Глава 7. Рисование мусором

С 2011 по 2012 год в Великобритании появилось на свет 813 тысяч 200 детей1. Используя данные о заболеваемости из предыдущей главы, можно предположить, что примерно 1200 из них родились с синдромом Дауна, около 270 — с синдромом Эдвардса и чуть меньше 120 — с синдром Патау. Это совсем небольшое число кроваток в огромных яслях, где живут больше трех четвертей миллиона детей. Трудно ожидать, что у обладателей избытка хромосом будет высокий уровень выживаемости.

Но удивительное дело — примерно половина детей, рожденных в этот период (свыше 400 тысяч младенцев), появились на свет с одной лишней хромосомой. Да-да, такая особенность отличает каждого второго из нас. Более того, эта лишняя хромосома — не какой-то крошечный генетический реликт. Это довольно-таки здоровенная хромосома. Как такое может быть? Ведь лишняя копия очень маленькой хромосомы способна вызвать тяжелейшие заболевания вроде синдромов Эдвардса или Патау?

Имя виновника — X-хромосома. Она не причиняет вреда благодаря процессу, в котором главную роль играет мусорная ДНК. Но прежде чем разобраться, как происходит такая защита, разберемся в том, что представляет собой X-хромосома.

Обычно хромосомы в клетках очень длинны и волокнисты. Их трудно отличить друг от друга. В оптическом микроскопе они выглядят как клубок спутанной шерсти. Но когда клетка готовится к делению, хромосомы отделяются друг от друга, становятся весьма структурированными и компактными. Зная правильные методики, можно выделить их из ядра, пометить специальными веществами и затем изучить каждую под микроскопом. На этой стадии хромосомы больше похожи на отдельные мотки шерсти для вышивания, а центромера напоминает бумажную трубочку, которая удерживает их на месте.

Анализируя снимки полного набора хромосом человеческой клетки, ученые сумели идентифицировать каждую отдельную хромосому. Они в буквальном смысле использовали процедуру «скопировать и вставить» для отдельных изображений хромосом, чтобы расположить их в нужном порядке. Именно так специалисты выявили причины синдромов Дауна, Эдвардса и Патау — анализировали хромосомы, взятые у больных детей.

Но перед тем, как стали ясны проблемы, лежащие в основе этих серьезных заболеваний, исследователи открыли основные принципы организации нашего генетического материала. Они показали, что нормальное количество хромосом в человеческой клетке равно 46. Исключения — яйцеклетки и сперматозоиды: в них по 23 хромосомы. Наши хромосомы собраны в пары. В каждой паре одну хромосому мы наследуем от матери, одну — от отца. Иными словами, мы получаем одну копию хромосомы 1 от матери и одну копию хромосомы 1 от отца. То же самое верно для хромосомы 2 и для всех остальных. Постойте, для всех ли?

На самом деле это верно для хромосом под номерами с 1 по 22. Их называют аутосомами. Глядя лишь на аутосомы клетки, нельзя определить, кому она принадлежит — самцу или самке. Однако это тут же становится понятно, если посмотреть на последнюю оставшуюся пару хромосом. Такие хромосомы называются половыми. У женщин две идентичные половые хромосомы крупного размера, именуемые X-хромосомами. У мужчин одна X-хромосома и одна очень маленькая хромосома, именуемая Y-хромосомой. (См. рис. 7.1.)





Рис. 7.1. Стандартные кариотипы, женский и мужской, показывают все хромосомы, имеющиеся в клетке. Вверху: женский кариотип, внизу: мужской. Единственное отличие — в последней паре хромосом. У женщин две крупные X-хромосомы. У мужчин одна крупная X-хромосома и одна маленькая Y-хромосома. (Wessex Regional Genetics Centre, Wellcome Images).


Несмотря на свои небольшие размеры, Y-хромосома оказывает огромное влияние на организм. Именно она определяет пол развивающегося эмбриона. В этой хромосоме содержится небольшое число генов, но они играют важнейшую роль в задании половой принадлежности. Собственно, половую принадлежность главным образом контролирует всего один ген[17],2: он запускает создание семенников. А это, в свою очередь, побуждает организм вырабатывать гормон тестостерон, что и приводит к маскулинизации эмбриона. Любопытно: как показало одно недавнее исследование, этого гена и еще одного гена вполне достаточно не только для создания мышей-самцов, но и для того, чтобы они вырабатывали работоспособную сперму и становились отцами мышат3.

