Человек, все чаще рассматривает совокупность окружающих его природных явлений как единый процесс, происходящий на всей планете. Геофизические науки изучают те или иные стороны этого процесса.
Если бы мы могли окинуть взором сразу всю нашу планету с расстояния в несколько тысяч километров, то увидели бы, как передвигаются облачные системы, заволакивая четкие контуры материков и горных цепей, как зарождаются в нижних слоях атмосферы стремительные потоки тайфунов и ураганов тропического пояса. Разогреваемый в тропической зоне воздух, расширяясь и поднимаясь, переносится к полярным областям и движется обратно в нижних слоях земной атмосферы. Отклоняющая сила вращения Земли, влияние рельефа земной поверхности, своеобразное расположение материков и океанов превращают это простое движение в сложную систему генеральной циркуляции земной атмосферы. Она определяет основные пути движения воздушных масс, перенос тепла и влаги, климатические особенности и погоду в различных районах земного шара.
С большого расстояния нам было бы хорошо заметно, как реагирует земная атмосфера на все проявления солнечной деятельности. Могучие вихревые движения солнечной оболочки, протуберанцы — выбросы огромных масс раскаленного газа на сотни тысяч километров, вспышки ультрафиолетовой радиации, потоки электронов и атомных ядер, внезапно извергаемых кипящей поверхностью Солнца, — все это сейчас же находит свое отражение в верхних слоях земной атмосферы.
Эти слои первыми встречают поток частиц вещества и энергии, стремящейся к Земле от Солнца и из глубин космического пространства. Именно здесь путем сложных физико-химических реакций этот поток настолько преобразуется, что фотоны и атомные ядра теряют свою колоссальную энергию и приходят к земной поверхности в безопасном для органической жизни состоянии.
Воздействия ультрафиолетового излучения и частиц, извергаемых Солнцем, на верхние слои земной атмосферы вызывают игру полярных сияний, приводят к образованию ионизированных слоев, благодаря которым распространяются на дальние расстояния короткие радиоволны, являющиеся причиной магнитных бурь.
Неустанно действующая сложная совокупность метеорологических, гидрологических, электромагнитных процессов, охватывающих весь земной шар, представляет собой как бы «машину» нашей планеты. Везде ощущается ее ритм. Тысячи станций и постов, сотни обсерваторий во ‘всех странах, во всех уголках земного шара непрерывно следят за этим движением.
В геофизических исследованиях применяется самая передовая техника. Хорошо оснащены экспедиции, работающие в Антарктиде, богато оборудованы корабли, ведущие океанографические исследования во всех океанах. Но особенно широкий размах приобрели работы по изучению верхних слоев атмосферы и космического пространства, проводимые посредством геофизических ракет и искусственных спутников Земли.
Геофизические ракеты и спутники используются в СССР главным образом в трех направлениях: для изучения верхних слоев атмосферы, для исследования солнечных и космических явлений и, наконец, для изучения условий космического полета.
Получение достоверных данных о структуре и физических свойствах верхних слоев атмосферы исключительно важно. Без знания плотности атмосферы на различных высотах невозможно правильно рассчитать движение ракет и спутников, Нельзя правильно понять целый ряд происходящих в атмосфере процессов.
Измерения давления атмосферы проводятся нашими учеными на ракетах с помощью магнитных электроразрядных и тепловых манометров. Причем советскими учеными разработаны специальные методы исследования в сложных условиях ракетного полета. Учитывая то, что ракета при полете вызывает возмущения в атмосфере, целый ряд приборов размещается не на самой ракете, а на специальном контейнере, который выбрасывается («выстреливается») в полете из ракеты и летит по траектории, проходящей на достаточном расстоянии от ракеты в чистой, не искаженной ее воздействием атмосфере. Советскими учеными была разработана парашютная система для спасения контейнеров с научными приборами.
Как показали опыты, измерения на контейнерах вдали от ракеты дают более достоверные результаты. Так, в первое время отмечались значительные расхождения между результатами советских и американских измерений давления. Они объяснялись по-видимому, тем, что американцы ставили свои приборы на самой ракете. Большое количество воздуха, захваченного ракетой с Земли и постепенно из нее выходящего, создает помехи в измерениях. В последнее время американские ученые внесли поправки в свои результаты, после чего данные измерения стали более близкими к советским. Наибольшая высота, на которой произведено непосредственное измерение давления атмосферы к настоящему времени, — это 260 километров. Здесь отмечено давление, составляющее несколько десятимиллионных долей миллиметра ртутного столба.
Существенные данные о распределении плотности атмосферы на различных высотах дает анализ торможения спутников, в особенности первого, имевшего правильную шарообразную форму.
Химический состав атмосферы определяется нашими учеными с помощью спектральйого анализа проб воздуха, взятых в стеклянные баллоны. Результаты анализа показывают, что до высоты 80 километров состав газов — кислорода, азота, аргона — сохраняется тот же, что и у земной поверхности. Однако на высоте около 90 километров начинается, вероятно, некоторое расслоение атмосферы, так как доля наиболее тяжелого газа — аргона — слегка уменьшается.
Такой метод взятия проб может быть применен до высот 120-150 километров. Далее, вследствие очень малой плотности воздуха, количество его, захваченное в баллоны, будет недостаточным для анализа. Поэтому на высотах свыше 150 километров применяется радиочастотный масс-спектрометр. Это небольшой прибор, который производит анализ ионизированного газа на месте и по радио передает результаты на Землю. С помощью этого прибора отмечено наличие ионов окиси азота и атомарного кислорода на больших высотах.
С помощью высотных ракет производились также исследования ионной концентрации на различных высотах. Очень важные новые данные о строении ионосферы получены при запуске ракеты 21 февраля 1958 года, когда удалось измерить концентрацию электронов до высоты 470 километров.
Измерения радиосигналов, посылаемых спутниками из области, лежащей за максимумом ионной концентрации, позволяют определить некоторые характеристики ионосферы, недоступные для измерения с земной поверхности. Изучение ионосферы — ионизированных областей, расположенных в верхних слоях атмосферы, — имеет большое практическое значение, так как эти слои определяют распространение коротких радиоволн.
С помощью геофизических ракет и искусственных спутников стало возможным изучение состава первичного космического излучения и коротковолновой части солнечного спектра. Космическое излучение представляет собой поток атомных ядер различных элементов, летящих с очень большой скоростью и обладающих очень высокой энергией. Определяя соотношение между потоком ядер различных элементов, возможно получить представление об источниках космических лучей и в какой-то степени понять условия распространения этих лучей в межзвездном пространстве.
Космические частицы, подходя к Земле, отклоняются ее магнитным полем. В полярные области попадают частицы с малыми энергиями, а в экваториальную зону — только с большими. Быстрое перемещение спутника из одной широтной зоны в другую дает возможность получить представление о количестве частиц с разной энергией.
Аппаратура для измерения космических лучей была установлена на втором спутнике. Она представляла собой сдвоенную систему счетчиков и соответствующую электронную схему для передачи по радио сведений и зарегистрированных импульсов. Приборы исправно работали в течение нескольких суток.
Большой интерес представляет зафиксированное на втором советском спутнике распределение интенсивности космического излучения по высоте, а также отмеченное на спутнике кратковременное значительное усиление космического излучения.
На втором искусственном спутнике были также установлены приборы для исследования солнечного спектра. Такое исследование очень важно для выяснения физических процессов, происходящих на Солнце, главным образом в его хромосфере и короне и для установления связи между вариациями солнечной деятельности и явлениями в атмосфере.
Перспективы, открывающиеся с применением искусственных спутников, колоссальны. Спутники можно будет использовать для многих научных и практических целей, например, для трансляции телевизионных программ по всему земному шару, для создания заатмосферных астрономических обсерваторий, для наблюдения за метеорологическими процессами.
На очереди стоят проблемы выхода ракеты с приборами на далекое расстояние от Земли для исследования физических свойств межпланетного пространства, а затем для исследования Луны и ближайших к Земле планет.
1 Е. К. Федоров имеет в виду геофизические ракеты. (Прим. ред.)
2 С 1960 года Е. К. Федоров — академик
♦ ЖИВОТНЫЕ В КОСМОСЕ
В. В. ПАРИН, профессор
Здоровье первой космической путешественницы собаки Лайки во время полета на втором искусственном спутнике Земли было вполне удовлетворительным. И это для ученых имело огромное значение. Изучение радиотелеметрических данных медико-биологического исследования состояния организма подопытного животного дало ответы на ряд сложнейших вопросов космической медицины.
Как же ученые следили за состоянием организма животного, находившегося от них на расстоянии в несколько тысяч километров.
Наблюдения, как известно, производились методом так называемой радиотелеметрии. Этим термином принято называть способ измерения на расстоянии определенных величин с помощью радиоволн. Вот, например, как велось наблюдение за процессом дыхания Лайки. На теле животного был укреплен особый прибор — датчик. Процесс дыхания вызывал электрические сигналы, которые изменяли режим работы передатчика. Таким образом, процесс дыхания Лайки наносился на излучение передатчика посредством соответствующих приборов. Радиоволны, излучаясь антенной передатчика спутника, улавливались приемником на земле. Из детектора и усилителя сигнал доставлялся на регистрирующий прибор и записывался на нем.
Это — лишь очень схематичное, весьма приблизительное представление о тех сложнейших методах, с помощью которых наши ученые наблюдали за состоянием организма Лайки. Советская техническая мысль решила крайне трудные задачи, чтобы дать возможность нашим экспериментаторам получать на Земле точные данные о важнейших физиологических показателях — частоте сердцебиения и характере сердечной деятельности, кровяном давлении, дыхании животного во время этого беспримерного опыта.
Что можно уже теперь сказать о результатах радиотелеметрических наблюдений за состоянием организма Лайки?
Второй спутник прежде всего дал ответ на вопрос: способно ли живое существо удовлетворительно перенести действие стремительного ускорения, значительно превышающего силу земного тяготения. Известно, что сила инерции в направлении, противоположном движению ракеты, вызывает резкое ощущение перегрузки тела, то есть значительного увеличения его веса. Такая перегрузка организма может вызвать приток крови из верхней части тела в нижнюю, нарушить мозговое кровообращение.
Как же перенесла Лайка действие необычных ускорений, вызвавших значительную перегрузку ее тела?
Данные радиотелеметрических наблюдений показали, что собака хорошо перенесла длительное воздействие ускорений в течение всего времени работы двигателей ракеты и при выходе спутника на орбиту.
Этому несомненно способствовала предварительная тренировка животного к воздействию перегрузок тела.
Контейнер с Лайкой был помещен не вдоль ракеты, а поперек ее. Таким образом, перегрузка при ускорении воздействовала не вдоль тела животного, а в перпендикулярном направлении. Этим в известной мере были предупреждены серьезные нарушения кровообращения.
Можно полагать, что человек после соответствующей тренировки будет в состоянии переносить в космическом корабле 10-кратные и более перегрузки организма. Защитой от воздействия ускорений явится специальный противоперегрузочный костюм, сдавливающий резиновыми камерами с воздухом кровеносные сосуды в нижней половине тела. Перегрузку легче перенести в полулежачем положении.
Когда ракета вышла на заданную орбиту и ракетные двигатели перестали работать, Лайка оказалась в условиях длительной динамической невесомости, на нее уже не оказывала влияния сила земного тяготения. Раньше действие невесомости изучалось на животных и на людях, но в условиях, когда оно длилось лишь десятки секунд.
Первоначальные опыты показали, что в условиях кратковременной невесомости у человека и животного нарушается координация движений. Однако после повторения опытов нервная система приспосабливается к необычным условиям и координация движений улучшается.
Невесомость, естественно, влияет на дыхание, кровообращение, температуру тела.
Полет Лайки на спутнике дал замечательную возможность исследовать состояние ее организма в условиях невесомости на протяжении нескольких дней. Радиотелеметрическая регистрация состояния организма Лайки показала, что самочувствие животного в условиях невесомости было удовлетворительным в течение всего опыта.
В условиях невесомости невозможна естественная циркуляция воздуха. В герметической кабине Лайке была создана система принудительной вентиляции. Высокоактивные соединения химически выделяли необходимый для дыхания Лайки кислород, поглощали углекислоту и избыточные водяные пары.
Невесомость в кабине весьма усложняет задачу обеспечения животного водой или жидкой пищей. Жидкость в условиях невесомости может рассредоточиться по всей кабине. Конструкторы успешно решили свою нелегкую задачу и создали в контейнере приспособление для обеспечения животного водой и пищей.
