Вопрос: Уже сообщалось, что одной из задач полета в сторону Венеры является уточнение масштаба солнечной системы. Как будет произведена эта работа?

Ответ: По выражению одного из ученых, астрономия была до недавнего времени наукой, в которой господствовал принцип: «Смотри, но не дотрагивайся!» И в самом деле, все наши знания о Вселенной получены лишь в результате наблюдений и последующей их обработки. Так продолжалось до 4 октября 1957 года. С запуском первого советского искусственного спутника Земли астрономия начала превращаться в экспериментальную науку. Теперь мы можем ставить опыты по уточнению прежних измерений. Взять, к примеру, наши познания о расстояниях между планетами, исходящие из наблюдений, теорий и расчетов. Никто никогда не измерял непосредственно этих расстояний, а пользовался знанием тригонометрии и размеров Земли, которые принимались за единственно известную сторону треугольника. Между тем сейчас, когда мы выходим на широкие дороги космоса, для достижения конкретных целей нужны более точные знания. Вот почему предпринята проверка. Расчет полета в сторону Венеры основывается именно на таких непосредственно не измеренных расстояниях. Во время полета межпланетная станция каждые пять дней сообщает нам о своем «самочувствии» и местонахождении. По ее сигналам трасса проверяется и сравнивается с заданной. А когда космический пилигрим окажется в наибольшем приближении к Венере, мы сравним фактический полет с расчетным и проверим взятые нами исходные величины.

РАДИОЛОКАЦИЯ ВЕНЕРЫ

В. КОТЕЛЬНИКОВ, академик, И. ШКЛОВСКИЙ, профессор

В СССР проведены радиолокационные наблюдения планеты Венера, давшие важные сведения как о самой планете, так и о солнечной системе в целом.

Наблюдения позволили уточнить размеры солнечной системы, впервые надежно оценить скорость вращения Венеры. Получены указания о наличии на поверхности этой планеты областей с различными коэффициентами отражения радиоволн.

Научное значение этих результатов весьма велико потому, что, хотя Венера является ближайшей к нам планетой солнечной системы (не считая некоторых малых планет, так называемых астероидов, которые иногда подходят к Земле на значительно более близкие расстояния, чем Венера), мы о ней очень мало знаем. И это, несмотря на то, что Венера — ярчайший на небе объект после Солнца и Луны. Причина столь ненормального для астрономии положения — густой слой облаков, окутывающий эту планету. Астрономы совершенно не могут наблюдать поверхность Венеры. Следовательно, они не могут путем прямых наблюдений деталей на ее поверхности найти период ее вращения вокруг своей оси. Между тем у Марса, поверхность которого не закрыта густым слоем облаков, период вращения определен с поразительной точностью до одной тысячной доли секунды (кстати, этот период очень близок к земному).

Вопрос о характере вращения Венеры имеет кардинальное значение для разрешения проблемы природы этой замечательной планеты, по своим размерам и массе сходной с Землей. С ним, в частности, тесно связана увлекательная проблема возможности жизни на Венере. Для будуших астронавтов этот вопрос также является весьма существенным. Если, например, Венера совершала бы оборот вокруг своей оси за 225 земных суток, то есть за время ее обращения вокруг Солнца, то она всегда была бы повернута к Солнцу одной стороной (подобно тому, как Луна повернута к Земле). В этом случае на дневной и «ночной» половине природные условия будут совершенно различны. Для развития жизни на Венере такая особенность ее вращения была бы крайне неблагоприятна.

Так как путем непосредственных наблюдений деталей на поверхности Венеры определить период ее вращения невозможно, в разное время астрономы применяли для решения этой задачи другие методы. Например, знаменитый русский астрофизик академик А. А. Белопольский в 1903-1911 гг. пытался определить период вращения Венеры спектроскопическим методом. Суть этого метода состоит в следующем. Если планета вращается, то один ее край будет, очевидно, к нам приближаться, в то время как другой — удаляться. Известно, что длина волны кайой-либо спектральной линии света смещается либо в длинноволновую, либо в коротковолновую сторону, в зависимости от того, удаляется или приближается источник света (явление Допплера). Величина этого смещения очень незначительна и зависит только от относительной скорости источника и наблюдателя вдоль прямой их соединяющей.

А. А. Белопольский, однако, не получил сколько-нибудь надежных указаний на наличие систематических различий в длинах волн спектральных линий излучения от краев диска Венеры.

Сравнительно недавно, в 1958 году, при помощи весьма совершенных приборов Ричардсон сделал попытку определить вращение Венеры методом Белопольского. Результаты опять-таки оказались отрицательными. По этим наблюдениям можно было только сделать вывод, что, если Венера вращается с запада на восток (то есть в том же направлении, что и Земля), период ее вращения превосходит 7 суток, если же она вращается в противоположном направлении, то период ее вращения больше 3,5 суток.

За несколько лет до этого опытнейший французский астроном Дольфюс пришел к выводу, что период вращения Венеры совпадает с ее периодом обращения вокруг Солнца, то есть равен 225 земным суткам. Несколько лет тому назад американский радиоастроном Краус нашел, что на волне 11 метров Венера излучает кратковременные радиоимпульсы, несколько сходные с теми, которые на Земле наблюдаются во время гроз, но только значительно более мощные. Из характерной повторяемости таких импульсов, в предположении, что они возникают в какой-то определенной области планеты, он нашел, что период вращения Венеры очень короток — всего лишь 22 часа 17 минут. Однако последующие наблюдения на значительно более мощных радиотелескопах не подтвердили результатов Крауса. Были и другие попытки определить скорость вращения, но они не давали надежных результатов.

Можно, таким образом, сказать, что период вращения Венеры вплоть до самого последнего времени оставался неизвестным.

С этим вопросом связан и другой: как направлена ось вращения Венеры по отношению к плоскости ее орбиты? Предположим, что ось вращения Венеры перпендикулярна к плоскости ее орбиты. Тогда никакой смены времен года на ней не будет. Напомним, что у Земли ось наклонена к плоскости орбиты на угол 66 градусов 33 минуты, а у Марса — на 64 градуса 48 минут. По этой причине как на Земле, так и на Марсе происходит смена времен года. С малой степенью уверенности наклон оси Венеры к плоскости ее орбиты определил американский астроном Койпер. Он предположил, что на Венере, аналогично Земле, имеется общая циркуляция облаков в направлении, параллельном экватору. Тогда из наблюдаемой в ультрафиолетовых лучах тенденции к расположению облачных образований, покрывающих поверхность планеты, вдоль параллельных линий он нашел, что ось вращения Венеры наклонена к плоскости ее орбиты под углом 58 градусов. Если это так, то на Венере будет происходить смена времен года. Заметим, что советский астроном В. И. Езерский из фотометрических наблюдений также получил указание о наличии сезонных изменений.

Принципиально новые возможности открываются в изучении Венеры с помощью радиолокации. В радиолокации исследуемый объект «освещается» радиоволнами передатчика и затем принимаются волны, отраженные от него. По времени, которое затрачивается на движение радиосигнала от локатора до объекта и обратно, можно с высокой точностью определить расстояние до объекта.

Если отражающий предмет движется, то из-за эффекта Допплера длина волны, а следовательно, и частота отраженных колебаний будут отличаться от посланных локатором. По этому изменению можно судить о том, приближается или удаляется отражающий предмет и с какой скоростью. В случае, если отражающий предмет вращается, то различные его части будут, очевидно, давать отраженные сигналы с различными частотами. По такому расширению спектра частот отраженных колебаний можно судить о скорости вращения. Кроме того, в принципе можно судить о характере поверхности частей планеты, приближающихся к нам и удаляющихся от нас с различными скоростями при ее вращении, поскольку эти части будут давать отраженные сигналы с различными частотами.

Радиолокационные наблюдения за Луной были проведены в Венгрии и США «сразу же после войны. Это было в свое время большим достижением. Локация более удаленных небесных тел в то время была невозможна: ведь необходимая мощность передатчика радиолокатора должна расти пропорционально четвертой степени расстояния до космического тела и обратно пропорционально квадрату его диаметра. Таким образом, при переходе от локации Луны к локации Венеры из-за увеличения расстояния примерно в 100 раз и учитывая, что диаметр Венеры примерно в 3,5 раза больше, чем у Луны, необходимо было увеличить мощность потока радиоволн, идущих от радиолокатора, по крайней мере в пять миллионов раз при сохранении чувствительности приемной установки.

Первые радиолокационные измерения расстояния до Венеры были сделаны в периоды наибольшего приближения Венеры к Земле в 1958 году в США и в 1959 году в Англии. Однако полученные результаты из-за весьма слабого сигнала были недостаточно надежными. Изменение частоты отраженных сигналов из-за вращения Венеры при использовавшейся тогда аппаратуре наблюдать было нельзя.

Проведенная в СССР радиолокация Венеры благодаря мощным передатчикам, большим антеннам и чувствительным приемникам позволила надежно зарегистрировать отраженные от Венеры посылаемые с Земли радиоволны.

Мощность радиоволн, попадавшая при этих измерениях на поверхность Венеры, несмотря на колоссальное расстояние до нее, достигала 15 ватт. Это дало возможность измерить расстояния до Венеры с большой точностью и надежностью и уточнить масштабы солнечной системы, о чем будет сказано ниже. По изменению частоты отраженных сигналов от Венеры удалось получить сведения о ее вращении.

Оказалось, что разность радиальных скоростей отдельных отражающих участков поверхности Венеры примерно равна 80 метрам в секунду.

Отсюда можно сделать вывод, что период ее вращения близок к 11 суткам (при предположении о перпендикулярности оси вращения Венеры направлению Земля — Венера и при условии, что все части поверхности Венеры отражают). При других предположениях период будет несколько короче.

Так, если принять наклон оси Венеры согласно результатам Койпера, о которых говорилось выше, то период вращения Венеры следует считать близким к 9 суткам.

Полученное радиолокационным методом расстояние до Венеры в моменты ее наблюдений позволило значительно уточнить среднее расстояние от Земли до Солнца (или, что то же, большую полуось эллипса, по которому Земля движется вокруг Солнца), так называемую астрономическую единицу. Это название возникло не случайно, так как среднее расстояние от Земли до Солнца по существу является масштабом всех космических расстояний. Так, например, расстояния до звезд и галактик, в конечном итоге, определяются через эту единицу.

До последнего времени астрономы знали, чему равна астрономическая единица, с точностью вполне достаточной для подавляющего большинства астрономических задач. Однако для целей астронавтики такая точность является недостаточной. Какими же способами определялась раньше величина астрономической единицы? Многие из этих способов имеют уже почтенный возраст, исчисляемый столетиями. Заметим, что в большинстве случаев задача сводилась к определению расстояния до какой-нибудь планеты, а затем, путем вычислений, по хорошо известным законам небесной механики, определялась сама астрономическая единица.

Расстояние до планеты можно определить, если одновременно наблюдать ее положение на небе с двух разных пунктов на поверхности Земли. Зная с большой точностью величину радиуса Земли и координаты пунктов наблюдения, путем вычислений можно определить расстояние до планеты. Этот метод в принципе такой же, как и принятый в топографии при определении расстояния до недоступных предметов, только точность наблюдений и вычислений должна быть значительно более высокой. Наилучпше результаты дают наблюдения близких к Земле малых планет — астероидов.

