Глава 17. Почему «Лего» лучше, чем «Эйрфикс»

Многим детям (и немалому числу взрослых) нравится строить модели. Это можно делать самыми разными способами. Но давайте рассмотрим крайние варианты. Одним из самых популярных наборов-конструкторов в Великобритании стал в последние 30 с лишним лет «Эйрфикс» (Airfix). Маленькие пластмассовые детали самолетов, кораблей, танков и вообще почти всего, что вам может прийти в голову (как насчет бенгальских улан[66]?), предлагаются любителям моделирования вместе с подробными инструкциями. Моделист склеивает эти части, раскрашивает их, помещает на них переводные картинки и затем может наслаждаться законченным творением своих рук еще долгие годы.

Другая крайность — универсальная датская игрушка, которую я очень люблю. Речь идет, конечно же, о «Лего». Сейчас продается масса специализированных наборов «Лего», но основная идея в них всегда остается неизменной. Имеется сравнительно небольшое количество разновидностей компонентов, и эти детали можно соединять в любых сочетаниях по желанию пользователя. Построенную модель легко снова разобрать на исходные кирпичики, а затем использовать для создания чего-нибудь еще.

Примитивные организмы вроде бактерий тяготеют скорее к эйрфиксовскому пути. Их гены распределены четко и справедливо: каждый кодирует лишь один белок. Но чем сложнее становится организм, тем больше его геном начинает походить на «Лего»: значительно возрастает степень гибкости возможного использования компонентов. Когда мы задумываемся о том, какие же мы, люди, необыкновенные существа, можно даже воскликнуть, что на геномном уровне у нас «все потрясающе» (как сказано в известном фильме про «Лего»[67]).

Крайнее проявление этого феномена — сплайсинг, процесс, посредством которого наши клетки создают множество родственных друг другу белков на основе одного гена (см. рис. 2.5). Такое умение использовать компоненты гена множеством различных способов порождает невероятную биологическую гибкость и дарит организму дополнительные возможности. Мы получим некоторое представление о степени этой потенциальной вариативности обратившись к цифрам. Каждый ген человека содержит в среднем по 8 участков, кодирующих белки, и каждый из этих участков отделен от других областями мусорной ДНК[68]. Показано, что по меньшей мере 70% генов человека создают не менее чем по паре белков1. Это достигается благодаря объединению различных участков, кодирующих аминокислоты. В очередной раз воспользуемся нашим примером со словом БЛЕДНОСТЬ (см. все тот же рис. 2.5). Оно позволяет нам синтезировать не только белок, обозначаемый как ЛЕНОСТЬ, но и белок, обозначаемый как ДНО. Способность создавать разные белки таким путем называется альтернативным сплайсингом.

Участки, кодирующие аминокислоты, сравнительно коротки по сравнению с мусорными областями, которыми они перемежаются. Средняя длина нуклеотидных последовательностей, кодирующих аминокислоты, составляет около 140 пар нуклеотидных оснований, однако эти участки могут быть окружены мусорными областями длиной по несколько тысяч пар оснований2. Около 90% пар нуклеотидных оснований в гене принадлежат этим промежуточным последовательностям (назовем их так), а не участкам, кодирующим аминокислоты. Представив это как подобие текста на английском языке, мы сразу же увидим некоторые проблемы, с которыми сталкивается клетка.

Вообразите, что вы встретили юношу (или девушку), и он (она) вас совершенно очаровал (очаровала). И тут вы, узнав, что он (она) обожает поэзию, решили прямо-таки потрясти предмет вашего нового увлечения — прочесть стихи. Но, поскольку в школе вы всегда прогуливали уроки литературы, ваш приятель снабдил вас листком, на котором написана просто убийственная первая строчка стихотворения, способная сразить наповал. Но вдруг, в самый неподходящий момент, выясняется: почему-то ваш друг (возможно, страдающий легкой формой социопатии) спрятал слова этой строчки среди гигантского количества бессмысленных сочетаний букв. А у вас есть всего несколько секунд на то, чтобы отыскать запрятанные слова, произнести их вслух и покорить сердце вашего объекта обожания (или хотя бы привлечь его внимание). Ну как, удастся вам это сделать? Проверьте себя. Быстренько взгляните на рис. 17.1.



Где-то здесь спрятана замечательная поэтическая строка

Рис. 17.1. Бросьте всего один взгляд на этот устрашающий текст. Найдете в нем строчку, способную завоевать кое-чье сердце?