Второй искусственный спутник — это летающая лаборатория по изучению влияния на живой организм солнечной и космической радиации. Результаты этих исследований явились новым шагом в разработке способов защиты будущих астронавтов от опасного воздействия излучений, не встречающихся в земной атмосфере.
Известно, что почти вся ультрафиолетовая часть солнечного спектра поглощается атмосферой — этим панцирем, защищающим жизнь на земле. Однако в космическом пространстве интенсивность ультрафиолетового излучения очень велика и является смертоносной для живых тканей.
Лайка в своей герметической кабине была надежно защищена от ультрафиолетовых лучей. Для этой цели пригодны самые разнообразные материалы. Даже обычное стекло не пропускает ультрафиолетовые лучи.
В составе солнечной радиации есть так называемые рентгеновские лучи, соответствующие тем, которые мы получаем искусственно для диагностического просвечивания и лечения. Разработано немало способов защиты от вредного воздействия этих лучей при работе с ними на земле. На втором спутнике изучалось их влияние в космических условиях.
Очень большое значение имеет изучение воздействия на живое тело космических лучей. Космические частицы представляют собой ядра различных элементов, движущихся со скоростью, приближающейся к скорости света. Обладая огромной проникающей способностью, космические лучи могут ионизировать молекулы живого вещества, вызывать тяжелые повреждения живых клеток. Это особенно опасно, если будут разрушены клетки нервной системы, сердечной мышцы и других жизненно важных органов.
В лабораториях на Земле еще нет возможности создать частицы с такой же энергией, какой обладают ядра космической радиации, и поэтому изучать их длительное воздействие на живой организм можно лишь в условиях космического полета.
Итак, одним из важнейших итогов опыта с Лайкой является то, что проведенные исследования выяснили условия жизнедеятельности организма в космосе. Это имеет огромное значение для подготовки будущих космических полетов межпланетных кораблей с пилотами и пассажирами.
Естественно, опыт с Лайкой вызвал исключительный интерес во всем мире.
Недавно я был за рубежом и слышал восторженные отзывы ряда видных ученых об огромном значении этого замечательного эксперимента советских ученых для дальнейшего развития мировой науки. Они говорили, что нельзя не преклоняться перед советским народом, который прокладывает путь к звездам, использует свои великие достижения не для разрушительных целей, а в интересах всего человечества, во имя мира.
В Праге я встретился с английскими учеными, которые рассказывали и о том, что некоторые лондонские «покровители животных» подняли истошный вой по поводу «жестокости» опыта с Лайкой. В связи с этим известный английский радиолог профессор Генри Баркрофт сказал мне, что визг таких «покровителей животных» не помешал еще ни одному английскому ученому ставить столько опытов на животных, сколько этого требовали интересы науки. Другой видный английский ученый послал из Праги в лондонский журнал «Ланцет» примерно такую телеграмму: «Успокойте «покровителей животных»: в следующем спутнике члену Лондонского общества покровителей животных будет предоставлена возможность сопровождать собаку...»
Советские искусственные спутники — вершина творчества свободной человеческой мысли. Этот подвиг нашего народа вдохновляет ученых всего мира на борьбу за дальнейшее развитие науки на благо Человека.
♦ ДВА СЛЕДА
Майя БОРИСОВА
Добыча укрылась в чаще,
оставив дразнящий запах;
дышали тяжелым зноем
папоротники и хвощи.
Мой низколобый предок
махнул волосатой лапой
и звонкоголосого зверя выслал вперед:
— Ищи!
С тех пор по горам и долинам,
в снегах и песках горячих
по тропам планеты нашей
тянулся из века в век,
как черновая скоропись,
сбивчивый след собачий...
а сзади твердой поступью
уверенно шел человек.
Зверь дружил с человеком,
не ожидая платы,
его давило порою истории колесо, —
и выносили на свалку
служители в белых халатах
от несобачьих болезней
околевавших псов.
Он прав был, хозяин мира, когда,
победами гордый,
впервые держа в карманах
от всей вселенной ключи,
поцеловал
собаку в теплую добрую морду,
задраил наглухо люки
и в космос послал:
— Ищи!
Уже по небесным тропам
путь певедомый начат...
И, верно, найдут потомки
в пыли далеких планет,
как черновую скоропись,
сбивчивый след собачий и,
как завершение эпоса, —
гордый
людской
след.
Сообщение ТАСС
♦ О ЗАПУСКЕ ТРЕТЬЕГО СОВЕТСКОГО ИСКУССТВЕННОГО СПУТНИКА ЗЕМЛИ
В соответствии с программой Международного геофизического года в Советском Союзе 15 мая 1958 года произведен запуск третьего искусственного спутника Земли.
Целью запуска искусственного спутника является проведение научных исследований в верхних слоях атмосферы и космическом пространстве.
Спутник вышел на орбиту, имеющую наклон к плоскости экватора 65 градусов.
По первоначальным данным, наибольшая высота орбиты над поверхностью Земли — 1880 километров, время обращения спутника вокруг Земли — 106 минут.
Спутник был отделен от ракеты-носителя, которая движется по близкой орбите.
В 13 часов 41 минуту по московскому времени 15 мая третий спутник прошел в районе города Москвы в направлении с юго-запада на северо-восток.
Третий советский искусственный спутник Земли имеет конусообразную форму с диаметром основания 1,73 метра и высотой 3,57 метра без учета размеров выступающих антенн.
Вес спутника — 1327 килограммов, в том числе вес аппаратуры для проведения научных исследований, радиоизмерительной аппаратуры и источников питания — 968 килограммов.
На спутнике установлена аппаратура, позволяющая на всей орбите проводить исследования:
— давления и состава атмосферы в верхних слоях,
— концентрации положительных ионов,
— величины электрического заряда спутника и напряженности электростатического поля Земли,
— напряженности магнитного поля Земли,
— интенсивности корпускулярного излучения Солнца,
— состава и вариаций первичного космического излучения, распределения фотонов и тяжелых ядер в космических лучах,
— микрометеоров,
— температуры внутри и на поверхности спутника.
Намеченная программа позволит изучить ряд геофизических и физических проблем с помощью приборов, поднятых спутником на большие высоты.
Для передачи данных научных наблюдений на наземные регистрирующие станции на спутнике установлена многоканальная телеметрическая система с высокой разрешающей способностью. Спутник снабжен специальными передающими устройствами, позволяющими производить замеры координат его траектории.
С целью привлечения широких кругов научной общественности мира к наблюдению за третьим советским искусственным спутником Земли, на его борту установлен радиопередатчик, непрерывно излучающий на частоте 20,005 мегагерца телеграфные посылки длительностью 150-300 миллисекунд, с большой мощностью излучения.
Работа научной и радиотехнической аппаратуры, установленной на спутнике, управляется с помощью программного устройства. Наряду с электрохимическими источниками тока на спутнике установлены солнечные батареи.
Температурный режим, необходимый для нормального функционирования бортовой аппаратуры спутника, обеспечивается системой терморегулирования, меняющей с помощью специальных устройств коэффициенты излучения и отражения поверхности.
Наблюдения за спутником, прием с него научной информации и измерение координат его траектории осуществляются специально созданными научными станциями, оборудованными большим количеством радиотехнических и оптических средств. Данные о координатах спутника, получаемых с радиолокационных станций, автоматически преобразуются, привязываются к единому астрономическому времени и направляются по линиям связи в координационно-вычислительный центр.
Поступающая в вычислительный центр с различных научных станций измерительная информация автоматически вводится в быстродействующие электронные счетные машины, которые производят определение основных параметров орбиты спутника и расчет его эфемерид. В наблюдениях за спутником участвует большое количество оптических наблюдательных пунктов, астрономических обсерваторий, радиоклубов и радиолюбителей.
Спутник и ракета-носитель будут видны в лучах восходящего и заходящего Солнца.
Третий советский искусственный спутник Земли — новый этап в проведении широких научных исследований в верхних слоях атмосферы и в изучении космического пространства — крупный вклад советских ученых в мировую науку.
♦ РОССИЯ
Н. АГЕЕВ
Земля отцов —
Моя Россия!
Твоих полей пшеничный плес,
Твои громады заводские
Люблю по-русски я —
До слез...
Твой третий спутник на орбите.
Уйдя в космическую ширь,
Летит
Пространства победитель
Тобой рожденный богатырь!
Пусть видят недруги и други,
Чем мы сильны,
Чем хороши...
Позволь твои, Россия, руки
Поцеловать от всей души.
♦ ТРЕТИЙ СОВЕТСКИЙ ИСКУССТВЕННЫЙ СПУТНИК ЗЕМЛИ
15 мая 1958 года осуществлен запуск третьего советского искусственного спутника Земли. Он был выведен на орбиту с помощью мощной ракеты-носителя. После того как ракета-носитель со спутником достигла на заданной траектории полета скорости свыше 8000 метров в секунду, спутник с помощью специальных устройств был отделен от ракеты-носителя и начал двигаться по эллиптической орбите вокруг Земли. При отделении спутника от ракеты-носителя с него были сброшены защитный конус и защитные щитки. Ракета-носитель с защитными щитками и защитный конус движутся по орбитам, близким к орбите спутника.
По своим данным третий советский спутник намного превосходит первые искусственные спутники Землрг.
Вес спутника равен 1327 килограммам, а общий вес установленной на нем научной и измерительной аппаратуры вместе с источниками питания составляет 968 килограммов.
Спутник имеет форму, близкую к конусу. Длина спутника — 3,57 метра, наибольший диаметр — 1,73 метра, без учета выступающих антенн. На спутнике установлено большое число систем для проведения сложнейших научных опытов. Опыты предназначены в основном для изучения явлений, происходящих в верхних слоях атмосферы, и влияния космических факторов на процессы в верхней атмосфере.
Спутник оснащен совершенной измерительной радиотехнической аппаратурой, обеспечивающей точное измерение его движения по орбите, и радиотелеметрической аппаратурой, производящей непрерывную регистрацию результатов научных измерений, их «запоминание» во все время движения спутника и передачу их на Землю при полета спутника над специальными станциями, расположенными на территории СССР и производящими прием накопленной информации. На спутнике имеется программное устройство, обеспечивающее автоматическое функционирование его научной и измерительной аппаратуры. Это программное устройство полностью выполнено на полупроводниках. Кроме того, вся измерительная, научная и радиотехническая аппаратура осуществлена с широким применением новых полупроводниковых элементов. Общее число полупроводниковых элементов на борту спутника составляет несколько тысяч. Энергопитание аппаратуры обеспечивается наиболее совершенными электрохимическими источниками тока и полупроводниковыми кремниевыми батареями, преобразующими энергию солнечных лучей в электрическую энергию.
Большой вес третьего советского спутника свидетельствует о высоких качествах ракеты-носителя, которая вывела его на орбиту. Вес первого советского спутника был равен 83,6 килограмма. Вес научной измерительной аппаратуры второго спутника составлял 508,3 килограмма. Третий спутник имеет вес 1327 килограммов. Общий вес установленной на нем аппаратуры для научных исследований, радиоизмерительной аппаратуры вместе с источниками питания составляет 968 килограммов.
Непрерывное возрастание веса советских спутников свидетельствует о дальнейших возможностях нашей ракетной техники. Уже сейчас имеется возможность запустить ракету в космос, за пределы земного тяготения. Для того чтобы это имело научное значение и было реальным шагом к осуществлению межпланетных полетов, необходимо, чтобы такая космическая ракета была достаточно богато оснащена научной и измерительной аппаратурой и в результате ее запуска были получены новые сведения о физических явлениях во Вселенной и об условиях космического полета.
Научная аппаратура, размещенная на третьем советском спутнике, позволит изучить широкий круг геофизических и физических проблем. Структура ионосферы будет изучаться посредством наблюдения за распространением радиоволн, излучаемых со спутника радиопередатчиком большой мощности. Наряду с этим установлена аппаратура для непосредственного замера концентрации положительных ионов вдоль орбиты спутника. Специальная аппаратура позволяет измерить собственный электрический заряд спутника и электростатические поля в слоях атмосферы, проходимых спутником. Проводятся измерения плотности и давления в верхних слоях атмосферы. Размещенный на спутнике масс-спектрометр позволит определить спектр ионов, характеризующий химический состав атмосферы.