Та же задача может быть решена, если планету наблюдать с одного пункта Земли по крайней мере три раза в разные моменты времени.

Для определения астрономической единицы пользовались также очень редкими явлениями прохождения Венеры через диск Солнца. С двух точек земной поверхности наблюдались с большой точностью моменты вступления планеты на солнечный диск. Хорошие результаты, например, были получены еще в XVIII и XIX веках при четырех прохождениях Венеры по диску Солнца.

Существуют и другие методы определения астрономической единицы. Можно, например, использовать явление аберрации света. По причине этого явления каждая звезда в течение года описывает на небе некоторый эллипс. Большие оси таких эллипсов у всех звезд одинаковы и равны очень малой величине (около 40 угловых секунд), в то время как малые оси у разных звезд сильно различаются в зависимости от положения звезды на небе.

Из теории аберрации известно, что величина большой оси описываемого звездой в течение года эллипса зависит только от скорости движения Земли на ее орбите. Зная скорость этого движения и продолжительность периода обращения Земли вокруг Солнца (год), можно найти искомое расстояние от Земли да Солнца.

Можно упомянуть и про другой способ, заключающийся в анализе небольших, имеющих годичную периодичность, изменений длин волн линий в спектрах звезд. Эти изменения вызваны явлением Допплера по причине орбитального движения Земли. Наконец, существуют способы, основанные на тонком анализе особенностей движения Луны.

Все эти методы дают довольно согласные между собой значения астрономической единицы. Среднее расстояние от Земли до Солнца, получаемое этими методами, оказывается около 149 500 000километров. Возможная ошибка в этом расстоянии, однако, достигает сотни тысяч километров.

Согласно советским радиолокационным наблюдениям величина астрономической единицы равна149 457 000 километрам, с возможной ошибкой меньше 5000 километров.

Конечно, при определении расстояния до звезд ошибка в значении астрономической единицы, даваемая старыми астрономическими наблюдениями, совершенно несущественна. Другие ошибки несравненно более важны, и неточность в принятом значении астрономической единицы в них как бы «тонет». Но совершенно другая обстановка возникает при расчетах траекторий межпланетных ракет. В этом случае неуверенность в знании астрономической единицы может привести к тому, что нельзя будет гарантировать попадание ракеты на планету. Неуверенность в знании астрономической единицы приводила к тому, что отклонение рассчитанной траектории от центра планеты могло достигать многих десятков тысяч километров, что, конечно, совершенно недопустимо.

Новое, весьма точное значение астрономической единицы, полученное радиолокационным методом, значительно улучшает надежность расчетов траекторий межпланетных ракет.

Радиолокация Венеры, которая привела к существенному уточнению значения астрономической единицы и впервые с надежностью определила основные характеристики вращения Венеры, является выдающимся достижением советской науки.

МЫ СЛУШАЕМ ГОЛОС ВСЕЛЕННОЙ

В. ГИНЗБУРГ, член-корреспондент Академии наук СССР

Неспециалисты вспоминают о космических лучах тогда, когда заходит речь об опасностях, поджидающих отважных астронавтов. Часто в популярных книжках пишут, что ими, этими «злыми духами» Вселенной, пронизаны «черные, холодные и мрачные» межзвездные пространства. Безусловно, космические лучи могут оказаться опасными для будущего космического путешественника. Но не потому с таким захватывающим интересом изучают их ученые всех стран мира. Космические лучи — это один из самых мощных способов познания Вселенной и ее законов. И кто знает, может быть, между космическими лучами и развитием звездных систем, а также развитием жизни на нашей планете существует гораздо более тесная связь, чем это принято считать.

Космические лучи, открытые еще в начале XX века, долгое время оставались научной загадкой. Вначале они служили, главным образом, первоклассной «природной лабораторией», где можно было наблюдать взаимодействие частиц при огромных энергиях. Именно в космических лучах были впервые обнаружены мезоны и целый ряд других неустойчивых частиц.

Сейчас, когда построены мощные ускорители, интерес к космическим лучам как к естественной лаборатории атомной физики несколько уменьшился. Запуск спутников Земли и серьезные успехи радиоастрономии делают вопрос о космических лучах одной из передовых научных проблем, но теперь уже — в астрофизическом аспекте.

Необходимо заметить, что те лучи, которые попадают на поверхность Земли, к нашим приборам, — это только «хвосты» космических лучей, их вторичные продукты, образовавшиеся при прохождении через толстый слой атмосферы. «Чистые», так называемые первичные лучи — это поток заряженных частиц большой энергии, приходящих на границу земной атмосферы из межзвездного пространства. До сравнительно недавнего времени сведения о первичных лучах даже у границ земной поверхности, не говоря уже о солнечной системе и межзвездной среде, полностью отсутствовали. Изучение первичного потока началось с помощью шаров-зондов. В последние же годы спутники и космические корабли в буквальном смысле слова открыли новые горизонты в исследовании первичных лучей.

Что ж такое космические лучи? Из чего они состоят?

Научные открытия последнего десятилетия позволяют уже с достаточной уверенностью говорить о химическом составе первичных космических лучей. Большую их часть составляют протоны ядра атомов водорода. Кроме них, в первичном потоке присутствуют также и более тяжелые частицы — ядра гелия, углерода, кислорода, кремния, железа и др. Важно, что космические лучи относительно богаты ядрами тяжелых элементов. Чрезвычайно редко встречаются в природе литий, бериллий и бор. В космических же лучах их сравнительно много. Очевидно, в межзвездном пространстве тяжелые ядра, летящие с большой скоростью, сталкиваются с атомами межзвездного газа, и литий, бериллий и бор — это осколки, результаты ядерных расщеплений.

Таким образом, уже химический состав космических лучей свидетельствует о том, что источники их излучения расположены где-то очень далеко: ведь космические лучи должны промчаться через огромные пространства, прежде чем в их составе образуются ядра упомянутых легких элементов. Ясно также, что в источниках космические лучи состоят в основном из тяжелых ядер.

Установлено, что число частиц в первичном космическом потоке резко уменьшается с ростом их энергии. Так, на квадратный метр частиц с энергией, превышающей миллиард электроновольт, падает около 5000 штук в секунду. А на один квадратный метр атмосферы частица с кинетической энергией в миллиард миллиардов электроновольт попадает примерно только раз в тридцать тысяч лет. На первый взгляд кажете я, что такое редкое событие наблюдать невозможно. Но дело в том, что даже одна частица огромной энергии, попадая в атмосферу, создает в ней целый «ливень» из заряженных частиц. Такие «широкие атмосферные ливни» достигают Земли, охватывая большие пространства. Если на площади в 10 квадратных километров расставить счетчики для регистрации «ливня», то их можно будет наблюдать каждый день. Как видите, даже чрезвычайная редкость появления частиц не мешает их изучению. А изучать их необходимо, так как неизвестно, когда физики научатся получать у себя в лаборатории частицы с такими гигантскими энергиями.

Какого же мнения придерживаются сейчас ученые в вопросе о происхождении космических лучей? До самого недавнего времени это был наиболее сложный вопрос. Представьте себе, что палеонтолог нашел косточку доисторического животного, и только по ней он должен восстановить его облик, определить, в какой период истории Земли оно появилось и когда вымерло. Приблизительно такая же задача стояла перед физиками: по ничтожному «хвостику» космических излучений, попавших к нам на Землю, определить их происхождение, историю движения, найти проделанный ими путь. Вопрос осложнялся тем, что космические лучи льются на нашу планету равномерно со всех сторон. Когда астроном наблюдает Сириус, он определенно знает, что видит свет от Сириуса, и только от него. А как нам, изучающим космические лучи, определить, откуда они приходят? Попадая в слабые магнитные поля, существующие в межзвездном пространстве, потоки частиц многократно отклоняются ими от своего первоначального направления. В результате потоки частиц из разных источников излучения полностью перемешиваются. Именно поэтому попытки разобраться в происхождении лучей многие годы оставались безуспешными, а подчас остроумные и оригинальные теории напоминали скорее гадание на кофейной гуще, чем серьезные научные гипотезы...

Это положение резко изменилось, когда около 10 лет назад выяснилась связь между космическими лучами и радиоволнами, приходящими к нам из Вселенной. До самого последнего времени происхождение этих радиоволн было неизвестно. И только совсем недавно получил всеобщее признание поразительный вывод советских ученых: мы слышим «голос» космических лучей! Вопрос о происхождении космических лучей перестал быть областью догадок и превратился в равноправную астрофизическую проблему, основанную на наблюдениях. Современные мощные радиотелескопы дали ученым возможность услышать «голос» Вселенной. Оказалось, что космос «говорит» на радиоволнах с длиной от нескольких миллиметров до сотен метров.

Чтобы понять это явление, возьмем такой пример. Если заставить-колебаться какой-либо предмет, он начинает излучать звуковые волны — вспомните камертон. Подобно этому, всякое колебание или просто ускоренное движение электрического заряда сопровождается излучением электромагнитных волн. Следует еще добавить, что в магнитных полях электрические заряды движутся по винтовой линии, испытывая ускорение. Теперь уже, быть может, легче себе представить, что электроны, входящие в состав космических лучей, проходя межзвездные магнитные поля, начинают излучать электромагнитные волны. Магнитные поля в галактиках таковы, что электроны с энергией в сотни миллионов электроновольт излучают в основном в диапазоне метровых радиоволн. Эти волны и принимаются радиотелескопами. Так удалось узнать, где во Вселенной много космических лучей, каково их количество, энергетический спектр.

Выяснилось, что космических лучей много во всей нашей Галактике, так же, как и в других звездных системах-галактиках, удаленных на сотни миллионов, подчас на миллиарды световых лет. Некоторые из них называются радиогалактиками, так как они излучают необычайно интенсивно. Пожалуй, наиболее интересна радиогалактика в созвездии Лебедь. Свет от нее идет к нам на Землю «всего» лишь 650 миллионов лет. Несмотря на такое гигантское расстояние, радиоизлучение этой галактики в метровом диапазоне по мощности сравнимо с солнечным! В видимых же лучах эту радиогалактику лишь с большим трудом удалось сфотографировать в самый сильный телескоп. Радиогалактика в Лебеде, привлекающая к себе внимание астрономов всего мира, по-видимому, представляет собой «взорвавшуюся» звездную систему. Представления о спокойной, мирной, сравнительно медленной эволюции галактики должны быть пересмотрены. «Взрыв», бурная эволюция галактики в созвездии Лебедь убеждают нас в этом.

При таком «взрыве», причина и природа которого еще не выяснены, образуется огромное количество космических лучей, которые и посылают к нам мощное радиоизлучение. Если не говорить об эволюции всей известной нам области Вселенной, то взрыв галактик является самым гигантским явлением, наблюдаемым в природе. Взрывы гораздо меньшего масштаба, но чудовищные по нашим земным мерилам, происходят со звездами.