А ведь наши клетки проделывают это все время, постоянно, много раз в течение каждогодня нашей жизни. Клеточная аппаратура анализирует длинную цепочку явной абракадабры, почти мгновенно находит скрытые в ней слова и соединяет их вместе. Ладно уж, теперь можете посмотреть на рис. 17.2 и выяснить, удалось ли вам потягаться с неразумными белками, благодаря которым вы, между прочим, до сих пор живы.



Одна из самых романтичных и обольстительных первых строчек среди всех стихотворных текстов, когда-либо написанных по-английски: «Had we but world enough and time» (Когда бы времени хватило нам и мира)

(Эндрю Марвелл, «К стыдливой возлюбленной»)

Рис. 17.2. Читайте только то, что выделено жирным и подчеркнуто.


В любой длинной последовательности случайных букв всегда обнаружатся еще и комбинации, из которых, опять-таки, чисто случайно складываются слова. Если при ухаживании (интересно, в наши дни кто-нибудь еще ухаживает?) вы по ошибке произнесете именно эти слова, вы можете разрушить свой единственный шанс обрести счастье. Рисунок 17.3 покажет вам, как это может произойти.



При выборе определенной комбинации правильных и неправильных слов вы явно выразите совсем другое чувство: «Had we but had enough to drink» («Когда б хватило нам хмельного здесь напитка»).

Рис. 17.3. Нет! Комбинация неудачная!


Используя этот несколько причудливый пример, можно лучше понять некоторые чисто механистические проблемы, с которыми сталкиваются наши клетки, пытаясь должным образом провести сплайсинг молекул РНК. Если бы мы сами разрабатывали такой процесс, он бы, наверное, состоял из компонентов, показанных на рис. 17.43. Но компоненты, представленные на схеме, дают лишь упрощенную картину. Важно осознавать, что различные клетки будут по-разному обращаться с одним и тем же геном — в зависимости от типа клетки и от того, что происходит с ней в данный момент. А значит, все стадии процесса нужно соответствующим образом регулировать и интегрировать, чтобы вырабатывать именно такие вариации белков, которые лучше всего подходят к конкретной ситуации (то есть лучше всего удовлетворяют нуждам организма в данный момент).



Рис. 17.4. Сверху вниз: последовательность действий, которые должна уметь выполнять сплайсинговая аппаратура клетки, чтобы соединить все нужные участки, кодирующие аминокислоты, в зрелую РНК требуемого строения и состава.

Сплайсинг как образ жизни

Такой сплайсинг длинных РНК с целью создания более коротких информационных РНК, несущих в себе сведения об определенных белках, является по-настоящему комплексным процессом. Система эта очень древняя. Ее компоненты и стадии сохраняются практически неизменными на всем протяжении эволюции — от дрожжей до царства животных. Работу проводит гигантский конгломерат молекул, который называется сплайсосомой и который как раз и представляет собой аппаратуру для сплайсинга. Сплайсосома состоит из сотен белков, а также некоторых мусорных РНК. Чем-то это напоминает рибосомы, действующие как фабрики по производству белков4.

Одна из определяющих стадий процесса — обвивание сплайсосомы вокруг промежуточных последовательностей, которые требуется удалить из молекулы РНК. Сплайсосома вытесняет их и затем объединяет участки, кодирующие аминокислоты. Это чудовищно сложный многостадийный процесс. Мы знаем, что один из его первых ключевых этапов — распознавание промежуточных областей сплайсосомой. Ей ведь явно приходится начинать именно с этого, чтобы затем соединиться с ними и удалить их.

Начала и концы промежуточных последовательностей всегда отмечены определенными элементами из 2 нуклеотидных оснований. Молекулы мусорной РНК сплайсосомы могут соединяться с этими двухосновными последовательностями. Во многом это похоже на то, как две нити ДНК соединяются в наших генах с помощью пар таких же нуклеотидных оснований.

Однако в РНК (как и в ДНК) лишь 4 разных нуклеотидных основания, а значит, возможно лишь 16 комбинаций из двух оснований (АЦ и ЦА, как и все подобные симметричные сочетания, считаются разными парами). Следовало бы ожидать, что двухосновные элементы, обозначающие начала и концы промежуточных областей, будут представлены и в других местах этих областей, а также в участках, кодирующих аминокислоты. Так и есть. Поэтому, хотя эти двухосновные последовательности необходимы для сплайсинга, их наличия еще недостаточно для того, чтобы направлять процесс должным образом. Требуются и другие последовательности (см. рис. 17.5).

