Когда мы вспоминаем Первую мировую войну, многие из нас сразу же представляют себе бойцов, сидящих в окопах. Противостоящие армии вгрызаются в грязные поля, чтобы месяцами пребывать в свойственной войнам «скуке, перемежаемой мгновениями острейшего ужаса»1. Между расположениями двух противников лежали разделяющие их участки «ничейной земли», они могли иметь ширину всего в сотни метров, а могли простираться и более чем на километр. По ночам солдаты вылезали из своих траншей на разведку или чтобы протянуть колючую проволоку, а бывало и так, что нужно было забрать своих раненых и тела убитых.
Геном человека содержит много областей «ничейной земли», отделяющей различные его компоненты друг от друга. Подобно топям Первой мировой, эти геномные барьеры отличаются по размеру и довольно-таки зыбки: все зависит от того, как они располагаются по отношению к движениям «войск». Как и на ничейной земле в те чудовищные годы европейской бойни, на этих участках все время что-то происходит. Тут связываются белки, складываются эпигенетические модификации, регулируются взаимодействия между различными генетическими элементами...
Для наших клеток это важно, поскольку большинство наших генов разбросаны по всему геному[40],2. Иными словами, почти все гены распределены по нашим 23 парам хромосом довольно-таки бессистемно. Как мы уже видели, гены, кодирующие белки, которые необходимы для выработки гемоглобина, сидят совсем не рядом и сближаются только благодаря изменениям в трехмерном расположении хромосом.
В наших клетках ген, кодирующий белок, который необходим для печени эмбриона, запросто соседствует с геном, кодирующим другой белок — экспрессируемый в коже взрослого человека. Существует огромное количество таких ситуаций, и это может вызывать трудности. А значит, нашим клеткам требуются барьеры между различными компонентами, чтобы поддерживать различные картины генетической экспрессии. Характер контроля должен соответствовать типу клетки и стадии развития организма. Мы вовсе не хотим, чтобы зубные гены экспрессировались у нас в глазах, а сердечные — в мочевом пузыре.
Мы знаем, что на экспрессию генов влияют эпигенетические модификации. Взять хотя бы мозг. Есть некоторые гены, которые никогда не экспрессируются в нейронных клетках. К примеру, белок кератин используется в волосах и ногтях, однако не играет никакой роли в сером веществе взрослого человека. В нейронах ген, отвечающий за синтез кератина, отключается и остается в неактивном состоянии благодаря определенной картине эпигенетических модификаций. Однако, как мы уже видели, эпигенетические модификации слепы по отношению к характеру ДНК-последовательности. Что мешает этим репрессивным модификациям проползти по геному за пределы кератинового гена, начав отключать и другие гены?
А ведь эпигенетические модификации зачастую являются самоподдерживающимися, что еще сильнее осложняет дело. Рассмотрим модификации, вовлеченные в процесс подавления генетической экспрессии. Эти модификации привлекают к себе другие белки, которые только усиливают первоначальное изменение. Следовательно, реактивировать экспрессию гена становится еще труднее. Эти белки, в свою очередь, привлекают белки, которые продолжают добавлять к ДНК-последовательности новые репрессирующие эпигенетические модификации, чтобы геи совсем уж не смог избежать инактивации. Впрочем, можно считать, что границы такого подавления достаточно размыты, поскольку эпигенетическая аппаратура не умеет распознавать конкретные ДНК-последовательности. Поэтому на периферии подавляемых областей эпигенетические модификации могут распространяться дальше, чем полагалось бы.
В процессе эволюции наши клетки выработали любопытный способ предотвращения этого нежелательного явления. Подобно тому, как пожарные команды вырубают рощи или взрывают здания, чтобы остановить огненную стихию, наш геном иногда лишает топлива эпигенетические машины. Мусорная ДНК, служащая изолятором между инактивированными и активными областями генома, утрачивает свои гистоны. А если не будет белков-гистонов, то не будет и эпигенетических гистонных модификаций. Без модификаций не будет распространяться эпигенетическая активность. Это не позволяет репрессивным модификациям добираться до активных генов, а кроме того, предотвращает и обратный эффект. Процесс этот схематически показан на рис. 13.1.