Для изучения магнитного поля Земли на больших высотах установлен самоориентирующийся магнитометр, измеряющий полную интенсивность магнитного поля.
Ряд опытов посвящен изучению различных излучений, падающих на Землю и оказывающих влияние на важные процессы в верхних слоях атмосферы. На спутнике проводится изучение космических лучей и корпускулярного излучения Солнца. Регистрация интенсивности космических лучей, производимая почти по всей поверхности земного шара, даст новые сведения о космическом излучении и о магнитном поле Земли на больших высотах. Ставятся опыты по определению количества тяжелых ядер в космическом излучении. Опыты по корпускулярному излучению Солнца прольют новый свет на природу ионосферы, полярных сияний и других явлений в атмосфере. Несколько датчиков будут регистрировать удары микрометеоров.
Весьма важен новый опыт по регистрации фотонов в составе космического излучения, который позволит получить сведения о коротковолновом электромагнитном излучении в космосе. Это первый опыт, позволяющий изучать космическое излучение, поглощаемое атмосферой, и первый шаг в открытии нового этапа астрономии — изучения явлений во Вселенной по коротковолновым излучениям светил. Ряд экспериментов поставлен для исследования условий полета в космическом пространстве. К ним относятся изучение теплового режима на спутнике, ориентации спутника в пространстве и другие опыты.
Обилие научных исследований на третьем советском спутнике характеризует его как подлинную космическую научную станцию. Создание такой станции на передовом техническом уровне и размещение столь широкого комплекса аппаратуры стало возможным благодаря тому, что был создан спутник весьма больших размеров.
Траектория спутника будет проходить над всеми точками земного шара, лежащими между Северным и Южным полярными кругами. Это еще больше повышает ценность научных опытов, проводимых на спутнике. Параметры орбиты спутника выбраны таким образом, чтобы обеспечить проведение научных исследований в наиболее интересном диапазоне высот.
Орбита спутника и наблюдение за его движением
Третий советский искусственный спутник Земли выведен на эллиптическую орбиту с высотой апогея (наивысшей точки орбиты от поверхности Земли) 1880 километров. После выведения на орбиту спутник был отделен от ракеты-носителя. Период обращения его вокруг Земли в начале движения составлял 105,95 минуты. За сутки он совершает около четырнадцати оборотов по орбите. Впоследствии период обращения и высота апогея орбиты будут постепенно уменьшаться из-за торможения спутника в верхних слоях атмосферы. По предварительным оценкам, движение третьего спутника на орбите будет более продолжительным, чем движение первых двух советских спутников Земли. Плоскость орбиты наклонена к плоскости земного экватора под углом 65°.
Ракета-носитель непосредственно после выведения двигалась по орбите, близкой к орбите спутника, на сравнительно небольшом от него расстоянии. С течением времени расстояние между спутником и ракетой-носителем будет непрерывно изменяться в связи с различной степенью торможения их в атмосфере. Различная степень торможения приведет к тому, что продолжительность существования ракетыносителя будет меньше, чем время существования спутника.
Используя материалы, накопленные при пусках первых советских искусственных спутников, можно будет вскоре после обработки первых результатов измерений параметров орбиты третьего спутника достаточно точно предсказать время его существования.
Движение третьего спутника по отношению к Земле аналогично движению первых советских искусственных спутников. На средних широтах каждый следующий виток из-за вращения Земли и прецессии орбиты проходит западнее предыдущего витка примерно на 1500 километров. Скорость прецессии орбиты составляет около 4 градусов в сутки.
Наблюдения за движением спутника производятся радиотехническими и оптическими методами. Средства и методика наблюдений за третьим спутником значительно усовершенствованы. Спутник снабжен несколькими радиопередающими устройствами, позволяющими производить измерения его координат при движении по орбите. Эти измерения осуществляются рядом специально созданных научных станций, оснащенных большим количеством радиотехнических средств.
Данные о координатах спутника, измеренных радиолокационными устройствами, автоматически привязываются к единому астрономическому времени. Затем по специальным линиям связи эти данные передаются в общий координационно-вычислительный центр. В координационно-вычислительном центре данные измерений, поступившие с различных станций, автоматически вводятся в быстродействующие электронные счетные машины, которые производят их совместную обработку и вычисляют основные параметры орбиты. На Ьсновании этих расчетов прогнозируется дальнейшее движение спутника и выдаются его эфемериды.
Такой сложнейший измерительный комплекс, включающий в себя большое количество электронных, радиотехнических и других устройств, обеспечивает измерение координат спутника и быстрое определение параметров его орбиты с точностью, намного превосходящей точность измерений движения первых спутников.
Наряду с этим в радионаблюдениях за спутником принимают участие клубы ДОСААФ, радиопеленгаторные станции и большое число отдельных радиолюбителей. Установленный на спутнике радипередатчик, работающий на частоте 20,005 мегагерца, осуществляет непрерывную передачу радиосигналов в виде телеграфных посылок длительностью 150-300 миллисекунд# Мощность излучения передатчика обеспечивает уверенный прием его сигналов на больших расстояниях с помощью обычных любительских приемников. Систематическая регистрация этих сигналов и особенно их магнитофонная запись, легко осуществимая для радиолюбителей, будет иметь большое научное значение.
Значительный интерес представляют и радионаблюдения за движением спутника, основанные на использовании эффекта Допплера. Как показали наблюдения за первыми советскими спутниками, этот метод весьма эффективен и при условии хорошей привязки результатов измерений к астрономическому времени позволит получить точные данные о движении .спутника.
При организации оптических наблюдений за движением третьего советского спутника также учтен опыт, полученный при наблюдениях за первыми спутниками. .Сеть наземных станций оптического наблюдения расширена, и в нее вошел ряд зарубежных наблюдательных пунктов. Значительно усовершенствованы фотографические методы наблюдения.
Особый интерес представляет применение для фотографирования спутника электронно-оптических преобразователей, позволяющих получить его четкое фотографическое изображение на очень больших расстояниях. Образцы аппаратуры для фотографирования спутников с использованием электронно-оптических преобразователей были успешно испытаны при наблюдениях за вторым спутником .
Устройство третьего советского спутника
Третий советский спутник в полном смысле слова является автоматической научной станцией в космосе. Его устройство и конструкция значительно более совершенны, чем конструкция первых спутников. При конструировании спутника был учтен целый ряд специфических требований, связанных с проведением на нем различных научных опытов и размещением большого количества научной и измерительной аппаратуры. Возможность взаимного влияния отдельных научных приборов потребовала тщательной проработки компоновки спутника и размещения чувствительных элементов научной аппаратуры.
Герметичный корпус спутника имеет коническую форму и изготовлен из алюминиевых сплавов. Поверхность его, как и поверхность первых спутников, полирована и подвергнута специальной обработке с целью придания ей необходимых значений коэффициентов излучения и поглощения солнечной радиации. Съемное заднее днище корпуса крепится к стыковому шпангоуту болтами. Герметичность стыка обеспечивается специальным уплотнением. Перед пуском спутник заполняется газообразным азотом.
Внутри корпуса спутника на задней приборной раме, выполненной из магниевого сплава, расположены: радиотелеметрическая аппаратура, радиоаппаратура для измерения координат спутника, программно-временное устройство, аппаратура системы терморегулирования и измерения температур, автоматика, обеспечивающая включение и выключение аппаратуры, и химические источники энергопитания. На задней раме также установлены приборы для измерения интенсивности и состава космического излучения и аппаратура для регистрации ударов микрометеоров. Рама крепится к силовым узлам, имеющимся на оболочке корпуса.
Основная часть приборов для научных исследований вместе с источниками питания также расположена внутри спутника — на другой приборной раме, находящейся в передней его части. На этой раме размещены электронные блоки аппаратуры, служащей для измерения давления, ионного состава атмосферы, концентрации положительных ионов, величины электрического заряда и напряженности электростатического поля, напряженности магнитного поля, интенсивности корпускулярного излучения Солнца. Здесь же установлен радиопередатчик.
Размещение чувствительных элементов (датчиков) научной аппаратуры определяется их назначением. Магнитометр расположен в передней части спутника с целью максимального удаления его от остальной аппаратуры. Счетчики космических лучей установлены внутри спутника. Другие датчики научной аппаратуры помещены вне герметического корпуса спутника. Фотоумножители, служащие для регистрации корпускулярного излучения Солнца, закреплены на передней части корпуса. В цилиндрических стаканах, вваренных в оболочку передней части спутника, установлены один магнитный и два ионизационных манометра, измеряющих давление в верхних слоях атмосферы. Вблизи них расположены два электростатических флюксметра, служащих для измерения электрического заряда и напряженности электростатического поля, а также трубка радиочастотного масс-спектрометра, определяющего состав ионов на больших высотах.
На двух трубчатых стержнях, шарнирно прикрепленных к оболочке корпуса, установлены сферические сетчатые ионные ловушки, позволяющие измерять концентрацию положительных ионов при движении спутника по орбите. На участке выведения спутника на орбиту стержни с ловушками прижаты к поверхности корпуса. После выведения спутника на орбиту стержни поворачиваются на шарнирах и устанавливаются перпендикулярно к его боковой поверхности.
На заднем днище корпуса установлены четыре датчика для регистрации ударов микрометеоров.
Солнечная полупроводниковая батарея размещена в виде отдельных секций на поверхности корпуса. Четыре малые секции установлены на переднем днище, четыре секции — на боковой поверхности и одна секция — на заднем днище. Такое размещение секций солнечной батареи обеспечивает ее нормальную работу, независимо от ориентации спутника относительно Солнца.
Передняя часть спутника закрыта специальным защитным конусом, сбрасываемым после выведения спутника на орбиту. Защитный конус предохраняет переднюю часть спутника с установленными на ней датчиками научной аппаратуры от тепловых и аэродинамических воздействий при прохождении ракеты-носителя через плотные слои атмосферы. Конус состоит из двух полуоболочек, разделяемых при сбрасывании. Помимо защитного конуса, значительную часть внешней поверхности спутника на участке выведения закрывают четыре специальных щитка, соединенных шарнирами с корпусом ракеты-носителя. При отделении спутника эти щитки остаются на ракете-носителе.
На внешней поверхности спутника установлен ряд антенных систем, имеющих вид штырей и трубчатых конструкций сложной формы.
Многоканальная радиотелеметрическая система спутника отличается высокой разрешающей способностью. Она может передавать на Землю чрезвычайно большой объем научной информации о научных измерениях, проводимых на спутнике. Радиотелеметрическая система включает в себя ряд устройств, непрерывно запоминающих данные научных измерений при полете спутника по орбите. При полете спутника над наземными измерительными станциями «заполненная» информация передается со спутника с большой скоростью.
Имеющаяся на спутнике система измерения температур непрерывно регистрирует температуры в различных точках его поверхности и внутри его.
Автоматическое управление работой всей научной и измерительной аппаратуры, периодическое ее включение и выключение осуществляет электронное программно-временное устройство. Это устройство также периодически выдает с большой точностью метки времени, что необходимо для последующей привязки результатов научных измерений к астрономическому времени и географическим координатам.
Стабильный температурный режим на спутнике обеспечивается системой терморегулирования, которая значительно усовершенствована по сравнению с системами терморегулирования, примененными на первых спутниках. Регулирование теплового режима осуществляется путем изменения принудительной циркуляции газообразного азота в спутнике, а также изменением коэффициента собственного излучения его поверхности. Для этого на боковой поверхности спутника установлены регулируемые жалюзи, состоящие из 16 отдельных секций. Открытие и закрытие их осуществляется электроприводами, управляемыми аппаратурой системы терморегулирования.
Изучение ионосферы
В программе научных исследований, осуществляемых при помощи третьего советского спутника Земли, большое место уделено изучению ионосферы.
Ряд важных характеристик ионосферы изучен совершенно недостаточно. До настоящего времени лишь в единичных ракетных опытах получены непосредственные данные о распределении электронной концентрации по высоте во внешней области ионосферы, лежащей выше 300 километров. Еще меньше сведений имеется о концентрации ионов. Сведения о химическом составе ионов, весьма важные с точки зрения объяснения процессов образования ионосферы и законов, по которым она изменяется во времени, имеются лишь для сравнительно малых высот. Недостаточны и противоречивы сведения об ионосферных неоднородностях.
