатной температуры оно становится пастообразным и одновременно разлагается на ртуть Hg, аммиак NH3 и водород H2:

Z(NH4)Hgx = 2xHg + 2NH3↑ + H2↑.

Амальгама аммония содержит растворенный в ртути радикал аммония NH4, напоминающий своим поведением атом щелочного металла.


5.46. БЫВАЕТ ЛИ РТУТЬ ПОРОШКОМ?

Ртуть может быть порошкообразной в том случае, если она состоит из мельчайших капелек, поверхность которых покрыта веществом, препятствующим слипанию. Так, при взаимодействии нитрата диртути Hg2(NO3)2 с гидроксидом натрия NaOH или сероводородом H2S:

Hg2(NO3)2 + 2NaOH = Hg↓ + HgO↓ + 2NaNO3 + H2O,
Hg2(NO3)2 + H2S = Hg↓ + HgS + 2HNO3

выделяющаяся ртуть образует черный порошок из-за присутствия в реакционной смеси оксида ртути HgO или сульфида ртути HgS (см. 1.13).


5.47. ВЕЩЕСТВА-ХАМЕЛЕОНЫ

В старинных руководствах по химическому анализу рекомендуется использовать «раствор хамелеона» для определения в образцах неизвестного состава содержания сульфита натрия Na2SO3, пероксида водорода H2O2 или щавелевой кислоты H2C2O4.

«Раствор хамелеона» — это раствор перманганата калия KMnO4, который при химических реакциях, в зависимости от среды, меняет свою окраску по-разному. Например, в кислотной среде ярко- фиолетовый раствор перманганата калия обесцвечивается из-за того, что из перманганат-иона MnO4- образуется катион Mn2+ ; в сильнощелочной среде из ярко-фиолетового MnO4- получается зеленый манганатион MnO42-. А в нейтральной, слабокислой или слабощелочной среде конечным продуктом реакции будет нерастворимый черно-бурый осадок диоксида марганца MnO2. Вот как идет взаимодействие перманганата калия с различными веществами:

2KMnO4 + 5Н2С2O4 + 3H2SO4 = 2MnSO4 + K2SO4 + 10CO2↑ + 8Н2O,
2KMnO4 + 3Н2O2 = 2MnO2 + 3O2↑ + 2KOH + 2Н2O,
2KMnO4 + Na2SO3 + 2KOH = 2K2MnO4 + Na2SO4 + H2O.

Добавим, что благодаря своим окислительным свойствам и наглядному изменению окраски в химических реакциях перманганат калия нашел широкое применение в химическом анализе.


5.48. ПРОДЕЛКИ ИМИТАТОРА

Некий фокусник пообещал изумленным зрителям продемонстрировать превращение фиолетовых кристаллов квасцов в изумруд, топаз, янтарь или сапфир.

Настоящие драгоценные камни получить из квасцов (см. 151; 3.21), конечно, не удастся. А вот растворы, имитирующие цвета изумруда (см. 10.22), топаза (см. 10.33), янтаря (см. 10.1), сапфира (см. 10.42), получить можно. Для этого фокуснику придется запастись химическими реактивами. Растворив хромокалиевые квасцы [кристаллогидрат сульфата хрома-калия KCr(SO4)2∙12Н2O] в воде, он получит фиолетовый раствор; обработка этого раствора избытком гидроксида калия KOH или натрия NaOH приведет к образованию раствора изумрудного цвета:

KCr(SO4)2 + 6КOH = K3[Cr(OH)6] + 2K2SO4.

Зеленый цвет обусловлен присутствием гексагидроксохромата калия К3[Cr(ОН)6]. Если к этому раствору добавить пероксид водорода H2O2, то зеленый цвет раствора сменяется на желтый, цвет топаза:

3[Cr(ОН)6] + 3Н2O2 = 2К2CrO4 + 2КОН + 8Н2O.

Такая окраска раствора обусловлена присутствием хромата калия K2CrO4. При подкислении желтого раствора серной кислотой H2SO4 появляется оранжевая окраска, напоминающая цвет янтаря:

2CrO4 + H2SO4 = K2Cr2O7 + K2SO4 + H2O.

Водный раствор дихромата калия K2Cr2O7 имеет оранжевый цвет. Наконец, добавляя к такому раствору пероксид водорода и диэтиловый эфир (C2H5)2O, можно получить сложное пероксосоединение CrO(O2)2∙(C2H5)2O, окрашивающее слой эфира в ярко-синий, «сапфирный» цвет.


5.49. ЗАГАДКА ДИХЛОРИДА

Химик обнаружил в шкафу запечатанную банку без надписи с кристаллами зеленого цвета внутри. Сохранился лишь обрывок этикетки со словом «дихлорид». При контакте этих зеленых кристаллов с водой раствор оказался фиолетовым; потом из этой фиолетовой жидкости начали выделяться пузырьки газа, а спустя несколько секунд она стала зеленой. При смешивании раствора сульфата меди CuSO4 с теми же зелеными кристаллами выделились крупинки металлической меди… Какой дихлорид был в банке?

Не так уж много дихлоридов имеет зеленый цвет. Это, во-первых, тетрагидрат хлорида железа FeCl2∙4Н2O, гексагидрат хлорида никеля NiCl2∙6Н2O, безводные дихлориды меди CuCl2, иридия IrCl2 и платины PtCl2 и безводный дихлорид ванадия VCl2. Дихлориды иридия и платины в воде практически нерастворимы, дихлориды железа, меди и никеля дают зеленый (для железа — быстро желтеющий на воздухе) водный раствор, газы при этом не выделяются. Значит, дихлорид ванадия? Действительно, зеленые кристаллы VCl2 образуют фиолетовый раствор, из которого выделяется водород, а окраска раствора становится зеленой:

2VCl2 + 2Н2O = 2VOCl + 2HCl + H2↑.