Рис. 13.1. Вверху: картины репрессивной модификации распространяются от одного гена к соседнему. Внизу: нехватка гистонов в изолирующих областях между двумя генами предотвращает распространение репрессивных эпигенетических модификаций, поэтому ген, изображенный справа, не подвергается аномальному отключению.
Но поскольку разные клетки требуют изолирования разных областей (в конце концов, мы же хотим, чтобы кератин экспрессировался в клетках, производящих волосы), можно заключить, что самой по себе ДНК-последовательности еще недостаточно для формирования изолятора. Подобные изоляторы (инсуляторы) создаются путем комплексных и зависящих от конкретной ситуации взаимодействий между геномом и комбинациями белков, экспрессируемых клеткой в данный момент.
Один из самых важных таких белков экспрессируется почти повсеместно. Будем называть его 11-FINGER[41]. Это крупный высококонсервативный белок с характерной структурой. Складываясь в трех измерениях, он образует 11 пальцеобразных отростков (finger — от англ, палец), торчащих из него. Каждый из этих 11 пальцев может распознавать определенную ДНК-последовательность, однако не все пальцы умеют распознавать одну и ту же.
Представьте себе одиннадцатипалого пианиста. На нем шерстяные перчатки. Шерсть на каждом перчаточном пальце окрашена в один из четырех цветов. Каждая клавиша пианино также окрашена в один из четырех цветов, причем распределение окраски случайно. Правила таковы: пианист может извлекать любую ноту, какую ему заблагорассудится, но всегда должен одновременно нажимать от 2 до 11 клавиш, причем цвета перчаточных пальцев и цвета клавиш должны совпадать. Похоже, тут возможно несметное количество комбинаций. А теперь представьте, что у инструмента не десятки, а тысячи клавиш.
Вот и белок 11-FINGER способен связываться со множеством различных геномных последовательностей аналогичным образом. Он может присоединяться к десяткам тысяч мест (сайтов связывания) в человеческих клетках. Он прикрепляется не только к ДНК: 11-FINGER связывается и с белками. Представьте себе, что у нашего многопалого пианиста на тыльной стороне перчаток липучки, которые могут соединяться с пушистыми шариками. Цветные пальцы молотят по клавишам, а тыльная сторона кистей понемногу покрывается шариками.
Так и обстоит дело с белком 11-FINGER. Пальцеобразные выступы связываются с ДНК, а другие поверхности белка соединяются с белками. Конкретная картина связывания будет зависеть от конкретного набора белков, экспрессируемых клеткой. Один из белков способен менять характер скручивания ДНК, что может играть важную роль в контролировании генетической экспрессии3. Другой белок добавляет определенные эпигенетические модификации4. В некоторых областях разновидности геномных «незваных гостей» служат изоляторами, которые препятствуют распространению активирующих или подавляющих эпигенетических модификаций из одной области в другую5.
Некоторые тРНК-гены могут выступать как инсуляторы. Они способны мешать процессу, в ходе которого экспрессия одного гена вызывает неподобающую экспрессию соседнего. Это еще одно преимущество обладания большим количеством тРНК-генов, показывающее, сколь экономно эволюция обычно распоряжается своим сырьем.
Схематически эти процессы показаны на рис. 13.2. Классический ген, кодирующий белок, покрыт эпигенетическими модификациями, усиливающими экспрессию этого гена. Фермент, который связывается с геном и копирует его в РНК (которая в конечном счете будет должным образом обработана для создания из нее зрелой информационной РНК), иногда может вести себя как неуправляемо катящийся поезд: начав копирование, он обычно уже не хочет останавливаться. Если поблизости окажется еще один ген, кодирующий белок, фермент может и его скопировать. Но если между генами два или больше тРНК-генов, такого не произойдет. Заметим, что тРНК-гены почти все время пребывают во включенном состоянии, поскольку они участвуют в создании всех белков. Существует фермент, копирующий тРНК-гены для создания тРНК-молекул на основе ДНК-матрицы. Однако это не тот фермент, который выполняет схожую работу, производя молекулы информационной РНК на основе классических генов, кодирующих белки. Фермент, создающий молекулы тРНК, ведет себя как здоровенный вышибала, не позволяющий другому ферменту войти и добраться до ближайшего гена. А поскольку фермент, копирующий тРНК-гены, не может связываться с классическими генами, кодирующими белки, общая генетическая экспрессия в этой области все время остается под жестким пространственным контролем6.