Детальное изучение строения ионосферы и исследование ее основных характеристик — одна из важнейших геофизических проблем. Следует указать, что решение этой проблемы имеет первостепенное значение для обеспечения надежной радиосвязи Земли с космическими ракетами, а также для точных радиоизмерений, связанных с полетами таких ракет.
Как и во время потетов первых двух искусственных спутников Земли, при полете третьего советского спутника осуществляется обширная программа наземных наблюдений за распространением радиоволн, излучаемых со спутника. Проводятся измерения и регистрация допплеровых частот, принимаемых радиоволн, измерения напряженности поля, фиксация моментов «радиовосхода» и «радиозахода» спутника, измерения вращения плоскости поляризации радиоволн, измерения углов прихода радиоволн. Результаты этих наблюдений должны дать обширный материал о состоянии ионосферы.
Наряду с наземными измерениями на третьем советском спутнике проводятся прямые измерения характеристик ионосферы.
Особенностью непосредственных измерений характеристик ионосферы с помощью приборов, устанавливаемых на спутнике, является то, что в отличие от методов, основанных на изучении распространения радиоволн, результаты измерений не зависят от характеристик всей толщи ионосферы между спутником и Землей и от происходящих в ней процессов.
На спутнике определяются концентрация заряженных частиц в ионосфере и спектр масс положительных ионов. Наряду с измерениями напряженности электростатического поля у поверхности спутника, оказывающего влияние на результаты этих опытов, перечисленные измерения составляют единый комплекс опытов, взаимно дополняющих друг друга.
Измерение концентрации заряженных частиц
В ионосфере имеются три основных вида свободных заряженных частиц — положительные и отрицательные ионы и электроны. Сумма концентраций отрицательных ионов и электронов равна концентрации положительных ионов. Ионосфера электрически нейтральна. Поэтому, измерив концентрацию положительных ионов, можно определить полную концентрацию свободных заряженных частиц.
Изучение радиоволн, отраженных от ионосферы или прошедших через нее, позволяет получать сведения главным образом об электронной концентрации, так как влияние тяжелых заряженных частиц — ионов на распространение радиоволн более чем в тысячу раз слабее влияния более легких электронов. Так как до нэдавнего времени радиоволны были главным средством исследования ионосферы, все основные сведения о содержании заряженных частиц в ионосфере относились к электронам. О распределении ионов практически ничего не было известно.
Для измерения концентрации положительных ионов вдоль орбиты над поверхностью спутника установлены две сетчатые сферические ионные ловушки. Внутри каждой ловушки помещен сферический коллектор, находящийся под отрицательным потенциалом относительно оболочки. Созданное таким образом электрическое поле собирает на коллектор все попадающие в ловушку положительные ионы и выталкивает из нее отрицательные частицы. Так как скорость спутника во много раз превышает среднюю скорость теплового движения ионов, то при сферической форме ловушек можно считать, что поток ионов на поверхность ловушки полностью определяется движением спутника и не зависит от температуры воздуха, меняющейся с высотой, и от ориентации спутника относительно его скорости. Исключением является случай, когда ловушка попадает в область весьма высокого разрежения, образующуюся позади спутника. При наличии двух ловушек, расположенных указанным образом, по крайней мере одна из них всегда находится вне этой области. По величине ионного тока, текущего на коллектор ловушки, находящейся в потоке, можно определить концентрацию положительных ионов вблизи спутника.
Связь между измеренным ионным током и концентрацией ионов является простой, если электрический потенциал, приобретенный спутником при полете в ионосфере, достаточно мал (например, не превышает 1-2 вольт). Если же потенциал велик, то он может оказать на величину измеряемого тока существенное влияние, которое следует учесть. Для этой цели на сетчатые оболочки ловушек периодически поступают короткие импульсы напряжения относительно корпуса спутника.
При этом снимаются вольт-амперные характеристики, которые позволяют внести поправку, учитывающую влияние потенциала спутника на величину потока ионов, попадающих в ловушку. Прибор позволяет измерять ионные концентрации в пределах от десяти тысяч до пяти миллионов ионов в кубическом сантиметре.
Измерение концентрации положительных ионов позволит впервые получить данные о полной концентрации заряженных частиц в ионосфере над различными географическими районами Земли, на различных высотах, а также об изменениях ее при переходах из области, освещенной Солнцем, в область тени и обратно. Эти данные весьма важны для понимания процессов взаимодействия солнечного излучения с земной атмосферой.
Сопоставление измерений, проведенных в области, лежащей ниже так называемого главного максимума ионизации, находящегося на высоте 300-350 километров, с результатами наблюдений наземных ионосферных станций, позволяет сделать ряд выводов о концентрации отрицательных ионов на этих высотах и об ионизации воздуха, создаваемой движением самого спутника.
Можно ожидать, что измерения концентрации положительных ионов дадут новые данные о структуре внешней области ионосферы, дополняющие сведения об этой области, полученные при запусках ракет и первых искусственных спутников Земли. Можно также ожидать, что будут измерены размеры ионосферных неоднородностей.
Исследование состава ионосферы
Земная атмосфера состоит из смеси различных газов. Состав ее у поверхности Земли изучен достаточно хорошо. Сведения о составе верхних слоев атмосферы в настоящее время весьма противоречивы. Одной из важнейших характеристик газов, входящих в состав атмосферы, так же как и вообще всех существующих химических элементов, являются их атомный и молекулярный веса, которые принято выражать в условных единицах, так называемых атомных единицах массы. За атомную единицу массы принимают величину, равную 1/16 веса атома кислорода. Молекулярный вес кислорода, состоящего из двух атомов, равен 32. Атомный вес азота равен 14, молекулярный вес — 28.
Анализируя молекулярные и атомные веса различных соединений и смесей, можно сделать заключение об их химическом составе. Для определения атомных и молекулярных весов элементов и их соединений, составляющих какую-либо смесь, используются приборы, называемые масс-спектрометрами.
Масс-спектрометр, установленный на третьем советском спутнике, предназначен для определения спектра масс положительных ионов, имеющихся в ионосфере Земли. Зная массовые числа ионов, можно сделать некоторые заключения и о химическом составе ионосферы.
Масс-спектрометрическая трубка — чувствительный элемент прибора — сообщается своим открытым входным отверстием непосредственно с окружающим пространством. Она содержит ряд тонких проволочных сеток-электродов, расположенных на определенных, точно фиксированных расстояниях друг от друга. За сетками имеется коллектор, представляющий собой металлическую пластинку, собирающую ионы, вошедшие в масс-спектрометрическую трубку и прошедшие все сетки.
На электроды трубки подаются различные постоянные и переменные напряжения, вырабатываемые в электронном блоке масс-спектрометра. Эти напряжения выбраны таким образом, что достичь коллектора могут лишь те ионы, которые прошли трубку с некоторой оптимальной скоростью. Ионы, проходящие трубку со скоростями больше или меньше оптимальной, на коллектор не попадают. Скорость, с которой ионы проходят масс-спектрометрическую трубку, определяется, с одной стороны, их массой, а с другой — ускоряющим ионы напряжением, приложенным к некоторым сеткам трубки.
Ускоряющее напряжение периодически изменяется от нуля до своего максимального значения. Благодаря этому оптимальная скорость сообщается поочередно ионам с различными массовыми числами. Когда ионы достигают коллектора, в его цепи возникает импульс тока, который усиливается и передается радиотелеметрической системой на Земле. Одновременно передается и ускоряющее напряжение, имеющееся в данный момент на сетках трубки масс-спектрометра.
Если в ионосфере имеются ионы только одной массы, то приемной станцией регистрируется один импульс ионного тока за каждый цикл изменения ускоряющего напряжения. При более сложном составе ионосферы регистрируются два или более импульса за каждый цикл. Массовое число ионов, соответствующее каждому импульсу, может быть определено путем сравнения записи спектра масс с записью ускоряющего напряжения масс-спектрометра.
Исследование электростатических полей
В результате ряда процессов, происходящих как в межпланетном пространстве, так и в самой атмосфере, Земля вместе со своей атмосферой в целом приобретает некоторый электрический заряд. Электрическое поле, создаваемое этим зарядом, должно воздействовать на скорость и направление заряженных частиц, пролетающих в межпланетном пространстве. Оно может оказывать влияние на ряд геофизических явлений (полярные сияния и т. д.). Данные об электрических полях в верхних слоях атмосферы могут существенно помочь в выяснении причины существования отрицательного заряда Земли и положительного заряда атмосферы, создающих между Землей и ионосферой разность потенциалов в несколько сотен тысяч вольт.
Хотя в ряде теорий, объясняющих происхождение полярных сияний и корпускулярных потоков, и предполагается наличие электростатических полей в верхних слоях атмосферы, непосредственное измерение или косвенное их определение никогда не производились. Дело в том, что хорошо проводящий слой ионосферы препятствует проникновению электростатических полей в нижележащие слои атмосферы, подобно тому, как это сделал бы гигантский металлический экран, помещенный вместо ионосферы.
По этой же причине нельзя измерить с помощью приборов, расположенных ниже ионосферы, электростатические поля, существующие в межпланетном пространстве.
Измерение электростатических полей с помощью спутников осложнено тем, что любое тело, помещенное в верхние слои атмосферы, должно приобрести электрический заряд, поле которого, если его не учесть, складываясь с измеряемым полем, исказит результаты измерений.
Этот заряд появляется за счет неравенства скоростей электронов и положительных ионов, попадающих на поверхность спутника, а также благодаря таким явлениям, как фотоэффект, то есть вырывание электронов с поверхности спутника светом и другими излучениями.
Использование спутников для изучения таких характеристик ионосферы, как концентрация ионов и спектр их масс, требует учета тех нарушений, которые спутник вносит в окружающую среду. Поэтому измерение электрического заряда спутника, вызывающего перераспределение заряженных частиц вблизи него, желательно также для уточнения результатов этих опытов. С другой стороны, сведения об электрическом заряде в сочетании с данными о концентрации ионов могут позволить определить в ряде случаев такую трудно измеряемую характеристику ионосферы, как ее температура.
Использованная на спутнике аппаратура состоит из двух чувствительных электростатических флюксметров с общими цепями управления. Конструктивно она выполнена в виде двух датчиков, размещаемых симметрично на боковой поверхности спутника, и блока с усилителями.
Существенной частью каждого датчика является измерительный электрод — десятисекторная пластина, соединенная с корпусом спутника через сопротивление. Поверхность пластины является как бы частью поверхности спутника. Эта пластина периодически экранируется другой пластиной — экраном, вращаемой электромотором. Так как измерительная пластина является частью поверхности спутника, то, когда, она открыта, на ней находятся доли собственного заряда спутника и заряда, индуцированного внешним электростатическим полем. При экранировании этой пластины заряд с нее стекает.
Во время вращения экрана заряд измерительной пластины периодически стекает по сопротивлению, создавая на нем переменное напряжение, величина которого пропорциональна величине заряда пластины. Это напряжение усиливается, выпрямляется и подается на вход радиотелеметрической системы. Принятая схема измерений позволяет определить величину электростатического поля, а использование двух симметрично расположенных датчиков электростатического флюксметра создает возможность определить не только собственный заряд спутника, но и внешнее электростатическое поле.
Во время работы аппаратуры специальная система контроля позволяет проверять надежность и точность измерений.
Измерения магнитного поля Земли
Действие магнитного поля Земли обнаруживается как при наблюдении помещенных в нем искусственных индикаторов типа магнитных стрелок, вращающихся витков и т. д., так и при наблюдении целого ряда геофизических явлений: отклонения в полярных областях заряженных частиц, испускаемых Солнцем, отклонения космических лучей, поляризации радиоволн.
Распределение магнитного поля по величине и направлению изучено довольно подробно лишь над континентами в непосредственной близости от поверхности Земли. Эти данные широко используются в практике разведки полезных ископаемых, судовождении, аэронавигации и т. д.
Природа земного магнитного поля до сих пор неизвестна. В результате длительных измерений напряженности магнитного поля Земли в специальных обсерваториях установлено, что оно изменяется во времени. Наиболее интенсивные изменения магнитного поля получили название магнитных бурь.
Анализ наблюдений показал, что основная часть магнитного поля Земли и его вековых вариаций вызывается источниками, находящимися внутри Земли. Наоборот, главные источники короткопериодических вариаций магнитного поля Земли и магнитных возмущений находятся вне Земли, в верхних слоях атмосферы.