Напротив, X-хромосома обладает большими размерами и содержит свыше 1000 генов4. Это может порождать проблемы. У мужских особей всего одна копия X-хромосомы, а значит, всего одна копия каждого из ее генов. Однако у самок эти цифры вдвое больше. Так что теоретически самки могли бы вырабатывать вдвое больше продуктов, кодируемых X-хромосомой, чем самцы. Трисомные заболевания, описанные в главе 6, показывают, что даже 50%-ный рост экспрессии генов одной маленькой хромосомы чрезвычайно вредит процессам развития организма. Каким же образом женский организм справляется со 100%-ным (по сравнению с мужскими особями) ростом экспрессии более 1000 генов?

У женщин есть выключатель

Дело в том, что женскому организму и не нужно с ним справляться. В клетках женщин экспрессия белков, кодируемых X-хромосомой, не отличается по своему уровню от аналогичной экспрессии в клетках мужчин. Женский организм достигает этого при помощи остроумного механизма, отключающего одну X-хромосому в каждой клетке. Этот механизм называется X-инактивацией (инактивацией X-хромосомы). Он играет важнейшую роль в человеческой жизни. Кроме того, этот процесс открыл для нас новые, совершенно неожиданные области биологии, где до сих пор ведутся активные исследования.

Вот одно из наиболее странных открытий, которые ученые совершили на этом пути. Оказывается, наши клетки умеют сами определять количество X-хромосом. В мужских клетках содержится по одной X-хромосоме и по одной Y-хромосоме, и они никогда не инактивируют свою единственную X-хромосому. Однако иногда мужские особи рождаются с двумя X-хромосомами и одной Y-хромосомой. Они все равно являются мужскими, так как за маскулинизацию отвечает Y-хромосома. Однако их клетки инактивируют лишнюю X-хромосому — точно так же, как поступают со своей второй X-хромосомой женские клетки.

С женскими особями происходит похожая история. Иногда женщины появляются на свет с тремя X-хромосомами в каждой клетке. В таком случае клетки отключают две X-хромосомы, а не одну. А если женщина рождается всего с одной X-хромосомой? Тогда клетка не отключает никаких X-хромосом.

Наши клетки умеют не только считать, но и помнить. Когда женский организм производит яйцеклетки, он обычно снабжает их лишь одной хромосомой из каждой пары. Это относится и к X-хромосомам. Мужской организм вырабатывает сперматозоиды, каждый из которых содержит либо X-, либо Y-хромосому. Когда сперматозоид, содержащий X-хромосому, сливается с яйцеклеткой, образуется одноклеточная зигота с двумя X-хромосомами, причем обе они активны. Однако на самой ранней стадии развития, всего после нескольких циклов деления, в каждой клетке эмбриона инактивируется одна из X-хромосом. Иногда это X-хромосома, унаследованная от отца, иногда — X-хромосома, унаследованная от матери. Каждая дочерняя клетка, возникающая при последующих циклах деления, отключает такую же хромосому, что и клетка материнская. А значит, среди примерно 50 триллионов клеток взрослой женщины в среднем примерно половина будет экспрессировать X-хромосому, полученную от яйцеклетки, а другая половина будет экспрессировать X-хромосому, полученную от сперматозоида.

Когда X-хромосома инактивируется, она приобретает весьма необычную физическую конформацию. ДНК при этом становится невероятно компактной. Представьте, что вы с вашим другом держитесь за противоположные концы полотенца. Вы начинаете крутить свой край по часовой стрелке, а ваш друг проделывает то же самое со своим краем. Скоро полотенце скручивается посередине, и вы сближаетесь. А теперь представьте, что полотенце у вас длиной метров пять, и вы скручиваете его, пока не образуется плотнейший комок диаметром всего один миллиметр. Примерно столь же плотно оказывается уложена и X-хромосома. Она образует плотную структуру, которую можно легко увидеть, разглядывая ядро женской клетки под микроскопом, тогда как все прочие хромосомы длинны, волокнисты и почти не видны. Такая уплотненная X-хромосома называется тельцем Барра.