Рис. 13.2. Фермент, который копирует ДНК генов, кодирующих белки, в информационную РНК, связывается с отмеченным звездочкой местом в начале гена А. Если его не остановят, фермент может продолжать копирование, пока не скопирует и кодирующий белок ген В в информационную РНК (скорее всего, копирование гена В при этом совсем не требуется). тРНК-гены копируются с ДНК на действующие молекулы тРНК при помощи другого фермента. Это останавливает работу фермента, создающего информационную РНК на основе гена А, и предотвращает неправильное использование гена В.
Многие биологи очень любят подчеркивать выгоды, которые наука получила от развития технологий ДНК-секвенирования, и всегда существует искушение счесть, что большинство серьезных прорывов в этой сфере совершаются ныне благодаря высокотехнологичным молекулярным методам. На самом же деле нам очень помогают продвигаться вперед понимание основ биологии человека и логическое мышление.
В главе 7 мы видели, что организм самок млекопитающих всегда инактивирует одну из X-хромосом в каждой из своих клеток — чтобы уровень экспрессии генов X-хромосом у них оставался равным уровню экспрессии этих генов у самцов. Если женская клетка содержит три X-хромосомы, она отключает две из них. А если в клетке лишь одна X-хромосома, она так и остается включенной.
Отсюда следует довольно очевидное предсказание. Неважно, сколько X-хромосом в клетке, поскольку X-инактивация всегда будет гарантировать, что одна из них останется функционально активной. А следовательно, пока у человека содержится хотя бы одна X-хромосома в каждой клетке, этот человек будет совершенно нормальным и здоровым.
На самом деле это не так. Бывает, что женщины с одной-единственной X-хромосомой или с тремя X-хромосомами проявляют зримые патологические симптомы. Точно так же дело обстоит с мужчинами, наделенными двумя X-хромосомами в придачу к своей Y-хромосоме. Может быть, у таких людей не очень хорошо работает X-инактивация? Нет, вряд ли. Ведь X-инактивация — система весьма устойчивая. Маловероятно, что она будет всегда работать идеально (биология не знает таких примеров), но случайные нарушения ее функционирования не объясняют, почему все женщины с единственной X-хромосомой демонстрируют весьма схожие клинические симптомы.
У женщин с единственной X-хромосомой рост ниже среднего и недоразвиты яичники7. У женщин с тремя X-хромосомами рост выше среднего, а кроме того, в детском возрасте у них часто возникают трудности при обучении и наблюдается отставание в развитии8. У мужчин с двумя X-хромосомами (и, конечно, с Y-хромосомой) рост выше среднего, а яички у них могут отличаться сравнительно небольшими размерами, что приводит к пониженной выработке мужского гормона тестостерона. Для них также повышен риск возникновения трудностей при обучении9.
Данные симптомы могут очень расстраивать пациентов и их родителей, однако симптомы эти куда мягче, нежели те, что наблюдаются у больных с аномальным количеством аутосомных хромосом (вспомните синдромы Дауна, Эдвардса и Патау). Дело в том, что у X-хромосомы большие размеры, и большинство ее генов должным образом инактивируется вне зависимости от того, сколько копий этой хромосомы имеется в клетке. Однако некоторые гены не проходят нужной инактивации.
Чтобы разобраться в происходящем, вернемся к моменту зарождения яйцеклетки или сперматозоида. На определенной стадии процесса хромосомы выстраиваются попарно, а затем хромосомы каждой пары растаскиваются по противоположным краям клетки. Клетка делится, и в каждой ее «дочке» содержится по одной хромосоме из каждой пары. Это легко себе представить на примере женской клетки. Две X-хромосомы образуют пару, которую затем можно разделить — точно так же, как любую другую пару хромосом с номерами от 1 до 22. Но когда мужской организм создает сперматозоиды, возникает проблема. Мужские клетки содержат по одной крупной X-хромосоме и по одной крошечной Y-хромосоме. Они сильно отличаются друг от друга. Однако при формировании сперматозоидов X-хромосома и Y-хромосома должны ухитриться каким-то образом найти друг друга и образовать пару, несмотря на то, что они так непохожи.
