Путь ракеты на небесном своде при сближении с Луной наклонен к пути Луны примерно на 50 градусов. Вблизи Луны ракета двигалась на небесной сфере приблизительно в 5 раз медленнее, чем Луна.

Луна, двигаясь по своей орбите вокруг Земли, подходила к точке сближения с ракетой справа, если смотреть с северной части Земли. Ракета приближалась к этой точке сверху и справа. В период наибольшего сближения ракета находилась выше и немного правее Луны.

Время полета ракеты до орбиты Луны зависит от избытка начальной скорости ракеты над второй космической скоростью и будет тем меньше, чем больше этот избыток. Выбор величины этого избытка был произведен с учетом того, чтобы прохождение ракеты вблизи Луны можно было наблюдать радиосредствами, расположенными на территории Советского Союза и в других странах Европы, а также в Африке и в большей части Азии. Время движения космической ракеты до Луны составило 34 часа.

Во время наибольшего сближения расстояние между ракетой и Луной составляло, по уточненным данным, 5-6 тысяч километров, то есть примерно полтора поперечника Луны.

Когда космическая ракета приблизилась к Луне на расстояние в несколько десятков тысяч километров, притяжение Луны начало оказывать заметное влияние на движение ракеты. Действие тяготеция Луны привело к отклонению направления движения ракеты и изменению величины скорости ее полета вблизи Луны. При сближении Луна была ниже ракеты, и поэтому, вследствие притяжения Луны, направление полета ракеты отклонилось вниз. Притяжение Луны создало также местное увеличение скорости. Это увеличение достигло максимума в районе наибольшего сближения.

После сближения с Луной космическая ракета продолжала удаляться от Земли, скорость ее относительно центра Земли убывала, приближаясь к величине, равной примерно двум километрам в секунду.

На расстоянии от Земли порядка одного миллиона километров и более влияние притяжения Земли на ракету настолько ослабевает, что движение ракеты можно считать происходящим лишь под действием силы тяготения Солнца. Примерно 7-8

нваря советская космическая ракета вышла на свою самостоятельную орбиту вокруг Солнца, стала его спутником, превратившись в первую в мире искусственную планету солнечной системы.

Скорость ракеты относительно центра Земли в период 7-8 января была направлена примерно в ту же сторону, что и скорость Земли в ее движении вокруг Солнца. Так как скорость Земли равняется 30 километрам в секунду, а скорость ракеты относительно Земли — 2 километра в секунду, то скорость движения ракеты, как планеты, вокруг Солнца была равна приблизительно 32 километрам в секунду.

Точные данные о положении ракеты, направлении и величине ее скорости на больших расстояниях от Земли позволяют по законам небесной механики рассчитать движение космической ракеты как планеты солнечной системы. Расчет орбиты произведен без учета возмущений, которые могут вызвать планеты и другие тела солнечной системы. Вычисленная орбита характеризуется следующими данными:

наклонение орбиты к плоскости орбиты Земли составляет около 1 градуса, то есть весьма мало;

эксцентриситет орбиты искусственной планеты равен 0,148, что заметно больше, чем эксцентриситет,земной орбиты, равный 0,017;

минимальное расстояние от Солнца составит около 146 миллионов километров, то есть будет лишь на несколько миллионов километров меньше расстояния Земли от Солнца (среднее расстояние Земли от Солнца составляет 150 миллионов километров);

максимальное расстояние искусственной планеты от Солнца составит около 197 миллионов километров, то есть космическая ракета при этом будет находиться от Солнца на 47 миллионов километров дальше, чем Земля;

период обращения искусственной планеты вокруг Солнца будет 450 суток, то есть около 15 месяцев. Минимальное расстояние от Солнца будет достигнуто впервые в середине января 1959 года, а максимальное — в начале сентября 1959 года.

Интересно отметить, что орбита советской искусственной планеты подходит к орбите Марса на расстояние порядка 15 миллионов километров, то есть примерно в 4 раза ближе, чем орбита Земли.

Расстояние между ракетой и Землей при их движении вокруг Солнца будет изменяться, то увеличиваясь, то уменьшаясь. Наибольшее расстояние между ними может достигать величин 300-350 миллионов километров.

В процессе обращения искусственной планеты и Земли вокруг Солнца они могут сблизиться на расстояние порядка миллиона километров.

Последняя ступень космической ракеты и контейнер с научной аппаратурой

Последняя ступень космической ракеты является управляемой ракетой, крепящейся посредством переходника к предшествующей ступени.

Управление ракетой осуществляется автоматической системой, стабилизирующей положение ракеты на заданной траектории и обеспечивающей расчетную скорость в конце работы двигателя. Последняя ступень космической ракеты после израсходования рабочего запаса топлива весит 1472 килограмма.

Кроме устройств, обеспечивающих нормальный полет последней ступени ракеты, в корпусе ее расположены:

герметичный, отделяемый контейнер с научной и радиотехнической аппаратурой;

два передатчика с антеннами, работающие на частотах 19,997 мгц и 19,995 мгц; счетчик космических лучей;

радиосистема, с помощью которой определяется траектория полета космической ракеты и прогнозируется ее дальнейшее движение;

аппаратура для образования искусственной натриевой кометы.

Контейнер расположен в верхней части последней ступени космической ракеты и защищен от нагрева при прохождении ракетой плотных слоев атмосферы сбрасываемым конусом.

Контейнер состоит из двух сферических тонких полуоболочек, герметично соединенных между собой шпангоутами с уплотнительной прокладкой из специальной резины. На одной из полуоболочек контейнера расположены 4 стержня антенн радиопередатчика, работающего на частоте 183,6 мгц. Эти антенны закреплены на корпусе симметрично относительно полого алюминиевого штыря, на конце которого расположен датчик для измерения магнитного поля Земли и обнаружения магнитного поля Луны. До момента сброса защитного конуса антенны сложены и закреплены на штыре магнитометра. После сброса защитного конуса антенны раскрываются. На этой же полуоболочке расположены две протонные ловушки для обнаружения газовой компоненты межпланетного вещества и два пьезоэлектрических датчика для изучения метеорных частиц.

Полуоболочки контейнера выполнены из специального алюминиево-магниевого сплава. На шпангоуте нижней полуоболочки крепится приборная рама трубчатой конструкции из магниевого сплава, на которой расположены приборы контейнера.

Внутри контейнера размещена следующая аппаратура:

Аппаратура для радиоконтроля траектории движения ракеты, состоящая из передатчика, работающего на частоте 183,6 мгц. и блока приемников.

Радиопередатчик, работающий на частоте 19,993 мгц.

Телеметрический блок, предназначенный для передачи по радиосистемам на Землю данных научных измерений, а также данных о температуре и давлении в контейнере.

Аппаратура для изучения газовой компоненты межпланетного вещества и корпускулярного излучения Солнца.

Аппаратура для измерения магнитного поля Земли и обнаружения магнитного поля Луны.

Аппаратура для изучения метеорных частиц.

Аппаратура для регистрации тяжелых ядер в первичпом космическом излучении.

Аппаратура для регистрации интенсивности и вариаций интенсивности космических лучей и для регистрации фотонов в космическом излучении.

Радиоаппаратура и научная аппаратура контейнера получают электропитание от серебряно-цинковых аккумуляторов и окисно-ртутных батарей, размещенных на приборной раме контейнера.

Контейнер наполнен газом при давлении 1,3 атмосферы. Конструкция контейнера обеспечивает высокую герметичность внутреннего объема. Температура газа внутри контейнера поддерживается в заданных пределах (около 20°С). Указанный температурный режим обеспечивается приданием оболочке контейнера определенных коэффициентов отражения и излучения за счет специальной обработки оболочки. Кроме того, в контейнере установлен вентилятор, обеспечивающий принудительную циркуляцию газа. Циркулирующий в контейнере газ отбирает тепло от приборов и отдает его оболочке, являющейся своеобразным радиатором.

Отделение контейнера от последней ступени космической ракеты происходит после окончания работы двигательной установки последней ступени.

Отделение контейнера необходимо с точки зрения обеспечения теплового режима контейнера. Дело в том, что в контейнере расположены приборы, выделяющие большое количество тепла. Тепловой режим, как указано выше, обеспечивается сохранением определенного баланса между теплом,-излучаемым оболочкой контейнера, и теплом, получаемым оболочкой от Солнца.

Отделение контейнера обеспечивает нормальный режим работы антенн контейнера и аппаратуры для измерения магнитного поля Земли и обнаружения магнитного поля Луны; в результате отделения контейнера устраняются магнитные влияния металлической конструкции ракеты на показания магнитометра.

Общий вес научной и измерительной аппаратуры с контейнером, вместе с источниками питания, разметенных на последней ступени космической ракеты, составляет 361,3 килограмма.

В ознаменование создания в Советском Союзе первой космической ракеты, ставшей искусственной планетой солнечной системы, на ракете установлены два вымпела с Государственным гербом Советского Союза. Эти вымпелы расположены в контейнере.

Один вымпел выполнен в виде тонкой металлической ленты. На одной стороне ленты имеется надпись. «Союз Советских Социалистических Республик», а на другой изображены герб Советского Союза и надпись: «Январь 1959 Январь». Надписи нанесены специальным фотохимическим способом-, обеспечивающим длительное их сохранение.

Второй вымпел имеет сферическую форму, символизирующую искусственную планету. Поверхность сферы покрыта пятиугольными элементами из специальной нержавеющей стали. На одной стороне каждого элемента вычеканена надпись:! «СССР. Январь 1959 г.», на другой — герб Советского Союза и надпись: «СССР»

Комплекс измерительных средств

Для наблюдения за полетом космической ракеты, измерения параметров ее орбиты и приема с борта данных научных измерений был использован большой комплекс измерительных средств, расположенных по всей территории Советского Союза.