Магнитное поле Земли в первом приближении совпадает с полем намагниченного шара или сильного магнита, расстояние между полюсами которого весьма мало, причем северный полюс этого магнита расположен в Южном полушарии Земли, южный полюс — в Северном полушарии, а ось составляет угол в 11,5 градуса с осью вращения Земли. Эта простая картина усложняется наложением полей материковых, региональных и локальных аномалий. Примером первых является Восточно-Сибирская магнитная аномалия, занимающая значительную часть континента.
Источники локальных магнитных аномалий, например Курской, лежат в самых верхних слоях земной коры, а сами аномалии быстро убывают с высотой. О локализации источников материковых аномалий имеются противоречивые представления.
Математические методы позволяют рассчитать поле на больших высотах, если известно распределение поля у поверхности. Определенные сведения о структуре магнитного поля Земли на больших высотах дают наблюдения над интенсивностью космических лучей на разных широтах. Наиболее загадочным является то, что картины распределения магнитного поля Земли на больших высотах, по наземным магнитометрическим данными и по наблюдениям космических лучей, не находятся в согласии. Непосредственные измерения напряженности магнитного поля на больших высотах при помощи магнитометра, установленного на спутнике, позволят пролить свет на причину наблюдаемого расхождения.
Установка магнитометра на спутнике допускает проведение в короткий срок магнитной съемки по всему земному шару. Совершенно исключительные возможности представляются для исследования переменной части магнитного поля.
По современным представлениям, магнитные возмущения вызываются сильными токами, протекающими в ионизированных слоях атмосферы. К настоящему времени известен лишь один прямой эксперимент, выполненный при помощи магнитометра, установленного на ракете, свидетельствующий в пользу реальности существования таких токовых систем.
Спутник при своем движении по орбите будет многократно пересекать ионизированные слои атмосферы. При этом существование токовых систем может быть отмечено по скачкам напряженности магнитного поля. Выделение из измеренных магнитометром напряженностей поля части, относящейся к полю предполагаемых токовых систем, может быть выполнено только особой методикой наблюдений и обработки данных. По указанной причине программы исследования пространственного распределения постоянной части магнитного поля Земли и поля вариаций в общем случае не могут быть совмещены в одном эксперименте.
Основной задачей эксперимента на спутнике является исследование пространственного распределения постоянного магнитного поля Земли на больших высотах и сравнение пространственного распределения линий одинаковой интенсивности магнитного поля и линий одинаковой интенсивности космических лучей.
Измерение магнитного поля со спутника связано со значительными трудностями, которые определяются тем, что положение спутника относительно вектора земного магнитного поля непрерывно меняется; магнитометр должен обладать высокой чувствительностью при большом диапазоне измерений; на датчики магнитометра оказывают влияние магнитные детали другой бортовой аппаратуры.
На борту спутника установлен магнитометр, который позволяет преодолеть указанные трудности. Он представляет собою прибор, измерительный датчик которого автоматически ориентируется по направлению полного вектора земного магнитного поля при любой ориентации спутника. Мерой магнитного поля и его изменений служит ток компенсации, пропускаемый по катушке, установленной на измерительном датчике, в таком направлении, чтобы он полностью компенсировал земное поле в объеме, занимаемом датчиком.
Два потенциометрических датчика, установленных на узле ориентации, позволяют определить положение корпуса спутника относительно земного поля и скорость вращения спутника вокруг собственных осей.
Изучение космических лучей
Исследование космического излучения позволяет получить сведения о процессах возникновения в глубинах мирового пространства частиц, обладающих очень большой энергией. Двигаясь во Вселенной, эти частицы испытывают воздействие среды, сквозь которую они пролетают. Влияние на космическое излучение оказывают процессы, происходящие на Солнце, и, в частности, выбрасываемые из его недр потоки корпускул. Под действием электрических и магнитных полей, имеющихся в этих потоках, интенсивность космического излучения меняется. Изменение состояния межпланетной среды, окружающей Землю, также приводит к изменению характера движения частиц космических лучей, зародившихся в более удаленных частях Вселенной и двигающихся по направлению к Земле. Иногда на Солнце происходят мощные взрывные процессы, приводящие к возникновению космических лучей. Эти процессы еще мало изучены, и их исследование представляет большой интерес.
В результате отклонения космических лучей в магнитном поле Земли экваториальных районов Земли могут достигать лишь частицы с энергией больше 14 миллиардов электроновольт. Больших широт могут достигать частицы очень малой энергии. Перемещаясь по своей орбите, спутник дает возможность раздельно регистрировать космическое излучение различных энергий.
Установленный на спутнике счетчик космических лучей позволит получить новые сведения об изменениях интенсивности и об энергетическом спектре космического излучения.
Особое значение имеют поиски в составе космических лучей мельчайших частиц света — фотонов. Фотоны, обладающие значительной энергией, так называемые гамма-лучи, могут лучше, чем любая другая компонента космического излучения, указать нам, где происходит возникновение этого излучения. Гамма-лучи должны распространяться в мировом пространстве практически прямолинейно. Поэтому, обнаружив, в каком направлении двигаются гамма-лучи, можно указать, где расположен их источник. В противоположность этому частицы космических лучей, обладающие электрическим зарядом, сильно отклоняются в магнитных полях, существующих в космосе, и теряют первоначальное направление своего движения.
Обнаружение гамма-лучей в составе космического излучения связано с большими трудностями, тем более, что в настоящее время нельзя предсказать, какова их интенсивность. Существующий длительное время вне земной атмосферы спутник дает исключительные возможности для обнаружения этой новой компоненты космических лучей.
Прибор, установленный на спутнике, дает возможность впервые осуществить экспериментальную попытку обнаружить в составе первичного космического излучения гамма-лучи. Если эта попытка увенчается успехом, то можно будет говорить о новом методе исследования Вселенной.
Известно, что около 70 процентов приходящего в верхние слои атмосферы первичного потока космических лучей составляют протоны — ядра самого легкого элемента — водорода. Кроме протонов, в первичном потоке космических лучей имеются ядра и других элементов. Ядра гелия (альфа-частицы) присутствуют в количестве меньшем 20 процентов, а ядра более тяжелых элементов составляют все вместе примерно 1 процент. Хотя число таких частиц невелико, но энергия, которую они приносят, составляет около 16 процентов энергии всего потока космических лучей.
Важно знать более подробно состав первичного потока. Сведения о составе космических лучей, в частности, имеют существенное значение для ответа на вопрос, где и как создаются частицы со столь большими энергиями.
Довольно много сведений о составе первичных космических лучей было получено в результате подъема приборов в стратосферу на шарах-зондах. Однако целый ряд данных о первичном составе невозможно получить, проводя измерения в стратосфере, так как даже небольшой слой вещества, который всегда имеется над прибором, изменяет состав космических лучей. До сих пор неизвестно, есть ли в космических лучах заметное число ядер более тяжелых элементов, чем ядра железа.
Постановка на искусственном спутнике прибора для регистрации ядер тяжелых элементов дает возможность ответить на этот важный для науки вопрос. Основным элементом этого прибора является так называемый черенковский счетчик частиц. Действие счетчика основано на использовании излучения Черенкова, возникающего в том случае, если заряженная частица движется в веществе со скоростью, превышающей скорость распространения света в этой среде.
Важным свойством черенковского излучения является то, что интенсивность световой вспышки, возникающей в веществе при прохождении через него частицы, пропорциональна квадрату заряда частицы. При этом частицы, движущиеся со скоростью, меньшей скорости света в веществе, не издучают свет. Это свойство черенковского излучения позволяет использовать его для регистрации заряженных частиц, определения их заряда и выделения из всего потока частиц лишь тех из них, которые обладают достаточно большой скоростью.
Черенковский счетчик состоит из плексигласового цилиндра-детектора, к торцу которого присоединен фотоэлектронный умножитель. При пролете через детектор частица космических лучей, скорость которой близка к 300 тыс. километров в секунду, создает в нем черенковское свечение. Скорость распространения света в плексигласе равна примерно 200 тыс. километров в секунду, и поэтому имеются условия для возникновения черенковского излучения.
Свет, возникший в детекторе, воспринимается фотоумножителем, который преобразует его в электрический сигнал и усиливает его до такой величины, которая необходима для срабатывания прибора. Прибор сортирует все сигналы на две группы, соответствующие пролету через детектор частиц с зарядом больше 30 и частиц с зарядом больше 17. При каждом пролете частицы через черенковский счетчик дается сигнал о том, ядро какой группы попало в прибор.
Исследование корпускулярного излучения Солнца
Солнечное электромагнитное излучение охватывает инфракрасную, видимую, ультрафиолетовую и рентгеновскую области спектра. Иногда из Солнца в межпланетное пространство извергается ионизированный газ, состоящий из электронов и ионов. По мере удаления от Солнца часть ионов нейтрализуется, то есть превращается в обычные атомы. Извергающиеся из Солнца частицы принято называть корпускулярным излучением Солнца. Вместе с корпускулярными потоками распространяются связанные с ними магнитные поля. По различным оценкам корпускулы имеют вблизи Земли скорость порядка нескольких тысяч километров в секунду.
Во время прохождения корпускулярных потоков вблизи Земли возникают магнитные возмущения, наиболее интенсивные из которых называются магнитными бурями. Одновременно возникают полярные сияния. При проникновении корпускул в атмосферу увеличивается ее ионизация как в верхних, так и нижних слоях. Увеличение ионизации в нижних более плотных областях приводит к нарушениям радиосвязи, поскольку возникает интенсивное поглощение радиоволн. Корпускулярные вторжения сопровождаются нарушением термического режима верхней атмосферы.
Большинство солнечных корпускул является заряженными частицами. Такие корпускулы чаще всего проникают в атмосферу вблизи геомагнитных полюсов
Земли в полярных областях. Благодаря искривлению траекторий движения в магнитных полях заряженные корпускулы проникают и на ночную сторону Земли, вблизи полярных зон. Корпускулярные вторжения имеют место и в средних широтах, но здесь они менее интенсивны. Нейтральные корпускулы могут беспрепятственно проникать в любые места земного шара.
Сведения о корпускулярном излучении Солнца слишком бедны, а его природа и свойства мало изучены. До самого недавнего времени основная информация о корпускулярном излучении Солнца черпалась из наблюдений полярных сияний.
Искусственные спутники Земли — эффективное средство исследования корпускулярного излучения Солнца. Настоящее время особенно благоприятно для исследования корпускулярного излучения, усилившегося из-за повышенной солнечной активности.
На спутнике установлено два индикатора корпускул. Этими индикаторами являются флуоресцирующие экраны, покрытые тонкой алюминиевой фольгой различной толщины. Таким образом достигается грубая сортировка корпускул по их проникающей способности.
Перед флуоресцирующими экранами располагаются диафрагмы, ограничивающие телесный угол захвата корпускул. Под воздействием корпускул флуоресцирующие экраны светятся, аналогично тому, как это происходит в кинескопе телевизора при облучении его экрана электронным лучом. Излучение экрана воспринимается фотоэлектронным умножителем. Его сигнал «запоминается» специальным устройством и затем передается на Землю радиотелеметрической системой.
С помощью указанной аппаратуры можно будет получить ценный материал о географическом, высотном и суточном распределении корпускулярных потоков. Для исследования направления прихода корпускул используется вращение спутника. Земное магнитное поле обладает способностью отражать заряженные корпускулы и заставлять их следовать по спиралевидным путям вдоль магнитных силовых линий. Нейтральные корпускулы могут перемещаться по прямолинейным траекториям. Такие наблюдения дадут дополнительный материал для суждений о природе корпускул.
Наряду с регистрацией корпускулярного излучения Солнца аппаратура позволяет получить дополнительно материал о его рентгеновском излучении, которое будет также регистрироваться индикаторами корпускул. Это излучение можно будет отличить от корпускулярного по направлению его прихода и по отсутствию отражений от земной атмосферы. Кроме того, оно может быть отмечено по времени появления, поскольку корпускулярное излучение распространяется медленнее электромагнитного.
Измерение давления и плотности атмосферы
К числу важнейших геофизических исследований верхней атмосферы относится изучение изменения давления и плотности с высотой. Зная эти два параметра, можно определить и температуру атмосферы на больших высотах.
До недавнего времени это изучение было ограничено сравнительно небольшими высотами, и только высотные ракеты позволили производить измерения давления и плотности в верхних слоях атмосферы. На высоте 100 километров давление и плотность примерно в десять миллионов раз меньше, чем на Земле. Выше 100 километров имеются единичные ракетные измерения, которые плохо согласуются с косвенными данными. Существенным недостатком ракетных измерений является их кратковременность и то, что они производятся только над отдельными точками земной поверхности.