Почему им все-таки удается это проделывать? Потому что на концах у каждой X- и Y-хромосомы имеется небольшая область, в которой они очень схожи. Это позволяет им узнавать друг друга и сближаться при делении клетки, «держась за руки» до тех пор, пока им не нужно будет разлететься по противоположным концам «танцпола».
Эти области именуются псевдоаутосомными зонами. В них содержатся гены, кодирующие белки. Кроме того, они защищены от подавления при X-инактивации. С генами псевдоаутосомной зоны клеточные механизмы вообще обращаются совершенно иначе, нежели с большинством других генов X-хромосомы. Такая картина распределения активированных и инактивированных генов, приводящая к возникновению заметных патологических симптомов у мужчин и женщин с неправильным количеством X-хромосом, стала четким биологическим признаком того, что клетка обладает возможностями для функционального разделения различных блоков ДНК. И в основе этих возможностей лежат фундаментальные процессы.
X-инактивация определяется распространением по хромосоме длинной некодирующей Xist-РНК, которую эта хромосома экспрессирует. Однако Xist-РНК не распространяется в псевдоаутосомные зоны. Такая защита псевдоаутосомных зон от ее проникновения показывает: в ходе своего развития наш геном обзавелся умением проводить демаркационную линию в ключевых местах. Некогда Жан-Люк Пикар из «Звездного пути» провозгласил по поводу вылазок Борга в пространство Федерации: «Эта линия должна быть проведена здесь, не дальше!»10. Мусорные области-инсуляторы препятствуют распространению ползучего геномного паралича, исходящего из Xist-локуса.
Рисунок 13.3 показывает, как эти области, избежавшие инактивации, вызывают изменения у обладателей неправильного количества X-хромосом. Организм женщины, имеющей лишь одну X-хромосому в каждой клетке, экспрессирует в псевдоаутосомных зонах только 50% от нормального количества генетических продуктов, вырабатываемых в этих зонах у обычной женщины (то есть XX-женщины). Организм женщины, обладающей тремя X-хромосомами в каждой клетке, экспрессирует в псевдоаутосомных зонах на 50% больше генетических продуктов, чем XX-женщина. Аналогичная ситуация с организмом мужчины, обладающего двумя X-хромосомами и одной Y-хромосомой. Его аутосомные зоны вырабатывают на 50% больше генетических продуктов, чем аутосомные зоны обычного мужчины, имеющего одну X- и одну Y-хромосому.
Не случайно и мужчины, и женщины, обладающие лишней X-хромосомой, обычно выше среднего роста, а женщины с недостающей X-хромосомой — ниже. Псевдоаутосомная зона содержит определенный ген, кодирующий белок[42],11 и контролирующий экспрессию других генов. Этот ген играет важную роль в развитии скелета, а особенно — длинных костей рук и ног. У мужчин и женщин с лишней X-хромосомой экспрессия этого гена выше нормы, в результате чего обычно увеличивается длина ног, а значит, и общий рост. У женщин с нехваткой одной X-хромосомы наблюдается обратная ситуация. Это один из немногих примеров, когда можно уверенно выявить отдельный регион человеческого генома, оказывающий существенное влияние на нормальный диапазон роста человека. Впрочем, рост находится и под влиянием многочисленных участков генома вне этого региона12, причем многие из них представляют собой участки мусорной ДНК, и мы пока не знаем, какой вклад каждый из них вносит в то, кем вы станете — баскетболистом из «Гарлем глобтроттерс» или коротышкой, которого трудно заметить в барной толпе.
Рис. 13.3. Влияние различного количества X-хромосом на мужские и женские клетки. Из-за X-инактивации в каждой клетке активна лишь одна X-хромосома. Но поскольку псевдоаутосомные зоны на обоих концах X- и Y-хромосом избегают X-инактивации, при изменении числа X-хромосом количество этих зон патологически возрастает или патологически уменьшается.