В состав измерительного комплекса входили: группа автоматизированных радиолокационных средств, предназначенных для точного определения элементов начального участка орбиты; группа радиотелеметрических станций для регистрации научной информации, передаваемой с борта космической ракеты; радиотехническая система контроля элементов траектории ракеты на больших удалениях от Земли; радиотехнические станции используемые для приема сигналов на частотах 19,997, 19,995 и 19,993 мгц; оптические средства для наблюдения и фотографирования искусственной кометы.

Согласование работы всех измерительных средств и привязка результатов измерений к астрономическому времени производились с помощью специальной аппаратуры единого времени и системы радиосвязи.

Обработка данных траекторных измерений, поступающих из районов расположения станций, определение элементов орбиты и выдача целеуказаний измерительным средствам выполнялись координационно-вычислительным центром на электронных счетных машинах.

Автоматизированные радиолокационные станции использовались для оперативного определения начальных условий движения космической ракеты, выдачи долгосрочного прогноза о движении ракеты и данных целеуказаний всем измерительным и наблюдательным средствам. Данные измерений этих станций с помощью специальных счетно-решающих устройств преобразовывались в двойничный код, осреднялись, привязывались к астрономическому времени с точностью до нескольких миллисекунд и автоматически выдавались в линии связи.

Чтобы предохранить данные измерений от возможных ошибок при передаче по линиям связи, измерительная информация кодировалась. Применение кода позволяло находить и исправлять одну ошибку в передаваемом числе и находить и отбрасывать числа с двумя ошибками.

Преобразованная таким образом измерительная информация поступала в код ординационио-вычислительный центр. Здесь данные измерений с помощью входных устройств автоматически набивались на перфокарты, по которым электронные счетные машины производили совместную обработку результатов измерений и расчет орбиты. На основе использования большого числа траекторных измерений в результате решения краевой задачи с применением метода наименьших квадратов определялись начальные движения космической ракеты. Далее интегрировалась система дифференциальных уравнений, описывающая совместное движение ракеты, Луны, Земли и Солнца.

Телеметрические наземные станции производили прием научной информации с борта космической ракеты и ее регистрацию на фотопленках и магнитных лентах. Для обеспечения большой дальности приема радиосигналов были применены высокочувствительные приемники и специальные антенны с большой эффективной площадью.

Приемные радиотехнические станции, работающие на частотах 19,997, 19,995, 19,993 мгц, осуществляли прием радиосигналов с космической ракеты и регистрацию этих сигналов на магнитных пленках. При этом производились измерения напряженности поля и ряд других измерений, позволяющих проводить ионосферные исследования.

Измерением вида манипуляции передатчика, работающего на двух частотах 19,997 и 19,995 мгц, передавались данные о космических лучах. По каналу передатчика, излучающего на частоте 19,993 мгц, путем изменения длительности интервала между телеграфными посылками передавалась основная научная информация.

Для оптического наблюдения космической ракеты с Земли с целью подтверждения факта прохождения космической ракеты по данному участку ее траектории была использована искусственная натриевая комета. Искусственная комета была образована 3 января в 3 часа 57 минут по московскому времени на расстоянии ИЗ тысяч километров от Земли. Наблюдение искусственной кометы было возможно из районов Средней Азии, Кавказа, Ближнего Востока, Африки и Индии. Фотографирование искусственной кометы производилось с помощью специально созданной оптической аппаратуры, установленной на южных астрономических обсерваториях Советского Союза. Для повышения контрастности фотографических отпечатков использовались светофильтры, выделяющие спектральную линию натрия. С целью повышения чувствительности фотографической аппаратуры ряд установок был оборудован электронно-оптическими преобразователями.

Несмотря на неблагоприятную погоду в большинстве районов расположения оптических средств, ведущих наблюдение за космической ракетой, удалось получить несколько фотографий натриевой кометы.

Контроль орбиты космической ракеты вплоть до расстояний 400-500 тысяч километров и измерение элементов ее траектории производились с помощью специальной радиотехнической системы, работающей на частоте 183,6 мгц.

Данные измерений в строго определенные моменты времени автоматически выводились и фиксировались в цифровом коде на специальных устройствах.

Вместе со временем, в которое производился съем показаний радиотехнической системы, эти данные оперативно поступали в координационно-вычислительный центр. Совместная обработка указанных измерений вместе с данными измерений радиолокационной системы позволяла уточнять элементы орбиты ракеты и непосредственно контролировать движение ракеты в пространстве.

Использование мощных наземных передатчиков и высокочувствительных приемных устройств обеспечивало уверенное измерение траектории космической ракеты до расстояний порядка 500 тысяч километров.

Применение указанного комплекса измерительных средств позволило получить ценные данные научных наблюдений и надежно контролировать и прогнозировать движение ракеты в космическом пространстве.

Богатый материал траекторных измерений, выполненных при полете первой советской космической ракеты, и опыт автоматической обработки траекторных измерений на электронных счетных машинах будут иметь большое значение при запусках последующих космических ракет.

НАУЧНЫЕ ИССЛЕДОВАНИЯ

Изучение космических лучей

Одной из главных задач научных исследований, проводимых на советской космической ракете, является изучение космических лучей.

Состав и свойства космического излучения на больших расстояниях от Земли определяются условиями возникновения космических лучей и структурой космического пространства. До настоящего времени сведения о космических лучах были получены путем измерения космических лучей вблизи Земли. Между тем в результате действия целого ряда процессов состав и свойства космического излучения у Земли резко отличаются от того, что присуще самим «истинным» космическим лучам. Наблюдаемые на поверхности Земли космические лучи мало похожи на те частицы, которые приходят к нам из космоса.

При использовании высотных ракет и в особенности спутников Земли ща пути космических лучей из космоса к измерительному прибору уже нет существенного количества вещества. Однако Земля окружена магнитным полем, которое частично отражает космические лучи. С другой стороны, это же магнитное поле создает своеобразную ловушку для космических лучей. Один раз попав в эту ловушку, частица космических лучей блуждает там в течение очень долгого времени. В результате этого вблизи Земли накапливается большое число частиц космического излучения.

До тех пор, пока измеряющий космическое излучение прибор находится в сфере действия магнитного поля Земли, результаты измерений не дадут возможности изучать космические лучи, приходящие из Вселенной. Известно, что среди частиц, присутствующих на высотах порядка 1000 километров, лишь ничтожная часть (около 0,1 процента) приходит непосредственно из космоса. Остальные 99,9 процента частиц возникают, по-видимому, от распада нейтронов, испускаемых Землей (точнее, верхними слоями ее атмосферы). Эти нейтроны в свою очередь создаются космическими лучами, бомбардирующими Землю.

Лишь после того, как прибор будет находиться не только вне атмосферы Земли, но и вне магнитного поля Земли, можно выяснить природу и происхождение космических лучей.

На советской космической ракете установлены разнообразные приборы, позволяющие всесторонне изучать состав космических лучей в межпланетном пространстве.

С помощью двух счетчиков заряженных частиц определялась интенсивность космического излучения. С помощью двух фотоумножителей с кристаллами исследовался состав космических лучей.

Для этой цели измерялись:

Поток энергии космического излучения в широком диапазоне энергий.

Число фотонов с энергией выше 50 000 электрон-вольт (жесткие рентгеновские лучи).

Число фотонов с энергией выше 500 000 электрон-вольт (гамма-лучи).

Число частиц, обладающих способностью проходить сквозь кристалл йодистого натрия (энергия таких частиц больше 5 000 000 электрон-вольт).

Суммарная ионизация, вызываемая в кристалле всеми видами излучения.

Счетчики заряженных частиц давали импульсы на специальные так называемые пересчетные схемы. С помощью таких схем оказывается возможным передать по радио сигнал тогда, когда сосчитано определенное число частиц.

Фотоумножители, соединенные с кристаллами, регистрировали вспышки света, визникающие в кристалле при прохождении сквозь них частиц космического излучения Величина импульса на выходе фотоумножителя в известных пределах пропорциинальна количеству света, излученному в момент прохождения частицы космических лучей внутри кристалла. Эта последняя величина в свою очередь пропорциональна той энергии, которая была истрачена в кристалле на ионизацию частицей космических лучей Выделяя те импульсы, величина которых больше определенного значения, можно исследовать состав космического излучения. Наиболее чувствительная система регистрирует все случаи, когда энергия, выделенная в кристалле, превосходит 50 000 электроновольт. Однако проникающая способность частиц при таких энергиях очень мала. В этих условиях в основном будут регистрироваться рентгено вские лучи.

Счет числа импульсов осуществляется с помощью таких же пересчетных схем, которые были использованы для счета числа заряженных частиц.

Аналогичным образом выделяются импульсы, величина которых соответствует энерговыделению в кристалле более 500 000 электроновольт. В этих условиях в основном регистрируются гамма-лучи.

Путем выделения импульсов еще большей величины (соответствующих энерговыделению более5 000 000 электроновольт) отмечаются случаи прохождения сквозь кристалл частиц космических лучей, обладающих большой энергией. Следует отметить,что заряженные частицы, входящие в состав космических лучей и летящие практически со скоростью света, будут проходить сквозь кристалл. При этом энерговыделение в кристалле в большинстве случаев будет равно примерно 20 000 000электроновольт.

Помимо измерения числа импульсов, производится определение суммарной ионизации, создаваемой в кристалле всеми видами излучений. Для этой цели служит схема, состоящая из неоновой лампочки, конденсатора и сопротивлений. Эта система позволяет путем измерения числа зажиганий неоновой лампочки определять суммарный ток, текущий через фотоумножитель, и тем самым измерять суммарную ионизацию, создаваемую в кристалле.

Исследования, проведенные на космической ракете, дают возможность определить состав космических лучей в межпланетном пространстве.

Изучение газовой составляющей межпланетного вещества и корпускулярного излучения Солнца

До недавнего времени предполагалось, что концентрация газа в межпланетном пространстве весьма мала и измеряется единицами частиц в кубическом сантиметре. Однако некоторые астрофизические наблюдения последних лет поколебали эту точку зрения.