Последовательности, влияющие на выбор того, как будет осуществляться сплайсинг, находятся и в промежуточных мусорных областях, и в участках, кодирующих аминокислоты. Одни влияют на сплайсинг очень сильно, другие гораздо слабее и тоньше. Одни повышают вероятность акта сплайсинга, другие понижают его. Все они работают в системах комплексного партнерства. Суммарное воздействие, которое они оказывают на окончательную картину сплайсинга, определяется и другими событиями, происходящими в клетке, и ее свойствами в данный момент, например, конкретным составом белков в сплайсосоме. Эти модифицирующие последовательности обычно описываются с применением эпитетов типа «головокружительный» или «ошеломляющий». В речи энтузиастов науки они часто означают «невероятно сложный и запутанный, в данный момент далеко превышающий возможности нашего скромного разума или даже прогностических компьютерных алгоритмов, созданных специально для таких случаев».



Рис. 17.5. Множество различных нуклеотидных последовательностей взаимодействуют в молекуле РНК, направляя сплайсинг в нужном направлении. Отмеченные буквами мотивы, состоящие из двух оснований, необходимы, но сами по себе недостаточны для того, чтобы регулировать всю тонкую настройку процесса. В ней участвуют и другие сайты, оказывающие влияние различной силы, что показано отличиями в толщине и длине стрелок.

Сплайсинг и болезни

Чтобы хоть как-то ощутить, представить степень этой сложности, рассмотрим одну группу генетических заболеваний. В их числе — форма слепоты, именуемая пигментным ретинитом и затрагивающая примерно одного человека из каждых 4 тысяч. Как правило, все начинается в подростковые годы, с ухудшения ночного зрения. С годами зрение быстро падает. Это происходит оттого, что постепенно отмирают клетки глаза, воспринимающие свет5. В среднем 1 из 12 случаев обусловлен мутацией в каком-то из 5 белков, участвующих в определенной стадии сплайсинга6,7,8,9. Данная мутация вызывает нехватку лишь клеток сетчатки, а не других клеток организма, которые также полагаются на процесс сплайсинга. Это показывает, что процессы контроля сплайсинга обладают высокой специфичностью по отношению к клеткам и генам. Пока механизмы, лежащие в основе этой специфичности, нам не понятны.

Врачам известна весьма острая форма карликовости, при которой носителю отклонения свойственны и другие не совсем обычные характеристики и особенности — слишком сухая кожа, слишком редкие волосы, склонность к припадкам, затруднения при обучении. Дети с таким заболеванием почти всегда умирают, не дожив до 4 лет10. Оно является весьма редким практически везде, кроме общины амишей штата Огайо: 8% членов общины — носители этой болезни. Дело в том, что мутация, вызывающая данное заболевание, имелась у того небольшого количества семейств, которое и основало когда-то общину. Эту болезнь не обнаруживают в других группах амишей (скажем, в Пенсильвании), основанных другими семьями. Когда удалось выявить мутацию, вызывающую это заболевание, исследователи сначала решили, что она изменяет нуклеотидную последовательность гена, кодирующего какой-то белок, который образуется в результате сплайсинга. Однако теперь известно, что на самом деле это изменение нарушает трехмерную структуру той мусорной ДНК, которая образует часть сплайсосомы11. В отличие от ситуации с пигментным ретинитом, такой дефект в функционировании сплайсосомы вызывает весьма широкий диапазон симптомов. Вероятно, при этом происходит ошибочный сплайсинг множества различных генов.

Заболевания у человека происходят не только из-за неполадок в аппаратуре сплайсинга. Недуги могут возникать и из-за того, что сами гены, кодирующие белки, обладают мутациями в местах (сайтах), которые играют важную роль при контролировании сплайсинга РНК данного конкретного гена. Некоторые ученые настаивают, что до 10% наследственных болезней человека обусловлены мутациями в этих сплайсинговых сайтах (такие сайты показаны на рис. 17.5 как последовательности из двух нуклеотидных оснований)12.