Интересны взрывы сверхновых звезд, происходящие в нашей Галактике примерно раз в 50 лет. Сверхновые во много тысяч раз ярче так называемых новых звезд и в течение месяца-двух горят так ярко, что излучают в миллиарды раз больше света, чем наше Солнце. Оставшиеся после взрыва сверхновых звезд газовые оболочки видны на небе как небольшая туманность. Оболочки эти — источники сильнейшего радиоизлучения, создаваемого, несомненно, космическими лучами. Каковы процессы в оболочках сверхновых, приводящие к образованию космических лучей, как протекают эти процессы, чем объясняются?.. Вопросы эти увлекательны и мало изучены. Несомненно, однако, и это важно для нашей темы, что космические лучи при взрывах сверхновых звезд образуются в огромных количествах.

Через десятки тысяч лет после взрыва оболочка «расплывается» и космические лучи рассеиваются в межзвездной среде. Можно легко подсчитать среднее количество

Космических лучей, «вспрыскиваемых» в межзвездное пространство нашей Галактики. Вместе с тем в результате ядерных соударений частицы, входящие в состав космических лучей, постоянно теряют свою энергию. В результате устанавливается некоторое равновесие, так что количество космических лучей в нашей Галактике достаточно постоянно.

Сейчас уже настало время, когда мы можем изучать космические лучи на орбите Венеры. Более того, вероятно, недалек тот день, когда на космических ракетах мы будем изучать космическое излучение в районе орбит Марса, а может быть, и Юпитера.

Что же касается звезд... Даже ближайшая звезда находится от нас на расстоянии четырех световых лет. Это — 40 тысяч миллиардов километров. До Солнца же — «только» 150 миллионов километров. Космическая ракета, летящая со скоростью 10 километров в секунду, долетит до Солнца за полгода, а до ближайшей звезды — за 100 тысяч лет. Увеличение скорости ракеты в сто раз сократит это время до тысячи лет, но одновременно потребует увеличения веса топлива для разгона ракеты в 10 тысяч раз. Итак, даже для достижения ближайших звезд за тысячу лет ракетная техника должна совершить гигантский скачок — повысить энерговыделение в двигателях в 10 тысяч раз. Ясно поэтому, что в настоящее время не приходится в сколько-нибудь реалистическом плане думать о полетах даже к ближайшим звездам.

Но пусть те, кто мечтает завтра же полететь в глубь космоса, не огорчаются. Прежде чем проложить путь к звездам, человечеству предстоит разрешить массу интереснейших, увлекательных и нелегких научных проблем — в том числе проблему детального изучения и «освоения» солнечной системы.

ОРИЕНТАЦИЯ В КОСМИЧЕСКОМ ПРОСТРАНСТВЕ

В. ПЕТРОВ, кандидат технических наук

Много научных задач впервые решалось с помощью советских искусственных спутников Земли. Среди них важное место занимает исследование условий полета в космосе, в частности, ориентации спутника в пространстве. И это понятно. Ведь спутник, как только он отделится от ракеты-носителя, сразу же превращается в свободно летящее тело, которое в полете может как угодно вращаться относительно своего центра инерции.

Чтобы этого не произошло, оси искусственного спутника Земли (ИСЗ) следует ориентировать в каком-то определенном направлении. Но решение подобной задачи оказывается чрезвычайно сложным. Тем не менее советские ученые решили успешно и эту проблему. На третьей советской космической ракете впервые была осуществлена система ориентации, позволившая ориентировать ракету и ее фотоаппаратуру во время фотографирования невидимой стороны Луны. Еще более совершенная система ориентации была применена на втором, четвертом и пятом космических кораблях, впервые в истории человечества успешно вернувшихся в намеченное географическое место на территории нашей Родины.

Феноменальный запуск советской автоматической станции к Венере, произведенный 12 февраля 1961 года с борта тяжелого искусственного спутника Земли, и успешное возвращение на Землю советских космических кораблей свидетельствуют о том, что советские ракетостроители блестяще решили труднейшие проблемы создания самых совершенных в мире систем ориентации космических летательных аппаратов.

Но прежде чем рассказать о том, как можно ориентировать спутник или ракету в свободном полете и для чего вообще нужна ориентация, мы кратко познакомим читателя с проблемой полета свободного тела.

Свободное тело в полете

Свободным телом можно назвать такой предмет, который, образно выражаясь, может как угодно кувыркаться и перемещаться в пространстве. Если же подойти к определению более точно, то это предмет любой формы, который под влиянием начальных или внешних возмущений может свободно перемещаться в пространстве и вращаться вокруг своих осей.

Как же предотвратить эти вращения, как ориентировать свободное тело в пространстве? Для этого надо прежде всего выбрать соответствующие неподвижные ориентиры. Опираясь на них можно отсчитывать, или, как говорят, определять, величину углового отклонения оси свободного тела относительно выбранного опорного тела. Подобными ориентирами могут быть, например, небесные светила: Солнце, Луна, яркие звезды, а также Земля, земное магнитное поле и т. п.

Угловая ориентация свободного тела в пространстве бывает полной и частичной. В первом случае предотвращается вращение свободного тела относительно всех трех его осей. Ориентация же его главной оси относительно какого-либо опорного тела в мировом пространстве называется частичной. Под главной осью свободного тела подразумевается прямая, проходящая через его центр инерции и направленная на опорное тело.

Так, например, главйой осью первой автоматической межпланетной станции являлась ось, проходящая через ее центр инерции и чувствительную фотоследящую головку, располагавшуюся в центре верхнего днища автоматической космической станции. Оптическая ось объективов фотоаппаратов, установленных на космической станции, была параллельна главной оси станции.

Читателю нетрудно представить себе свободно летящее тело. Им может быть снаряд после выхода его из канала ствола орудия; самолет или ракета, летящие с выключенным двигатёлем; искусственный спутник Земли после выхода его на орбиту или высотный контейнер (после отделения его от ракеты-носителя), запускаемый в верхние слои атмосферы для геофизических наблюдений.

Как же происходит полет свободного тела? Если у тела нет начальной скорости и на него действует переменная сила сопротивления воздуха (или воды), то оно совершает свободное падение, направленное к центру Земли. Иначе говоря, такое падение обусловлено земным притяжением.

Если же свободное тело падает с небольшой по сравнению с радиусом Земли высоты, то движение его под действием постоянной силы тяжести и переменной силы сопротивления воздуха будет происходить по вертикальной прямой, соединяющей начальное положение тела с центром Земли.

В таких условиях как раз и находится сферический контейнер с приборами, забрасываемый геофизической ракетой в верхние слои атмосферы. В начале своего падения, в безвоздушном пространстве и затем при входе в плотные слои атмосферы он испытывает различное ускорение.

Полет советской межпланетной автоматической станции (MAC) вокруг Земли также был свободным. Он определялся в конечном счете параметрами движения в конце участка разгона последней ступени ракеты-носителя. Поэтому точность удержания во время полета станции на заранее рассчитанной траектории была возможна, как мы уже знаем, лишь при совершенной системе управления ракетойносителем.

Схема движения MAC под влиянием одновременно действующих на нее сил тяготения Земли, Луны и Солнца была весьма сложна. Таким образом свободное тело может испытывать в полете различные возмущения или толчки, которые будут влиять на условия его передвижения. К числу их можно отнести начальные возмущения (угловые скорости), получаемые при отделении, например, сферического контейнера или искусственного спутника Земли от ракеты-носителя; внешние импульсные возмущения: удары метеоритов, вращающие моменты от трения корпуса спутника о более плотные слои атмосферы и другие. Только имея точные данные о таких возмущениях, то есть зная, с какой скоростью будет вращаться ИСЗ или другой космический летательный аппарат относительно своего центра массы в пространстве под влиянием указанных причин, можно создавать надежную и экономичную систему его ориентации.

На третьем советском спутнике, был установлен магнитометр, измерительный датчик которого автоматически ориентировался, используя для этого влияние земного магнитного поля. Два других датчика позволяли определить положение корпуса спутника относительно земного поля и скорость вращения ИСЗ вокруг собственных осей. Эти весьма важные данные позволили построить затем ориентируемые спутники, ориентируемые космические корабли и ориентируемые межпланетные станции.

Для чего нужна ориентация?

Ответить на этот вопрос нетрудно. Угловая ориентация космических ракет, искусственных спутников Земли и геофизических контейнеров позволяет более полно и эффективно решить целый ряд научных и практических задач по исследованию Солнца, верхних слоев атмосферы, электрических полей, микрометеоритов, магнитного поля Земли. Ориентация необходима для фотографирования земной и лунной поверхности, для безопасных полетов межпланетных кораблей и возвращения их на землю, для будущей всемирной связи и всемирного телевизионного вещания и для многих других целей.

Известно, наиример, какое важное место среди этих проблем занимают исследования Солнца с помощью искусственных спутников Земли. Для решения такой задачи одна из осей ИСЗ должна быть постоянно ориентирована на Солнце. Например, при изучении рентгеновского участка солнечного спектра соответствующие приборы, размещенные на искусственном спутнике, должны быть ориентированы на Солнце в течение определенного времени с различной степенью точности. Если не ограничиваться получением некоторых интегральных характеристик этого излучения, а фотографировать весь солнечный спектр, то требуемая точность ориентировки ИСЗ на Солнце резко возрастает. Такая же высокая точность ориентировки приборов на Солнце нужна при фотографировании солнечной короны и зодиакального света. В этом случае необходима полная ориентация спутника: одна его ось должна точно смотреть на Солнце, в то время как другая ось должна быть постоянно направлена к центру Земли. Если бы мы могли знать положение этой оси по отношению к земной поверхности, то появилась бы возможность с борта спутника фотографировать облака и расположенные на нашей планете объекты.

Таким образом, не только корпус спутника, но и почти все установленные на нем приборы для научных наблюдений требуют для своей работы ориентировки в течение длительного времени относительно различных опорных тел, расположенных в мировом пространстве. Относится это и к солнечной батарее, которая для превращения солнечной энергии в электрическую должна быть ориентирована в направлении на Солнце во время движения космического летательного аппарата.

Как известно, источником энергии на ИСЗ и космических кораблях могут служить специальные малогабаритные аккумуляторы. Однако незначительная их емкость сильно ограничивает срок «активной жизни» спутника. Это подтвердил, в частности, опыт первых наших, а затем американских ИСЗ. Поэтому уже на третьем спутнике в качестве источника питания начали применяться солнечные батареи, собранные из кремниевых фотоэлементов. Применение солнечных батарей, как известно, обеспечило рекордно длительную работу радиостанции «Маяк», установленной на борту третьего советского спутника.

Способы угловой ориентации в условиях невесомости и безвоздушного пространства

Когда самолет или ракета летят в атмосфере, то их положение в пространстве можно, как известно, изменить с помощью руля, элеронов или интерцепторов, которые управляются от автопилотов с применением гироскопических узлов и различных маятниковых приборов.

В условиях же полета свободного тела такие приборы не будут действовать, так как аэродинамические рули в безвоздушном пространстве беспомощны, а приборы, действие которых основано на использовании маятникового эффекта (то есть силы тяжести), в условиях невесомости также бесполезны. Как же в таком случае быть?

Ученым удалось найти способ изменения положения осей свободного тела относительно Земли, Солнца, Луны звезд и других объектов.

Угловая ориентация свободного тела может быть осуществлена прежде всего о помощью маленьких реактивных двигателей, у которых газовые струи направлены в разные стороны по отношению к его осям. Подобный способ уже давно применяется, в частности, для стабилизации геофизической ракеты, летящей в стратосфере.