Чтобы попытаться понять, как происходит инактивация X-хромосом, ученые изучали необычные линии клеток и необычные генетические линии мышей. Они сосредоточились на тех случаях, когда части X-хромосомы оказывались утрачены или же когда фрагменты X-хромосомы перескакивали на другие хромосомы. Как выяснилось, некоторые клетки, утратившие некую часть одной из своих X-хромосомы, по-прежнему сохраняли способность ее инактивировать (это показывает наличие тельца Барра). Однако клетки, утратившие другую часть X-хромосомы, оказались неспособны формировать тельца Барра, а значит, они не инактивировали хромосому.

Когда фрагменты X-хромосомы пересаживались на другие хромосомы, иногда эти аномальные хромосомы инактивировались, а иногда — нет. Все зависело от того, какой именно фрагмент X-хромосомы передавался.

Эти данные позволили ученым сузить область поиска участка X-хромосомы, играющего ключевую роль в ее инактивации. Вполне понятно, что этот участок назвали центром X-инактивации. В 1991 году одна из научных групп сообщила, что этот участок содержит в себе ген, который ученые окрестили Xist[18]. Лишь ген Xist, находящийся на неактивной хромосоме, экспрессировал Xist-РНК5,6. Вполне логично: X-инактивация — процесс асимметричный. В каждой паре эквивалентных X-хромосом одна инактивирована, а другая — нет. Поэтому представлялось закономерным, что соответствующим процессом управляет сценарий, при котором одна хромосома экспрессирует ген, а другая — нет.

Очень большой кусок мусора

Разумеется, напрашивался следующий вопрос: как работает ген Xist? Первым делом ученые попытались спрогнозировать состав и структуру белка, который кодируется этим геном. Обычно это довольно прямолинейная процедура. Узнав структуру молекулы Xist-РНК, оставалось ввести эти данные в несложную компьютерную программу, которая и должна предсказать аминокислотную последовательность, кодируемую этим геном. Xist-РНК — штука очень длинная, около 17 тысяч нуклеотидных оснований. Каждую аминокислоту кодирует группа из трех оснований, так что 17000-нуклеотидная РНК теоретически могла бы кодировать белок из более чем 5700 аминокислот. Но оказалось, что на деле самая длинная последовательность, вроде бы кодируемая Xist-РНК, содержит чуть меньше 300 аминокислот. И это несмотря на то, что Xist-РНК прошла сплайсинг (мы описывали этот процесс в главе 2), а значит, потеряла все «мешающие» мусорные последовательности.

«Проблема» заключалась в том, что эта Xist-РНК первоначально пестрела последовательностями, которые не кодируют аминокислоты, но которые действуют как стоп-сигналы, когда начинают формироваться белковые цепочки. Представьте, что вы строите высокую башню из «Лего». Она растет себе ввысь, пока вам не дают элемент крыши, в верхней части которого нет выступов или отверстий для закрепления следующего фрагмента. Когда вы поставите этот элемент, ваша башня больше не сможет увеличиваться.

Ученые задумались. Если Xist все же кодирует белок, тогда зачем же клетка с такими усилиями создает РНК длиной 17 тысяч нуклеотидных оснований[19] лишь для того, чтобы производить белок, который мог бы кодироваться РНК примерно в 20 раз меньшей длины? Генетики довольно скоро сообразили: тут происходит нечто иное и весьма странное.

ДНК находится в ядре клетки. Она копируется, образуя РНК. Затем эта РНК отправляется за пределы ядра, в те структуры, где действует как матрица для сборки белков. Но анализ показал, что Xist-РНК не покидает ядра. Она не кодирует никакой белок, даже короткий7,8.

Xist-РНК стала одним из первых примеров молекул РНК, действующих «самостоятельно», а не как носитель информации о белке. Это отличная демонстрация того, что мусорная ДНК (то есть ДНК, не приводящая к синтезу белка) отнюдь не бесполезный хлам. Она чрезвычайно важна сама по себе, поскольку без нее не может происходить X-инактивация.