Вот пример действия такого механизма. В одной семье у двух младенцев возникла неизлечимая диарея уже в первые дни после рождения. Медперсоналу как-то удалось стабилизировать ситуацию, но диарея продолжалась много месяцев, и один из детей умер в семнадцати месячном возрасте. Когда геномы детей секвенировали, обнаружилась мутация в сплайсинговом сайте гена, меняющая одну из ГУ-последовательностей, показанных на рис. 17.5. В результате клеточная сплайсинговая аппаратура без необходимости «пропускала» один из участков, кодирующих аминокислоты. По сути, этот участок просто исключался из процесса синтеза белка, и получающийся белок больше не мог выполнять свою работу13.

Саркома Капоши — форма рака, которая впервые привлекла внимание общественности, когда обнаружилось, что она широко распространена среди больных СПИДом. СПИД вызывется вирусом иммунодефицита человека (ВИЧ) — (HIV, the human immunodeficiency virus). Инфицирование этим вирусом приводит к подавлению иммунной системы. Саркому Капоши вызывает другой вирус. Он получил название HHV-8. Обычно наша иммунная система держит этот вирус под контролем, но если ее функционирование серьезно нарушено, HHV-8 может утвердиться в организме и спровоцировать саркому Капоши.

Вирус HHV-8 широко распространен среди жителей Средиземноморья, однако у них редки случаи саркомы Капоши, а у маленьких детей ее почти никогда не обнаруживали. Поэтому медики очень удивились, когда одна турецкая семья привела врачам двухлетнюю дочку, на губе у которой имелись образования, характерные для данной разновидности рака. Они быстро и агрессивно росли, и девочка умерла всего спустя 4 месяца после того, как ей впервые поставили диагноз.

Все тесты девочки на ВИЧ давали отрицательный результат. Ее родители были близкими родственниками — двоюродным братом и сестрой. Ученые принялись искать генетические причины, которые могли бы объяснить нарушение иммунного отклика на HHV-8 у этой девочки.

Проведя секвенирование ДНК образцов биоматериала, полученных у умершей, специалисты выявили мутацию в сайте сплайсинга, находящемся в определенном гене. Мутация меняла АГ на АА, а значит, сплайсосома больше не могла определить, в каком месте она должна разрезать молекулу РНК. В результате мусорная область, которую следовало удалить, оставалась в составе молекулы информационной РНК. Это нарушало нуклеотидную последовательность, создавая стоп-сигнал на значительно более «раннем» отрезке информационной РНК, чем необходимо, что, в свою очередь, не позволяло рибосоме сделать белок требуемой длины (он получался гораздо короче). А поскольку данный белок как раз и нужен для поддержания эффективной иммунной реакции на вирусы наподобие HHV-8, ребенок с такой мутацией оказался весьма подверженным саркоме Капоши14.

Хотя мутации сплайсинг-сайтов встречаются сравнительно часто, причиной генетических заболеваний чаще становятся мутации тех участков генов, которые кодируют аминокислоты. Одни мутации вызывают проблемы из-за того, что вводят стоп-сигналы, мешающие рибосомам синтезировать белки нужного размера на основе матриц информационной РНК. Другие мутации способны изменять генетический код, побуждая ген кодировать не ту аминокислоту, какую следует. К примеру, триплет ЦАЦ кодирует аминокислоту гистидин, а триплет ЦАГ — глутамин, другую аминокислоту. Но ученые предполагают, что до 25% мутаций, вызывающих замену аминокислоты таким путем, влияют также и на сплайсинг ближайших участков информационной РНК. В некоторых случаях причиной болезни может служить не единичная замена аминокислоты сама по себе, а то изменение, которое вносит исходная нуклеотидная замена в характер сплайсинга информационной РНК.

Однако в большинстве случаев очень трудно продемонстрировать, что это действительно так. Даже если ученые сумеют показать, что изменение в РНК приводит и к нарушению картины сплайсинга, и к замене аминокислоты, как определить, какой из этих эффектов вызывает симптомы болезни? Что служит их причиной — сам белок, где в определенном месте одна аминокислота заменена на другую, или еще и то, что белок возник в результате непривычного сплайсинга?

Природа сама предоставила нам свидетельства того, что иногда мутация в кодирующем участке способна вызывать болезнь посредством влияния на сплайсинг, а не посредством замены аминокислоты. Существует весьма необычное заболевание, названное прогерией Хатчинсона-Гилфорда в честь двух ученых, которые впервые его выявили. Слово «прогерия» означает «раннее старение», и эта ее форма невероятно опасна. Она встречается крайне редко, затрагивая примерно одного ребенка из 4 миллионов15.