Очевидно, ванадий в степени окисления (+II) настолько сильный восстановитель, что выделяет водород даже из воды. Не удивительно, что он осаждает и медь Cu из раствора сульфата меди CuSO4, превращаясь в хлорид оксопентаакваванадия(IV):

VCl2 + CuSO4 + 6Н2O = Cu + [V(H2O)5O]Cl2 + H2SO4,

окрашивающего раствор в синий цвет.


5.50. ЧТО ТАКОЕ КРАСНАЯ АЗОТНАЯ КИСЛОТА?

Термин «дымящая красная азотная кислота» использовался вплоть до сороковых годов нашего века (см. 1.48). Это раствор диоксида азота NO2 в азотной кислоте HNO3. Он может быть получен как насыщением концентрированной азотной кислоты диоксидом азота, так и путем взаимодействия компонентов смеси, содержащей 2 моль нитрата натрия NaNO3 и 1 моль серной кислоты H2SO4 при нагревании. Сначала при 100-110ºC, согласно уравнению

NaNO3 + H2SO4 = NaHSO4 + HNO3↑,

из смеси выделяется и перегоняется чистая азотная кислота HNO3. Если повысить температуру до 150–170°С, то в реакцию вступает образовавшийся в растворе гидросульфат натрия NaHSO4:

NaHSO4 + NaNO3 = HNO3↑ + Na2SO4

и одновременно большая часть азотной кислоты начинает разлагаться с выделением диоксида азота и кислорода:

4HNO3 = 2Н2O↑ + O2↑ + 4NO2↑.

Диоксид азота, растворяясь в первых порциях отгоняемой азотной кислоты, и сообщает ей красно-оранжевый цвет. Никакого другого красителя здесь нет.


5.51. ДО ПОСИНЕНИЯ…

Каждая хозяйка и каждый школьник знают: крахмал, на который попал иод, синеет. Почему?

Крахмал состоит из длинных полимерных молекул, построенных из фрагментов глюкозы:

и закрученных по спирали так, что глюкозные шестиугольники образуют длинный цилиндрический канал. Молекулы иода I2 «забираются» в этот канал, превращаются в нем в линейные анионы [I5]-, отрывающие от фрагментов глюкозы электроны и выстраивающиеся длинной цепочкой:

…[ I2—I-—I2] … [I2— I-—I2]…

Так образуется соединение включения, называемое иногда «канальным» соединением, оно-то и имеет синюю окраску.


5.52. ЧЕМ ПРИМЕЧАТЕЛЬНЫ «БУРГУНДСКАЯ» И «БОРДОСКАЯ ЖИДКОСТИ»?

Оба препарата применяются садоводами и огородниками для борьбы с возбудителями грибковых болезней плодовых, овощных и декоративных культур. Обе жидкости готовят добавлением к водному раствору сульфата меди CuSO4∙5Н2O (медного купороса, см. 1.47), либо порошка гидроксида кальция Ca(OH)2 (гашеной извести, см. 323), либо карбоната натрия Na2CO3 (соды, см. 1.19–1.22):

CuSO4 + Ca(OH)2 = Cu(OH)2↓ + CaSO4↓,
2CuSO4 + 2Na2CO3 + H2O = (CuOH)2CO3↓ + 2Na2SO4 + CO2↑.

В первой реакции образуется суспензия гидроксида меди Cu(OH)2 и сульфата кальция CaSO4, называемая «бордоской жидкостью», во второй — суспензия основного карбоната меди (CuOH)2CO3, получившая название «бургундской жидкости».


5.53. «ФИЛОСОФСКАЯ ШЕРСТЬ»

При горении парообразного цинка на воздухе появляется сине-зеленое пламя и образуются белые хлопья оксида цинка ZnO. В Средние века этот оксид называли «философской шерстью» из-за его волокнистого строения и способности участвовать во многих не всегда понятных реакциях.

Оксид цинка в виде белого порошка используется для приготовления цинковых белил. Однако, применяя эту краску, помните, что оксид цинка при нагревании желтеет, правда, при охлаждении желтизна медленно исчезает. Кстати, если в краску, наряду с оксидом цинка, добавить карбонат цинка ZnCO3 (тоже белое вещество), то краска приобретет свойство антипирена, огнезащитного вещества: при сильном нагреве начнется ее разложение с выделением диоксида углерода CO2:

ZnCO3 = ZnO + CO2↑,

который препятствует распространению огня.


5.54. ЧЕРНО-БЕЛЫЙ МИР РЕСТАВРАЦИИ

Посетители реставрационной мастерской увидели, как художник-реставратор протирал мокрым тампоном очень темную картину. По мере обработки чернота исчезала, а краски приобретали яркость и свежесть.

Старые мастера писали картины, добавляя в свинцовые белила различные пигменты. Свинцовые белила (см. 1.14) содержали основный карбонат свинца Pb(OH)2∙2PbСО3, который очень прочно связывается с маслом и среди всех белых красок обладает наибольшей кроющей способностью. Недостатком таких белил является их свойство постепенно темнеть на воздухе из-за образования черного сульфида PbS (атмосферный воздух всегда содержит следы сероводорода):

Pb(OH)2∙2PbСO3 + 3H2S = 3PbS↓ + 4Н2O + 2СO2↑.

При обработке потемневших картин пероксидом водорода H2O2 черный сульфид свинца превращается в белый сульфат свинца PbSO4, и картине возвращается ее прежний облик:

PbS + 4Н2O2 = PbSO4 + 4Н2O.

5.55. СВИНЦОВОЕ ЗЕРКАЛО

Сульфид свинца — непримечательный осадок бурого цвета. Но можно выделить его из раствора свинцовой соли с получением зеркальной поверхности.

Свинцово-сульфидное зеркало получают, используя любую растворимую соль свинца, например нитрат свинца Pb(NO3)2 или ацетат Pb(CH3COO)2, гидроксиды натрия NaOH или калия KOH и тиокарбамид CS(NH2)2. При действии избытка NaOH на нитрат свинца в водном растворе образуется гексагидроксоплюмбат натрия:

Pb(NO3)2 + 6NaOH = Na4[Pb(OH)6] + 2NaNO3.