Странности Xist-РНК не ограничиваются тем, что она не покидает ядра. Она даже не отделяется от X-хромосомы, которая ее вырабатывает. По сути, она прикрепляется к неактивной X-хромосоме и затем распространяется по ней. Вырабатывается все больше и больше Xist-РНК, и эта РНК постепенно покрывает неактивную X-хромосому. Этот процесс почему-то называется закрашиванием. Никто пока толком не знает физических основ этого процесса, в ходе которого Xist-РНК ползет вдоль хромосомы, подобно виноградной лозе, стремительно карабкающейся по стене со скоростью одна миля в минуту. Со времени этого открытия прошло больше 20 лет, но мы по-прежнему теряемся в догадках, как же все происходит. Мы точно знаем, что дело тут не в самой нуклеотидной последовательности X-хромосомы. Если центр X-инактивации переносится на одну из аутосом клетки, эта аутосома может инактивироваться, как если бы она была X-хромосомой9.

Итак, Xist требуется для начала X-инактивации. Но у него есть помощники, поддерживающие этот процесс и делающие его более интенсивным. «Закрашивая» X-хромосому, Xist действует как участок, к которому могут прикрепляться белки ядра. Они соединяются с инактивируемой X-хромосомой и привлекают все новые и новые белки, что еще сильнее глушит экспрессию. Единственным геном, который не покрывается Xist-РНК и этими белками, остается сам ген Xist. Так он становится маяком экспрессии во мраке инактивированной X-хромосомы10.

Слева направо, справа налево

Итак, мы столкнулись с ситуацией, когда кусок «мусорной» ДНК (то есть фрагмент, не кодирующий белки) играет жизненно важную роль для функционирования организмов половины человеческих существ. Недавно ученые обнаружили, что для X-инактивации требуется по меньшей мере еще один фрагмент мусорной ДНК. Тут может возникнуть путаница: он кодируется в том же самом месте X-хромосомы, что и Xist. Как мы знаем, молекула ДНК состоит из двух нитей (вспомним знаменитое изображение двойной спирали). Клеточная аппаратура, копирующая ДНК для образования РНК, всегда читает ДНК в одном направлении, то есть (назовем это так) от начала до конца определенной ДНК-последовательности. Однако две нити ДНК идут «в противоположных направлениях» друг относительно друга, словно две линии фуникулера на старинных морских курортах и горнолыжных базах. А значит, участок ДНК может нести два набора информации, просто эта информация записана «в противоположных направлениях».

Возьмите, к примеру, слово ТОРГ, которое мы получаем, читая буквы слева направо. Те же самые буквы можно прочесть справа налево. Тогда мы получим слово ГРОТ. Буквы одни и те же, но они дают другое слово с другим значением.

Фрагмент мусорной ДНК, необходимый для X-инактивации в придачу к Xist, носит остроумное название Tsix (то есть Xist, записанный задом наперед). Он находится в той же области ДНК, что и Xist, но на противоположной нити. Tsix кодирует РНК длиной 40 тысяч оснований (она более чем вдвое длиннее по сравнению с Xist-РНК). Подобно Xist-РНК, Tsix-РНК никогда не покидает ядра.

Хотя Tsix и Xist кодируются в одной и той же части X-хромосомы, они не экспрессируются вместе. Если X-хромосома экспрессирует ген Tsix, это препятствует той же самой хромосоме экспрессировать ген Xist. А значит, Tsix должен экспрессироваться активной X-хромосомой, в отличие от Xist, который всегда экспрессируется неактивной.

Эта взаимоисключающая экспрессия Tsix и Xist имеет ключевое значение на одной из стадий раннего развития организма. X-хромосома яйцеклетки утрачивает все белковые маркеры, которые показывают, что она инактивирована (если речь идет об инактивированной версии), а X-хромосома сперматозоида вообще никогда не инактивируется. После слияния яйцеклетки со сперматозоидом и 6-7 циклов деления получится эмбрион, состоящий примерно из сотни клеток. На этой стадии каждая клетка в женском эмбрионе отключает одну из своих X-хромосом случайным образом. Для этого требуется мимолетное, но интенсивное физическое взаимодействие между парой X-хромосом клетки. Всего часа на два эти хромосомы приходят в физическое соприкосновение. В результате одна из них оказывается инактивированной. Соприкосновение происходит лишь на небольшом участке X-хромосом — в центре X-инактивации, который кодирует и Xist-РНК, и Tsix-РНК11.