Второй способ космической ориентации свободного тела осуществляется с помощью вращающихся маховиков или, как говорят специалисты, с помощью так называемых инерционных масс, располагаемых на его осях. Его предложил еще К. Э. Циолковский. Способ основан на одном из классических законов механики, открытых около двухсот лет тому назад Ньютоном. Это широко известный в механике «закон сохранения главного момента количества движения».

Для ориентировки одной из трех осей спутника необходимо поместить в его корпусе на двух жестко связанных с ним осях по маховичку, которые будут вращаться двигателями относительно этих осей с определенными угловыми скоростями. Их вращение при этом должно быть направлено в сторону движения корпуса спутника, и в этом случае вращение ИСЗ вокруг этих двух его осей прекратится. Маховички, правда, будут продолжать вращаться внутри корпуса спутника с нарастающими угловыми скоростями; величина их будет тем больше, чем быстрее вначале вращался корпус спутника вокруг этих двух осей, то есть чем больше была его начальная угловая скорость. Маховички согласно указанному закону, так сказать, «забирают» в себя ту угловую скорость, которую имел корпус спутника, например, при отделении его от ракеты-носителя. Если же ИСЗ не имел начальной скорости вращения, а его главная ось была лишь отклонена на какой-то угол от направления на ориентир, то после того как маховички «отработают» этот угол, они уже дальше вращаться не будут.

Таким способом можно остановить в безвоздушном пространстве вращение корпуса спутника, если оно имеется, и повернуть ИСЗ на желаемый угол, то есть осуществить угловую его ориентацию относительно Земли, Солнца, магнитного поля Земли и т. п.

Очевидно, что реальная система стабилизации космических летательных аппаратов будет сочетать в себе два вышеуказанных способа. С одной стороны, может быть использована система реактивных сопел, способных устранять большие возмущающие моменты, то есть большие угловые скорости вращения космических летательных аппаратов вокруг его осей, а с другой стороны, вращающиеся инерционные массы, с помощью которых удастся осуществить весьма точную стабилизацию.

Автоматы ориентируют спутник

Сигнал, который заставляет маховички или реактивные микродвигатели (то есть стабилизирующие элементы) вращаться в определенную сторону с определенной скоростью, создается системой астроориентировки. Система астроориентировки космических летательных аппаратов состоит из сложного комплекса гироскопических и астрономических узлов. Подобные системы, называемые астронавигационными, применяются уже давно в ракетах, полет которых по определенному заданному курсу осуществляется при помощи различных ориентиров, например, небесных светил. За положением светил зорко наблюдают «глаза» ракеты — астрономические приборы. Стоит ракете под влиянием какой-либо причины сбиться с курса, как в тот же момент это отклонение с помощью электронных приборов автоматически вычисляется и к механизмам, которые управляют газовыми рулями, поступает сигнал, заставляющий космический летательный аппарат возвратиться на прежний курс. Таким образом, космический летательный аппарат с астронавигационной системой управления сам прокладывает и рассчитывает свой курс, ориентируясь по заранее выбранным звездам.

А как же спутник? Как и ракета, он должен сохранять строго определенное положение в полете, автоматически определять свое положение в пространстве и по отношению к географическим координатам Земли. Для этой цели будет служить сложная автоматическая фотоследящая система ориентации спутника за выбранными звездами-ориентирами. Оптическая ее часть предназначена автоматически следить за этими звездами, непрерывно определяя местоположение спутника относительно земных географических координат. С помощью этой системы будут вырабатываться также сигналы, управляющие вращением маховичков, а через них и поворотом корпуса спутника относительно жестко связанных с ним осей.

Питание же для электродвигателей, которые вращают маховички внутри корпуса спутника, поступает от солнечной или аккумуляторной батареи в зависимости от того, падает ли в данном случае на него солнечный свет или он экранирован Землей.

Регулируемой величиной в автоматической ориентации космического летательного аппарата, например, на Солнце, является отклонение оси от направления на Солнце. Очевидно, что в качестве чувствительного к этому отклонению элемента можно взять фотоэлектрический элемент, который вырабатывает управляющий сигнал, пропорциональный этому отклонению.

Для решения задачи ориентации космического летательного аппарата на Солнце, как было выше выяснено, надо осуществить вращение ИСЗ вокруг двух его осей.

Конструктивно эту задачу можно решить следующим образом. С помощью чувствительного блока фотоследящей системы определяется угол рассогласования ориентируемой оси с направлением на Солнце. При этом чувствительный блок вырабатывает управляющий сигнал, который усиливается и подается на стабилизирующие элементы (то есть маховички). Последние так изменяют момент количества движения системы, чтобы ориентируемая ось снова совпадала с направлением на Солнце. В качестве чувствительного блока системы ориентации в зависимости от выбранного типа ориентира может быть применен магниточувствительный датчик, или фотоэлектрический блок, или, наконец, гироскоп, который не нуждается в пространственном ориентире, ибо его ось всегда старается сохранить неизменным заданное относительномирового пространства положение. Однако ось любого гироскопа вследствиетрения со временем уходит от заданного направления. Кроме того, значительный вес, размеры и ограниченность запаса источников питания делают иногда нерентабельным его использование на ИСЗ. Правда, для временной ориентации гироскоп может быть применен и на спутнике, например, для удержания какой-либо оси спутника в направлении на Солнце или звезды при временной их потере в процессе работы фотоследящей системы (например, при временном экранировании спутника Землей).

Самым перспективным является применение на ИСЗ фотоэлектрического элемента, так как, имея малые габариты и вес, что весьма существенно для условий спутника, он может обеспечить высокую точность ориентации.

Как мы уже отмечали, на третьем ИСЗ был установлен магнитометр, измерительный датчик которого автоматически ориентировался по направлению полного вектора земного магнитного поля. Два потенциометрических датчика, помещенных на узле ориентации, позволяли определить положение корпуса спутника относительно земного поля и скорость вращения ИСЗ вокруг собственных осей.

Эти важные данные давали возможность оценить начальные угловые скорости ИСЗ и, учитывая их, построить любой полностью ориентируемый спутник, а также решить проблему его возращения на Землю.

Угловая ориентация искусственных спутников Земли имеет, таким образом, большое значение для создания будущих более совершенных, возвращаемых на Землю спутников и межпланетных кораблей.

Ориентация на Солнце и Луну

А как же происходила ориентация межпланетной автоматической станции? Как и ракета, станция должна была иметь определенное положение в полете, автоматически определить свое место в пространстве по отношению к Солнцу и Луне. Все это осуществлялось сложной автоматической фотоследящей системой ориентации, состоящей из солнечных датчиков, располагаемых на верхнем и нижнем днищах, логических электронных устройств и управляемых двигателей. Последние ориентировали корпус автоматической межпланетной станции так, чтобы фотоаппараты, расположенные вдоль одной из ее осей, неизменно смотрели на невидимую с Земли сторону Луны.

Система ориентации АМС была включена после сближения с Луной в тот момент, когда АМС находилась в заданном положении относительно Луны и Солнца, обеспечивающем необходимые условия для фотографирования. Расстояние до Луны при этом составляло в соответствии с расчетом 60-70 тысяч километров.

В начале работы система ориентации прежде всего прекратила произвольное вращение автоматической межпланетной станции вокруг ее центра тяжести, возникшее в момент отделения от последней ступени ракеты-носителя.

Автоматическая межпланетная станция освещалась тремя яркими небесными светилами: Солнцем, Луной и Землей. Траектория ее движения была выбрана таким образом, чтобы в момент съемки станция находилась приблизительно на прямой, соединяющей Солнце и Луну. При этом наша планета должна быть в стороне от направления Солнце — Луна, чтобы не произошло ориентации на Землю вместо Луны.

Указанное положение межпланетной станции относительно небесных светил в момент начала ориентации позволило использовать такой прием: первоначально ее нижнее днище с помошью солнечных датчиков направлялось на Солнце; этим самым оптические оси фотоаппаратов направлялись в противоположную сторону — на Луну. Затем оптическое устройство, в поле зрения которого Земля и Солнце уже не могли появиться, отключало ориентацию на Луну.

После того, как было произведено экспонирование всех кадров, система ориентации выключалась. В момент выключения системы она сообщила автоматической межпланетной станции упорядоченное вращение с определенной угловой скоростью. Величина ее была выбрана так, чтобы, с одной стороны, улучшить тепловой режим, а с другой — исключить влияние вращения на работу научной аппаратуры.

Успешно проведенный советскими учеными невиданный в истории человечества эксперимент, таким образом, позволил решить целый ряд сложных задач: успешно обеспечить точный полет космического аппарата по сложной, заранее рассчитанной орбите, ориентировать станцию в космическом пространстве, осуществить радиотелемеханическую связь и передачу телевизионных изображений на огромных расстояниях.

НА ДАЛЕКОЙ ПЛАНЕТЕ ВЕНЕРА

И. ШКЛОВСКИЙ, профессор

Как многим хорошо известно, Венера покрыта густым слоем облаков. Пелена облаков там настолько плотная, что поверхность планеты совершенно под ней невидна. По этой причине астрономы почти ничего не знали о физических условиях, господствующих на поверхности Венеры. Неизвестен и до сих пор даже перрюд ее вращения вокруг своей оси. Достаточно хорошо мы знали только ее массу, размеры и характеристики ее движения вокруг Солнца (среднее расстояние от Солнца, период обращения).

Только самые верхние слои атмосферы Венеры (открытой ровно двести лет тому назад великим Ломоносовым) могли изучаться методами астрофизики. Химический состав «верхушки» венерианской атмосферы оказался сильно отличающимся от земной. Несколько лет тому назад советский астроном Козырев наблюдал свечение ночного неба Венеры. Это свечение оказалось довольно ярким. Применявшийся Н. А. Козыревым спектроскопический метод позволил выявить в этом свечении яркие полосы, по-видимому, принадлежащие молекулам азота. Таким образом, было доказано, что в атмосфере Венеры имеется азот. Это вполне естественно. В земной атмосфере азот имеет вторичное происхождение. Это означает, что он не присутствовал в атмосфере нашей планеты «изначала», а постепенно «выпаривался» из твердой коры. То же самое, по-видимому, имело место и на Венере.

Только совсем недавно в спектре атмосферы Венеры была обнаружена слабая полоса водяных паров. Совершенно ясно, что обнаружение водяных паров в верхних слоях атмосферы Венеры имеет принципиальное значение.

Все попытки обнаружить в атмосфере Венеры кислород не увенчались успехом. Отсюда можно сделать вывод, что если он там и есть, то его в тысячу раз меньше, чем в земной атмосфере.

К перечисленным выше довольно скудным сведениям о Венере следует прибавить еще данные, касающиеся измерения температуры видимого с Земли облачного слоя.

Вот, собственно, все, что было известно достоверного.

Существенное изменение произошло около двух лет тому назад, когда на помощь «оптической» астрономии пришла радиоастрономия. При помощи больших радиотелескопов и весьма чувствительной приемной аппаратуры советские и американские радиоастрономы смогли измерить поток радиоизлучения от Венеры на волнах в диапазоне 8 миллиметров, 3 и 10 сантиметров. У нас в стране наблюдения проводились А. Д. Кузьминым и А. Е. Саломоновичем на 22-метровом радиотелескопе физического института Академии наук СССР.