Если к такому раствору добавить тиокарбамид и равномерно нагревать, то вскоре можно почувствовать запах аммиака NH3:

Na4[Pb(OH)6] + CS(NH2)2 = PbS↓+ 2NH3↑ + Na2CO3 + H2O + 2NaOH.

В тщательно вымытом и обезжиренном реакционном сосуде (пробирка, колба) сульфид свинца осаждается на стекле зеркально блестящим слоем.

Интересно, что в тонком (не более 1∙10-3 мм) слое сульфид свинца PbS является фотосопротивлением: электропроводность такого слоя при освещении резко возрастает.


5.56. ЦВИТТЕР-ИОН — ЧТО ЭТО?

Существуют ли ионы, несущие одновременно и положительный, и отрицательный заряд?

Такие ионы называют биполярными, или цвиттер-ионами. В частности, простейшая из аминокислот, а-аминоуксусная кислота H2NCH2COOH при pH 5,97 превращается в биполярный ион H3N+CH2COO- за счет переноса протона к атому азота. В кислом растворе (рН < 7) такой ион становится основанием, акцептором протонов:

H3N+CH2COO- + H3O+ ↔ H3N+CH2COOH + H2O.

В щелочной среде (pH > 7) биполярный ион оказывается кислотой, выделяя протон:

H3N+CH2COO- + OH- ↔ NH2CH2COO- + H2O.

5.57. БЕЛАЯ САЖА И БЕЛЫЙ ГРАФИТ

«Белая сажа», которую широко применяют в резиновой промышленности вместо черной сажи (углерода) при получении бесцветных резин, — это порошкообразный диоксид кремния SiO2. А «белый графит» получают, обрабатывая обычный темно-серый графит фтором. При 375° C образуется полидикарбонмонофторид (C2F)n, а при 600°С — полимонокарбонмонофторид (CF)n. Оба соединения сохраняют структуру графита, его термостойкость и низкий коэффициент трения, однако первое малоэлектропроводно, а второе — вообще электрический изолятор (чем они и отличаются помимо цвета от обычного графита, хорошо проводящего электричество).


5.58. ХИМИЧЕСКИЙ ЛАЗЕР — ГИПЕРБОЛОИД?

Предполагают, что в 1903 г. русский химик М. Филиппов создал химический лазер. Вот как пишет о нем поэт Л. Мартынов:

«Может быть, что в недрах кабинета

Измышлял он генератор света —

Фантазер, новатор по природе…»

(«Петербургская баллада»)

Летом 1903 г. химик и писатель Михаил Михайлович Филиппов был найден в своем доме бездыханным. Причина его смерти до сих пор остается тайной, а созданный им аппарат и рукописи исчезли. Филиппов, судя по отрывочным сведениям, видимо, создал химический лазер на основе нитрида трихлора Cl3N — очень взрывчатой жидкости. Капелька Cl3N, падая на доску толщиной 7 см, взрывается, пробивая ее насквозь. При этом в больших количествах выделяется лучистая энергия. По словам очевидцев и документам департамента полиции, опасавшегося, что Филиппов взорвет на расстоянии Зимний дворец, в созданный им аппарат входили большая колба с посеребренным дном и катушка Румфорда, что-то напоминающее телефонный аппарат с большим кристаллом хлорида натрия NaCl. Видели толстые доски, прожженные, будто кто-то их проткнул раскаленным гвоздем. На одной из них сохранилась надпись «10 шагов». Кто-то видел, как из окна кабинета Филиппова вылетал слабо мерцающий луч, и затем загорались деревянные строения, предназначенные к сносу. Считают, что Филиппов взрывал пары Cl3N, которые вспыхивают красно-оранжевым пламенем (источником лучистой энергии вспышки служат возбужденные молекулы хлора). О том, что изобретение Филиппова — не выдумка, писал и Менделеев. Кстати, могилы Менделеева и Филиппова находятся на Волховом кладбище рядом. Не были ли химик Филиппов и изобретенный им аппарат реальными прототипами инженера Гарина и его гиперболоида в одноименном романе А. Н. Толстого?


5.59. ИЗВЕСТНО, ЧТО СВЕЧИ НЕ ДЫМЯТ. НО…

Свечи стали бездымными только после 1825 г., когда Шёврель (см. 2.39) положил начало новой отрасли в промышленности — производству стеариновых свечей. До этого применяли сильно чадящие сальные свечи, издающие неприятный запах. Правда, восковые свечи (из пчелиного воска) не коптили, издавали приятный аромат, но стоили дорого. Стеариновые же свечи горят очень светлым пламенем и почти не образуют дыма и копоти. Стеарин — это смесь стеариновой CH3(CH2)12COOH, пальмитиновой CH3(CH2)14COOH и небольшого количества других органических кислот (см. 3.27). Шёврель впервые выделил эти кислоты, омыляя сначала жир (сало) гидроксидом натрия NaOH или гидроксидом кальция Ca(OH)2, а затем разлагая полученное «мыло» хлороводородной или серной кислотами. При этом стеариновая и пальмитиновая кислоты выделялись в виде белого, жирного на ощупь вещества.

Летом 1837 г. в России было создано Московское общество по выработке стеариновых свечей, открывшее первый свечной завод. Император Николай I назначил графа Строганова попечителем общества, освободив завод от уплаты налога на шесть лет. Позднее стеариновые свечи были заменены парафиновыми. Стеариновые свечи создали новую эру в истории освещения.


5.60. МОЖЕТ ЛИ КИСЛОТА ГОРЕТЬ?

Если эта кислота органическая — может. Например, безводная уксусная кислота CH3COOH (см. 1.50) загорается при контакте с твердым пероксидом натрия Na2O2:

4Na2O2 + 9СН3СООН = 2СO2↑ + 8CH3COONa + 6Н2O.