Момент, длящийся вечно

Это праматерь всех мимолетных связей. В эти два часа возникают хромосомные решения, которых организм будет придерживаться всю оставшуюся жизнь. Не только в ходе развития плода, но и вплоть до самой смерти женщины, даже если эта смерть наступит через 100 с лишним лет. Эти решения затрагивают не сотню клеток, а триллионы — все клетки, которые появятся в результате их деления. Во всех дочерних клетках будет инактивироваться одна и та же X-хромосома.

Пока еще не совсем ясно, что же происходит в эти часы интимной связи X-хромосом на стадии раннего развития. Существующая ныне теория утверждает, что идет перераспределение мусорной РНК между этими двумя хромосомами, в результате чего одна из них наделяется всей Xist-РНК и становится неактивной X-хромосомой. Возможно (мы пока не знаем механизмов), одна из хромосом экспрессирует либо чуть больше, либо чуть меньше Xist или какого-то другого ключевого компонента. Но мы точно знаем, что процесс начинается, как только уровни содержания Tsix в хромосомах станут падать. Возможно, после падения этих уровней ниже какого-то критического порогового значения Xist может начать экспрессироваться одной из X-хромосом.

Обычно в экспрессии генов проявляется так называемый стохастический элемент. Иными словами, здесь частенько наблюдается случайная изменчивость уровня экспрессии. Если одна из хромосом экспрессирует чуть большее количество одного ключевого компонента (или нескольких таких компонентов), этого может оказаться достаточно для построения «самоусиливающейся» сети белков и молекул РНК. Поскольку такая неравномерность экспрессии, в сущности, стохастична (обусловлена случайным «шумом»), инактивация в данной сотне клеток тоже будет носить, по существу, случайный характер.

Вот одно сравнение. Представьте себе, что вы пришли вечером домой и вам страшно захотелось два тоста с сыром. Но как только вы начали готовить сей изысканный ужин, вам стало ясно, что сыра у вас в холодильнике недостаточно. Как вы поступите? Сделаете два тоста, каждый из которых будет содержать слишком малое количество сыра? Или уложите весь имеющийся сыр на один кусок хлеба, чтобы получить концентрированную дозу желанного молочного продукта? Вероятно, большинство предпочтет второй путь. В каком-то смысле пара X-хромосом делает то же самое, когда в эмбрионе происходит случайная инактивация. Эволюция предпочла не тот процесс, при котором у каждой из хромосом количество ключевого компонента чуть ниже критического, а тот процесс, когда этот компонент мигрирует к хромосоме, у которой его изначально чуть больше. Чем больше у вас имеется, тем больше вы получаете.

X-инактивация целиком зависит от «мусорной» ДНК, так что слово «мусорная» здесь не очень-то подходяще. Процесс играет жизненно важную роль в организме самок млекопитающих. Он необходим для нормального функционирования клеток и поддержания здорового состояния. Кроме того, он оказывает влияние на различные болезни и отклонения. Полномасштабный синдром ломкой X-хромосомы, приводящий к умственной отсталости (см. главу 1), затрагивает лишь мальчиков, поскольку соответствующий ген несет X-хромосома. У женщин, как мы знаем, две X-хромосомы. Даже если одна из них несет в себе мутацию, другая (нормальная) будет вырабатывать достаточно белка, чтобы носительница мутации смогла избежать самых опасных симптомов. Но у мужчин лишь одна X-хромосома и одна Y-хромосома, которая очень мала и не несет в себе большого количества генов, не предопределяющих пол. А значит, у мужчин нет и компенсаторного гена, способного сгладить воздействие мутации X-хромосомы при синдроме ломкой X-хромосомы.

То же самое относится к целому ряду генетических заболеваний, при которых именно X-хромосома несет в себе мутантный ген. Мальчики с большей вероятностью проявляют симптомы генетических заболеваний, связанных с X-хромосомой, чем девочки. Организм мальчика просто не может компенсировать действие неисправного гена единственной X-хромосомы. Соответствующие расстройства могут быть самыми разными, от сравнительно безобидных вроде дальтонизма (той его разновидности, при которой у человека нарушено восприятие красной и зеленой части спектра) до гораздо более серьезных недугов. В их числе — гемофилия В, нарушение в процессах свертывания крови. Носителем этого заболевания являлась, например, королева Виктория. Один из ее сыновей, Леопольд, серьезно страдал от него и умер в 31 год от кровоизлияния в мозг. Поскольку по меньшей мере две дочери Виктории также были носительницами этой болезни и поскольку королевские семейства Европы часто соединялись узами брака, эта мутация передалась и множеству других династий (самый известный пример — династия Романовых)12.