Замечательным свойством радиоволн является их способность свободно проходить сквозь густые облака. Следовательно, источником радиоизлучения Венеры является ее поверхность, а не облачный слой.

Всякое нагретое тело, как известно, излучает широкий спектр электромагнитных волн, в том числе и радиоволны. Поэтому, зная поток радиоизлучения от Венеры, а также расстояние до нее и размеры планеты, можно по известным простым формулам физики определить температуру излучающей поверхности. Результаты оказались поразительными. По наблюдениям на волнах 3 и 10 сантиметров температура в некоторых районах поверхности Венеры оказалась около 300 градусов Цельсия!

Наблюдения советских ученых на волне 8 миллиметров дали несколько более низкое значение температуры, что, по-видимому, объясняется тем, что радиоволны с длиной 8 миллиметров частично поглощаются атмосферой Венеры.

Заметим еще, что эта температура есть некоторое среднее между «дневным» и «ночным» значениями, так как освещенная Солнцем часть планеты видна в виде узкого яркого серпа. Кузьмин и Саломонович нашли систематическое увеличение средней температуры по мере того, как изменяется освещенная часть планеты в результате относительного орбитального движения Венеры и Земли. Поэтому имеются все основания полагать, что «днем» на поверхности Венеры температура еще выше.

В чем причина столь высокой температуры поверхности Венеры? Естественно, что полная теория этого явления пока еще не разработана — слишком мало времени прошло после описанных выше наблюдений.

Всем хорошо известно, почему под стеклом парников зимой вызревают овощи. Солнечные лучи свободно проникают через стекло парников и нагревают там их внутреннюю поверхность. Нагретая поверхность испускает невидимые инфракрасные лучи, которые стеклом не пропускаются. Инфракрасные тепловые лучи оказываются как бы в ловушке, и это вызывает нагревание парника.

Совершенно так же обстоит дело й на Земле. Только роль стекла играет наша атмосфера.

Атмосфера Венеры представляет собой значительно более совершенный парник, чем земная. Именно поэтому температура поверхности планеты столь высока, хотя на верхушке облачного слоя господствует сорокаградусный мороз.

На основании всех имеющихся радиоастрономических и оптических наблюдений мы можем сейчас построить весьма предварительную модель атмосферы Венеры. Прежде всего возникает вопрос, какие молекулы в ее атмосфере вызывают «парниковый эффект». Очевидно, это могут быть только такие молекулы, которые сильно поглощают во всей инфракрасной части спектра. Оказывается, что только молекулы водяных паров могут дать такое поглощение. Причем для этого их нужно совсем немного — всего несколько граммов над каждым квадратным сантиметром поверхности планеты. Это лишь в несколько раз превышает среднее содержание водяных паров в земной атмосфере. Основная часть атмосферы Венеры ниже облачного слоя, как показывают расчеты, должна состоять из углекислоты. Атмосферное давление на поверхности Венеры приблизительно в пять раз больше, чем на поверхности Земли. Как видим, атмосфера Венеры достаточно плотная. Кроме углекислоты, в ее атмосфере должен быть еще молекулярный азот. Его количество, как можно полагать, примерно такое же, как и в земной атмосфере.

По-видимому, Венера вращается вокруг своей оси довольно медленно. Это следует из наблюдаемого теплового режима планеты.

При давлении около 5 атмосфер и температуре плюс 300 градусов или даже более высокой, не может быть и речи о том, что на поверхности планеты есть моря.

Какой же мрачный это мир! Раскаленные скалы, полное отсутствие водоемов, углекислая плотная атмосфера и пелена облаков, закрывающая все небо. Сквозь нее не видно ни солнца, ни звезд.

Как непохожи эти две соседние планеты — Земля и Венера.И немалую роль в судьбах планет-сестер оказало различие в расстояниях их от Солнца. На этом примере мы видим, что неприятная близость к Солнцу для развития жизни несравненно более губительна, чем некоторое отдаление.

Удивляет малое содержание водяных паров в атмосфере Венеры. Похоже на то, что по каким-то причинам первоначальный материал, из которого образовалась Венера, был в десятки тысяч раз беднее водяными парами, чем тот материал, из которого образовалась Земля. Что же это за причины? Здесь уже, однако, мы вступаем в область космогонии. Поэтому в настоящей статье об этом мы говорить не будем.

Разумеется, обрисованная выше картина физических условий на Венере является весьма предварительной и в дальнейшем будет уточняться. Важнейшую роль в уточнении наших представлений о природе Венеры должны играть исследования с помощью автоматических межпланетных станций. Первая такая станция успешно направлена в сторону этой планеты. Нет слов, чтобы выразить свое восхищение перед этим новым триумфом советской науки и техники. И еще следует помнить, что один такой полет не решит всех задач, стоящих перед наукой. За первым полетом по «проторенной» межпланетной трассе последуют другие. Научная аппаратура будет все более совершенствоваться. И недалеко уже то время, когда Венера раскроет нам свои тайны.

ЧЕЛОВЕК И КОСМОС

Н. СИСАКЯН, академик

Советская наука и техника не перестают изумлять человечество все новыми и новыми блестящими успехами в исследовании космического пространства. Пятый корабль-спутник внушительного веса 4695 килограммов, несший в своей кабинечетвероногого космонавта — собаку Звездочку и другие биологические объекты, 25 марта поднялся с территории Советского Союза и в тот же день по команде с Земли совершил посадку в заданном районе.

К полетам советских космических кораблей, к выдающимся результатам, полученным нашими учеными при исследовании Вселенной, приковано внимание всего мира. Этот интерес советской и мировой общественности обусловлен прежде всего тем, что каждый такой полет обогащает науку новыми важными фактами о закономерностях действия условий космического пространства на живые существа, дает ценные сведения о работе множества сложнейшей исследовательской аппаратуры, автоматических устройств и оборудования корабля. Накопляются все новые сведения о неизведанных глубинах космоса. Наконец, мы получаем ясное представление о нарастающей мощности наших ракетных систем, с неизменной точностью доставляющих в космические просторы все более и более тяжелые корабли.

Осуществленные за последнее время полеты различных живых существ и благополучное возвращение их на Землю имеют еще и другое, весьма важное, фундаментальное значение. С каждым таким полетом приближается тот момент, когда пассажиром космического корабля впервые станет человек. Это будет новой исторической вехой в развитии науки.

Успешные запуски космических кораблей продемонстрировали всему миру исключительные возможности советской науки и техники. Получен огромный экспериментальный материал, который свидетельствует о полной возможности космического полета человека уже в настоящее время. Но высокий гуманизм советской науки, сознание величайшей ответственности за судьбу каждого человека делает необходимым проведение серии экспериментальных запусков космических кораблей-спутников, чтобы быть совершенно уверенным в безопасном полете и благополучном возвращении на Землю первого космонавта.

При оценке возможности космического полета человека необходимо иметь в виду две стороны этого вопроса — техническую и биологическую.

С точки зрения технических возможностей полет человека может быть осуществлен уже сегодня, а точнее — мог быть осуществлен еще несколько месяцев назад. Отметим, что вес второго космического корабля-спутника, на котором совершили свой полет и благополучно возвратились многочисленные живые организмы, от самых простых до самых сложных, составлял 4,6 тонны. Надо полагать, что в такой огромный корабль можно было бы без особых затруднений поместить и человека, вес которого составил бы меньше двух процентов от веса корабля-спутника. Следовательно, с технической стороны космический полет человека мог быть осуществлен уже в августе прошлого года при запуске второго космического корабля.

Однако для этого необходимо решить множество чрезвычайно сложных биологических задач. Подготовка и осуществление полетов различных живых организмов на космических кораблях и искусственных спутниках Земли, начиная от пионера космических полетов — собаки Лайки, представляет собой непрерывную оерию биологических исследований, направленных на разрешение именно таких задач.

Проведенные в нашей стране многочисленные вертикальные подъемы животных на ракетах позволили накопить обширный экспериментальный материал о пребывании животных организмов в условиях, близких к космическому полету. Животные проходили при этом ряд испытаний и благополучно возвращались на Землю. Но вертикальные высотные подъемы, так же как и полеты по баллистической траектории, не являются полетами космическими. Им не присущи многие факторы, свойственные лишь космическим полетам. Изучить эти факторы и их влияние на живые организмы можно только при полетах на искусственных спутниках Земли и космических кораблях.

Но для этого необходимо было прежде всего разработать методы и средства обеспечения нормальных жизненных условий для обитателей космических кораблей (сохранение определенного состава атмосферы корабля, ее давления, температуры, обеспечения питания животных, создание санитарных условий). И вот последовала серия замечательных биологических экспериментов на космических кораблях-спутниках и на высотных ракетах. Они значительно обогатили наши знания о влиянии на живые организмы условий полета на ракетных аппаратах и позволили совершить новый важный шаг на пути подготовки полета человека в космос. Широкий общебиологический подход к решению поставленных научных проблем, применение биотелеметрии и большого числа других новых методов исследования, использование разнообразных биологических объектов — все это позволило получить обширный и исключительно ценный научный материал, богатый новыми интересными фактами и выводами.

Опыты на космических кораблях строились с учетом наибольшего охвата различных биохимических систем и живых существ. Для этих целей использовались ферменты, фаги, вирусы, препараты клеточных ядер и цитоплазмы клеток, бактериальные культуры, ткани человека и кролика, грибки (продуценты антибиотиков), зеленые водоросли, семена высших растений, собаки, мыши, крысы, морские свинки и некоторые другие организмы. Программа включала большое число биохимических, микробиологических, иммунологических, цитологических, генетических и физиологических исследований.

Благодаря применению радиотелеметрических и телевизионных методов получена полная и ценная научная информация о том, какие происходили изменения основных физиологических функций организмов и как вели себя подопытные животные на различных участках полета.

Как известно, собаки и другие биологические объекты, которые направлялись в космические полеты, довольно нетребовательны к внешним условиям и могут без нарушения физиологических функций переносить значительные колебания температуры, влажности и давления воздуха, а также изменения содержания кислорода в нем. Тем не менее при подготовке космических полетов ставилась задача максимально снизить допустимые колебания этих величин с тем, чтобы создать наиболее благоприятные условия для существования живых организмов в кабине корабля. Дело в том, что существенные отклонения этих величин от нормальных пределов поставили бы животных в условия дополнительной физиологической нагрузки и увеличили бы трудности их космического полета.

Советские ученые добились обеспечения необходимых условий среды в обитаемой части космического корабля, а также получения информации об изменениях этих условий во время полета. Так, на протяжении всего полета второго космического корабля в кабине сохранялось нормальное давление воздуха с содержанием кислорода от 21 до 24 процентов, влажности — от 37 до 40 процентов, температуры — от +17 до +20 градусов.

Конечно, столь узкие пределы колебаний основных параметров не нужны для животных. Однако, имея в виду дальнейшее развитие космических полетов, в этих опытах с самого начала ставилась задача создать условия, наиболее благоприятные для организма человека.

С первых же секунд полета на космическом корабле организм животного подвергается воздействию ряда факторов, большинство из которых пока невозможна воспроизводить в наземных и лабораторных экспериментах и исследовать которые можно только в условиях реального полета.

При выведении корабля на орбиту основными воздействующими факторами являются перегрузки, связанные с резким увеличением скорости полета в этот период, вибрация и шум.