Пероксид натрия — сильный окислитель, а уксусная кислота — восстановитель. В приведенной реакции выделяется значительное количество энергии в форме теплоты. Если 80%-ю уксусную кислоту нагреть в пробирке до кипения, то ее пары можно поджечь спичкой; при горении образуются длинные языки слабо светящего пламени:

CH3COOH + 2O2 = 2СO2↑ + 2Н2O↑.

C прекращением нагрева пробирки и образования паров горение заканчивается.


5.61. ТОПЛИВО РАКЕТ

Во время второй мировой войны польские партизаны обнаружили подземный завод, производивший топливо для немецких ракет, обстреливавших Лондон. Этим топливом оказался гидразин.

Гидразин H2N—NH2 (или N2H4) — бесцветная, довольно вязкая жидкость, дымит на воздухе и имеет запах, похожий на запах аммиака. Гидразин склонен к самовоспламенению и гигроскопичен, образует взрывоопасные смеси с воздухом, очень ядовит. Это сильный восстановитель: оксиды многих металлов — железа, хрома, меди — при контакте с ним реагируют столь бурно, что избыток гидразина воспламеняется и горит синим или фиолетовым пламенем. Кроме того, под действием этих оксидов идет каталитическое разложение гидразина на азот N2 и аммиак NH3:

3N2H4 = N2↑ + 4NH3↑.

Благодаря огромному тепловыделению в ходе реакции горения гидразина и большому объему газообразных продуктов:

N2H4 + O2 = 2Н2O↑ + N2

он и использовался как компонент ракетного топлива.


5.62. ГИДРИДЫ ВМЕСТО БЕНЗИНА

Можно ли представить себе автомобиль, работающий на металлическом сплаве или на гидриде металла?

Подобные проекты высокоэффективного и, главное, экологически чистого (не загрязняющего окружающую среду) «водородного» автомобиля уже разработаны. Гидриды лития LiH и кальция CaH2 разлагаются водой с выделением водорода (см. 6.21):

LiH + H2O = LiOH + H2T,
CaH2 + 2Н2O = Ca(OH)2 + 2Н2↑.

Подсчитано, что запас гидрида кальция, эквивалентный по получаемой в водородном двигателе энергии сорокалитровому запасу бензина, равен 98 кг (см. 6.21).

Установлено, что лантано-никелевый сплав, отвечающий соединению LaNi5, способен поглощать значительное количество водорода и выделять его при сравнительно слабом нагреве. Такого рода сплавы также начинают применять в водородных двигателях.


5.63. «ЗАКРЫТЫЙ» ПЕРОКСИД ВОДОРОДА

Начиная с 1934 г. в Германии был наложен запрет на все публикации, связанные с пероксидом водорода. Как вы думаете, почему?

Свойства высококонцентрированных водных растворов пероксида водорода H2O2 своеобразны: они мгновенно воспламеняют органические вещества, многие металлы, а возникший огонь бывает невозможно потушить даже песком или с помощью огнетушителя, так как пероксид водорода является сильнейшим окислителем, и горение идет даже без доступа воздуха. Значит, можно использовать H2O2 как окислитель там, где кислорода на окисление топлива не хватает — например, для двигателей подводных лодок. Так пероксиду водорода пришлось принять псевдонимы «аурол», «оксилин», «топливо Т» и «перейти на нелегальное положение», т. е. по военному ведомству. Разложение пероксида водорода в присутствии катализаторов-перманганатов натрия или кальция [NaMnO4 или Ca(MnO4)2] — по реакции

2O2 = 2Н2O↑ + O2

(«холодный процесс») или взаимодействие H2O2 с органическим топливом с разогревом до 2000° C («горячий процесс») позволило разработать высокоэффективные энергетические установки не только для подводных лодок, но и для самолетов, а позже и для ракет ФАУ-1 и ФАУ-2 (см. 6.23–6.25).


5.64. КАКОЙ СПИРТ НАЗЫВАЮТ СУХИМ?

«Сухой спирт» — это смесь уротропина [гексаметилентетрамина (CH2)6N4] с небольшим количеством парафина. Уротропин называют еще гексамином, уризолом или метенамином. Его получают выпариванием в вакууме смеси формальдегида HCHO и аммиака NH3:

6НСНO + 4NH3 = (CH2)6N4 + 6Н2O.

Впервые это вещество синтезировал Бутлеров (см. 2.33) еще в 1860 г. Это белое кристаллическое вещество со сладковатым вкусом, при горении дает желтовато-голубое пламя (как этиловый спирт), причем золы после сгорания не остается: все продукты горения газообразны:

(CH2)6N4 + 9O2 = 6СO2↑ + 2N2↑ + 6Н2O↑.

К настоящим спиртам уротропин не имеет никакого отношения. Как горючее сухой спирт очень удобен: легко воспламеняется, легко гаснет, если закрыть его металлическим колпачком или тиглем. Поэтому его применяют в лабораториях, в турпоходах (в том числе для разжигания костра). При хранении надо беречь его от влаги.


5.65. АРОМАТ БЕНЗОЛА

Август-Вильгельм Гофман (1818–1892) — немецкий химик-органик, президент Лондонского и Немецкого химических обществ — каждый раз на лекции о бензоле говорил одно и то же: «Бензол обладает специфическим запахом. Одна моя знакомая дама как-то сказала, что он пахнет стираными перчатками».

На очередной лекции один из студентов, знавший эту шутку профессора, выкрикнул слова «стираными перчатками» еще до того, как Гофман успел их произнести. Профессор удивленно взглянул на студента и спросил: «Вы тоже знакомы с этой дамой»?

Бензол — бесцветная жидкость, легко горючая (см. 9.21), с характерным запахом, отвечающая формуле C6H6, содержит в структуре так называемое ароматическое ядро, или бензольное кольцо.


5.66. ОСТАВИТЬ СЛЕД

Название графита — неметаллического простого вещества — происходит от итальянского «граффитто» — пишу, рисую. А какими металлами можно писать?