Хотя организм носительницы гемофильной мутации вырабатывает лишь 50% нормального количества фактора свертывания, этого хватает, чтобы защититься от симптомов болезни. Одна из причин — то, что фактор свертывания попадает из клеток, где он синтезируется, в кровеносную систему, где его концентрация становится достаточно высокой, чтобы защищать организм от кровотечений, в каких бы местах они ни происходили.

Впрочем, в некоторых обстоятельствах наличие у женщины двух X-хромосом еще не дает ей гарантии защиты от генетического заболевания, связанного с X-хромосомами. Синдром Ретта — разрушительное психоневрологическое заболевание, иногда представляющее собой, по сути, весьма острую форму аутизма. Новорожденные девочки с этим синдромом кажутся совершенно здоровыми, и в течение первых 6-18 месяцев жизни они благополучно проходят все этапы нормального развития. Но затем начинается деградация. Девочки утрачивают все разговорные навыки, которыми успели овладеть. У них появляются бессмысленные повторяющиеся движения рук. При этом целенаправленные движения (скажем, указание на предмет) исчезают. Остаток жизни они страдают от острой неспособности к обучению13.

Причина синдрома Ретта — мутации одного из генов X-хромосомы, кодирующих белки[20],14. У женщин с этим синдромом одна нормальная копия этого гена и одна мутантная, не способная вырабатывать функционирующий белок. Если считать, что X-инактивация происходит случайным образом, можно ожидать, что в среднем половина клеток мозга будет экспрессировать нормальное количество нужного белка, а остальные клетки вообще не будут его экспрессировать. Клинические исследования с очевидностью показывают: если половина клеток мозга не в состоянии экспрессировать данный белок, это приведет к серьезным проблемам.

Синдром Ретта поражает в основном лишь девочек. Это необычно для X-заболеваний, поскольку в таких случаях недуг обычно поражает мальчиков, а девочки лишь являются его носителями. Можно задаться вопросом: как же мальчики защищаются от воздействий реттовской мутации? На самом деле они вовсе от него не защищаются. Мы почти никогда не обнаруживаем мальчиков с синдромом Ретта, поскольку мужские эмбрионы, пораженные этой болезнью, не развиваются как следует и попросту не доживают до родов.

Не следует недооценивать везение (и невезение)

Ученые, занимаясь своими исследованиями, размышляют о самых разных вещах, но очень редко — о роли, которую в жизни играет случай, удача, судьба. Если они и задумываются об этом, то обычно употребляют научные термины вроде «случайных флуктуаций» или «стохастических вариаций». А жаль. Иногда «везение» — образ куда более подходящий.

Мышечная дистрофия Дюшенна — серьезное заболевание, постепенно уничтожающее мускулы (см. главу 3). Мальчики с этим недугом в начале жизни чувствуют себя нормально, однако уже в детские годы их мышцы начинают характерным образом деградировать. Так, среди ножных мышц первыми тают мышцы бедер. В качестве компенсации организм развивает огромные икроножные мышцы, но спустя какое-то время увядают и они. К подростковым годам эти дети обычно пересаживаются в инвалидную коляску. Средняя продолжительность жизни у них — всего лишь 27 лет. Ранняя смертность во многом вызвана тем, что в конце концов разрушаются мышцы, задействованные в процессах дыхания16.

Мышечную дистрофию Дюшенна вызывает мутация гена X-хромосомы, кодирующего крупный белок под названием дистрофин16. Этот белок, похоже, действует как своего рода амортизатор для мышечных клеток. Из-за мутации мужской организм не в состоянии его вырабатывать, что в конечном счете приводит к разрушению мышцы. Организм женщин, являющихся носителями заболевания, обычно вырабатывает 50% нормального количества действующего дистрофина. Как правило, этого достаточно — благодаря одному необычному анатомическому свойству организма. По мере нашего развития индивидуальные мышечные клетки сливаются, создавая большую суперклетку с большим количеством отдельных ядер. А значит, каждая суперклетка имеет доступ к множеству копий необходимых генов, ведь ядер в ней много. Поэтому мышцы носительниц заболевания содержат (в общей сложности) достаточно дистрофина для нормальной работы. Это не та ситуация, когда в одной клетке достаточно белка, а в другой его нет вообще.