Давление солнечных лучей на частицы самых верхних слоев земной атмосферы создает своеобразный «газовый хвост» Земли, который направлен всегда от Солнца. Свечение его, которое проектируется на звездный фон ночного неба в виде противосияния, называется зодиакальным светом. В 1953 году были опубликованы результаты наблюдений поляризации зодиакального света, которые привели некоторых ученых к выводу о том, что в межпланетном пространстве в районе Земли содержится около 600-1000 свободных электронов в кубическом сантиметре. Если это так и так как среда в целрм электрически нейтральна, то в ней должны содержаться и положительно заряженные частицы с такой же концентрацией. При некоторых предположениях из указанных поляризационных измерений была выведена зависимость электронной концентрации в межпланетной среде от расстояния до Солнца, а следовательно и плотность газа, который должен быть полностью или почти полностью ионизирован. Плотность межпланетного газа должна убывать по мере .увеличения расстояния от Солнца.

Другим опытным фактом, говорящим в пользу существования межпланетного газа с плотностью порядка 1000 частиц в кубическом сантиметре, является распространение так называемых «свистящих атмосфериков» — низкочастотных электромагнитных колебаний, вызываемых атмосферными электрическими разрядами. Для объяснения распространения этих электромагнитных колебаний от места их возникновения к месту, где они наблюдаются, приходится предполагать, что они распространяются по силовым линиям магнитного поля Земли, на расстояниях восьми-десяти земных радиусов (то есть порядка 50-65 тысяч километров) от поверхности Земли, в среде с электронной концентрацией порядка тысячи электронов в 1 кубическом сантиметре.

Однако выводы о существовании в межпланетном пространстве столь плотной газовой среды отнюдь не являются бесспорными. Так, ряд ученых указывает на то, что наблюдаемая поляризация зодиакального света может вызываться не свободными электронами, а межпланетной пылью. Высказывается предположение о том, что в межпланетном пространстве газ присутствует только в виде так называемых корпускулярных потоков, то есть потоков ионизированного газа, выбрасываемых с поверхности Солнца и движущихся со скоростью 1000-3000 километров в секунду.

По-видимому, при современном состоянии астрофизики вопрос о природе и концентрации межпланетного газа нельзя решить с помощью наблюдений, проводимых с поверхности Земли. Эта проблема, имеющая большое значение для выяснения процессов обмена газом между межпланетной средой и верхними слоями земной атмосферы и для изучения условий распространения корпускулярного излучения Солнца, может быть решена с помощью приборов, устанавливаемых на ракетах, движущихся непосредственно в межпланетном пространстве.

Целью установки приборов для изучения газовой составляющей межпланетного вещества и корпускулярного излучения Солнца на советской космической ракете является проведение первого этапа подобных исследований — попытки прямого обнаружения стационарного газа и корпускулярных потоков в области межпланетного пространства, находящегося между Землей и Луной, и грубой оценки концентрации заряженных частиц в этой области. При подготовке эксперимента на основании имеющихся в настоящее время данных принимались в качестве наиболее вероятных две следующие модели межпланетной газовой среды:

А. Имеется стационарная газовая среда, состоящая в основном из ионизированного водорода (то есть из электронов и протонов — ядер водорода) с электронной температурой 5000-10000° К (близкой к ионной температуре). Через эту среду временами проходят корпускулярные потоки со скоростью 1000-3000 километров в секунду с концентрацией частиц — 1-10 в кубическом сантиметре.

Б. Имеются только спорадические корпускулярные потоки, состоящие из электронов и протонов со скоростями 1000-3000 километров в секунду, иногда достигающие максимальной концентрации 1000 частиц в кубическом сантиметре.

Эксперимент проводится с помощью протонных ловушек. Каждая протонная ловушка представляет собой систему из трех концентрически расположенных полусферических электродов с радиусами 60 мм, 22,5 мм и 20 мм. Два внешних электрода изготовлены из тонкой металлической сетки, третий — сплошной — служит коллектором протонов. Электрические потенциалы электродов относительно корпуса контейнера таковы, что электрические поля, образуемые между электродами ловушки, должны обеспечить как полное собирание всех протонов и выталкивание электронов, попадающих в ловушку из стационарного газа, так и подавление фототока с коллектора, возникающего под действием ультрафиолетового излучения Солнца и других излучений, действующих на коллектор.

Разделение протонного тока, создаваемого в ловушках стационарным ионизированным газом и корпускулярными потоками (если они существуют совместно), осуществляется одновременным использованием четырех протонных ловушек, отличающихся друг от друга тем, что у двух из них на оболочки (внешние сетки) подан положительный потенциал, равный 15 вольтам относительно оболочки контейнера. Этот тормозящий потенциал препятствует попаданию в ловушку протонов из стационарного газа (имеющих энергию порядка 1 электроновольта), но не может помешать попаданию на коллектор протонов корпускулярных потоков, обладающих гораздо большими энергиями. Две остальные ловушки должны регистрировать суммарные протонные токи, создаваемые как стационарными, так и корпускулярными протонами. Внешняя сетка у одной из них находится под потенциалом оболочки контейнера, а у другой имеется отрицательный потенциал, равный 10 вольтам относительно той же оболочки.

Токи в цепях коллекторов после усиления регистрируются с помощью радиотелеметрической системы

Исследование метеорных частиц

Наряду с планетами и их спутниками, астероидами и кометами в солнечной системе присутствует большое количество мелких твердых частиц, движущихся относительно Земли со скоростями от 12 до 72 километров в секунду и называемых в комплексе метеорным веществом.

К настоящему времени основные сведения о метеорном веществе, вторгающемся в земную атмосферу из межпланетного пространства, получены астрономическими, а также радиолокационными методами.

Сравнительно крупные метеорные тела, влетая с огромными скоростями в атмосферу Земли, сгорают в ней, вызывая свечение, наблюдаемое визуально и при помощи телескопов. Более мелкие частицы прослеживаются радиолокаторами по следу заряженных частиц — электронов и ионов, образующихся при движении метеорного тела.

На основании этих исследований получены данные о плотности метеорных тел вблизи Земли, их скорости и масс от 10-4 грамма и больше.

Данные о мелких и самых многочисленных частицах с поперечником в несколько микрон получаются из наблюдения рассеяния солнечного света лишь на огромном скоплении таких частиц. Исследование индивидуально микрометеорной частицы возможно только при помощи аппаратуры, установленной на искусственных спутниках Земли, а также на высотных и космических ракетах.

Изучение метеорного вещества имеет существенное научное значение для геофизики, астрономии, для решения проблем эволюции и происхождения планетных систем.

В связи с развитием ракетной техники и началом эры межпланетных полетов, открытой первой советской космической ракетой, изучение метеорного вещества приобретает большой чисто практический интерес для определения метеорной опасности для космических ракет и искусственных спутников Земли, находящихся длительное время в полете.

Метеорные тела при соударении с ракетой способны производить на нее разного рода воздействия: разрушить ее, нарушить герметичность кабины, пробив оболочку. Микрометеорные частицы, длительное время воздействуя на оболочку ракеты, могут вызвать изменение характера ее поверхности. Поверхности оптических приборов в результате столкновения с микрометеорными телами могут превращаться из прозрачных в матовые.

Как известно, вероятность столкновения космической ракеты с метеорными частицами, способными повредить ее, мала, но она существует, и важно правильно оценить ее.

Для исследования метеорного вещества в межпланетном пространстве на приборном контейнере космической ракеты установлены два баллистических пьезоэлектрических датчика из фосфата аммония, регистрирующих удары микрометеорных частиц. Пьезоэлектрические датчики превращают механическую энергию ударяющей частицы в электрическую, величина которой зависит от массы и скорости ударяющей частицы, а число импульсов равно числу частиц, сталкивающихся с поверхностью датчика.

Электрические импульсы с датчика, имеющие вид кратковременных затухающих колебаний, подаются на вход усилителя-преобразователя, разделяющего их на три диапазона по амплитуде и подсчитывающего число импульсов в каждом амплитудном диапазоне.

Магнитные измерения

Успехи советской ракетной техники открывают перед геофизиками большие возможности. Космические ракеты позволят производить непосредственно измерения магнитных полей планет специальными магнитометрами или обнаруживать поля планет благодаря их возможному влиянию на интенсивность космического излучения непосредственно в пространстве, окружающем планеты.

Полет советской космической ракеты с магнитометром в сторону Луны является первым таким экспериментом.

Помимо исследования магнитных полей космических тел, громадное значение имеет вопрос об интенсивности магнитного поля в космическом пространстве вообще. Напряженность магнитного поля Земли на расстоянии 60 земных радиусов (на расстоянии лунной орбиты) практически равна нулю. Есть основания полагать, что магнитный момент Луны невелик. Магнитное поле Луны, в случае однородного намагничивания, должно убывать по закону куба расстояния от ее центра. При неоднородном намагничивании интенсивность поля Луны будет убывать еще быстрее. Следовательно, оно может быть надежно обнаружено лишь в непосредственной близости от Луны.

Какова интенсивность поля в пространстве внутри орбиты Луны при достаточном удалении от Земли и Луны? Определяется ли оно значениями, вычисленными из магнитного потенциала Земли, или оно зависит и от других причин? Магнитное поле Земли измерено на третьем советском спутнике в диапазоне высот 230-1800 километров, то есть до 1/3 радиуса Земли. Относительный вклад возможной непотенциальной части постоянного магнитного поля, влияние переменной части магнитного поля будет больше на расстоянии нескольких радиусов Земли, где интенсивность ее поля уже достаточно мала. На расстоянии пяти радиусов поле Земли должно составлять примерно 400 гамм (одна гамма — 10-5 эрстед).

Установка магнитометра на борту ракеты, летящей в сторону Луны, преследует следующие цели:

1. Измерить магнитное поле Земли и возможные поля токовых систем в пространстве внутри орбиты Луны.

2. Обнаружить магнитное поле Луны.