Родившиеся с этим недугом поначалу кажутся совершенно здоровыми, но уже в течение первого года жизни их рост резко замедляется, а потом и вовсе останавливается. У детей начинают проявляться многие симптомы старости: редеют волосы, наступает облысение, тело становится жестче. Хотя у них все-таки не развиваются некоторые заболевания, свойственные пожилому возрасту (скажем, болезнь Альцгеймера), зато возникают серьезные сердечно-сосудистые заболевания. Именно от них несчастные дети умирают еще в раннем подростковом возрасте: летальный исход становится следствием инфаркта или обширного инсульта.

В 2003 году специалисты выявили генетическую мутацию, которая вызывает прогерию Хатчинсона-Гилфорда. У каждого из обследованных пациентов обнаружилась новая мутация (мутация de novo), то есть такая, которая спонтанно возникла в яйцеклетке или сперматозоиде кого-то из родителей. Невероятно: у 18 пациентов, не связанных близким родством (всего обследовали 20) мутация оказалась совершенно одинаковой16.

Последовательность ГГЦ в определенном гене мутировала и в результате сменилась на ГГТ. Этой мутации подверглась одна из тех областей гена, которые занимаются кодированием аминокислот. Может показаться, что перед нами сравнительно обычный, «лобовой» случай мутации, заменяющей одну из аминокислот в белке. Так что первым делом, разумеется, следует посмотреть на генетический код и выяснить, что же кодируют эти две последовательности. ГГЦ, нормальная последовательность, кодирует простую аминокислоту глицин. Однако ГГТ, мутантная последовательность, кодирует (внимание!) глицин же. Да-да, ту же самую аминокислоту!

Дело в том, что генетический код наделен определенной избыточностью. Как мы уже знаем, наш геном записан при помощи всего четырех букв — А, Г, Т и Ц (в РНК вместо буквы Т — буква У). Блоки из 3 букв (триплеты) используются для кодирования той или иной аминокислоты. Из 4 букв можно составить 64 трехбуквенные комбинации. Три из этих комбинаций — стоп-сигналы, приказывающие рибосоме больше не добавлять аминокислоты в белковую цепочку, которую она выстраивает. Остается 61 комбинация для кодирования аминокислот. Но наши белки содержат в общей сложности лишь 20 различных аминокислот. Поэтому некоторые аминокислоты можно кодировать несколькими различными трехбуквенными наборами. Одна крайность: глицин кодируется триплетами ГГА, ГГЦ, ГГГ и ГГТ (ГГУ). Противоположная крайность: аминокислоту метионин кодирует лишь комбинация АТГ (АУГ).

Но если при прогерии Хатчинсона-Гилфорда не меняется аминокислотная последовательность, кодируемая мутантным геном, что же вызывает такое резкое изменение фенотипа при этом заболевании? Вновь обратимся к рис. 17.5. Последовательность из двух нуклеотидных оснований, находящаяся в начале каждой промежуточной области гена, такова: ГТ. Но у страдающих этой болезнью нормальный триплет ГГЦ меняется на ГГТ, и участок, кодирующий аминокислоту, получает ненужный дополнительный сигнал сплайсинга. На фоне всех остальных сигналов сплайсинга в этой области генома такое неверное размещение ГТ действует весьма сильно. Сплайсосома разрезает информационную РНК в области, кодирующей аминокислоты, а не в мусорной области. Участки, кодирующие аминокислоты, соединяются неправильно, что приводит к потере примерно 50% аминокислот, которые должны располагаться на конце синтезируемого белка. В результате сам белок не обрабатывается должным образом и начинает вносить сумятицу в работу клеток. Мы пока точно не знаем, каким образом это приводит к необычному старению, которое мы наблюдаем у детей, страдающих данным заболеванием. Наиболее убедительное предположение на данный момент: в ходе таких процессов нарушается механизм поддержания нормального функционирования клеточного ядра. Это может приводить к изменениям в экспрессии генов и к разрушению ядра. Вероятно, некоторые гены и некоторые типы клеток чувствительнее к таким процессам, чем другие.