В античной древности для этой цели использовали свинцовые или серебряные палочки. Пригоден для письма или рисования и дисульфид молибдена MoS2 — минерал молибденит. Кстати, из-за этого свойства сульфида молибдена элемент молибден Mo получил «чужое» имя: «молюбдос», по-гречески означает «свинец», пригодный для письма.


5.67. МЕТАЛЛИЧЕСКИЕ КАРАНДАШИ И СОУС ДЛЯ ХУДОЖНИКОВ

Свинцовый карандаш известен больше других: в немецком языке слово «блайштифт» («свинцовый стержень»), обозначающее карандаш, сохранилось до сих пор. Однако бледно-серый цвет свинцового карандаша был слишком слабым. Более темную черту оставлял штифт (стержень) «из двух частей свинца и одной части прокованного молотком олова». Линия со временем под действием кислорода воздуха темнела, но легко удалялась с пергамента мякишем хлеба или пемзой. Серебряный штифт, доступный только богатым людям, давал темно-серую черту, которая коричневела с течением времени и не стиралась. Сохранились серебряные рисунки Леонардо да Винчи, Альбрехта Дюрера, Луки Кранаха — гениальных художников эпохи Возрождения. Тогда же появились и угольные карандаши-штифты, которые требовали предварительной обработки бумаги раствором клея-гуммиарабика. Родина графитового карандаша — тоже Итглия, Пьемонт. А в Париже изобрели «бархатный соус» — карандаш на основе белой глины и ламповой сажи. Позже Леонардо да Винчи нашел сангину — «красный мел», природный каолин, окрашенный оксидами железа. Следующее изобретение снова пришло из Франции — пастель, мел с добавками различных пигментов…


5.68. МЕТАЛЛОМ ПО СТЕКЛУ

Знаете ли вы, что некоторые металлы, например цинк, кадмий, магний и алюминий, обладают свойством оставлять металлические следы на стекле?

Самый прочный след оставляет алюминий Al, особенно если смочить стекло заранее несколькими каплями раствора ортосиликата калия K4SiO4. Если вы будете пользоваться этим способом, не забудьте очистить стекло от грязи и жира смесью измельченного карбоната калия K2CO3 (или мела — карбоната кальция CaCO3) со спиртом C2H5OH. Алюминиевая надпись не удаляется механическим путем и при обработке кислотами.


5.69. «ОЛОВЯННОЙ КРИК» И ТРЕСК СЕРЫ

«Если ты хочешь испытать серу, хороша она или нет, то возьми кусок серы в руку и поднеси к уху. Если сера трещит так, что ты слышишь ее треск, значит она хороша; если же сера молчит и не трещит, то она нехороша…»

(Инструкция XIX в., Россия)

Своеобразный способ определения качества материала на слух применительно к сере не устарел и сейчас: «трещит» только сера S, содержащая не более 1% примесей. Характерный треск («оловянный крик») отличает белое олово Sn. Этот треск слышен при сгибании бруска или прутка металла.


5.70. БЫВАЕТ ЛИ В ПРИРОДЕ «ЧЕРНАЯ СЕРА»?

Соединение необычного состава S4N4 (нитрид серы), полученное взаимодействием жидкого аммиака NH3 с серой:

16NH3 + 10S ↔ S4N4 + 6(NH4)2S,

оказалось сильным взрывчатым веществом, поэтому и приходится хранить его под слоем бензола. Если разлагать S4N4 при высоком давлении, то образуются обычная сера S8 либо волокнистая полимерная сера Sx. В том и в другом случае в продукте замечали темные прожилки так называемой «черной серы», нерастворимой в сероуглероде.

Интересно, что сера S8 — это простейший пример вещества-электрета, на поверхности которого долгое время сохраняются электрические заряды. Чтобы получить эти заряды, пластинку кристаллической серы нагревают, а потом медленно охлаждают в сильном электрическом поле.


5.71. ПУШКИН — ХИМИК?

О каких соединениях серы упоминал А. С. Пушкин в стихотворении 1832 г.:

«…Тогда услышал я (о, диво) запах скверный,

Как будто тухлое разбилося яйцо,

Иль карантинный страж курил жаровней серной.

Я, нос себе зажав, отворотил лицо…».

Конечно, здесь речь идет о сероводороде H2S, известном своим отвратительным запахом, и диоксиде серы SO2, который с глубокой древности использовали для дезинфекции (окуривание горящей серой).


5.72. МОКРЫЙ ФОСФОР

Почему красный фосфор при хранении на воздухе становится влажным?

Красный фосфор при хранении медленно окисляется с образованием декаоксида тетрафосфора:

4Р + 5O2 = P 4О10,

а образующийся оксид гигроскопичен, т. е. активно поглощает влагу из воздуха:

P4О10 + 2Н2O = (HPO3)4

(кстати, на этом его свойстве и основано использование P4O10 как осушителя газов и в химических реакциях в качестве водоотнимающего средства). Так как увлажненный красный фосфор содержит примесь метафосфорной кислоты, то для очистки его следует просто промыть водой или, еще лучше, водным раствором карбоната натрия Na2CO3, который нейтрализует тетраметафосфорную кислоту:

(HPO3)4 + 4Na2CO3 = 4Na2HPO4 + 4СO2↑.

Применять раствор гидроксида натрия NaOH для этой операции не рекомендуется, так как фосфор с ним реагирует с образованием фосфина PH3 и д и гидроортофосфата натрия:

4Р + 3NaOH + 3Н2O = PH3↑ + 3NaH2PO2.

После промывки фосфор высушивают в атмосфере сухого азота N2 или диоксида углерода CO2, что предотвращает его дальнейшее окисление.


5.73. САТАНИНСКИЕ ОГНИ

Двое мальчишек забрались ночью на старое кладбище посмотреть на привидение, о котором давно говорили в их деревне. Когда их глаза привыкли к темноте, то они увидели, как вспыхнул и погас огонек на одной могиле, затем он появился на другой, потом на третьей. Мальчики застыли в ужасе.