После выхода на орбиту перегрузки сменяются состоянием невесомости. Она длится в течение всего орбитального полета и переходит в перегрузку торможения при входе корабля в плотные слои атмосферы.

Наконец, в течение всего полета по орбите организм животных подвергается воздействию космического излучения, биологическое действие которого требуег тщательного и систематического исследования.

Начало изучения всего этого комплекса проблем, составляющих основное содержание новой отрасли науки — космической биологии, было положено полетом второго советского искусственного спутника Земли, на борту которого находилась собака Лайка. Полет Лайки показал, что отпадает основное опасение, связанное с возможностью длительного существования высокоорганизованных животных в состоянии невесомости.

В дальнейшем наши ученые получили возможность использовать тяжелые космические корабли для всестороннего комплексного исследования влияния факторов космическаго полета на живые организмы.

Значительная часть этой программы была осуществлена при полете второга космического корабля, несшего на борту двух собак — Белку и Стрелку, а также много других биологических объектов. В этом полете впервые в истории живые существа, совершившие суточный полет по орбите искусственного спутника Земли, были благополучно возвращены на Землю.

Радиотелеметрическая и телевизионная информация с борта корабля передавалась в течение всего полета. Она свидетельствовала о том, что животные вполне благополучно перенесли период воздействия вибрации и перегрузок на активном участке полета и переход к состоянию невесомости. Уже примерно через полтора часа после выхода корабля на орбиту искусственного спутника основные показатели физиологического состояния животных (частота сердечных сокращений, дыхание,, кровяное давление) оказались близки к исходным (до полета). Это свидетельствовало о достаточно быстрой присцособляемости животных к полету в состоянии невесомости. Дальнейшее наблюдение за состоянием животных также не показало каких-либо отклонений от физиологических норм.

Телеметрические измерения и данные наблюдений над животными тотчас же после приземления показали, что трудности, связанные с вхождением корабля в плотные слои атмосферы, и приземление контейнера с животными также были успешно преодолены. Этот факт свидетельствует о том, что разработанные отечественной наукой и техникой методы и средства обеспечивают поддержание необходимых условий жизнедеятельности организма в длительном полете и благополучное возвращение их на Землю.

Научное значение этого эксперимента заключается не только в той объективной информации, которая была получена непосредственно с борта корабля. Широкая программа биологического эксперимента в этом полете, как и в полете четвертого и пятого космических кораблей, дала возможность получить большой материал, позволяющий составить представление о более или менее отдаленных последствиях космического полета живых существ. Эта сторона вопроса имеет огромное значение для подготовки космических полетов человека.

На нынешнем этапе развития исследований в области космической биологии даже небольшой факт может иметь важное научное значение. 30 ноября прошлого года в жизни известного теперь четвероногого космонавта Стрелки произошло важное событие — она принесла шестерых щенят, которые в настоящее время благополучно развиваются и растут. Стрелка успешно справилась с воспитанием своего многочисленного потомства, проявив при этом все свойственные этому периоду особенности материнского поведения и рефлексы. 4

Для науки это обстоятельство представляется исключительно важным, так как является прямым доказательством того, что воздействие комплекса весьма сложных факторов космического полета на организм животного не обнаруживает неблагоприятных последствий при столь отдаленном наблюдении и особенно в отношении той функции, которая, как известно, является наиболее чувствительной, ранимой под влиянием космического излучения. Разумеется, этот вывод относится только к конкретной длительности совершенного полета и к определенной орбите, тем не менее с учетом даже этих обстоятельств он является фундаментальным вкладом в молодую еще науку — космическую биологию.

В настоящее время не все наблюдения над биологическими объектами после их космического полета могут считаться законченными, однако уже имеющиеся данные показывают, что влияние факторов полета может быть различным по своему направлению и биологическому значению.

Пожалуй, основное значение имеют многочисленные и разнообразные данные, свидетельствующие в целом о том, что условия полета на космических кораблях по круговой орбите, расположенной ниже околоземных радиационных поясов/не отражаются существенным образом на жизнедеятельности организмов и не вызывают каких-либо стойких и значительных расстройств их основных физиологических функций.

Интересно отметить, что сухие семена некоторых растений (например, лука и нигеллы), посеянные после суточного полета на втором космическом кораблеспутнике, проросли значительно быстрее контрольных. У проросших семян процессы клеточного деления и роста после полета протекали значительно быстрее в сравнении с контрольными. Наибольшее ускорение процессов роста наблюдалось у некоторых лучистых грибков, интересующих нас в связи с тем, что они продуцируют широко известные лечебные вещества — антибиотики. Наблюдение этого рода, по-видимому, укладывается в рамки понятия о радиостимуляции, достаточно разработанного в лабораторных экспериментах, особенно последних лет.

Однако при исследовании роста культуры радиочувствительного штамма лучистого грибка (8594) его жизнеспособность (по количеству выживших спор и развившихся колоний) оказалась сниженной в 12 раз по сравнению С контролем.

Цитологический анализ материала, полученного на проростках некоторых растений (горох, пшеница), обнаружил заметное увеличение частоты хромосомных перестроек в клетках корешков и точек роста. Аналогичные, хотя и менее выраженные изменения отмечены в делящихся клетках костного мозга у мышей.

Таким образом, в результате проведенных исследований было обнаружено наличие разнообразных по направлению и биологическому значению воздействий факторов космического полета на жизнеспособность и наследственные свойства различных животных и растительных объектов.

В плане подготовки длительных полетов несомненный интерес представляют исследования динамики естественного иммунитета у животных в космическом нолете. Имеющиеся в нашем распоряжении первоначальные данные по этому вопросу свитетельствуют о наличии изменений в состоянии иммунологической активности крови у собак после полета, в частности о повышении его фагоцитарной функции, то есть способности борьбы с болезнетворными началами.

Огромное значение в осуществлении программы космических исследований имеет полет четвертого советского космического корабля. Задачей биологической части этого эксперимента было дальнейшее исследование воздействия условий космического полета на состояние живых организмов, определение эффективности и надежности работы систем жизненного обеспечения. Имеющиеся в нашем распоряжении данные свидетельствуют о том, что эти системы надежно и эффективно обеспечивали заданные условия на всех участках полета.

Широкий круг биологических объектов (собака, мыши, морские свинки, насекомые и т. д.), участвовавших в этом полете, позволит нашим исследователям и в этот раз охватить значительный круг вопросов, имеющих исключительно важное научное и практическое значение.

Экспериментальный материал этого полета продолжает обрабатываться и анализироваться. Полученные данные существенно дополнят и расширят наши представления о влиянии факторов космического полета на различные стороны жизнедеятельности организмов.

Все эти данные представляют значительный интерес в том отношении, что они получены в условиях воздействия первичного космического излучения, состав и энергия частиц которого значительно отличается от состава и энергии частиц того излучения, каким ученые пользуются в обычных лабораторных исследованиях.

Нужно сказать, что полученные данные об отдаленных последствиях космического полета в настоящее время не могут быть достаточно точно отнесены к воздействию какого-либо одного конкретного фактора. По-видимому, их следует отнести ко всему комплексу воздействий космического полета.

В задачах дальнейших исследований должна быть, очевидно, учтена необходимость дифференцированного изучения биологического значения каждого из факторов космического полета — перегрузок, вибраций, невесомости. Эта работа в настоящее время продолжается.

Проведенные на космических кораблях эксперименты позволили также:

определить и доказать эффективность большого ряда систем, обеспечивающих условия жизнедеятельности на борту корабля;

исследовать действие факторов полета на комплекс физиологических и биологических показателей;

апробировать методы исследования и выбрать биологические объекты, наиболее полно отвечающие решению соответствующих теоретических и практических задач.

Как это свойственно бурно развивающимся отраслям науки, достигнутые результаты, как бы значительны они ни были, часто оказываются недостаточными в свете стремительно раскрывающихся перспектив новых научных исследований.

Задача обеспечения безопасности космических полетов человека на короткое время решается значительно проще, чем на продолжительное время. Длительные космические полеты человека, особенно осуществление межпланетных путешествий, выдвигают перед биологической наукой значительно более сложные задачи, чем те, о которых шла речь выше. Так, обеспечение необходимой газовой среды в герметической кабине космического корабля для кратковременных полетов может быть осуществлено при помощи высокоактивных химических веществ, выделяющих кислород при поглощении водяных паров и углекислоты, выдыхаемых животным. Для продолжительных же полетов и при межпланетных перелетах потребуется создание полной экологической среды в замкнутом пространстве. Как известно, основные требования для создания такой среды обрисовал К. Э. Циолковский. Здесь прежде всего необходимо иметь в виду создание привычной для земной жизни человека обстановки, регенерацию воздуха, при которой биологические методы будут играть важную роль, выяснение способов использования выделений человеческого организма, то есть разработку всех условий, которые обеспечили бы комфорт земной жизни на корабле с использованием тех возможностей, которые дает нам космическое пространство.

Поэтому подготовка длительных космических полетов требует разработки новых подходов, принципов и средств обеспечения нормальной жизнедеятельности, работы и отдыха экипажа космического корабля. Путь к этому подсказывает сама природа нашей планеты.

По всей вероятности, неизбежными спутниками человека в будущих космических полетах, в том числе и на другие планеты, будут зеленые растения. На Земле именно они составляют условия, необходимые для жизни животных и человека: создают органические вещества, служащие пищей животным и человеку, очищают воздух от углекислого газа — продукта их дыхания, выделяют в процессе фотосинтеза жизненно необходимый кислород. Эту работу выполняют и наземные и еще более многочисленные по своей массе, исключительно быстро размножающиеся мельчайшие водные растения.

Необходимость предоставления будущим космонавтам полноценного пищевого рациона, вероятно, потребует включения в систему жизненного обеспечения, помимо зеленых растений, также и животных, использующих растения в пищу и превращающих их в более полноценные животные продукты, необходимые для питания человека. Можно себе представить, что на каком-то этапе окажется целесообразным использовать и продукты жизнедеятельности животных с помощью бактерий и тех же зеленых растений, как это и происходит в окружающей нас природе.

Таким образом, средства обеспечения основных жизненных условий для экипажей будущих межпланетных кораблей могут быть представлены как замкнутая система биологического кругооборота веществ, где не требуется создания каких-либо больших запасов пищи и где все необходимое для человека добывается зелеными растениями за счет использования энергии солнечных лучей, углекислоты и воды атмосферы кабины космического корабля.

В связи с этим возникают грандиозные задачи перед нашими физиологами, микробиологами, биохимиками, биофизиками, генетиками. Вообще трудно найти такую область биологических знаний, вклад которой не имел бы важного значения в разработке комплекса вопросов, составляющих теперь предмет космической биологии. Важное место в этих исследованиях займет изучение одноклеточной микроскопической зеленой водоросли — хлореллы, этой своеобразной фабрики кислорода, которая, по всей видимости, будет ценным спутником космонавта при продолжительных путешествиях.

Осуществление космического полета человека откроет перед наукой другие большие возможности. В течение многих лет ученые обсуждают проблему жизни в космосе. На основании косвенных данных выдвигались различные гипотезы, для проверки которых требуются нргмые доказательства. Трудно поэтому вынести окончательное суждение о возможности и формах жизни на других планетах. Теперь изучение этих вопросов ставится на экспериментальный путь. Биологическая наука, таким образом, получает реальную возможность изучения проблемы жизни в космическом пространстве.