Вопрос о том, намагничены ли, подобно Земле, планеты солнечной системы и их спутники, является важным вопросом астрономии и геофизики.

Статистическая обработка большого числа наблюдений, выполненная магнитологами с целью обнаружения магнитных полей планет и Луны по их возможному влиянию на геометрию корпускулярных потоков, выбрасываемых Солнцем, не привела к определенным результатам.

Попытка установления общей связи между механическими моментами космических тел, известных для большинства планет солнечной системы, и их возможными магнитными моментами не нашла экспериментального подтверждения в целом ряде наземных экспериментов, которые следовали из этой гипотезы.

В настоящее время наиболее часто используется в различных гипотезах происхождения магнитного поля Земли модель регулярных токов, текущих в жидком проводящем ядре Земли и вызывающих основное магнитное поле Земли. Вращение Земли вокруг оси при этом привлекается для объяснения частных особенностей земного поля.

Таким образом, согласно этой гипотезе, существование жидкого проводящего ядра является обязательным условием наличия общего магнитного поля.

О физическом состоянии внутренних слоев Луны мы знаем очень мало. До недавнего времени полагали, исходя из вида поверхности Луны, что если даже горы и лунные кратеры имеют вулканическое происхождение, вулканическая деятельность на Луне давно окончилась и Луна вряд ли имеет жидкое ядро. При такой точке зрения следовало бы полагать, что Луна не обладает магнитным полем, если верна гипотеза происхождения земного магнитного поля. Однако если вулканическая деятельность на Луне продолжается, то не исключается возможность существования неоднородной намагниченности Луны и даже общей однородной намагниченности.

Чувствительность, диапазон измерения магнитометра и программа его работы для советской космической ракеты были выбраны, исходя из необходимости решения указанных выше задач. Так как ориентация измерительных датчиков относительно измеряемого магнитного поля непрерывно меняется из-за вращения контейнера и вращения Земли, для эксперимента используется трехкомпонентный магнитометр полного вектора с магнитно-насыщенными датчиками. Три взаимно-перпендикулярных чувствительных датчика магнитометра закреплены неподвижно относительно корпуса контейнера на специальной немагнитной штанге длиной более метра. При этом влияние магнитных частей аппаратуры контейнера все же составляет 50-100 гамм, в зависимости от ориентации датчика. Достаточно точные результаты при измерении магнитного поля Земли могут быть получены до расстояний 4-5 ее радиусов.

* * *

Научная аппаратура, установленная на борту ракеты, функционировала нормально. Получено большое количество записей результатов измерений, которые обрабатываются. Предварительный анализ показывает, что результаты исследований имеют большое научное значение. Эти результаты будут публиковаться по мере обработки наблюдений.

Искусственная натриевая комета и аппаратура для ее образования

Искусственная натриевая комета представляет собой облако паров натрия в атомарном состоянии, которое выбрасывается в космическое пространство с борта ракеты в определенный момент времени. Свечение натриевого облака происходит результате резонансной флюоресценции. Сущность этого явления состоит в том, что атомы натрия рассеивают солнечный свет в узком интервале частот в желтый части солнечного спектра.

Свет, рассеиваемый натриевым облаком, обладает монохроматичностью, что делает возможным в значительной степени ослабить фон неба при наблюдении облака через специальные светофильтры.

Яркость натриевого облака, содержащего 1 килограмм натрия и образованного на расстоянии113 000 километров от Земли, по расчету должна быть примерно равной шестой звездной величине, что соответствует предельной возможности наблюдения облака невооруженным глазом. Для сравнения следует указать, что яркость самой космической ракеты в полете на этом расстоянии равна примерно четырнадцатой звездной величине.

Следовательно, создание искусственной натриевой кометы позволяет осуществить оптическое наблюдение с Земли определенной точки траектории космической ракеты.

Наблюдение натриевой кометы возможно только в ночное время. Это обстоятельство определяет время и место образования натриевого облака при полете космической ракеты. Время образования искусственной кометы было выбрано с таким расчетом, чтобы ее могло видеть возможно большее число наблюдательных станций Советского Союза.

Для образования искусственной натриевой кометы использовалась специальная аппаратура, установленная на последней ступени космической ракеты. Основным у ал ом этой аппаратуры является испаритель натрия. Конструкция испарителя дает возможность осуществить испарение одного килограмма натрия в течение 5-7 секунд и выброс натриевого облака в условиях невесомости и глубокого вакуума космического пространства.

Команда, необходимая для срабатывания испарителя в строго определенный момент времени, подается от малогабаритного электронного командного устройства, основой которого являются кварцевые часы.

* * *

Успешный запуск советской космической ракеты в сторону Луны и создание первой искусственной планеты — выдающееся достижение советской науки и техники.

Уже недалеко то время, когда по космическим путям, начало которым положено запуском советской ракеты, будут двигаться межпланетные корабли к самым отдаленным уголкам солнечной системы. Человечество вступило в эпоху непосредственного проникновения во Вселенную.

МЫ ГОРДЫ СВОЕЙ ОТЧИЗНОЙ

Трудно выразить словами бурю радостных чувств, возникшую в сердце. Хочется от души, по-русски расцеловать всех тех людей, которые создали такую замечательную ракету.

Мы, советские люди, вновь испытывали чувство величайшей гордости за свою социалистическую Родину. Она первой открыла путь в космос, запустив искусственные спутники Земли. Она первой создала спутник Солнца.

Я помню дореволюционную Россию, отсталую и нищую страну. За какие-то четыре десятка лет Советской власти наша страна вышла в число самых развитых и могучих государств мира. Мы оставляем позади капиталистические государства одно за другим, как говорится, по всем статьям. Вот что значит свободный труд свободного народа! Вот что значит социализм! А то ли еще будет, когда мы осуществим свою семилетку, так славно начатую сегодня.

Каждый советский человек, как я, сейчас чувствует, наверное, что в космической ракете заложена какая-то частица его труда. Мы с гордостью говорим: «Наши ракеты». Именно наши, потому что в Советской стране каждое достижение — это плод труда всего народа. Мы начинаем забывать слова «твое», «мое», а говорим «наше». В том-то и сила советского народа. Когда люди действуют сообща и дружно, им все по плечу, для них нет никаких преград и расстояний.

Мы знаем твердо, что скоро нога советского человека ступит на Луну и другие планеты. У нас молодежь уже поет частушку:


Полетим мы на Луну

И освоим целину!

Меня, старика, разменявшего уже седьмой десяток лет, не возьмут, конечно, на ракету. Но я уверен, что еще буду свидетелем полетов советских людей на небесные тела.

Г. ЩЕРБИНИН, хлебороб-опытник, Герой Социалистического Труда. Алтайский край

Сообщение ТАСС

О ЗАПУСКЕ СОВЕТСКИМ СОЮЗОМ КОСМИЧЕСКОЙ РАКЕТЫ К ЛУНЕ

В соответствии с программой исследования космического пространства и подготовки к межпланетным полетам 12 сентября 1959 года в Советском Сбюзе осуществлен второй успешный пуск космической ракеты.

Пуск ракеты произведен с целью исследования космического пространства при полете к Луне.

Запуск произведен с помощью многоступенчатой ракеты.

Последняя ступень ракеты, превысив вторую космическую скорость — 11,2 километра в секунду, движется к Луне.

На 15 часов московского времени 12 сентября советская космическая ракета удалилась на 78,5 тысячи километров от Земли и находилась к этому времени над пунктом, расположенным севернее острова Новая Гвинея.

Последняя ступень космической ракеты представляет собой управляемую ракету весом 1511 килограммов (без топлива). Она несет на себе контейнер с научной и радиотехнической аппаратурой. Контейнер, имеющий форму шара, герметизирован и заполнен газом. В нем предусмотрена система автоматического регулирования теплового режима.

После выхода на орбиту контейнер с научно-измерительной аппаратурой был отделен от последней ступени ракеты.

С помощью второй советской космической ракеты должны быть осуществлены:

— исследование магнитного поля Земли и магнитного поля Луны;

— исследование поясов радиации вокруг Земли;

— исследование интенсивности и вариаций интенсивности космического излучения;

— исследование тяжелых ядер в космическом излучении;

— исследование газовой компоненты межпланетного вещества;

— изучение метеорных частиц.

Общий вес научной и измерительной аппаратуры с источниками питания и контейнером составляет 390,2 килограмма.

Для передачи на Землю всей научной информации, измерения параметров движения и контроля за полетом ракеты на ней установлены:

— радиопередатчик, работающий на двух частотах — 20,003 и 19,997 мегагерца.

Передатчик излучает сигналы в виде телеграфных посылок длительностью от 0,8 до 1,5 секунды и работает таким образом, что во время пауз в излучении первой частоты 20,003 мегагерца передаются импульсы на второй частоте — 19,997 мегагерца;

— радиопередатчик, работающий на частотах 19,993 мегагерца и 39,986 мегагерца.

Сигналы передатчика представляют собой импульсы переменной длительности от 0,2 до 0,8 секунды. Частота повторения импульсов 1 плюс минус 0,15 герца;

— радиопередатчик, работающий на частоте 183,6 мегагерца.

На космической ракете имеются вымпелы с гербом Союза Советских Социалистических Республик и надписью — сентябрь 1959 год.

Для визуального наблюдения за космической ракетой на ней имеется специальная аппаратура для создания натриевого облака — искусственной кометы. Искусственная комета будет образована 12 сентября в 21 час 39 минут 42 секунды московского времени. Она будет наблюдаться в созвездии Водолея приблизительно на линии, соединяющей звезды Альфа созвездия Орел и Альфа созвездия Южная Рыба.

Экваториальные координаты кометы будут равны: прямое восхождение — 20 часов 41 минута, склонение — минус 7,2 градуса.