Появление блуждающих огней на старых кладбищах и болотах вызвано воспламенением на воздухе выделяющихся гидридов фосфора: дифосфана P2H4 и фосфина PH3 (см. 5.72). Эти газы образуются при разложении органических соединений, содержащих фосфор. На воздухе дифосфан самовоспламеняется и зажигает фосфин:

2Н4 + 7O2 = P4O10 + 4Н2O; 4РН3 + 8O2 = P4O10 + 6Н2O.

Продуктом их сгорания является декаоксид тетрафосфора P4O10, который при взаимодействии с влагой воздуха образует мельчайшие капельки тетрамегафосфорной кислоты, дающие неясные, размывающиеся белые контуры «приведения»:

P4О10 + 2Н2O = (HPO3)4.

5.74. УДИВИТЕЛЬНЫЙ КАРБИН

Карбин, одна из аллотропных форм существования углерода, представляет собой линейный полимер. Две его модификации белого цвета содержат ацетиленовые (α-карбин) и этиленовые (β-карбин) фрагменты:

H(—C≡C—C≡C—)nН,

Н2(—С=С=С—)nН2.

На воздухе карбин, как и остальные аллотропные формы углерода, при нагревании окисляется и сгорает, превращаясь в диоксид углерода CO2. А без доступа воздуха при высокой температуре углеродные цепи принимают гексагональную шестиугольную конфигурацию, и атомы углерода по-разному располагаются относительно двойной и тройной связей. Считают, что в этих условиях может существовать по крайней мере восемь разных форм карбина, различающихся по физическим свойствам. Эти формы устойчивы при температуре от 2700 до 3600°C. Кстати, графит, если его расплавить под сверхвысоким давлением, превращается в бесцветную текучую жидкость состава

содержащую фрагменты α-карбина.


5.75. ПОРОШОК КИСЛОТЫ

Концентрированная ортофосфорная кислота — это вязкая и липкая масса. Иногда, для проведения специальных синтезов, нужен тонкоизмельченный порошок ортофосфорной кислоты H3PO4. Как его получить?

Большинство веществ при сильном охлаждении становятся хрупкими. Ортофосфорная кислота при температуре жидкого азота тоже превращается в твердую и хрупкую массу, которая легко растирается в мелкий порошок.


5.76. ЧТО ТАКОЕ «ЗЕРКАЛЬНЫЙ УГЛЕРОД»?

Четыре модификации углерода — графит, алмаз, карбин и лонсдейлит — имеют кристаллическое строение. Графит и алмаз знают все. Карбин известен многим (см. 5.74). Четвертая разновидность кристаллического углерода «лонсдейлит» мало кому известна. Он обнаружен в метеоритах и получен искусственно, а строение его еще изучается. Сажу, кокс, древесный уголь относили к аморфным полимерам углерода. Однако теперь стало известно, что это тоже кристаллические вещества. Кстати, в саже обнаружили блестящие черные частицы, которые назвали «зеркальным углеродом». Зеркальный углерод химически инертен, термостоек, непроницаем для газов и жидкостей, обладает гладкой поверхностью и абсолютной совместимостью с живыми тканями. Особенно ценным является последнее. А структура зеркального углерода очень сложна и включает пачки из ленточных полимерных фрагментов, особым образом упакованных и перекрученных в пространстве.


5.77. МОЖНО ЛИ ПАЯТЬ ГРАФИТ?

Графит в чистом виде не только не спаивается, но и не плавится. Однако на практике бывают случаи, когда требуется соединение деталей из графита. Для этого рекомендуют воспользоваться химической реакцией образования карбида алюминия Al4C3:

4Аl + 3С = Al4C3.

В графитовый шов помещают прокладку из алюминия, а затем соединяемые детали сдавливают и нагревают место стыка до температуры, при которой алюминий и графит вступают в реакцию (около 1800° С). Образующийся карбид алюминия прочно соединяет («сращивает») детали, и тогда температуру повышают еще на 500° С. При 2300° C карбид алюминия распадается, а детали соединяются исключительно прочно.


5.78. САМАЯ ЛЕГКАЯ ЖИДКОСТЬ

Жидкий водород — самая легкая из жидкостей. Литр его весит всего 70 г, почти в 15 раз меньше, чем литр воды.


5.79. КАКОЕ ТВЕРДОЕ ВЕЩЕСТВО САМОЕ ЛЕГКОЕ? САМОЕ ТЯЖЕЛОЕ?

Твердый водород — это самое легкое твердое вещество на Земле. При температуре -260° C его плотность около 0,076 г/см3. А самое тяжелое вещество — осмий (плотность 22,48 г/см3). Значит, твердый водород легче твердого осмия в 296 раз (см. 4.48).

В число наиболее плотных веществ входит и платина (см. 10.14).

…Однажды в ювелирную мастерскую француза Пьера-Франсуа Шабано при дворе испанского короля Карла III в Мадриде зашел некий маркиз Аранда, чтобы приобрести платиновые изделия. На столе ювелира стоял кованый платиновый кубик со стороной около 10 см. Старый маркиз хотел приподнять его, но не смог. «Вы смеетесь надо мной, — обиделся вельможа. — Платина приклеена чем-то к столу!». Но нет, кубик не был приклеен, просто он был слишком тяжел: его масса составляла 21,5 кг!


5.80. САМЫЕ ТЯЖЕЛЫЕ ЖИДКОСТИ

Тяжелые жидкости применяют для разделения твердых порошкообразных веществ или для определения их плотности так называемым иммерсионным (погружным) методом. Одна из первых тяжелых жидкостей, примененных для этих целей, — раствор Туле с плотностью 3,2 г/см3, названный так по имени предложившего его в 1878 г. французского ученого. Это концентрированный водный раствор тетраиодомеркурата калия K2[HgI4], полученного растворением иодида ртути HgI2 в избытке концентрированного раствора иодида калия KI:

HgI2 + 2KI = K2[HgI4].