Есть еще одно детское заболевание — спинальная мышечная атрофия. При этой болезни нервные клетки, управляющие мышцами, постепенно отмирают, что приводит к деградации мышц и утрате подвижности. Существует целый ряд различных форм этого заболевания. При самой острой его разновидности средняя ожидаемая продолжительность жизни детей с этим недугом очень мала — меньше 18 месяцев17. Для генетического заболевания оно распространено сравнительно широко: в Великобритании примерно один человек из 40 является его носителем, а значит, около полутора миллионов британцев несут в себе одну дефектную копию соответствующего гена. По счастью, для развития симптомов болезни требуются две мутантные копии гена, а не одна18.

Спинальная мышечная атрофия возникает в результате удаления (делеции) гена SMN1 или прекращения его нормального функционирования. Если мы посмотрим на человеческий геном, нас может удивить, что такое изменение способно вызвать столь мощный эффект, поскольку в геноме имеется и другой ген, кодирующий тот же белок. Этот ген именуется SMN2. Отсюда очевидный вопрос: раз уж они кодируют один и тот же белок, почему ген SMN2 не может служить компенсацией поврежденного или утраченного гена SMN1 ?

Тут почти такая же история, как с прогерией Хатчинсона-Гилфорда. Видите ли, ген SMN2 слегка отличается от гена SMN1. Речь идет об изменении в ДНК-последовательности одного из участков, кодирующих аминокислоты. Аминокислотная последовательность из-за этого не меняется, поскольку речь идет об одном из триплетов, которые кодируют аминокислоты по принципу избыточности (то есть о тех случаях, когда одну аминокислоту может кодировать не один триплет). Зато меняется один из сайтов, помогающих рибосомам определять, в каком месте проводить сплайсинг молекулы информационной РНК19. Нет, сам сплайсинг-сайт не меняется. Меняется один из сайтов, влияющих на то, где происходит сплайсинг. В результате возникает «пропуск» на участке, кодирующем аминокислоту, и синтезируется белок, не обладающий нужными функциями. Поэтому ген SMN2 не может стать компенсацией гена SMN1, чья работа нарушена. Белок, вырабатываемый при нормальной деятельности гена SMN1, требуется для нормальной работы сплайсосом. В сущности, мутация в одном гене приводит к общим проблемам в сплайсинге информационных РНК, которые удалось бы преодолеть, если бы потенциальный ген-компенсатор не имел собственных проблем со сплайсингом.

Манипулирование сплайсингом в лечебных целях

Как мы видели в главе 7, при мышечной дистрофии Дюшенна, заболевании, быстро истощающем мышцы и переносимом в X-хромосоме, мутирует ген, кодирующий белок дистрофин. Этот ген имеет необычайно большие размеры — почти 2,5 миллиона пар нуклеотидных оснований. В нем около 80 участков, кодирующих аминокислоты. Эти участки должны положенным образом проходить сплайсинг и процессинг. Особенно важно это из-за того, что дистрофин — белок долгоживущий, а значит, любое изменение, которое повышает вероятность его неверного сплайсинга, будет влиять на клетку в течение длительного времени. Но наличие 78 интронов в этом массивном гене означает, что для него высок риск как спонтанных, так и наследуемых мутаций, способных влиять на сплайсинг. Почему? Просто из-за того, что сама немалая величина гена и большое количество в нем промежуточных областей создают для таких мутаций массу возможностей: попросту говоря, есть масса мест, где могут происходить мутации. В одном обзоре это описано довольно ярко и при этом информативно: «Массивный ген дистрофина (2,4 Мб), основную часть которого составляют его 78 интронов, так и напрашивается на неприятности со сплайсингом, которые и происходят у одного младенца из каждых 3 тысяч, рождающихся живыми»20.

Итак, в некоторых случаях причиной мышечной дистрофии Дюшенна становятся погрешности сплайсинга. Однако часто это заболевание вызвано попросту отсутствием важнейших областей гена, а значит, и молекул белка, в нем закодированного. Впрочем, в последние годы забрезжила надежда на создание эффективных методик лечения этого пока неизменно летального недуга. Как ни странно, речь идет о разработке препаратов, способствующих аномальному сплайсингу дистрофинового гена у мальчиков с этим заболеванием.

Белок дистрофин действует в клетках мышечной ткани как своего рода амортизатор. Его молекулы можно представить себе как пружины матраса. Чтобы матрас поддерживал тело, пружины нужно прикрепить к его верхней и нижней части. Если вследствие производственного брака в пружине нет последних 10 сантиметров, ее не удастся прикрепить к верхней половине матраса. Чем чаще вы будете пользоваться таким матрасом, там хуже он будет поддерживать ваше тело и тем больше будет искажаться его внутренняя структура.