Для геофизики чрезвычайно важно иметь данные о плотности и давлении верхних слоев атмосферы по всем широтам и долготам, проводя измерения длительное время.
Использование спутников дает возможность уточнить и расширить имеющиеся представления о структуре атмосферы. Длительное пребывание прибора на высоте и сопоставление результатов измерения от витка к витку позволят провести детальный анализ экспериментальных данных и исключить возможные ошибки эксперимента.
При достаточной точности эксперимента можно будет также оценить суточные и широтные вариации плотности и давления на высотах, на которых пролетает спутник.
Манометры, установленные на наружной стороне спутника, соединяются с измерительной аппаратурой, размещенной внутри его. Измерение давления на спутнике в пределах 10-5—10-7миллиметра ртутного столба производится магнитным манометром, а в интервале 10-6—10-9миллиметра ртутного столба — ионизационными манометрами.
Исследование микрометеоров
Известно, что в пространстве между планетами движутся мелкие твердые частицы — микрометеоры. Вторгаясь в земную атмосферу, они сгорают в ней. При этом заметное свечение, которое может быть обнаружено глазом или в телескоп, вызывают лишь сравнительно крупные частицы. Самые мелкие и, как можно предполагать, самые многочисленные частицы, поперечником в несколько микрон, создают столь ничтожное свечение, что оно не может быть обнаружено не только с помощью оптических средств, но и никакими другими средствами наземных наблюдений.
Радиолокационными наблюдениями было установлено, что микрометеоры, вторгающиеся в земную атмосферу с весьма большими скоростями, достигающими 70 километров в секунду, в процессе их движения в атмосфере производят ионизацию молекул воздуха. За летящей частицей образуется след заряженных частиц — электронов и ионов, который обнаруживается радиолокатором. Тем не менее и этот метод не позволяет изучать самые мелкие из микрометеоров. В настоящее время эти частицы можно изучить лишь с помощью аппаратуры, поднимаемой на ракетах и, в особенности, на искусственных спутниках Земли.
Изучение межпланетного вещества имеет существенное значение для астрономии, геофизики и астронавтики, а также для решения проблем эволюции и происхождения планетных систем, так как оно позволяет выяснить ряд существенных вопросов для современных космогонических теорий.
Очень важно также точно знать общее количество метеорного вещества, выпадающего на поверхность Земли за определенный промежуток времени. Необходимо учесть воздействие ударов метеорных тел на внешние оболочки ракет и искусственных спутников, а также на приборы, установленные на них, например, на поверхности оптических приборов, которые из прозрачных могут в результате столкновений с микрометеорами стать матовыми, на активные поверхности солнечных батарей и т. п.
Следует учитывать и опасность столкновения спутников, и особенно межпланетных ракет; с более крупными частицами. Хотя вероятность такого столкновения невелика, но она существует, и важно уметь ее правильно оценить.
Для регистрации соударений микрометеоров с внешней оболочкой межпланетной ракеты или спутника можно использовать ряд способов. Одним из очень простых и в то же время чувствительных методов является применение пьезоэлементов — датчиков, превращающих механическую энергию ударяющей частицы в электрическую энергию.
Величина электрического импульса, возникающая в таком датчике, зависит от скорости и массы ударяющей частицы, а число импульсов равно числу частищ сталкивающихся с поверхностью датчика. Электрические импульсы с датчиков передаются на вход электронного блока, в котором происходит счет импульсов и регистрация их величины.
Источники электропитания аппаратуры
Источники тока, питающие научную и измерительную аппаратуру спутника, созданы на основе серебряно-цинковых аккумуляторов и окисно-ртутных элементов. Разработанные советскими исследователями разновидности этих аккумуляторов и элементов обладают высокими удельными электрическими характеристиками на единицу веса и объема и приспособлены к условиям эксплуатации на спутнике.
Помимо химических источников тока, на третьем спутнике установлены комплекты солнечных батарей. Эти батареи преобразуют энергию радиации Солнца непосредственно в электрическую энергию. Солнечные батареи состоят из ряда элементов, представляющих из себя тонкие пластины из чистого монокристаллического кремния с заранее заданной электронной проводимостью. Напряжение, создаваемое отдельными кремниевыми элементами, равно около 0,5 вольта, а коэффициент преобразования солнечной энергии достигает 9-11 процентов. Соответствующее соединение элементов позволяет получить необходимые напряжения и величину тока.
Установка солнечной батареи на третьем искусственном спутнике позволит детально исследовать ее работу в условиях космического полета.
* * *
Запуск третьего советского искусственного спутника Земли является новым свидетельством успехов ракетной техники в Советском Союзе. Обширный комплекс взаимно связанных исследований, проводимых на спутнике, внесет большой вклад в развитие науки. Запуск третьего советского спутника является одним из самых замечательных событий в Международном геофизическом году. Большие размеры спутника и высокая степень его автоматизации приближают советскую науку и технику к созданию космических кораблей.
♦ СИГНАЛЫ СПУТНИКА
М. ЛЬВОВ
Этот голос доходит
До дворцов и до изб.
Этот голос походит
На младенческий писк.
Ты прислушайся — это
В вышине мировой
Новорожденный Где-то
Голос пробует свой.
О себе заявляет,
Слов не зная пока,
Долго мять не желает
В колыбели бока.
Над землей населенной
Круг за кругом чертя,
Это — в люльке Вселенной
Мы качаем дитя!
И растет тот ребенок
Не по дням — по часам.
Из гигантских пеленок
Скоро выпрыгнет сам;
Встанет, дерзкий и рослый,
Будет звезды шугать,
Будет запросто После
По планетам шагать...
♦ СЛУШАЙТЕ ЕГО ГОЛОС!
В. САФОНОВ, писатель
Удивительная черта человека свыкаться с невероятным, чуть не принимать его как должное!
Да отдаем ли мы себе в полной мере отчет, воздухом какой эпохи мы дышим?
Махина весом почти в полторы тонны — третий спутник — бороздит небо! На немыслимой, невообразимой высоте деловито пощелкивают, включаются и выключаются, черпая энергию от самого Солнца, целые системы приборов — будто там, в сложнейшей лаборатории, наполненной безжизненным азотом, ведет исследования штат ученых, а штат радистов запоминает, записывает и в нужное время передает все продиктованное ими.
Мы же, на Земле, ждем, когда и в наших широтах покажутся в предрассветных сумерках или среди вечерних созвездий две плавно летящие красноватые звездочки. Ведь их две: спутник и ракета-носитель. Значит, на самом деле даже не полторы тонны, а вес, намного больший, сразу поднят в эту немыслимую высь!
Помню, когда я был подростком, читались романы о полетах в другие миры — страстные мечтания о возможности когда-нибудь перешагнуть самый непреступный барьер, который видело перед собой человечество. Были это именно мечтания, сказки — с пушками-колоссами, шагающими треножниками высотой с башню, студенистыми телами селенитов. Чувствовалось, что сами авторы не слишком доверяли своим фантазиям: им тоже казалось, что высадиться на Луне — это все равно, что увидеть «тот свет». И они населяли светила страшилищами и мудрецами, превращали их в места идиллических утопий или мрачных ужасов.
А в те же годы мало кому тогда ведомый, скромный человек, провинциальный учитель и великий ученый К. Э. Циолковский в деревянном домишке с «чеховским» мезонином уже прочерчивал истинные пути межпланетных полетов, твердо зная, что будущие разведчики Вселенной обойдутся на старте без сотрясающих горы исполинских пушек.
Сейчас миллионы людей осведомлены об исключительной важности задач, которые решают первые спутники. О доскональном обследовании сверхвысот — порога космоса, — гораздо лучше расскажут ученые.
Я же думаю сейчас об ином: о всемирно-историческом значении совершившегося на наших глазах.
С чем сравнить его? В какой ряд поставить? С той ли ночью на каравеллах Колумба, когда тьма заиграла огоньками неведомого берега, Нового Света? Или с днем, когда ветхая «Виктория» одна вошла, плывя с востока, в порт, откуда Магеллан три года назад вывел на запад целую флотилию? С открытием закона всемирного тяготения? С первым рывком поршня паровой машины? С героикой достижения полюсов?
Нет, даже в таком ряду не уместится событие, которому мы современники.
Самыми простыми словами: 4 октября прошлого года впервые за все миллиарды лет существования Земли подброшенный предмет не упал обратно. Отметая все, чему когда-либо были свидетелями люди, весь предыдущий опыт и даже выросший из него обычный «здравый смысл», преодолев наиболее непреложное, что только есть в природе, плен тяжести, он вошел в семью небесных тел. Так началась новая эра.
Миновало семь месяцев. И за это время мир увидел три советских спутника — три гигантских шага. Первое живое существо, ставшее космическим пассажиром, — на втором спутнике. И уже человек физически мог бы подняться на третьем — нашлось бы место для оборудованной комнаты-каюты с пультом управления чудесной, умной аппаратурой. Создан, взлетел космический корабль. Но ученые очень осторожны. Они требуют стократно проверенных гарантий, возможности безопасного возврата — полет человека дело завтрашнего дня. Но ведь и года не прошло с великого рубежа! А как уже близко это завтра!
Крупный специалист по механике, академик недавно заявил: в течение двадцати лет осуществится полет на Марс, человек самолично прибудет туда разгадать вековечные тайны этой планеты.
И тоже трезво, по-деловому читаешь, взвешиваешь эти слова. Как же изменилось наше сознание, как расширилось оно, на какой вершине мира стал сегодня советский человек, что так далеко видно ему «во все концы света»! А «свет»-то — это уже не одна Земля, как было испокон веков, впервые она перестает быть всем для нашего сознания.
И какая, замечу кстати, увлекательная задача литературы — отобразить, показать этот рост нового сознания! Почти нетронутая тема. Жизнь далеко опередила книгу. Мы вправе ждать книг, о которых не придется говорить так. «Стать с веком наравне», пб пушкинскому слову, — разве может иначе советский писатель?
Конечно в покорении космоса мы не монополисты. И не хотим быть ими. Три американских спутника-малютки, — ведь и они замечательная победа науки. Но сегодня, как сдержать законную гордость изумительной нашей победой?
За границей пишут о «советском чуде». Но «чудо» это — выражение самых глубоких закономерностей наших дней.
У нас счет к науке небывалый, спрос с нее строжайший — ив этом же народном спросе и счете такая поддержка науки, какой тоже не бывало. Сила и красота нашего мировоззрения, великий план строительства коммунизма, вдохновенный труд народа, возглавляемого своей партией, невиданная широта разлива знаний в массах, все великие преимущества социалистического строя — вот источники и объяснение «чуда» трех советских спутников, трех ступеней в поистине сказочный завтрашний день.
Страна наша — знаменосец всемирного прогресса. Botti сейчас спутники наши делают общечеловеческое дело, пробивают для всех пути вперед. Пример науки СССР будоражит, ведет за собой науку других стран, побуждает ее двигаться, развиваться гораздо быстрее. Если бы не существовала на земле сорок лет Советская власть, не знаю, взлетел ли бы сегодня хоть один спутник, хотя бы американский.
Сорок лет... Спросим себя: сколько же, собственно, лет была дана нам возможность строить, создавать? Пол срока — борьба не на жизнь, а на смерть с белыми, с интервентами, разруха, голод, самая страшная война против гитлеровского фашизма, восстановление разрушенного. Ни на чью долю не выпадало столько! А ведь вышли, зримо и неоспоримо для всех вышли на самый передний край человечества, пошли, повели вперед в неоглядные дали...
Небывалые свершения не сегодня и не вчера стали явью нашей эпохи. Громадные города, вырастающие в тайге, Магнитка, за немногие годы обновившееся лицо старого Урала. Постройка каналов, искусственные моря, Днепрогэс, Волжский каскад, целина, синхрофазотрон. Впервые в нашей стране встал на службу человеку атом, мирный атом. На очереди опыты с «укрощением» термоядерной энергии, ее почти беспредельной мощи; в сущности, это овладение процессами, подобными происходящим на Солнце.