В 1883 г. немецкий химик К. Рорбах предложил использовать вместо калиевой соли бариевую: плотность насыщенного водного раствора Ba[HgI4] составляет 3,6 г/см3. Самые тяжелые из водных растворов получены в 1907 г. итальянцем Э. Клеричи. Это концентрированные растворы формиата таллия HCOOTl и малоната таллия CH2(COOTl)2, получающиеся в результате взаимодействия карбоната таллия с муравьиной кислотой HCOOH или с малоновой кислотой CH2(COOH)2 в водном растворе:

Tl2CO3 + 2НСOOН = 2НСООТl + H2O + CO2↑,
Tl2CO3 + CH2(COOH)2 = CH2(COOTl)2 + H2O + CO2↑.

Формиат и малонат таллия обладают исключительно высокой растворимостью в воде. Например, в 100 г воды можно растворить более 500 г формиата таллия, при этом плотность получаемого раствора составляет от 3,40 г/см3 при 20° C до 4,76 г/см3 при 90° С. А раствор, содержащий смесь обеих солей в соотношении один к одному по массе, может достигать плотности 4,324 г/см3 при 20° C и даже 5,0 г/см3 при 95° С. В таком растворе не тонут барит BaSO4, кварц SiO2, корунд Al2O3 и другие минералы.


5.81. ЖИДКИЙ УГЛЕРОД?

Свойства жидкого углерода до сих пор не изучены из-за экстремальности условий его существования. Проблему удалось решить только с помощью суперкомпьютера расчетным путем. Жидкое состояние, как выяснилось, должно существовать для углерода при температуре выше 4500 К и относительно низком давлении, углерод при этом состоит из трех- и пятиатомных «молекул» и должен иметь металлическую электропроводность. Экспериментального подтверждения результаты расчета пока еще не получили…


5.82. МЕТАЛЛИЧЕСКИЙ КСЕНОН

Подвергнув высокому давлению замороженный ксенон Xe, удалось превратить его в металл. А при очень низкой температуре (около -266° С) ксенон оказался сверхпроводником: электрическое сопротивление его упало до нуля.


5.83. САМЫЙ ЛЕГКИЙ ИНЕРТНЫЙ ГАЗ И САМАЯ ХОЛОДНАЯ ЖИДКОСТЬ

Гелий — наиболее легкий после водорода газ (см. 4.32). Он не образует соединений ни с одним химическим элементом. Гелий — самое химически инертное вещество на Земле. Его легкость и инертность используются в создании воздухоплавательных аппаратов. Во время первой мировой войны более 40 немецких дирижаблей, наполненных водородом, сгорело от зажигательных снарядов. Но однажды в дирижабль, сбрасывавший бомбы на Лондон, попал зажигательный снаряд. Дирижабль не вспыхнул, а медленно, истекая каким-то газом, улетел обратно, вызвав переполох в секретных службах Англии. Как выяснилось позже, он был наполнен гелием. Задолго до войны немецкие пароходы, возившие товары в Индию и Бразилию, возвращались обратно, нагруженные монацитовым песком как балластом. Песок содержал радиоактивный элемент торий Th и, следовательно, был гелиевым сырьем. Известно, что земной гелий образуется при радиоактивном распаде атомов урана, тория и некоторых других радиоактивных элементов. Поэтому He накапливается в минералах, подземных водах и газах (см. 9.23). Из монацита и получали He для наполнения дирижаблей. Кроме того, в Германии He добывали из воды минерального источника Наугейм, дававшего до 70 м3 газа в сутки.

Жидкий гелий — самая холодная из всех известных жидкостей. Ее температура кипения — 269° С.


5.84. САМОЕ ТУГОПЛАВКОЕ ВЕЩЕСТВО

Это неорганический полимер, сополимер карбидов гафния и титана состава (HfC∙4TiC)n. Он начинает плавиться только при 4215°C! Среди металлов самым тугоплавким остается вольфрам W (температура плавления 3387°C).


5.85. ВОДОРОДНАЯ ДИВЕРСИЯ

Давно известно свойство водорода резко усиливать коррозию металлов и сплавов: это вещество чрезвычайно агрессивно, особенно когда его атомы отщепляют свой единственный электрон и превращаются в положительно заряженные ионы — протоны H+. В сто тысяч раз меньшие по размерам, чем любые другие катионы, протоны легко проникают в мельчайшие, едва зарождающиеся трещины и, соединяясь со свободными электронами, переходят снова в молекулярное состояние. Образовавшийся водород H2 расширяет трещины подобно клиньям. Как избавиться от этого вредного явления?

Если в состав металла или смазки входит медь Cu, то тончайшая пленка металлической меди, образующаяся на поверхности трущихся деталей, препятствует развитию коррозии: металлическая медь не пропускает ионов водорода. Поэтому рекомендуется натирать детали составом, содержащим хлорид меди CuCl2 и глицерин CH(OH)(CH2OH)2: пленка меди при этом становится плотнее. Другой способ — приработка трущихся поверхностей в присутствии металлсодержащих смазок, содержащих молибден Mo, бор В, кобальт Со, ванадий V и другие металлы.


5.86. НЕГОДНЫЙ КОНТЕЙНЕР

Палладий, казалось бы, прочный металл из семейства платины, но удержать в нем водород не удастся. Водород будет растворяться в металлическом палладии Pd. При комнатной температуре 1 см3 палладия в состоянии поглотить около 800 см3 (0,8 л) водорода. Сосуд при этом будет разбухать и давать трещины. Если же сосуд с водородом нагревать, то водород начнет протекать через трещины как вода сквозь решето. При 240° C за одну минуту 1 см2 стенки палладиевого сосуда толщиной 1 мм пропустит до 40 см3 водорода. Чем выше температура, тем больше проницаемость палладия для водорода (см. 4.52).


5.87. ИСКРЯЩИЙСЯ КРИСТАЛЛ

Какое вещество искрится при кристаллизации?