По своей значимости и возможным последствиям эта проблема приобретает фундаментальное значение. Как сама постановка, так и подход к решению проблемы жизни в космосе стали возможны благодаря успехам химии, физики, математики, реактивной техники, радиотехники, электроники. В свою очередь выяснение закономерностей жизни, познание природы жизненных процессов обогащают эти науки, выдвигая перед ними новые, порою необычные задачи. В этом одна из характерных особенностей взаимодействия наук в современном естествознании.

Поистине безграничными будут возможности человека, осуществившего выход в бесконечные просторы космического пространства. Поистине неоценима и роль космической биологии в предоставлении человеку такой возможности. Несомненно, что советские ученые не пожалеют сил для осуществления этой грандиозной задачи.

КЛИМАТ ЧУДЕСНОГО КОРАБЛЯ

Ю. СУШКОВ, кандидат технических наук

Громадная ракета-носитель с космическим кораблем на борту стоит на старте. Закончены последние приготовления, и вот нажата кнопка. Замкнулись контакты реле, включились в работу топливные насосы. Мощные струи горючего и окислителя ворвались в камеру сгорания ракетного двигателя, и в ней начал бушевать огненный смерч. Но его дикая сила обуздана людьми. Многотонный пятый советский корабль-спутник поднялся с Земли, сделал несколько оборотов вокруг планеты и благополучно приземлился.

Но как это осуществлялось, каким способом для космических путешественников поддерживается в кабине «комнатная температура»?

Инфракрасное излучение, так же как и видимый свет, является переносчиком тепла. Тела, испускающие лучи, охлаждаются, а поглощающие — нагреваются. В этом состоит сущность «лучистого» теплообмена.

Космический корабль, находящийся на орбите спутника Земли, движется в чрезвычайно разреженной атмосфере. Достаточно сказать, что на высоте 300 километров молекулы кислорода и азота пролетают 70-150 метров, не сталкиваясь друг с другом. Ясно, что в таких условиях температура космического корабля полностью определяется «лучистым» теплообменом.

Космический корабль нагревается, во-первых, солнечными лучами, как прямыми, так и отраженными земной поверхностью. Во-вторых, спутник поглощает тепловое излучение Земли. Кроме того, некоторое количество тепла выделяется и на самом корабле — различными приборами и живыми существами. Но одновременно космический корабль и рассеивает тепло в межпланетное пространство, непрерывно испуская инфракрасные лучи. Когда приток тепла превышает рассеивание, температура космического корабля повышается. Если же корабль рассеивает тепла больше, чем получает, то температура его снижается. Изменяя соотношение между притоком и рассеиванием тепла, можно поддерживать температуру космического корабля в заданных пределах.

Но как? Общеизвестно, что темные предметы нагреваются на солнце гораздо сильнее светлых. Эту закономерность можно принципиально использовать для регулирования температуры спутника. Для этого нужно покрасить половину его металлической поверхности в черный цвет, а другую половину отполировать до блеска. Поворачивая к Солнцу черную половину, мы усиливаем приток тепла и повышаем температуру спутника.

А если спутник войдет в тень Земли?

Чтобы не допустить его охлаждения и в этом случае, нужно резко уменьшить интенсивность теплоотдачи. Для этого надо снизить температуру поверхности спутника.

На советских космических спутниках Земли теплоизлучение регулировалось не только за счет изменения температуры его поверхности, по и путем управления ее излучательной способностью.

Система открывающихся жалюзи на космических кораблях позволяет «задавать» поверхности требуемую излучательную способность. Это позволяет поддерживать температуру в кабине с исключительной точностью.

Впервые в мире искусственный корабль-спутник был возвращен на Землю советскими учеными 20 августа 1960 года. Как же осуществляется посадка космического корабля?

В нужный момент включаются ракетные двигатели, спутник сходит с орбиты и начинает снижаться. Скорость его уменьшается.

Приближаясь к земной поверхности, спутник входит во все более плотные слои атмосферы. Воздух не успевает расступаться, и перед летящим кораблем образуется область увлекаемого им сильно сжатого, а значит, и нагретого газа. Эта раскаленная «воздушная подушка» является основной причиной сильного нагрева снижающегося космического корабля.

В борьбе с перегревом возвращающегося на Землю спутника можно выделить две основные задачи. Первая — обеспечить прочность корпуса корабля, не позволить ему расплавиться. Вторая — снизить до предела количество проникающего внутрь кабины тепла, не допустить чрезмерпого повышения температуры воздуха.

Средства решения этих задач переплетаются. Так, например, можно предотвратить перегрев оболочки корабля, если нанести на нее слой тугоплавкого и плохо проводящего тепло материала.

Холодильный агрегат, работающий по тому же принципу, что и широко используемый в быту комнатный холодильник, здесь вряд ли применим. Ведь он просто «перекачивает» тепло от одного тела к другому. Охлаждая оболочку спутника, подобный холодильник должен нагревать что-то другое. Нужен какой-то «поглотитель теплоты».

Поглотителем теплоты на пути от раскаленной «воздушной подушки» к кабине может служить толстая передняя стенка корабля, изготовленная из металла с большой теплоемкостью.

Благополучный полет живых организмов на четвертом и пятом космических кораблях-спутниках показывает, что советские ученые успешно решают проблемы, связанные с температурным режимом космических аппаратов.

НА ПОРОГЕ ПОЛЕТА ЧЕЛОВЕКА В КОСМОС

А. БЛАГОНРАВОВ, академик, В. ПЕТРОВ, кандидат технических наук

1. Исследование глубин космоса

В настоящее время проблема исследования космического пространства и осуществлейия межпланетных путешествий привлекли к себе внимание. крупнейших ученых, поставили себе на службу армию инженеров и техников, вызвали к жизни новые совершенные отрасли техники и человеческих знаний. В наше время эти проблемы являются мощным стимулятором прогресса науки и техники, ибо, пожалуй, невозможно назвать такой области научных и технических знаний, перед которой не стояли бы новые сложные задачи, связанные с освоением космоса.

Знания человека, основывающиеся часто на ряде гипотез и обогащающиеся его опытом и практикой, подвергаются по мере развития науки пересмотру, уточнению. Даже вопросы, казавшиеся в свое время достаточно ясными, такие, например, как всемирное тяготение, физическое состояние межпланетного пространства, агрегатное состояние Солнца и другие, подверглись к настоящему времени существенному пересмотру.

Все это говорит о том, что человек не должен быть рабом устаревших гипотез, тормозящих развитие науки. Удивительное время расцвета науки и техники, время быстро сменяющих друг друга событий требует новых и смелых идей, которые, возможно, произведут переоценку взглядов на некоторые положения, казавшиеся ранее незыблемыми. Космонавтика, являющаяся весьма молодой отраслью науки, как нельзя более подтверждает сказанное. Если еще сравнительно недавно проекты полета на Луну, Марс и другие планеты были уделом лишь писателей-фантастов, то теперь эти проекты, воплощающие давнюю мечту человечества, стали неоспоримой реальностью.

Исследование космического пространства является также своеобразной ареной мирного соревнования государств с различными социально-экономическими системами. Не бешеная гонка вооружений, таящая в себе постоянную угрозу новой войны, требующая огромных капиталовложений, а соревнование в деле освоения и мирного использования космического пространства — вот благородная цель, стоящая перед человечеством и требующая напряжения его творческих сил. На возможность мирного соревнования в освоении космического пространства указывал Н. С. Хрущев в одном из своих выступлений. Выступая в Национальном клубе печати в Вашингтоне 16 сентября 1959 года, он сказал: «Советский Союз и США стоят перед выбором: либо новейшие завоевания научной и технической мысли — раскрытие тайны атома, создание ракет, проникновение в космос — будут поставлены на службу мирному будущему и процветанию человечества, либо они будут обращены на цели разрушения и уничтожения и, как результат этого, Земля будет усеяна могилами и пеплом.

Советский народ давно сделал свой выбор в пользу мира».

2. О перспективах завоевания космического пространства

На пути к осуществлению межпланетных полетов стоит целый комплекс сложных задач, ждущих в ближайшем будущем своего решения. Здесь мы попытаемся разобраться в следующих задачах физиологического и медицинского характера:

а) влияние условий невесомости на состояние человеческого организма;

б) влияние перегрузок на человеческий организм;

в) обеспечение астронавтов питанием и кислородом;

г) влияние полной и длительной изоляции в условиях космического полета на психическое состояние человека.

А) Влияние условий невесомости

Сведения, которыми в настоящее время располагает медицина, свидетельствуют о том, что живые существа переносят относительно кратковременные условия невесомости без каких-либо нарушений в нормальном функционировании организма. Справились с невесомостью и чувствовали себя нормально пассажиры советских космических кораблей — Белка, Стрелка, Чернушка и Звездочка.

Для длительного пребывания человека в условиях невесомости характерны следующие особенности:

1. Прекращение направленного в одну сторону возбуждения вестибулярной нервной системы (вестибулярная нервная система — нервная система вместе с вестибулярным органом, помогающая человеку сохранять равновесие), вместе с последствиями, проявляющимися посредством реакций автономной и центральной нервных систем.

2. Ослабление гидростатического давления в системе кровообращения.

Чтобы нейтрализовать влияние условий невесомости, в журнале «Вельтраумфорт», например, предлагался следующий проект. Члены экипажа космического корабля одеваются в костюмы, изготовленные из металлической ткани. Кресла, в которых сидят астронавты, снабжаются приспособлениями, могущими создавать электромагнитное поле, которое будет надежно удерживать человека в кресле. Однако следует указать, что этот метод не может полностью компенсировать влияние невесомости, так как внутренние органы человека не будут находиться в нормальных условиях.

Б) Влияние перегрузок

Понятие «перегрузка» характеризует собой увеличение ускорения по сравнению с тем ускорением, которое испытывает человек в земных условиях. Иначе говоря, вес предмета как бы увеличивается пропорционально перегрузке. Перегрузка измеряется в единицах земного ускорения силы тяжести g (например, 5g, 6g, 10g и т. д.). Действие перегрузок проявляется на «активном участке» полета ракеты — участке с работающим двигателем, когда ракета еще не вышла за пределы земного притяжения. Перегрузки возникают и при изменении траектории испытательного аппарата (например, выход самолета из пикирования). Поэтому опыты по изучению действия перегрузок на человеческий организм проводятся давно. Необходимость проведения этих опытов диктовалась развитием скоростной авиации.

В результате исследований было установлено, что человек может переносить довольно большие перегрузки, если они длятся не очень долго.

В 1957 году был произведен опыт на центробежной установке, когда лежащий навзничь человек выдержал перегрузку 17g. Производились такие опыты, при которых человек в течение 5-8 секунд выдерживал ускорение 12g. Некоторые авторы считают, что человек способен в течение 60 секунд вынести действие ускорения 12g. Было выяснено также, что человек лучше всего переносит ускорения, действующие в поперечном направлении. В связи с этим предлагалась конструкция кабины космического летательного аппарата, которая автоматически устанавливается так, чтобы результирующая ускорений, действующих на тело пилота (космонавта), была бы направлена наиболее благоприятным образом.