А биохимики выходят на подступы к синтезу живого белка. Синтез белка — основа жизни! Когда он станет возможным, — как оценить все последствия — практические, теоретические, философские? Пусть пока это мечта, но нет мечты дерзновеннее, и под знаком третьего спутника она законнее, чем когда-либо. Одна из особенностей советского передового естествознания состоит именно в том, что оно не обходит, а ставит основоположные вопросы — вопросы о сущности изучаемого ряда явлений. Оно ищет и находит дорогу там, где прежде отступали перед «глухой стеной».
Грядущее... Едва решаешься говорить о том, что уже начинают обсуждать ученые, о том, для чего не отыскать эпитетов в богатейшем арсенале языка. Ракеты, чьим движителем, возможно, послужат частицы света. Корабли, которые разгонятся до световой скорости. Станут доступными далекие созвездия.
Не нам, верно, и не детям нашим сесть на такой звездолет. Но снова и снова ловлю я себя на поражающей мысли: и об этом читаю вовсе не как о чистом плоде воображения, не так, как читал когда-то даже о полете на Луну. 4 октября прошлого года совершился такой качественный скачок, взят такой рубеж, за которым сразу открылась вся эта необозримая, в грядущем теряющаяся дорога.
Какие величественные перспективы для человеческой деятельности здесь, на земле.
Земной шар! В детстве в учебнике географии эти слова поражают какой-то особенной весомостью, громадностью. Говорят, он съежился, этот шар, уменьшился в эпоху спутников.
Как неверно, ошибочно это! Именно теперь мы получаем настоящий масштаб просторности земного дома. Открылся шестой материк, таинственная Антарктида. Обживаются безмерные пространства Арктики. Ждут своих Колумбов необъятные подводные просторы. Прославленный советский корабль «Витязь» извлек грунт со дна десятикилометровой океанской бездны, не ведавшей дневного света с самого рождения Земли. Французский батискаф побывал на глубине четырех километров. А перед геофизиками сейчас — совсем новая страница в исследовании земных недр.
Когда я пишу эти строки, в поток радиоволн в эфире вплетается голос спутника. Настойчивый, терпеливый, не похожий ни на какие другие, он сообщает обо всем, что «видят» его приборы.
Голос, доносящийся с высоты 1800 километров, зовет всех людей к согласию, все страны и народы — к дружной, совместной работе на благо человечества. Он звучит суровым осуждением тем, чье преступное безумие угрожает мирному созиданию и радости творчества.
Слушайте же, все слушайте голос третьего спутника!
♦ СОРЕВНОВАНИЕ УМОВ
Фриц БААДЕ
Профессор Фриц Бааде — видный западногерманский экономист, директор Института мирового хозяйства в г. Кие. Здесь приводятся отрывки из его книги «Соревнование в 2000 году».
По мирным следуя орбитам
К решенью мировых проблем,
Мы призываем мир в арбитры
Соревнованья двух систем!
АЛЕКСАНДР РЕЙЖЕВСКИЙ
4 октября 1957 года — один из самых замечательных дней в истории человечества. Этот день открыл новый этап в борьбе человека за покорение природы... Опыт показывает, что наука, поставленная на службу народу, способствует прогрессу человечества. в то время как наука на службе империалистов и эксплуататоров задерживает этот прогресс. Несомненно, что день 4 октября 1957 года явился началом качественных изменений на земном шаре.
ХОЛЕД МОХИ ЭД-ДИН,
главный редактор газеты «Аль-Маса». Каир
Одним из спутников американского вице-президента Никсона, сопровождавших его в поездке по Советскому Союзу и Польше, был вице-адмирал Риковер. По возвращении в США Риковер поделился с сотрудником газеты «Нью-Йорк тайме» своими впечатлениями о путешествии но коммунистическим странам. Итог своих наблюдений Риковер сформулировал следующим образом: «Наше подлинно великое соревнование с Советским Союзом идет в области образования... Нация, которая выиграет соревнование, станет потенциально господствующей силой».
Опасение, что Соединенные Штаты проиграют это соревнование, Риковер проиллюстрировал рядом чрезвычайно убедительных примеров, касающихся постановки дела образования в обеих странах.
Наиболее потрясающим для слушателей и читателей вице-адмирала в Соединенных Штатах является его вывод о том, что такие экзамены, какие в 1957 году сдали 1600 тысяч учеников, окончивших среднюю школу в России, смогли бы сдать только около двух процентов школьников, окончивших среднюю школу в США.
Таким образом, Риковер оказался в числе тех людей, которые на протяжении нескольких лет пытаются пробудить западный мир от сна и поставить его перед суровой действительностью, говорящей о том, что коммунистический мир, и в особенности Советский Союз, намеревается далеко обогнать нас в области образования и научно-исследовательской работы.
Калифорнийский технологический институт несколько лет назад поручил группе ученых-специалистов исследовать перспективы мирового развития на ближайшие сто лет. Значительная часть исследований этих людей состоит в трезвом анализе «силы мышления». Ученые пришли к выводу: «в результате своих концентрированных усилий Советский Союз быстро обогнал Соединенные Штаты и сейчас готовит вдвое больше ученых и инженеров, чем мы. Кроме того, кажется вполне вероятным, что этот разрыв в будущем еще некоторое время будет увеличиваться. К тому же у нас всего две трети инженеров и ученых могут эффективно работать в своих областях, тогда как в Советском Союзе все инженеры и ученые используются по специальности по той простой причине, что им предлагают работу. Наконец, следует еще сказать, что примерно одна треть русских инженеров и техников — женщины...»
Кто оплачивает научные исследования?
В Соединенных Штатах очень серьезно обеспокоены успехами Советского Союза, которых он добился во многих областях естественных наук. Газета «НьюЙорк тайме» создала бригаду из пяти корреспондентов и поставила перед ними задачу опросить тех американских ученых, которые в последние годы побывали в Советском Союзе, а также тех, которые располагают особыми данными о достижениях СССР в области научных исследований. Интервью дали более 50 американских ученых. В результате была получена картина развития науки в Советском Союзе, двигающейся вперед в значительно более быстром темпе, чем в Соединенных Штатах.
На американских ученых большое впечатление произвел объем русских исследований и научно-техническое оборудование, которое предоставлено в распоряжение русских физиков, химиков, математиков, астрономов и геологов — исследователей недр земли.
Что же касается математики, то о ней можно было бы вообще не говорить. Русские — нация шахматистов — всегда занимали ведущее положение в этой области. Учитывая значение, которое имеет математика для изучения основ наук, физики и астрономии, это обстоятельство играет первостепенную роль.
Очень значительны достижения русской науки в изучении недр земли. Д-р Морис Ивинг, ныне директор института геологии при Колумбийском университете, на протяжении ряда лет разрабатывал метод исследования земной коры под морями путем производства взрывов в воде. Усилия Ивинга на протяжении долгого времени обеспечивали Соединенным Штатам ведущую роль в этой области. После того как американские ученые, включая и доктора Ивинга, недавно побывали в Советском Союзе, им пришлось признать, что русским исследователям предоставлены большие возможности, чем американцам, и что русские через два года обгонят американцев в этой области. Осмотрев оборудование, которым располагают советские ученые, и познакомившись с их достижениями, д-р Ивинг сказал: «Вот он, ваш спутник, хотя он и не летает вокруг Земли».
Один американец из группы ученых имел беседу в России, проливающую свет на положение научно-исследовательской работы на Востоке и на Западе. Исследование землетрясений относится в обеих частях мира к разряду особо важных тем. Американский специалист в этой области д-р Пресс рассказал русскому коллеге, что особый химический препарат мог бы значительно повысить эффективность его приборов, «но он стоит сто долларов». Русский ученый сказал, что он не понимает, в чем дело. Д-р Пресс повторил свою мысль. Но его партнер, казалось, все еще не мог понять его: «Ведь это же нужно для исследования основ наук! Какое значение тут могут иметь расходы?»
Русские с самого начала создали топливо для своих гигантских ракет: для космических, рассчитанных для научно-исследовательских целей, и для межконтинентальных, предназначенных в случае необходимости для войны. Русское ракетное топливо не идет ни в какое сравнение с американским; оно значительно эффективней и прежде всего более надежно и послушно. Американские ракеты на жидком топливе были чрезвычайно неприятными созданиями. Используемый в них жидкий кислород мог сохраняться в жидком состоянии только при температуре намного ниже нуля. Наполнение ракеты жидким кислородом всегда было очень трудоемким и опасным делом, а взаимодействие кислорода с другими компонентами горючего так трудно подвергалось регулированию, что большая часть межконтинентальных ракет, запущенных с полигонов в Южной Флориде, неожиданно взрывалась или падала в море либо сразу после старта, либо по пути к цели. Американцам пришлось потратить пять лет на работу с этими ракетами, прежде чем они отказались от них и перешли к ракетам на другом виде топлива.
США рассчитывают догнать Россию, которая на четыре-пять лет опередила их в этой области. Ничего невозможного тут нет. Но действительность говорит за то, что западный мир может ликвидировать разрыв в какой-нибудь одной области из большого числа тех, в которых русские обогнали их, только при условии, когда будет наведен порядок в самом базисе, начиная от преподавания математики в школах и университетах и кончая научно-исследовательскими институтами.
Что нам делать?
В соревновании к 2000 году восточный мир наверняка обгонит западный в целом ряде областей. Неизбежно, что к 2000 году число людей в сегодняшних странах коммунистического блока по меньшей мере вдвое превысит число людей, живущих сейчас в мире капитализма. Не подлежит никакому сомнению, что страны коммунистического блока будут в состоянии прокормить свое быстро растущее население и, в частности, каждый человек будет питаться лучше, чем сейчас. Количество промышленных рабочих в странах коммунистического блока, безусловно, превысит количество промышленных рабочих капиталистического мира по меньшей мере в том же объеме, как и численность населения, то есть минимум вдвое.
И если все это неизбежно случится, то нам нельзя допускать только одного — чтобы к количественному превосходству в экономике добавилось еще и качественное превосходство в научном мышлении.
Западный мир, сначала старая Европа, а потом и Соединенные Штаты Америки, был ведущим во всех областях научных исследований и техники, основанной на достижениях науки. Важнейшие изобретения, связанные с использованием пара, электро- и реактивных двигателей, а также атомной энергии, были сделаны на Западе. Запад не в состоянии удержать своего ведущего положения с точки зрения количественной; а если он уступит Востоку еще и свое превосходство в области качественной, то это приведет к потрясающим последствиям для мира 2000 года, для мира, в котором будут жить наши дети и внуки. И хотя критический момент уже приближается, однако еще не все потеряно. Западный мир достаточно богат, чтобы поставить дело обучения и научных исследований на уровень, равный тому, который достигнут в Советском Союзе и который впоследствии будет достигнут в Китае. Пока еще страны западного мира более зажиточны, чем государства коммунистического блока. Аллен У. Даллес в своей полной драматизма речи в Эдисоновском электротехническом институте заявил, что в Соединенных Штатах на душу населения производится вдвое больше «социального продукта», чем в Советском Союзе. Может быть, для Запада это утверждение является слишком оптимистическим. Но то, что в США производится больше «социального продукта» на душу населения, чем пока в СССР, это несомненно.
Мы не имеем права больше спать и мечтать. Стрелки часов с пугающей быстротой бегут вперед. 2000 год ближе, чем мы думаем. Если мы хотим иметь хоть какиенибудь шансы на победу в соревновании к 2000 году, нам следует не только проснуться, но и выбросить за борт весь столь полюбившийся нам балласт наших представлений.
♦ ГИГАНТСКИЕ ШАГИ РУССКОЙ НАУКИ
ОТРЫВОК ИЗ СТАТЬИ РАНДОЛЬФА ХЕРСТА,
ОПУБЛИКОВАННОЙ 12 ДЕКАБРЯ 1958 ГОДА В ГАЗЕТЕ «НЬЮ-ЙОРК ДЖОРНЭЛ АМЕРИКЭН»
Р. ХЕРСТ-МЛАДШИЙ, ВЛАДЕЛЕЦ ОДНОЙ ИЗ
КРУПНЕЙШИХ ГАЗЕТНО-ЖУРНАЛЬНЫХ КОРПОРАЦИЙ США
Русская наука сделала гигантские шаги за несколько лет, и она не намеревается почивать на лаврах или дать нам время, чтобы догнать ее в тех немногих областях, где она явно опередила нас.
Важнейшие достижения последних лет, начавшиеся с испытания первой русской атомной бомбы всего через четыре года после Аламагордо и теперь завершившиеся вторым спутником, — это плоды исследований и мечтаний плюс медленный и прошедший в общем незаметно прогресс.