Чтобы наблюдать это явление, надо смешать сульфаты калия K2SO4 и натрия Na2SO4 в молярных количествах, отвечающих реакции

Na2SO4 + 2K2SO4 + 10H2O = Na2SO4∙2K2SO4∙10H2O,

и затем к полученной смеси кристаллических солей добавлять порциями горячую воду. Когда все кристаллы растворятся, раствор следует оставить в темноте для охлаждения и кристаллизации. Скоро раствор, начнет искриться, при 60°С — слабо, а по мере охлаждения — все сильнее и сильнее. Когда кристаллов Na2SO4∙K2SO4∙10H2O выпадет много, вы увидите целый сноп искр.

Если провести стеклянной палочкой по кристаллам, находящимся под маточным раствором, то снова появляются искры.

Свечение и искрообразование вызваны тем, что при кристаллизации соли выделяется большая энергия, почти полностью превращающаяся в световую.


5.88. БИБЛЕЙСКОЕ ЧУДО

Как описано в Библии (Дан. V, 26, 28), во время пира вавилонского царя Валтасара на стене дворца появилась рука, написавшая непонятные присутствовавшим слова: «Мене, мене, текел, упарсин». Иудейский пророк Даниил, расшифровав эти слова, предсказал гибель Валтасара, что вскоре и произошло.

Если растворить белый фосфор в дисульфиде углерода CS2 (см. 1.30) и полученным концентрированным раствором нарисовать на мраморной стене руку, а за ней — слова, то можно наблюдать сцену, подобную пересказанной в Библии. Раствор фосфора в дисульфиде углерода бесцветен, поэтому рисунка сначала не видно. По мере испарения CS2 белый фосфор выделяется в виде мельчайших частиц, которые начинают светиться и, наконец, вспыхивают — самовозгораются:

P4 + 5O2 = P4О10;

при сгорании фосфора рисунок и надпись исчезают; продукт горения — декаоксид тетрафосфора P4O10 — переходит в парообразное состояние и с влагой воздуха дает ортофосфорную кислоту:

Р4O10 + 6Н2О = 4Н3РО4,

которая наблюдается в виде небольшого облачка сизого тумана, постепенно рассеивающегося в воздухе.

Можно добавить небольшое количество белого фосфора в застывающий расплав воска или парафина. Если куском застывшей смеси сделать надпись на стене, то в сумерках и ночью можно ее увидеть Светящейся. Воск и парафин защищают фосфор от быстрого окисления и увеличивают продолжительность его свечения.


5.89. КУСТ МОИСЕЯ

Однажды, как рассказывает Библия (Исх. III, I), пророк Моисей пас овец и увидел, «что терновый куст горит огнем, но не сгорает».

Среди синайских песков растет кустарник диптам, который в тех местах зовут «кустом Моисея». В 1960 г. польские ученые вырастили это растение в заповеднике, и в один из жарких летних дней оно действительно «загорелось» голубовато-красным пламенем, оставаясь при этом само невредимым. Исследования показали, что кустарник диптам выделяет летучие эфирные масла. В тихую безветренную погоду концентрация этих легколетучих масел в воздухе вокруг куста резко увеличивается; под действием прямого солнечного света они загораются и быстро сгорают с выделением энергии в основном в форме света. А сам куст остается целым и неповрежденным.

Легковоспламеняющихся веществ такого рода известно много. Так, дисульфид углерода CS2 (в обычных условиях это бесцветная, очень летучая жидкость) в виде паров легко воспламеняется от любого нагретого предмета и сгорает светло-синим пламенем с такой низкой температурой, что в нем не обугливается бумага (см. 1.30).


5.90. ГОРЬКИЙ ИСТОЧНИК

Израильтяне под предводительством Моисея переходили безводную пустыню Сур. Измученные жаждой, они с трудом добрались до местечка Мерр, но обнаружили, что вода здесь горькая и пить ее невозможно. «И возроптали они на Моисея…» (Библия, Исх. XIV, 5–21). Но Бог повелел пророку бросить в воду растущее вблизи дерево. И — чудо! — вода стала пригодной для питья!

В окрестностях Meppa и сегодня существует горький источник: вода его насыщена сульфатом кальция CaSO4. Рядом с источником растет кустарниковое дерево эльвах, соки которого содержат большое количество щавелевой кислоты H2C2O4 в виде ее солей KHC2O4, K2C2O4 (гидрооксалата и оксалата калия). Местное население перед использованием воды бросает в нее ветки кустарника, и она теряет свою горечь, так как оксалаты, попадая в воду, осаждают из нее оксалат кальция; CaC2O4 — менее растворимый, чем сульфат кальция:

KHC2O4 + CaSO4 = CaC2O4↓ + KHSO4.

Второй продукт реакции — гидросульфат калия, концентрация которого в воде крайне мала, — поглощается (сорбируется) корой кустарника.


5.91. ОРАНЖЕВЫЙ СВЕТ

Фокусник слил в сосуд два бесцветных раствора и как только смесь начала пениться, погасил свет. Зрители увидели отчетливое оранжевое свечение.

Фокусник прилил к водному раствору гидрохинона C6H4(OH)2, дополнительно содержавшему карбонат калия K2CO3 и формальдегид НСНО, концентрированный водный раствор пероксида водорода H2O2. В сосуде начались окислительно-восстановительные реакции с превращением гидрохинона в хинон C6H4(O)2 и формальдегида в муравьиную кислоту НСООН. Одновременно протекала реакция взаимодействия K2CO3 с образующейся муравьиной кислотой; при это выделялся газообразный диоксид углерода CO2, который вспенивал раствор:

HCHO + H2O2 = НСООН + H2O
K2CO3 + 2НСOOН = 2НСOOК + CO2↑ + H2O

Энергия, выделяющаяся в окислительно-восстановительных реакциях, почти полностью превращается в световую, чем и обусловлено оранжевое свечение раствора.


Загрузка...