Врачи наблюдали необычный случай: у одной женщины проявлялись все классические симптомы дюшенновской мышечной дистрофии. Такие случаи чрезвычайно редки, но у нас есть способы их предсказания. Так, следует обеспокоиться, если мать женщины — лишь носительница заболевания, а отец по-настоящему от него страдал, но прожил достаточно долго, чтобы успеть зачать ребенка. В таком случае женщина явно унаследует мутантный ген от отца (поскольку у него лишь одна X-хромосома, а она поражена болезнью). Существует 50%-ная вероятность того, что та или иная яйцеклетка, которую вырабатывает организм матери-носительницы, также будет содержать мутантный ген, управляющий синтезом дистрофина. В этом случае обе X-хромосомы женщины будет обладать мутантной копией данного гена, и ее организм не сможет синтезировать необходимый белок.

Однако врачи, лечившие пациентку, изучили информацию о ее семье и выяснили, что отец женщины не страдал мышечной дистрофией Дюшенна. Потребовалось другое объяснение. Иногда при выработке яйцеклеток или сперматозоидов мутации возникают довольно-таки спонтанно. Ген, кодирующий дистрофин, очень большой, так что он (исключительно в силу размеров, то есть, по существу, довольно случайного фактора) подвергается повышенному риску мутации по сравнению с большинством других генов человеческого генома. Дело в том, что мутация — это, по сути, игра с числами. Иными словами, количественные параметры имеют здесь очень большое значение. Чем крупнее ген, тем больше вероятность того, что он претерпит мутацию. Итак, вот один из механизмов, посредством которых женщина может унаследовать мышечную дистрофию Дюшенна: если ей достается мутантная хромосома от матери-носительницы и новая мутация, которая произошла в сперматозоиде, оплодотворившем яйцеклетку.

Что ж, вообще-то это неплохая гипотеза для объяснения того, почему пациентка получила заболевание. Но тут возникла одна проблема. У пациентки имелась сестра. Сестра-близнец. Более того, идентичный близнец — однояйцевый (монозиготный), то есть выросший в результате слияния той же яйцеклетки и того же сперматозоида. И эта сестра-близнец отличалась завидным здоровьем и не демонстрировала никаких симптомов дюшенновской мышечной дистрофии. Две генетически идентичные женщины. При этом у одной есть наследственное генетическое заболевание, а у другой — нет. Как такое может быть?

Вернемся к той сотне клеток, которые подвергаются X-инактивации на ранней стадии развития эмбриона. Чисто случайным образом примерно 50% из них отключают одну X-хромосому, а остальные отключают другую. Такой же характер X-инактивации передается и всем их дочерним клеткам, до конца жизни хозяина клеток.

Сестре с дюшенновской мышечной дистрофией просто катастрофически не повезло на этой стадии развития. По чистой случайности все клетки, которые в конечном счете должны были превратиться в мышечную ткань, выключили нормальную копию X-хромосомы. Речь идет о той копии, которую женщина унаследовала от отца. А значит, в ее мышечных клетках осталась включенной лишь та X-хромосома, которую она унаследовала от матери — носительницы заболевания. Иными словами, осталась включенной мутантная X-хромосома. Поэтому мышечные клетки женщины не смогли экспрессировать дистрофин, и у нее появились симптомы, которые обычно наблюдаются лишь у мужчин.

А когда развивалась ее сестра (которая, напомним, ее генетически идентичный близнец), некоторые из клеток, которые затем станут мышечной тканью, отключали нормальную X-хромосому, а некоторые — мутантную. Поэтому мышцы сестры экспрессировали достаточно дистрофина, чтобы поддерживать себя в здоровом состоянии. Вот сестра и стала, подобно собственной матери, носительницей заболевания, не проявляющей его симптомов17.

Неужели причина всего этого — просто флуктуация в распределении Xist-РНК, длинного фрагмента РНК, порожденного мусорной ДНК? Флуктуация длилась не больше двух часов. Она произошла в объеме пространства диаметром значительно меньше одной миллионной диаметра человеческого волоса. И тем не менее она предопределила, кто выиграет, а кто проиграет в этой лотерее, где выигрыш — здоровье.