Дом Циолковского в Калуге стал теперь национальным музеем, где храпятся его первые модели самолетов, примитивная аэродинамическая труба, которую он построил для их испытания, скелеты птиц и фотографии крылатых предметов.
Циолковский задумал цельнометаллический дирижабль и цельнометаллический самолет за много лет до того, как они появились в небе.
В его книге «Свободное пространство», опубликованной в 1883 году, впервые был предложен реактивный двигатель как средство движения в воздухе. Его работа «Исследование мировых пространств реактивными приборами» была опубликована в 1903 году. В книге «Мечты о земле и небе», созданной в 1895 году, описан постоянный искусственный спутник, вращающийся по постоянной орбите вокруг Земли, который должен служить космической станцией для запуска космических ракетных кораблей.
Русские университеты и специальные научные институты выпускают целую армию новых молодых ученых, которые включаются в работу по подкреплению новых притязаний России на превосходство в области ракетостроения и межпланетных путешествий. Это как будто их первый явный прорыв. Это, однако, не означает, что и другие области, где мы когда-то чувствовали себя в величайшей безопасности, не подвергаются интеллектуальной бомбардировке советской науки.
Строятся пять атомных электростанций, которые по завершении будут давать 2500 тыс. киловатт-часов электроэнергии.
Первое советское судно с атомным двигателем, корпус которого только что спущен на воду, никак не может быть связано с войной. Это — ледокол «Ленин», который сможет расчищать замерзающие советские гавани, не пополняясь топливом в течение года.
Эти дорогостоящие и волнующие научные предприятия, так же как и спутник, по видимости, поддерживают утверждение Кремля, что Россия хочет только мира, а Соединенные Штаты хотят войны.
Расщепленный атом еще только начали изучать. Его частицы так же мало исследованы, как морские глубины. Огни в десятках лабораторий горят днем и ночью, русские коллеги наших собственных способных ядерных физиков стремятся к великим общим целям.
Главной из них можно считать, если можно так выразиться, обуздание водородной бомбы — использование реакции ядерного синтеза, подобно тому, как атомные электростанции, уже работающие здесь и в России, используют реакцию расщепления.
Мы участвуем в отчаянной борьбе за умы и преданность людей.
Эта борьба в большей степени, чем когда-либо, проходит через лабораторию.
РАКЕТОЙ К ЛУНЕ
Создание в нашей стране первых искусственных спутников Земли, запуск советской космической ракеты, которая стала первой искусственной планетой Солнечной системы, — это целая эпоха в развитии научных знаний человечества. Это — величественное событие эпохи построения коммунизма.
Н. С. ХРУЩЕВ
Сообщение ТАСС
♦ О ЗАПУСКЕ СОВЕТСКОЙ КОСМИЧЕСКОЙ РАКЕТЫ В СТОРОНУ ЛУНЫ
1957-1958 годы ознаменовались крупнейшими достижениями Советского Союза в области ракетостроения. Запуски советских искусственных спутников Земли позволили накопить необходимый материал для осуществления космических полетов и достижения других планет солнечной системы. Научно-исследовательские и опытно-конструкторские работы, проводимые в СССР, были направлены на создание больших по размерам и весам искусственных спутников Земли. Вес третьего советского искусственного спутника, как известно, составлял 1327 килограммов.
При успешном запуске 4 октября 1957 года первого в мире искусственного спутника Земли и последующих запусках тяжелых советских спутников по программе Международного геофизического года была получена первая космическая скорость — 8 километров в секунду.
В результате дальнейшей творческой работы советских ученых, конструкторов, инженеров и рабочих в настоящее время создана многоступенчатая ракета, последняя ступень которой способна достигнуть второй космической скорости — 11,2 километра в секунду, обеспечивающей возможность межпланетных полетов.
2 января 1959 года в СССР осуществлен пуск космической ракеты в сторону Луны. Многоступенчатая космическая ракета по заданной программе вышла на траекторию движения в направлении к Луне. По предварительным данным, последняя ступень ракеты получила необходимую вторую космическую скорость. Продолжая свое движение, ракета пересекла восточную границу Советского Союза, прошла над Гавайскими островами и продолжает движение над Тихим океаном, быстро удаляясь от Земли.
В 3 часа 10 минут московского времени 3 января космическая ракета, двигаясь по направлению к Луне, пройдет над южной частью острова Суматра, находясь от Земли на расстоянии около 110 тысяч километров. По предварительным расчетам, которые уточняются прямыми наблюдениями, приблизительно в 7 часов 4 января 1959 года космическая ракета достигнет района Луны.
Последняя ступень космической ракеты весом 1472 килограмма без топлива оборудована специальным контейнером, внутри которого находится измерительная аппаратура для проведения следующих научных исследований:
— обнаружения магнитного поля Луны;
— изучения интенсивности и вариации интенсивности космических лучей вне магнитного поля Земли;
— регистрации фотонов в космическом излучении;
— обнаружения радиоактивности Луны;
— изучения распределения тяжелых ядер в космическом излучении;
— изучения газовой компоненты межпланетного вещества;
— изучения корпускулярного излучения Солнца;
— изучения метеорных частиц.
Для наблюдения за полетом последней ступени космической ракеты на ней установлены:
— радиопередатчик, излучающий на двух частотах 19,997 и 19,995 мегагерц телеграфные посылки длительностью 0,8 и 1,6 секунды;
— радиопередатчик, работающий на частоте 19,993 мегагерца телеграфными посылками переменной длительности порядка 0,5-0,9 секунды, с помощью которого передаются данные научных наблюдений;
— радиопередатчик, излучающий на частоте 183,6 мегагерц и используемый для измерения параметров движения и передачи на Землю научной информации;
— специальная аппаратура, предназначенная для создания натриевого облака — искусственной кометы.
Искусственная комета может наблюдаться и фотографироваться оптическими средствами, оборудованными светофильтрами, выделяющими спектральную линию натрия.
Искусственная комета будет образована 3 января примерно в 3 часа 57 минут московского времени и будет видима около 2-5 минут в созвездии Девы, приблизительно в центре треугольника, образованного звездами Альфа Волопаса, Альфа Девы и Альфа Весов.
Космическая ракета несет на борту вымпел с гербом Советского Союза и надписью: «Союз Советских Социалистических Республик. Январь, 1959 год».
Общий вес научной и измерительной аппаратуры вместе с источниками питания и контейнером составляет 361,3 килограмма.
Научные измерительные станции, расположенные в различных районах Советского Союза, ведут наблюдения за первым межпланетным полетом. Определение элементов траектории осуществляется на электронных счетных машинах по данным измерений, автоматически поступающим в координационно-вычислительный центр.
Обработка результатов измерений позволит получить данные о движении космической ракеты и определить те участки межпланетного пространства, в которых производятся научные наблюдения.
Созидательный труд всего советского народа, направленный на решение важнейших проблем развития социалистического общества в интересах всего прогрессивного человечества, позволил осуществить первый успешный межпланетный полет.
Пуск советской космической ракеты еще раз показывает высокий уровень развития отечественного ракетостроения и вновь демонстрирует всему миру выдающееся достижение передовой советской науки и техники.
Величайшие тайны Вселенной сделаются более доступными человеку, который в недалеком будущем сам сможет ступить на поверхность других планет.
Коллективы научно-исследовательских институтов, конструкторских бюро, заводов и испытательных организаций, создавшие новую ракету для межпланетных сообщений, посвящают этот пуск XXI съезду Коммунистической партии Советского Союза.
Передача данных о полете космической ракеты будет производиться регулярно всеми радиостанциями Советского Союза.
Мир движется к коммунизму, С коммунизмом связан и прочный мир в мире, и развитие культуры, служащей интересам человека.
Людям коммунизма подвластны космические дали!
Иозеф РЫБАК, чехословацкий писатель
♦ ИЗ СООБЩЕНИЯ ТАСС ОТ 6 ЯНВАРЯ 1969 ГОДА
После создания Советским Союзом первого искусственного спутника Земли запуск 2 января 1959 года советской космической ракеты, ставшей на вечные времена первой искусственной планетой нашей солнечной системы, является величественным событием эпохи построения коммунизма и открывает эру межпланетных полетов.
СОВЕТСКАЯ КОСМИЧЕСКАЯ РАКЕТА В СТОРОНУ ЛУНЫ
Полет космической ракеты
Космическая многоступенчатая ракета стартовала с поверхности Земли вертикально. Под действием программного механизма автоматической системы, управляющей ракетой, ее траектория постепенно отклонялась от вертикали. Скорость ракеты быстро нарастала. В конце участка разгона последняя ступень ракеты набрала скорость, необходимую для своего дальнейшего движения. Автоматическая система управления последней ступени выключила ракетный двигатель и подала команду на отделение контейнера с научной аппаратурой от последней ступени. Контейнер и последняя ступень ракеты вышли на траекторию и начали движение по направлению к Луне, находясь на близком расстоянии друг от друга.
Чтобы преодолеть земное притяжение, космическая ракета должна набрать скорость, не меньшую, чем вторая космическая скорость. Вторая космическая скорость, называемая также параболической скоростью, у поверхности Земли составляет 11,2 километра в секунду. Эта скорость является критической в том смысле, что при меньших скоростях, называемых эллиптическими, тело либо становится спутником Земли, либо, поднявшись на некоторую предельную высоту, возвращается на Землю. При скоростях, больших второй космической скорости (гиперболических скоростях) или равных ей, тело способно преодолеть земное тяготение и навсегда удалиться от Земли.
Советская космическая ракета к моменту выключения ракетного двигателя последней ее ступени превысила вторую космическую скорость. На дальнейшее движение ракеты, до сближения ее с Луной, основное влияние оказывает сила притяжения Земли. Вследствие этого, согласно законам небесной механики, траектория движения ракеты относительно центра Земли очень близка к гиперболе, для которой центр Земли является одним из ее фокусов. Траектория наиболее искривлена вблизи Земли и распрямляется с удалением от Земли. На больших расстояниях от Земли траектория становится весьма близкой к прямой линии.
В начале движения ракеты по гиперболической траектории она движется весьма быстро. Однако, по мере удаления от Земли, скорость ракеты под действием силы земного тяготения уменьшается. Так, если на высоте 1500 километров скорость ракеты относительно центра Земли была несколько более 10 километров в секунду, то на высоте 100 тысяч километров она равнялась уже примерно 3,5 километра в секунду.
Скорость поворота радиуса-вектора, соединяющего центр Земли с ракетой, убывает, согласно второму закону Кеплера, обратно пропорционально квадрату расстояния от центра Земли. Если в начале движения эта скорость составляла примерно 0,07 градуса в секунду, то есть более чем в 15 раз превышала угловую скорость суточного вращения Земли, - то примерно через час она стала меньше угловой скорости Земли. Когда же ракета приближалась к Луне, то скорость поворота ее радиуса-вектора уменьшилась более чем в 2000 раз и стала уже в 5 раз меньше угловой скорости обращения Луны вокруг Земли. Скорость же обращения Луны составляет лишь 1/27 угловой скорости Земли.
Эти особенности движения ракеты по траектории определили характер ее перемещения относительно поверхности Земли.
На карте изображено перемещение проекции ракеты на поверхность Земли с течением времени. Пока скорость поворота радиуса-вектора ракеты была велика по сравнению со скоростью вращения Земли, эта проекция перемещалась на восток, постепенно отклоняясь на юг. Затем проекция стала перемещаться сначала на югозапад и через 6-7 часов после старта ракеты, когда скорость поворота радиуса-вектора стала весьма мала, — почти точно на запад.
Движение ракеты на небесной сфере было очень неравномерным — быстрое вначале и очень медленное к концу.
Примерно через час полета путь ракеты на небесной сфере вошел в созвездие Волосы Вероники. Затем ракета перешла на небесном своде в созвездие Девы, в « котором и произошло ее сближение с Луной.
3 января в 3 часа 57 минут московского времени, когда ракета находилась в созвездии Девы, примерно в середине треугольника, образованного звездами Арктуром, Спикой и Альфой Весов, специальным устройством, установленным на борту ракеты, была создана искусственная комета, состоящая из паров натрия, светящихся в лучах Солнца. Эту комету можно было наблюдать с Земли оптическими средствами в течение нескольких минут. Во время прохождения около Луны ракета находилась на небесной сфере между звездами Спика и Альфа Весов.