Физиологический предел и симптомы, вызываемые поперечными перегрузками, подробно исследовались учеными разных стран. Лица, подвергавшиеся испытаниям, вначале находились в состоянии оцепенения и чувствовали усталость, но вскоре приходили в нормальное состояние. Не было отмечено случаев потери памяти или потери сознания, хотя в течение от 24 до 48 часов у испытуемых было головокружение. Устойчивых нарушений жизнедеятельности организма не отмечалось.

Некоторые исследователи указывают на возможность уменьшения перегрузок, действующих на человеческий организм, посредством полного или частичного погружения человека в воду. Было найдено наивыгоднейшее положение тела человека, при котором при перегрузке равной 13 единицам, испытуемый обладал полной подвижностью. В этих условиях эксперимент длился 4 минуты.

В) Обеспечение астронавтов кислородом и питанием

Важнейшей проблемой, значение которой ощущается особенно остро при длительных космических путешествиях, является проблема обеспечения экипажа кислородом и питанием. Для кратковременных полетов (несколько суток) необходимый кислород автоматически по мере надобности может подаваться в кабину из баллонов. Специальная система должна поддерживать допустимую концентрацию кислорода и удалять вредные примеси (углекислоту и другие газы, выделяющиеся при работе аппаратуры). Процесс регенерации воздуха (поглощение углекислого газа и выделение кислорода) может осуществляться с помощью высокоактивных химических веществ и биологическим методом, с помощью выращиваемых растительных организмов (например, водорослей). При полетах продолжительностью до 15-20 суток наиболее целесообразным считается использование высокоактивных химических соединений. На втором советском космическом корабле поддержание требуемого газового состава воздуха осуществлялось специальной установкой. Чтобы кислорода выделялось ровно столько, сколько требовалось животному, были созданы специальные автоматические регулирующие устройства. Для биологического способа регенерации особенно перспективной считается водоросль хлорелла, которая под действием солнечного света, интенсивно поглощая углекислоту, выделяет кислород. Помимо этого хлорелла является подходящим материалом для приготовления пищи. Хлорелла в отличие от других видов растений успешно произрастает в условиях невесомости.

В настоящее время проблеме питания космонавтов уделяется исключительное внимание. По мнению ученых, обеспечение космонавтов пищей и водой в период кратковременного полета должно осуществляться за счет создания запасов этих продуктов. Если же космический полет рассчитан на длительное время, на космическом корабле должны быть созданы условия, в которых стал бы возможен круговорот пищи и воды, постоянное воспроизведение запасов.

Существует довольно много проектов различных «космических» рационов, совмещающих в себе высокую калорийность, витаминозность и хорошую усвояемость. Некоторые из этих проектов могут показаться на первый взгляд странными. Так, например, существует предположение, что идеальной пищей для космонавта могут стать... водяные блохи величиной с булавочную головку, обитающие в покрытой тиной прудах. Эти блохи (вернее, миниатюрные креветки и рачки) содержат в своем составе почти все необходимые питательные вещества: белки, жиры, углеводы, витамины и минеральные вещества. Предлагается употреблять продукт, изготовленный из этих организмов, в виде жидкой массы или в виде сухих таблеток.

При длительных путешествиях запасы блох могут легко пополняться. Блохи легко выращиваются в специальных сосудах с водорослями.

Естественно, что в настоящее время рацион для питания космонавтов еще окончательно не определен, однако работы в этом направлении интенсивно ведутся.

В Советском Союзе для питания собак на космических кораблях был создан специальный рацион, представлявший собой мягкую, желеобразную смесь, содержащую необходимые питательные вещества и нужное количество воды. Этот метод комбинированного питания вполне себя оправдал.

Г) Влияние полной и длительной изоляции

Существует опасение, что одиночество и разобщенность с внешним миром могут вызвать подавленное состояние психики космонавта, а это в конце концов может привести к серьезному психическому расстройству.

Для проверки этого предположения за рубежом были проведены опыты, которые имитировали условия полета в межпланетном пространстве. Опыты показали, что человек может избежать подавленного психического состояния, если он будет соблюдать определенный режим работы и отдыха. Во время одной серии опытов испытуемый провел неделю, работая в кабине, где были созданы условия космического полета. По условиям эксперимента интервалы работы и отдыха следовали друг за другом каждые 4 часа.

Серией других опытов было доказано, что уже после 44 часов полной изоляции, имитирующей условия космического полета, появляется серьезная опасность психического травмирования. В этой серии опытов в отличие от первой испытуемому не предписывалось никакого режима работы и отдыха, и он фактически был предоставлен самому себе. Это говорит о том, что необходимо найти наилучший цикл работы и отдыха для космических полетов различной продолжительности.

Содержание

Предисловие

ЧЕЛОВЕК В КОСМОСЕ

Сообщение ТАСС о первом в мире полете человека в космическое пространство

Об успешном возвращении человека из первого космического полета.

Обращение ЦК КПСС, Президиума Верховного Совета СССР и Правительства Советского Союза

Слава советским ученым, конструкторам, инженерам и рабочим — покорителям космоса!

Поздравление Н. С. Хрущева советскому космонавту майору Гагарину Юрию Алексеевичу

Митинг на Красной площади в Москве

Речь товарища Н. С. Хрущева

Речь товарища Ю. А. Гагарина

Указ Президиума Верховного Совета СССР об учреждении звания «Летчик-космонавт СССР»

Указ о присвоении звания Героя Советского Союза летчику-космонавту майору Гагарину Ю. А.

Указ о присвоении звания «Летчик-космонавт СССР» летчику майору Гагарину Ю. А.

До скорой встречи! Заявление Ю. А. Гагарина перед стартом

Максим Рыльский. Хвала

Об утверждении рекордов Ю. Гагарина

Первый полет человека в космическое пространство

Е. Долматовский. Взлет в века

А. Асташенков, инженер, В. Жуков, инженер. Советский человек в космосе

Л. Халиф. Человек Советского Союза

А. И. Опарин, академик. Старт взят!

Н. Грибачев. Небо и земля

Сообщение ТАСС о запуске в Советском Союзе космического корабля-спутника «Восток-2»

Первый рапорт Родине. Сообщение с борта космического корабля

Радиограмма Н. С. Хрущева товарищу Г. С. Титову

Ответная радиограмма космонавта Г. С. Титова Н. С. Хрущеву

Сообщение ТАСС. Пройдено расстояние большее, чем от Земли до Луны!

Сообщение ТАСС. Как протекал полет

Сообщение ТАСС об успешном завершении космического рейса на корабле-спутнике «Восток-2»

Обращение ЦК КПСС, Президиума Верховного Совета СССР и Правительства Советского Союза

Всем ученым, конструкторам, инженерам, техникам, рабочим, участвовавшим в успешном осуществлении нового космического полета человека на корабле-спутнике «Восток-2».

Послание Н. С. Хрущева советскому космонавту майору Титову Герману Степановичу

О приеме в члены КПСС кандидата партии товарища Титова Г. С.

Торжественный митинг на Красной площади в Москве 9 августа 1961 г.

Речь товарища Н. С. Хрущева

Речь товарища Г. С. Титова

Указ о присвоении звания Героя Советского Союза летчику-космонавту майору Титову Г. С.

Указ о присвоении звания «Летчик-космонавт СССР» летчику майору Титову Г. С.

Заявление космонавта Г. С. Титова перед полетом

А. Сурков. Космонавт

Пресс-конференция, посвященная полету Германа Титова

Второй полет человека в космическое пространство

Речь товарища Г. С. Титова на XXII съезде Коммунистической партии Советского Союза

М. Арлазоров. Все ли мы знаем о Циолковском?

ПРЫЖОК В КОСМОС

Сообщение ТАСС о запуске первого в мире искусственного спутника Земли

Советский искусственный спутник Земли

В. Василенко. Горжусь твоей победой

A. Александров. Прыжок в космос

B. Амбарцумян. Положено начало космическим полетам

Мариэтта Шагинян. О чем говорит спутник

Сообщение ТАСС о запуске второго советского искусственного спутника Земли

Второй советский искусственный спутник Земли

Е. Федоров. С помощью ракет и искусственных спутников

В. Парин. Животные в космосе

М. Борисова. Два следа

Сообщение ТАСС о запуске третьего советского искусственного спутника Земли

Н. Агеев. Россия

Третий советский искусственный спутник Земли

М. Львов. Сигналы спутника

В. Сафонов. Слушайте его голос!

Фриц Бааде. Соревнование умов

Отрывок из статьи Херста. Гигантские шаги русской науки

РАКЕТОЙ К ЛУНЕ

Сообщение ТАСС о запуске советской космической ракеты в сторону Луны

Из сообщения ТАСС от 6 января 1959 года. Советская космическая ракета в сторону Луны

Мы горды своей Отчизной

Сообщение ТАСС о запуске Советским Союзом космической ракеты к Луне

Сообщение ТАСС о достижении второй советской космической ракетой поверхности Луны

М. Матусовский. Герб страны моей

О первых итогах пуска космической ракеты на Луну

Первый полет на Луну

С. Вернов. Опыты в космосе

Андре Стиль. Алло, Москва... Спасибо, Москва!

Сообщение ТАСС о пуске в Советском Союзе третьей космической ракеты

Сообщение ТАСС о движении третьей советской космической ракеты

Третья советская космическая ракета

Ю. Яковлев. География Луны

В. Базыкин. Траектория третьей космической

Э. Цюрупа. «Эй, вы! Небо! Снимите шляпу!»

КОСМИЧЕСКИЕ КОРАБЛИ

Сообщение ТАСС о запуске первого советского космического корабля

Сообщение ТАСС о запуске второго советского космического корабля

Впервые в истории живые существа благополучно возвратились из космоса на Землю

Сообщение ТАСС. Подробности о «пассажирах» второго космического корабля

Великий вклад, в сокровищницу мировой науки и культуры.

С. Маршак. Впервые

Второй советский космический корабль

Сообщение ТАСС о запуске третьего советского космического корабля

Сообщение ТАСС о запуске тяжелого искусственного спутника Земли

Н. Жуков-Вережников. Микроорганизмы в космических лабораториях

И. Забелин. Земные науки и космос

В. Немцов. Прикоснувшись рукою к мечте

НА ПОРОГЕ ПОЛЕТА ЧЕЛОВЕКА В КОСМОС

Сообщение ТАСС о запуске советской космической ракеты к планете Венера

Сообщение ТАСС о движении советской космической ракеты к планете Венера

Ученым, конструкторам, инженерам, техникам и рабочим, участвовавшим в создании и запуске многоступенчатой ракеты и автоматической межпланетной станции к планете Венера

Первый полет к Венере

Сообщение ТАСС о запуске в Советском Союзе четвертого корабля-спутника

Сообщение ТАСС о запуске пятого советского корабля-спутника

И. Морозов. Несется к Венере скорый...

Пять вопросов к заместителю председателя Астрономического совета АН СССР Б. Кукаркину

В. Котельников, И. Шкловский. Радиолокация Венеры

В. Гинзбург. Мы слушаем голос Вселенной

В. Петров. Ориентация в космическом пространстве

И. Шкловский. На далекой планете Венера

Н. Сисакян. Человек и космос

Ю. Сушков. Климат чудесного корабля

А. Благонравов, В. Петров. На пороге полета человека в космос


Загрузка...