Искусственная комета может наблюдаться и фотографироваться оптическими средствами (со светофильтрами, выделяющими спектральную линию натрия) с территории Средней Азии, Кавказа, Украины, Белоруссии, центральной части европейской территории СССР, а также Европы, Африки, стран Ближнего Востока, Индии и западной части Китая.

Все радиопередатчики, установленные на космической ракете, работают нормально. Наземные радиотехнические станции ведут прием научной информации с борта ракеты.

С помощью специального автоматизированного измерительного комплекса, станции которого размещены в различных точках Советского Союза, непрерывно производится измерение параметров движения ракеты. Обработка результатов измерений и определение элементов ее орбиты осуществляются на быстродействующих электронно-вычислительных машинах.

Передачи информации о движении космической ракеты будут вестись всеми радиостанциями Советского Союза.

По предварительным данным, ракета движется по траектории, близкой к расчетной. Ожидается, что космическая ракета достигнет Луны 14 сентября в 00 часов 05 минут московского времени.

Успешный пуск второй советской космической ракеты — новый важный этап в исследовании и завоевании космоса человеком. Этим расширяются перспективы международного сотрудничества в области освоения космического пространства, что будет способствовать дальнейшему смягчению международной напряженности и укреплению дела мира.

Сообщение ТАСС

О ДОСТИЖЕНИИ ВТОРОЙ СОВЕТСКОЙ КОСМИЧЕСКОЙ РАКЕТОЙ ПОВЕРХНОСТИ ЛУНЫ

Сегодня, 14 сентября, в 0 часов 02 минуты 24 секунды московского времени вторая советская космическая ракета достигла поверхности Луны. Впервые в истории осуществлен космический полет с Земли на другое небесное тело. В ознаменование этого выдающегося события на поверхность Луны доставлены вымпелы с изображением герба Советского Союза и надписью «Союз Советских Социалистических Республик. Сентябрь, 1959 год».

Для обеспечения сохранности вымпелов при встрече с Луной были приняты конструктивные меры.

Программа научных измерений завершена.

Работа радиосредств, установленных в контейнере с научной и измерительной аппаратурой, в момент встречи с Луной прекратилась.

Достижение Луны советской космической ракетой является выдающимся успехом науки и техники. Открыта новая страница в исследовании космического пространства.

ГЕРБ СТРАНЫ МОЕЙ

М. МАТУСОБСКИЙ

Не в старых вымыслах Жюль Верна

И не во сне

Она стремительно и верно

Неслась к Луне.

Смелее подвига и выше

Никто не знал,

И целый мир с волненьем слышал

Ее сигнал.

Сквозь беспредельные пустыни

Прошла она,

И герб страны моей отныне

Несет Луна.

Ее полет прославлен будет

В любом краю,

В нее вложили наши люди

Мечту свою.

И, взмыв к далеким звездам круто,

И всем видна,

Прошла ракета по маршруту:

Москва — Луна!

О ПЕРВЫХ ИТОГАХ ПУСКА КОСМИЧЕСКОЙ РАКЕТЫ НА ЛУНУ

Советская космическая ракета, стартовавшая 12 сентября 1959 года, достигла поверхности Луны 14 сентября в 0 часов 02 минуты 24 секунды московского времени.

Полет советской космической многоступенчатой ракеты к Луне проходил строго по намеченной расчетной траектории. Все системы, агрегаты и элементы ракеты во время полета работали нормально.

Установленные на борту ракеты радиотехнические средства обеспечили надежное слежение с Земли за ее полетом, начиная со старта н до момента достижения контейнером с научной аппаратурой поверхности Луны.

Успешная работа наземного автоматического измерительного комплекса позволила непрерывно контролировать соответствие действительной траектории полета расчетным данным, дать достоверный прогноз попадания в Луну и определить район попадания.

Анализ действительной траектории движения второй советской космической ракеты на основе зарегистрированных данных всех видов измерений и наблюдений позволяет в настоящее время произвести первое уточнение района падения контейнера с научной и измерительной аппаратурой и последней ступени ракеты. Обработка данных наблюдений показывает,что контейнер второй советской космической ракеты опустился на поверхности Луны восточнее моря «Ясности» вблизи кратера Аристил, кратера Архимед и кратера Автолик. Селенографическая широта точки встречи контейнера с поверхностью Луны, по полученным данным, равна плюс 30 градусов, а селенографическая долгота равна нулю. Отклонение точки прилунения приборного контейнера от центра видимого диска Луны составляет примерно 800 километров.

В момент встречи контейнера с Луной его траектория была наклонена к поверхности Луны под углом в 60 градусов. При этом скорость контейнера относительно Луны составила около 3,3 километра в секунду.

Обработка полученных данных подтверждает, что последняя ступень космической ракеты также достигла поверхности Луны.

Как уже сообщалось, при полете второй советской космической ракеты к Луне должны были производиться: исследование магнитного поля Земли и магнитного поля Луны, исследование поясов радиации вокруг Земли, исследование интенсивности космического излучения, исследование тяжелых ядер в космическом излучении, исследование газовой компоненты межпланетного вещества, изучение метеоритных частиц.

Рассмотрение материалов, полученных в результате произведенных исследований, подтвердило, что научная и телеметрическая аппаратура, установленная в контейнере, функционировала нормально.

Произведена первоначальная расшифровка материалов телеизмерений.

Полученные предварительные данные позволяют уже в настоящее время установить следующее:

— магнитное поле вблизи Луны, по данным записей магнитометра, в пределах его чувствительности и девиационной погрешности (порядка 60 гамм), не обнаружено;

— измерения интенсивности радиации вблизи Луны не обнаружили пояса радиации и заряженных частиц. Этот факт согласуется с результатами магнитных измерений;

— в космическом пространстве на пути следования ракеты произведены измерения общего потока космического излучения, потоков ядер гелия (альфа-частиц), ядер углерода, азота, кислорода и более тяжелых ядер, входящих в состав космических лучей;

— получены дополнительные данные о рентгеновских лучах, гамма-лучах, электронах больших и малых энергий и частицах высоких энергий;

— произведены измерения в пределах пояса радиации Земли;

— произведена регистрация токов, создаваемых частицами ионизированного газа, попадающими из окружающей среды в четыре установленных на контейнере ловушки положительно заряженных частиц. Величины регистрируемых токов меняются вдоль пути следования ракеты; предварительные оценки показывают, что между Землей и Луной имеются области, где концентрация ионизированных частиц меньше, чем сто частиц в кубическом сантиметре. При приближении к Луне на расстоянии порядка десяти тысяч километров зарегистрированные токи возрастают. Это может быть объяснено либо существованием вокруг Луны оболочки из ионизированных газов — своеобразной лунной ионосферы, либо наличием вокруг Луны области повышенной концентрации корпускул с энергиями порядка десятков вольт;

— получены новые данные о микрометеорах.

Производится дальнейшая обработка и анализ полученных материалов.

По мере завершения этой работы результаты произведенных исследований будут публиковаться.

* * *

Создание многоступенчатой космической ракеты, двигателей, системы управления полетом и комплекса наземных средств, обеспечивших точный старт и высокоточное движение ракеты к Луне, а также надежный контроль за полетом ракеты до момента встречи с Луной, является выдающимся успехом советской науки и техники.

Пуск второй советской космической ракеты, проведенный комплекс научных исследований и достижение поверхности Луны внесут значительный вклад в мировую науку, в дело освоения космоса человеком.

Несколько часов тому назад на поверхность Луны были доставлены предметы с нашей планеты. Нет сомнений, что этот беспримерный успех был достигнут только в результате невиданного развития науки и техники, беззаветного труда и прекрасной организации научно-исследовательской работы в Советском Союзе.

Э. КАРАФОЛИ,

академик (Румыния)

Я считаю, что во второй советской космической ракете особенно импонирующими являются высокий уровень автоматизации этого астрономического корабля и точность, с какой произведены вычисления его траектории. Следует сказать, что такое вычисление, даже при использовании современнейших электронных математических машин, является исключительно трудной и сложной задачей.

Э. ОЛЬШЕВСКИЙ,

профессор (Польша)

Мечты человека превращаются в деиствительность.

Анхель ГАРСИА,

профессор (Мексика)

12 сентября 1959 года советские ученые добились требующейся изумительной точности в 0,01 процента, и, таким образом, вторая космическая ракета достигла Луны 13 сентября в 22 часа 02 минуты 24 секунды по парижскому времени, то есть с отклонением менее чем на три минуты. Полет второй космической ракеты означал начало первой стадии астронавтики благодаря тройной победе: достижению космических скоростей, больших полезных грузов и точности. А во вторую годовщину запуска первого спутника мы узнали, что советские ученые использовали свои методы для запуска третьей космической ракеты со скоростью, соответствующей эллиптической траектории. Выполнить это гораздо труднее, чем заставить ракету двигаться по гиперболической траектории, как у первой и второй космических ракет. Я уже не говорю о замечательном результате, достигнутом третьей космической ракетой, — получении фотографии невидимой стороны Луны.

Альбер ДЮКРОК,

французский ученый

Это сенсационное достижение еще раз доказывает, что русские имеют исключительно точную систему телеуправления весьма мощных ракет.

Д-р Уолтер РОБЕРТС,

директор высотной обсерватории университета штата Колорадо (США)

Русских можно сравнить со снайпером, попадающим из мелкокалиберной винтовки на расстоянии 10 километров в глаз мухи. Запуск ракет означает, что русские мргут запустить на Луну ракету с человеком.

Гейнц КАМИНСКИЙ,

директор Бохумской обсерватории (ФРГ)

ПЕРВЫЙ ПОЛЕТ НА ЛУНУ

Весь мир облетело волнующее сообщение о запуске в Советском Союзе второй космической ракеты, которая 14 сентября в 0 часов 02 минуты 24 секунды успешно достигла поверхности Луны. Впервые в истории человечества совершен космический полет с Землп на другое небесное тело.