Полосы и пятна везения

Быть может, еще удивительнее то, что некоторые из любителей кошек ежедневно наблюдают (и гладят) последствия X-инактивации. У черепаховых или трехцветных пятнистых кошек (по разные стороны Атлантики их называют по-разному) ярко выраженный узор из черных и рыжих пятен. Ген, контролирующий такую раскраску, может существовать в двух формах. Отдельная X-хромосома несет в себе либо рыжую, либо черную версию.

Если инактивируется X-хромосома, несущая черный цвет, то экспрессируется рыжая версия на другой хромосоме — и наоборот. Когда размер кошачьего эмбриона составляет примерно сотню клеток, в каждой клетке инактивируется одна или другая X-хромосома. Как и в других подобных случаях, все соответствующие дочерние клетки будут отключать ту же самую X-хромосому. В итоге некоторые из дочерних клеток породят клетки, которые создают пигмент шерсти. Все больше и больше таких клеток делятся и развиваются, но они остаются поблизости друг от друга. Таким образом, подобные дочерние клетки склонны держаться вместе — в кластерах (или, если угодно, пятнах). Благодаря определенной картине X-инактивации дочерних клеток будут возникать пятна рыжего меха и пятна черного меха. Этот процесс показан на рис. 7.2.



Рис. 7.2. Схема показывает, как появляются пятна рыжего или черного меха у черепаховых кошек (женского пола) в зависимости от инактивации X-хромосом, происходящей случайным образом. Гены, отвечающие за окраску шерсти, находятся в X-хромосоме. Если черная версия гена располагается в хромосоме, инактивируемой на ранней стадии развития эмбриона, все потомки этой клетки будут экспрессировать лишь рыжую версию гена. Обратная ситуация возникает, если инактивируется X-хромосома, несущая ген рыжести.


В 2002 году ученые весьма впечатляюще продемонстрировали, насколько случайным является процесс X-инактивации. Они клонировали трехцветную кошку. Взяв клетки взрослой кошки, они выполнили стандартную (но все равно ужасно сложную и хитроумную) процедуру клонирования. Для этого они взяли ядро из клетки взрослой кошки и поместили его в кошачью яйцеклетку, из которой предварительно удалили ее собственные хромосомы. Затем эту яйцеклетку подсадили кошке, игравшей роль суррогатной матери. Вскоре у этой кошки родился красивый и энергичный котенок женского пола. И что бы вы думали? Юная кошечка вовсе не оказалась генетически тождественной той, которую клонировали18.

Когда такую процедуру осуществляют для клонирования животных, яйцеклетка обращается с новым ядром так, как если бы оно являлось естественным продуктом слияния какой-то яйцеклетки с каким-то сперматозоидом, очутившимся в ней обычным путем. Она извлекает из ДНК столько информации, сколько возможно, тем самым снова обретая базовую генетическую последовательность. Это происходит не так эффективно, как с обычной яйцеклеткой и сперматозоидом, в чем и состоит одна из причин, по которым доля успешных клонирований такого типа пока еще очень низка. Но иногда (как в данном случае) процесс идет как планировалось, и на свет все-таки появляется клонированное животное.

Когда ядро кошки-матери поместили внутрь яйцеклетки другой кошки, эта яйцеклетка внесла свои изменения в полученные таким путем хромосомы. В частности, удалила инактивирующие белки одной из X-хромосом и отключила экспрессию Xist. Так что в течение краткого периода на ранней стадии развития обе копии X-хромосомы являлись активными. Эмбрион развивался дальше. На стадии, когда он состоял примерно из сотни клеток, он подвергся обычному процессу случайной инактивации X-хромосомы в каждой клетке. Характер инактивации X-хромосом стандартным путем передавался дочерним клеткам. Поэтому юная кошка стала обладать иным узором рыжих и черных пятен по сравнению со своей клональной «матерью».

Какова мораль этой истории? Если у вас есть трехцветная кошка, которую вы считаете необычайно красивой, не скупитесь на фотографии и видео. После ее смерти можете даже вызвать таксидермиста, чтобы он сделал чучело. Но если к вам постучится странствующий клонировщик, гоните его прочь. Он не поможет вам увековечить уникальное животное.

Загрузка...