Мышечную дистрофию Дюшенна довольно часто вызывает потеря внутренних областей дистрофинового гена. Когда ген копируется в РНК, оставшиеся области в ходе сплайсинга остаются скрепленными вместе. Поэтому такой мутантный ген, в отличие от нормального, не обеспечивает появление некоторых аминокислот во внутренней части белка. Однако главную проблему вызывает не это (см. рис. 17.6).



Рис. 17.6. Схематическое изображение ключевой области, где мутация в дистрофиновом гене может приводить к появлению существенно укороченной белковой молекулы из-за сдвига в системе аминокислотного считывания. Этот сдвиг (в данном случае) происходит, когда ДНК утрачивает кодирующие аминокислоты участки, обозначенные номерами 48-50. Чтобы поддерживать нужный характер считывания, каждое число, написанное под каждой границей участков, должно делиться на 3. Если добиться того, что в мутантном гене будет пропускаться при считывании и участок 51, нормальную последовательность считывания удастся восстановить. Для простоты все участки, кодирующие аминокислоты, показаны как прямоугольники одного размера, хотя на самом деле они отличаются по размерам.


Как мы уже знаем, генетический код, задающий аминокислоты, считывается блоками по 3 нуклеотидных основания. Когда, как это происходит в нормальном гене, нужные участки, кодирующие аминокислоты (эти участки, если помните, называются экзонами), соединяются вместе, они порождают длинную молекулу информационной РНК, кодирующую множество аминокислот. Но если соединятся вместе не те экзоны, триплеты оснований перестанут читаться правильно. Вот вам простой пример:

БЕЗ ВАС НАШ САД ТРИ ДНЯ БЫЛ ДЛЯ НИХ КАК ЛЕС

Читая по три буквы, мы легко поймем смысл этой фразы. Но если одна буква выпадет, мы при таком же чтении по три буквы быстро начнем утрачивать и смысл:

БЕЗ ВАН АШС АДТ РИД НЯБ ЫЛД ЛЯН ИХК АКЛ ЕС

Это так называемый сдвиг рамки считывания. В информационной РНК такое явление первым делом приводит к тому, что в растущую белковую цепочку встраиваются неподходящие аминокислоты. Но вскоре происходит еще более резкое изменение. Встречается сочетание 3 букв, которое действует как стоп-сигнал. Рибосома тут же прекращает добавление аминокислот, и получается мутантный белок, длина которого меньше, чем у нормального.

Это происходит у пациентов с делециями определенных областей дистрофинового гена. На рис. 17.6. рамка считывания триплетов обозначена номерами под прямоугольничками. Пока номера на границе соседних прямоугольников делятся на 3, рибосома может считывать информационную РНК. Но когда происходит наиболее распространенная при этом заболевании деления, это приводит к сдвигу рамки считывания, быстро порождая чтение стоп-сигнала и появление сильно укороченной белковой цепочки.

Чтобы обойти эту проблему, можно попытаться, к примеру, заставить клетку «пропустить» один из участков, кодирующих аминокислоты и расположенных после места делении: это восстановило бы нормальный характер считывания. В результате появился бы белок с некоторой нехваткой аминокислот во внутренних частях, однако все равно способный неплохо функционировать. Это могло бы замедлить развитие симптомов. Используя аналогию с кроватными пружинами, мы схематически изобразили такой процесс на рис. 17.7. Молекула дистрофина сохранит способность соединить между собой нужные белки, находящиеся на противоположных ее концах. Конечно, она будет не таким хорошим амортизатором, как белок нормальной длины. Однако она будет работать куда лучше, чем белок, вообще не способный прикрепиться к нужным клеточным структурам.



Рис. 17.7. Здесь схематически показан мутантный белок дистрофин, не способный прикрепляться к двум поверхностям клеточной мембраны. Версия мутантного белка, в которой пропущены некоторые внутренние аминокислотные последовательности, может прикрепляться к двум поверхностям мембраны. Она короче, поэтому служит не таким хорошим амортизатором, как нормальный белок, однако работает гораздо эффективнее, чем исходная мутантная версия.