Осуществление полета с Земли на Луну оказалось возможным в результате высокого уровня развития науки и техники в Советском Союзе. Оно явилось плодом усилий советских ученых, конструкторов, инженеров, техников, рабочих, результатом вдохновенного труда больших коллективов, участвовавших в создании и запуске второй советской космической ракеты.

Запуск ракеты на Луну является весьма сложной научной и технической проблемой.

Для полета к Луне необходимо было создание высокосовершенной многоступенчатой ракеты, мощных ракетных двигателей, работающих на высококалорийном топливе, высокоточной системы управления полетом ракеты, наземного стартового оборудования и автоматического измерительного комплекса для слежения за полетом ракеты.

Для того чтобы представить себе требования, предъявляемые к точности управления ракетой, к автоматике старта, к измерительной службе для решения проблемы запуска ракеты на Луну, изложим некоторые сведения о движении Луны, а также некоторые вопросы, связанные с выбором траектории полета.

Напомним основные характеристики движения Луны, известные из астрономии. Луна, являющаяся спутником Земли, движется вокруг Земли по орбите, близкой к круговой. Плоскость орбиты Луны в настоящее время наклонена к плоскости земного экватора под углом около 18°. Вследствие этого при движении по орбите склонение Луны, то есть угол, составляемый направлением из центра Земли к Луне с плоскостью земного экватора, меняется от + 18 до — 18. Время одного оборота Луны вокруг Земли составляет примерно 27,3 суток. Расстояние Луны от Земли составляет в среднем 384 386 километров и изменяется от 356 400километров в перигее орбиты до 406 670 километров в апогее. Скорость движения Луны по орбите равна примерно одному километру в секунду. Двигаясь с такой скоростью, Луна описывает по небесной сфере в течение суток дугу около 13 градусов.

Траектория полета ракеты к Луне состоит из двух частей: из участка разгона, на котором под действием тяги двигателей ракета выводится в определенную точку пространства, приобретая необходимую скорость, и из участка свободного полета, который начинается после выключения двигателя последней ступени ракеты и отделения контейнера. Отделение контейнера от последней ступени ракеты происходит путем их механического разъединения и придания контейнеру некоторой небольшой вполне определенной дополнительной скорости.

В соответствии с законами небесной механики траектория свободного полета к Луне после выключения двигателя на большей своей части, где влияние притяжения Луны сравнительно невелико, была близка к плоской кривой — гиперболе, с одним из фокусов в центре Земли.

По мере удаления от Земли скорость движения постепенно убывала до величины порядка двух километров в секунду. В дальнейшем вследствие все возрастающего воздействия притяжения Луны уменьшение скорости прекратилось. Скорость начала возрастать и росла непрерывно вплоть до момента встречи с поверхностью Луны. Скорость соударения с Луной достигала 3,3 километра в секунду.

Запуску ракеты на Луну предшествовали теоретические исследования и технические расчеты, позволившие определить параметры траектории и время пуска, обеспечивающие решение задачи о достижении Луны при наивыгоднейших условиях.

Остановимся на этом несколько подроонее.

Принципиально запуск ракеты для достижения Луны возможен в любой день, то есть при любом положении Луны в ее движении по орбите вокруг Земли. Однако расчеты показывают, что при запуске ракеты с точек земной поверхности, располагаемых на широтах территории Советского Союза, энергетически выгодно осуществлять запуск тогда, когда Луна находится вблизи точки своей орбиты с минимальным склонением, то есть когда склонение Луны близко к 18 градусам. В этом случае на участке разгона ракета будет двигаться с наименьшим углом к земной поверхности и потери скорости за счет притяжения Земли будут минимальными, что обеспечивает возможность посылки на Луну наибольшего полезного груза. При старте в более поздние или более ранние сроки вес возможного полезного груза уменьшается. Однако при смещении на несколько дней эти потери сравнительно невелики, и в течение каждого лунного месяца может быть указан интервал времени протяженностью около недели, в течение которого полет ракеты на Луну является целесообразным. При боДее значительном отклонении от оптимального срока величина возможного полезного груза резко уменьшается.

В пределах указанного интервала во время встречи ракеты с Луной Луна должна находиться над горизонтом. При полете космической ракеты время встречи выбиралось таким образом, чтобы сближение с Луной происходило в период, когда для пунктов наблюдения Луна находится вблизи точки верхней кульминации, то есть высота ее над горизонтом близка к наибольшей. В этом случае условия радиосвязи являются наиболее благоприятными.

В результате расчетов было выбрано наиболее выгодное значение угла наклонения плоскости траектории к плоскости земного экватора, что определило для заданной точки старта направление трассы полета ракеты на начальном участке ее движения. При различных направлениях трассы угол наклона скорости движения ракеты на участке разгона и величина потерь на силу притяжения Земли оказываются различными. Выбор направления трассы производился из условия минимальной величины потерь и, следовательно, максимального увеличения возможного полезного груза. При этом принимались во внимание также вопросы удобства размещения измерительного комплекса для контроля движения и получения телеметрической информации как на участке разгона, так и на начальном участке свободного полета после выключения двигателя последней ступени.

Как показали расчеты, при полете к Луне с территории СССР Луна в момент старта должна находиться за горизонтом вблизи точки нижней кульминации. Это означает, что момент старта должен отличаться от момента верхней кульминации Луны примерно на полсуток. Если учесть, что в момент достижения Луны она должна находиться в точке верхней кульминации, то станет ясным, что полет к Луне должен продолжаться либо полсуток, либо полутора суток, либо двое с половиной суток и т. д.

Для полета космической ракеты была выбрана продолжительность полета около полутора суток, поскольку полет в течение полусуток требует чрезвычайно больших начальных скоростей, а полет в течение двух с половиной и более суток при выполнении условия попадания в Луну и условия гарантированного наблюдения ее в момент встречи связан с необходимостью удовлетворения значительно более жестких требований по точности выдерживания параметров движения в конце участка разгона.

Выбор продолжительности полета определил величину скорости ракеты в конце участка разгона, которая, как уже указывалось выше, была несколько выше параболической.

Расчет траектории движения ракеты как на участке разгона, так и на участке движения после выключения двигателя последней ступени производился с помощью быстродействующих электронных цифровых машин. При расчете принимались во внимание силы притяжения Земли и Луны. Оказалось необходимым также учитывать отклонение поля тяготения Земли от центрального вследствие сжатия Земли и возмущающее воздействие притяжения Солнца.

Для получения при полете ракеты параметров движения в конце участка разгона, достаточно точно совпадающих с их расчетными значениями, на ракете была установлена система управления, функционировавшая на протяжении всего участка разгона, длительность которого составляла несколько минут. Дальнейший полуторасуточный полет ракеты был неуправляемым и происходил лишь под действием поля тяготения Земли, Луны и других небесных тел.

Для обеспечения попадания ракеты в Луну при отсутствии какой-либо коррекции ее движения на участке свободного полета расчетные значения параметров движения в конце участка разгона должны быть выдержаны весьма точно. Так, ошибка в скорости ракеты всего на один метр в секунду, то есть на 0,01 процента от величины полной скорости, приводит к отклонению точки встречи с Луной на 250 километров. Отклонение вектора скорости от расчетного направления на одну угловую минуту вызывает смещение точки встречи на 200 километров. Существенно влияет на положение точки встречи ракеты с поверхностью Луны также изменение координат точки выключения двигателя. Все перечисленные ошибки, а также неточность времени старта ракеты действуют в совокупности, определяя, как правило, большее отклонение точки встречи с Луной, чем отклонение от каждого фактора в отдельности.

Учитывая, что радиус Луны равен 1740 километров, для надежного попадания в Луну ошибка в скорости должна была быть не больше нескольких метров в секунду, а отклонение вектора скорости от его расчетного направления не должно было превышать одной десятой градуса. Обеспечение такой точности управления ракетой представляет собой весьма сложную задачу.

Следует отметить, что осуществление полета к Луне с территории СССР предъявляет более жесткие требования к точности работы системы управления, чем полет из районов земного шара, расположенных ближе к экватору.

Необходимость точного выдерживания расчетного времени старта связана с тем, что плоскость траектории ракеты поворачивается вместе с Землей при ее суточном вращении вокруг оси. Отклонение времени старта в 10 секунд вызывает смещение точки встречи на поверхности Луны на 200 километров. Старт космической ракеты в заранее заданный момент с точностью до нескольких секунд предъявляет серьезные требования к организации и подготовке пуска, а также к автоматической системе запуска. Запуск второй советской космической ракеты, осуществленный с такой точностью, свидетельствует о совершенстве стартовой системы и высокой надежности пусковой автоматики.

Старт второй космической ракеты осуществлен с отклонением около одной секунды от заданного момента времени.

В проблеме полета космической ракеты весьма важными были вопросы создания измерительной и расчетной службы, сложного комплекса, предназначенного для оперативного определения характеристик движения космической ракеты.

Специфическим требованием, существенно определяющим сложность всей системы измерения в целом, является требование максимально быстрого получения данных о характеристиках движения ракеты. Эти данные необходимы для вычисления целеуказаний наблюдательным и измерительным службам для расчета прогноза о движении ракеты и о точке встречи ее с поверхностью Луны.

Как видно из приведенных выше данных, характеризующих влияние ошибок в параметрах движения на положение точки встречи, определение этих параметров по данным измерений должно производиться с весьма высокой точностью, соответствующей точности астрономических расчетов.

Обычные, выработанные многолетней астрономической практикой приемы определения характеристик движения космических тел не могут быть использованы для указанной цели. Действительно, основа наблюдательной астрономии, оптические измерения являются непригодными вследствие малости размера ракеты как объекта наблюдения, вследствие малой точности одних угловых измерений при ограниченном наблюдательном времени и, наконец, вследствие малой надежности этих измерений, существенно зависящих от условий видимости и состояния земной атмосферы. Поэтому измерительная служба космических ракет базируется на радиотехнических средствах измерений. При этом используются измерения наклонных дальностей, углов и радиальных скоростей.

Эти особенности и требования к определению параметров движения космической ракеты максимально полно учтены в автоматизированном измерительном комплексе. Комплекс позволяет измерять текущую наклонную дальность до ракеты с высокой точностью и два угла на ракету: азимут и угол места. Данные измерений, получаемые на измерительном пункте, преобразуются в двоичный код, проходят предварительную обработку и привязываются к астрономическому времени. Все указанные операции производятся специальными цифровыми информационными машинами. Эти же информационные машины обеспечивают автоматическую выдачу измеренных данных в линии связи как в режиме измерений, так и в режиме выдачи запомненной информации. В вычислительном центре поступающая информация с помощью специальных электронных устройств автоматически декодируется и перфорируется на картах, которые в дальнейшем вводятся в электронные вычислительные машины. По данным измерений, поступивших с различных измерительных пунктов, вычислительные машины производят расчет начальных условий движения ракеты, целеуказаний и координат точки встречи ракеты с Луной.

С целью получения наиболее полных данных о движении космической ракеты на всем участке полета ракеты вплоть до Луны производились непрерывные измерения дальности до ракеты, радиальной скорости ее движения (скорости удаления от измерительного пункта) и угловых координат: угла места и азимута. Измерения производились на частоте 183,6 мегагерца.

Данные научных наблюдений, произведенных на борту космической ракеты, и сведения об условиях работы измерительной и радиотехнической аппаратуры (температура и давление) передавались и регистрировались наземными телеметрическими станциями. Передача научных данных производилась с помощью радиопередатчиков, работавших на частотах 183,6, 39,986 и 19,993 мегагерца. Все перечисленные радиотехнические средства были установлены в контейнере.

Радионаблюдения за полетом последней ступени ракеты осуществлялись по передатчику, работавшему на двух частотах: 19,997 и 20,003 мегагерца. По этому же радиоканалу передавалась дополнительная научная информация об интенсивности космического излучения с прибора, установленного не в контейнере, а на борту последней ступени ракеты.

Таким образом, в наблюдении за второй советской космической ракетой принимал участие большой комплекс радиотехнических средств, размещенных на специальных измерительных пунктах в различных частях территории Советского Союза. Все измерительные пункты были объединены системой специальной связи, обеспечивающей оперативную передачу данных измерений в вычислительный центр и целеуказаний на измерительные пункты.

Для координации работы измерительных средств по времени привязки результатов измерений к единому времени использовалась разработанная для этой цели служба единого времени.

Предварительная обработка данных измерений, поступивших через 20-30 минут со всех измерительных пунктов Советского Союза по автоматическим линиям связи в вычислительный центр, позволила в течение первого часа полета космической ракеты рассчитать траекторию ее дальнейшего движения, убедиться, что она выведена достаточно точно для попадания в Луну, рассчитать целеуказания для последующих измерений и наблюдений как советским, так и зарубежным измерительным станциям. По этим данным было определено, что предполагаемая точка встречи находится в северной части видимого диска Луны.

Последующая уточненная обработка этих данных и привлечение большой дополнительной информации по измерениям дальности и радиальной скорости ракеты дали возможность уточнить место и время встречи ракеты с Луной. Было установлено, что точка встречи располагается в районе моря «Ясности» в 800 километрах от центра видимого диска Луны.

Успешный полет второй советской космической ракеты на Луну является важнейшим этапом на пути исследования космического пространства и небесных тел.

ОПЫТЫ В КОСМОСЕ

С. ВЕРНОВ, член-корреспондент АН СССР

Ракеты, созданные гением конструкторов, дали возможность физикам производить свои опыты непосредственно в космосе. Совсем недавно процессы, проходившие даже в непосредственной близости от Земли, нередко оказывались скрытыми от ученых. До полетов спутников мы не знали, например, что вокруг нашей планеты вращается большое число частиц со скоростями, близкими к световой. Их перемещение не сопровождается испусканием лучей, которые можно было бы заметить с Земли.

Но что же представляют собой радиационные пояса, и по какой причине вокруг Земли вращается столь большое число частиц? Начиная с полета второго советского спутника Земли мы упорно ищем ответ на эти вопросы.

Магнитное поле Земли представляет собой преграду для движения частиц, обладающих электрическим зарядом. Эти частицы сильно отклоняются в таком поле. В итоге электрически заряженная частица двигается в магнитном поле по определенным, сильно искривленным траекториям. Зная их, нетрудно убедиться, что у Земли существует ловушка для частиц.

Попав в ловушку, частица сама практически никогда из нее не выберется. Лишь столкновение с атомами и возмущения магнитного поля могут здесь помочь. Однако если частицы не в состоянии сами уйти из ловушки, то, очевидно, они не могут туда и попасть. Необходимо, чтобы при их захвате существовали особые условия. Такие условия и могут создать космические лучи. Под действием последних происходит разрушение атомных ядер. Одним из продуктов этого распада являются нейтроны. Не обладая электрическим зарядом, они беспрепятственно проходят сквозь магнитное поле и, следовательно, через магнитную ловушку. Но нейтроны распадаются, и в результате их исчезновения возникают электрически заряженные частицы. Если нейтрон распался именно в тот момент, когда он проходил сквозь ловушку, то продукты его распада окажутся пойманными. Таким путем могут попасть в ловушку протоны с энергиями в сотни миллионов электроновольт и электроны с энергиями в сотни тысяч электроновольт.

Частицы меньших энергий должны проникать в ловушку иным путем. Возможно, что существуют двигающиеся от Солнца ловушки, которые приносят пойманные там частицы и «пересаживают» их потом в ловушку, имеющуюся у Земли. Не исключено, что частицы попадают в ловушку в результате проникновения в нее корпускулярных потоков, испускаемых Солнцем.

Данные, полученные при полетах спутников и космических ракет, показывают, что земная ловушка частиц имеет сложную структуру. Она состоит из двух поясов: внешнего, простирающегося на расстояние около 10 земных радиусов от центра нашей планеты, и внутреннего, существующего на высотах около тысячи километров от поверхности Земли. Между поясами есть пространство, не заполненное частицами.

Природа частиц (как и распределение их по энергиям) в обоих поясах резко различна. Во внутреннем поясе наблюдаются протоны. Энергия их столь велика, что лишь космические лучи могут быть ответственны за их появление. Во внешнем поясе таких частиц нет. Более того, там вообще отсутствуют частицы больших энергий. Во внешнем поясе имеются лишь электроны с относительно небольшой энергией. Поскольку этот пояс ближе к Солнцу, условия внедрения в него частиц солнечного происхождения более вероятны.

Число частиц в ловушке у Земли очень велико. Их так много, что они вызывают размагничивание магнитного поля планеты. Мы знаем, что без магнитного поля Земли не существовало бы ловушки. Но частицы, пойманные в земную ловушку, ее же разрушают. Если число таких частиц не очень велико, то она существует. Но слишком много протонов или электронов не может быть поймано. Ловушка их не сможет удержать и будет ими уничтожена.

Однако магнитное поле Земли достаточно сильно, чтобы удерживать сравнительно много частиц. Количество их оказывается безвредным для живых существ, которым предстоит путешествовать в космосе. По этой причине надо конструировать космический корабль с учетом возможной защиты от действий излучений или прокладывать трассу ракеты по относительно безопасным районам. А такие области действительно существуют. Известно, что магнитные силовые линии, выходящие из Земли вблизи полюсов, удаляются от планеты на очень большие расстояния. Навиваясь на эти силовые линии, частицы могут покинуть Землю. Поэтому у полюсов ловушки для частиц не существует. Следовательно, районы Земли на широтах свыше 70° наиболее благоприятны для старта космических кораблей.

Происходящие около нашей планеты явления похожи на те, которые физики осуществляют в лабораториях с целью создания управляемой термоядерной реакции. Однако масштабы различаются в миллионы раз. Возникает вопрос: не существуют ли ловушки частиц в других частях вселенной?

Ясно, что вокруг всякого небесного тела, обладающего достаточно сильным магнитным полем, будут создаваться те же условия, что и около Земли. Поэтому есть основания искать радиационные пояса вокруг других планет и по их наличию или отсутствию судить о существовании магнитного поля.

Где-то в глубинах Вселенной создаются условия для возникновения космических лучей. Иногда, правда, крайне редко, их источником становится Солнце, на котором в это время возникают взрывные процессы. Однако энергия частиц космических лучей солнечного происхождения в миллионы и сотни миллионов раз меньше максимальной энергии частиц в «обычном» космическом излучении. Следовательно, масштабы явлений, происходящих на Солнце, еще очень малы по сравнению с теми, которые имеют место в удаленных от нас частях космического пространства. Там космические лучи являются решающим фактором, определяющим свойства космического пространства.

Опыты, проведенные при полете первой советской космической ракеты, позволили определить число и природу частиц космических лучей. Эти опыты, в частности, показали, что вдали от Земли космическое излучение не должно создавать катастрофически вредного воздействия на живые организмы. Правда, следует оговориться, что этот вывод относится к условиям, которые существовали в период сравнительно спокойного состояния Солнца. Во время взрывных процессов на нем вся солнечная система наполняется очень интенсивным и опасным для жизни излучением. Полет второй советской космической ракеты показывает, что не за горами тог день, когда на Луну отправится человек. Чтобы обезопасить его путешествие, надо уметь прогнозировать те явления, которые возникают на Солнце.

Полеты спутников и космических ракет позволяют физикам приступить к детальному изучению продуктов взрывов, происходящих на Солнце. Выбрасываемые им корпускулярные потоки бороздят космическое пространство. При столкновении с Землей, точнее, с ее магнитным полем, эти потоки так искажаются, что надежно судить о первоначальном их виде и состоянии оказывается невозможным. Теперь же это явление доступно нам непосредственно.