Свидетельства в пользу данной гипотезы выглядели убедительно, и биотехнологические компании запустили ряд проектов, дабы попытаться найти способ ее практического применения. Так, компания Prosensa разработала препарат, помогающий мышечным клеткам «пропускать» 51-й участок, кодирующий аминокислоты. Впоследствии она уступила права на этот препарат фармацевтическому гиганту GlaxoSmithKline. В апреле 2013 года GlaxoSmithKline опубликовал результаты испытания препарата на небольшой выборке, состоявшей из 53 мальчиков с подходящей формой дюшенновской мышечной дистрофии. Этих мальчиков случайным образом разделили на две группы. Одна группа получала экспериментальный препарат, другая проходила те же самые процедуры, но без него. Подобная проверка так называемым методом плацебо — очень полезный способ выявления эффектов лекарств, проходящих клинические испытания. Мальчиков обследовали через 24 недели и через 48 недель после начала эксперимента — определяли, сколько они смогут пройти за б минут.

Через 24 недели после начала опытов самочувствие мальчиков, получавших плацебо («пустышку»), ухудшилось, чего и следовало ожидать при такой болезни. Они не могли пройти за 6 минут даже столько, сколько проходили в начале эксперимента. Но мальчики, получавшие лекарство, сумели пройти на 30 метров больше, чем в первый день испытаний. По прошествии 48 недель после начала эксперимента провели еще одну проверку. В контрольной группе (той, что получала плацебо) дела шли еще хуже, чем раньше. За 6 минут ее участники проходили почти на 25 метров меньше, чем в первый день опытов. А вот мальчики, получавшие лекарство, смогли улучшить свой первоначальный результат более чем на 11 метров21.

Впрочем, эти данные показывают, что со временем даже у мальчиков, получавших лекарство, состояние ухудшается (обратите внимание на разницу в результатах ходьбы по истечении 24 и 48 недель с начала эксперимента). Однако это ухудшение шло значительно медленнее, чем у тех, в чьем организме заболевание развивалось своим чередом.

Итоги эксперимента вызвали необычайное воодушевление. Даже если методика не исцелит пациентов полностью, она существенно замедлит развитие необратимых симптомов. Ну да, для всех форм дюшенновской мышечной дистрофии такой подход в любом случае не годился бы, но 10-15% пациентов вполне могли бы надеяться на облегчение.

Однако прошло всего 6 месяцев, и эти надежды развеялись в пух и прах. GlaxoSmithKline провел более масштабные испытания и на сей раз не обнаружил никакой существенной разницы между контрольной группой и группой, получавшей препарат22. Результаты масштабных испытаний надежнее тех, что получают при анализе более узкой выборки, поскольку здесь меньше вероятность, что на итоги эксперимента повлияют всякого рода необычные реакции, которые выглядят как отклик на лекарство, однако на самом деле им не являются. GlaxoSmithKline передал препарат обратно в компанию Prosensa и гордо удалился. Сейчас Prosensa продолжает клинические исследования, хотя цена ее акций резко упала после того, как из проекта вышел GlaxoSmithKline. Это падение обусловлено тем, что специалисты и биржевые аналитики полагают, что проект, возможно, обречен.

Еще одна компания, Sarepta, тоже пытается использовать особенности сплайсинга для того, чтобы «перескочить» трудный участок в дистрофиновом гене у некоторых групп больных. При разработке методик лечения ее сотрудники применяют подход, схожий с вышеописанным. Хотя компания высказывает большой оптимизм касательно своих препаратов, Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США сомневается в степени представительности проводимых ею испытаний. К примеру, в одном из таких тестов, где удалось показать резкое различие между контрольной группой и группой, получавшей лекарство, участвовало всего-навсего 12 пациентов!

После всего вышеизложенного можно решить, что сплайсинг — это вообще овчинка, не стоящая выделки. Ведь похоже, что здесь мы имеем дело с очередным проявлением печально известного закона Сода: «Если неприятность может произойти, она непременно случится». Но ведь на самом деле то же самое относится и к почти любому биологическому процессу. Миллиарды нуклеотидных оснований, тысячи генов, триллионы клеток, миллиарды людей... Мы с вами вовлечены в хитрую лотерею. Не может быть, чтобы в ней каждый раз все шло как нам хочется. Однако следует вспомнить, что этот процесс объединения расщепленных генов сохраняется практически неизменным на протяжении сотен миллионов лет эволюционной истории, используя систему, которая все это время остается почти одной и той же. Сам этот факт ясно дает понять, что преимущества усложненного устройства, наличия дополнительной информации и просто общей гибкости и адаптивности в полной мере окупятся, когда настанет черный денек.

Загрузка...