Янош КАДАР

ЧУВСТВО РАДОСТИ, ВДОХНОВЕНИЯ И ГОРДОСТИ

Ракета, запущенная с Земли и пролетевшая через космическое пространство на Луну, олицетворяет собою мысли, волю и труд человека. Вовсе не случайно и для нас очень радостно, что это человеческое творение, впервые проложившее путь между небесными телами, является советской ракетой. Достичь такой цели смогли лишь наука и техника, поощряемые и развиваемые советским народом в целях строительства прекрасного будущего человечества. Космическая ракета является достижением и плодом творчества советского народа, который создал первое социалистическое государство, внес наибольший вклад в дело освобождения ч человечества из-под гнета нищеты, тьмы и рабства для того, чтобы человек действительно стал человеком.

Космическая ракета — новое великое достижение науки и человеческого гения — является огромной победой советских людей и вместе с этим победой всего социалистического лагеря в мирном соревновании двух мировых общественных систем.

При вести о запуске советской космической ракеты и достижении ею намеченной цели мною овладели те же чувства радости, вдохновения и гордости, которые переполняют сейчас сердца широчайших масс венгерских трудящихся. В эти дни с берегов Дуная, с полей венгерской низменности миллионы людей шлют привет и доброе пожелание своим советским друзьям. Все прогрессивное человечество, в том числе и весь венгерский народ, отмечает как свою победу это новое потрясшее мир достижение наших советских друзей, выразившееся в успешном запуске космической ракеты на Луну.

АЛЛО, МОСКВА... СПАСИБО, МОСКВА!

Андре СТИЛЬ, французский писатель

Французы любят игру слов. Наша поэзия полна каламбуров. И вот теперь случилось так, что слово «Лунник» (мы произносим его мягко: «люник») совпадает по звучанию с французским словом «единственный».

«Лунник» — так во Франции называют новую советскую космическую ракету.. Эта ракета — единственная, сумевшая осуществить фантастический полет на Луну. И в глазах людей различных воззрений ласкательное название «Лунник», как и связанный с ним каламбур, отражает непререкаемое превосходство советской науки и техники.

Французы охотно воспринимают самые серьезные вещи с наиболее легкой стороны, но это не мешает им глубоко понимать величие подлинных свершений. Несколько лет тому назад в нашей стране придумали забавную игру: одновременно зажигают две папиросные бумажки различного качества. Первая бумажка легко взлетает до самого потолка, и тогда люди говорят: «Это — советский спутник». Другая бумажка мгновенно истлевает, и пепел осыпается на стол. Играющие смеются: «А это американский спутник».

Каламбур и игра, о которой я рассказал, разумеется, не претендуют на то, чтобы полностью отразить чувства, всколыхнувшие французский народ, когда он узнал о запуске второй советской космической ракеты. Глубокое волнение охватило французов. Люди не отходили от радиоприемников. Миллионы людей со страстным нетерпением (на Западе это состояние принято обозначать модным словечком: «саспенс») ждали дальнейших вестей.

В воскресенье, в 22 часа 02 минуты по парижскому времени в большинство домов были раскрыты окна. На улицах собирались и взволнованно беседовали прохожие. Глаза гуляющих были устремлены к Луне. Кстати, в этот вечер Луна, освещавшая небо Франции, была необычайно прекрасна. Казалось, и для нее тоже наступил праздник! Люди отлично понимали, что они вряд ли что-нибудь увидят, и все же никто не уходил. В то же время, боясь пропустить какие-либо новые сообщения о полете ракеты, мои соотечественники включили свои радиоприемники на полную мощность и с улицы прислушивались к голосу диктора. Время от времени ктонибудь торопливо забегал в комнату, чтобы бросить взгляд на телевизионный экран, — было известно, что специальная аппаратура установлена на открытой террасе телевизионной студии.

Так провели французы этот вечер — между Луной, радиоприемником и телевизором. Они беспокойно бродили по улицам, взволнованно мерили шагами пол в собственной квартире, боясь пропустить секунду, ту неповторимую секунду, в которую будет передано сообщение о чуде. Даже люди, неодобрительно относящиеся к Советскому Союзу, в эту ночь прониклись восхищением и уважением к великой стране.

Эти настроения нашли отражение даже в буржуазной печати. Субботние и воскресные газеты уже не решались отрицать значения происходящего события. Они не отважились пойти против мощной волны восторга, захлестнувшей французскую общественность. Престиж советской науки и исследовательской мысли, и без того высокой в глазах французов, снова бесконечно возрос. Реакционная газета «Парипресс — Энтрансижан» писала: «Американцы обещали Хрущеву поразить его. В данный момент, кажется, дело обстоит наоборот...»

Мощность ракеты, ее технические возможности, управление полетом на расстоянии и т. д. — все это произвело огромное впечатление на французов. Особенно поразила всех точность работы советских ученых. Газета «Франс-суар» была вынуждена признать, что по своей мощности советская ракета значительно превосходит все ракеты, которые до сих пор были сконструированы в Соединенных Штатах. Советские ученые сумели показать недосягаемые образцы технического мастерства и ориентации в новом, неизвестном до сих пор мире — космическом пространстве. Более того, советский «Лунник» как бы «перевыполнил» свой план, достигнув поверхности Луны на две минуты раньше предполагаемого срока.

В этих условиях любые попытки буржуазной печати приуменьшить успех советской науки казались обреченными на провал. Тем не менее эти попытки были предприняты. Как только стало известно о запуске новой ракеты, некоторые буржуазные комментаторы провозгласили, что успехом можно будет считать только «приземление» ракеты на Луне. Точно так же в январе этого года пытались приуменьшить успех первой советской ракеты. Между тем очевидно, что даже в том случае, если бы новой ракете не удалось «прилуниться», было бы по меньшей мере недобросовестно говорить о каком-то «провале». Ведь даже и в этом случае были бы выполнены важные научные задачи. Однако теперь тот факт, что советская космическая ракета достигла Луны, разбил последние жалкие и недостойные надежды недругов Советского Союза.

Другие буржуазные комментаторы пошли по иному пути. «Это пропаганда, — заявили они, — связанная с предстоящим визитом Хрущева».

Я прошу советских читателей заметить, что на этот раз уже никто не решается сказать: «Это всего лишь пропаганда». Ведь не секрет, что с помощью заявлений о «пропаганде» систематически зачеркиваются миролюбивые предложения Советского Союза и его величественные планы экономического развития. Неужто наши журналисты не понимают, что их недобросовестная манера подачи международных событий теперь оборачивается против них?

Что ж, рассуждают люди, если советская пропаганда опирается на такие замечательные достижения, как полет на Луну советской ракеты, то это отличная пропаганда! И еще: если пропаганда действительно отражает то, что скрывается за ней, а не представляет собою лживый фасад, маскирующий чей-то обман, то это совсем неплохо. А Советский Союз не только сумел совершить необычайный научный подвиг, но и осуществил его в избранный им самим деньичас, не дожидаясь никаких «максимально благоприятных условий»!..

Профессор Ананов, известный французский специалист по астронавтике, заявил: «Судя по тому, что нам известно о возможностях русских, они способны на еще более замечательные свершения. Если бы русские стремились произвести сенсацию, то они отправили бы со своей ракетой на Луну какое-нибудь живое существо». Высказывания крупных ученых подтвердили то, что ощущают повсюду простые люди: благодаря Советскому Союзу нам было дано пережить волнующие часы, как бы перенесшие нас непосредственно к воротам Будущего.

Советские ученые блестяще выполнили свой долг по отношению к человечеству. Благодаря социализму, благодаря коммунизму Чудо вошло в наши будни. Уже сейчас человек приучается устремлять свои помыслы выше собственной головы, привыкает думать и мечтать о беспредельном. И снова, как это уже неоднократно бывало и раньше, люди доброй воли и прежде всего труженики земли говорят: «Спасибо, Москва!»

Сообщение ТАСС

О ПУСКЕ В СОВЕТСКОМ СОЮЗЕ ТРЕТЬЕЙ КОСМИЧЕСКОЙ РАКЕТЫ

В соответствии с программой исследования космического пространства и подготовки к межпланетным полетам 4 октября 1959 года в Советском Союзе успешно осуществлен третий пуск космической ракеты. На борту ракеты установлена автоматическая межпланетная станция.

Запуск осуществлен с помощью многоступенчатой ракеты. Последняя ступень ракеты, получив заданную скорость, вывела автоматическую межпланетную станцию на требуемую орбиту.

Орбита автоматической межпланетной станции выбрана таким образом, чтобы обеспечить прохождение станции вблизи Луны и облет Луны.

Автоматическая межпланетная станция пройдет от Луны на расстоянии около 10 тысяч километров и, обогнув Луну, при своем дальнейшем движении пройдет в районе Земли. Выбранная орбита обеспечивает возможность наблюдения станции с северного полушария Земли.

Последняя ступень третьей советской космической ракеты имеет вес, равный 1553 кг (без топлива).

Автоматическая межпланетная станция была установлена на последней ступени ракеты. После выхода на орбиту станция была отделена от ракеты. Последняя ступень ракеты движется по орбите, близкой к орбите станции. Автоматическая межпланетная станция предназначена для широких научных исследований в космическом пространстве. На борту станции установлены научная и радиотехническая аппаратура, а также система автоматического регулирования теплового режима. Электропитание бортовой научной и радиотехнической аппаратуры осуществляется от солнечных батарей и химических источников тока. Общий вес станции составляет 278,5 кг. Кроме того, на последней ступени ракеты размещена измерительная аппаратура с источниками питания весом 156,5 кг. Таким образом, суммарный вес полезной нагрузки составляет 435 кг.

Передача научной информации и результатов измерения параметров движения автоматической межпланетной станции будет осуществляться при помощи двух радиопередатчиков, работающих на частотах 39,986 мегагерца и 183,6 мегагерца. Одновременно по радиолинии с частотой 183,6 мегагерца будет производиться контроль элементов орбиты межпланетной станции.

Сигналы передатчика на частоте 39,986 мегагерца представляют собой импульсы переменной длительности от 0,2 до 0,8 сек. Частота повторения импульсов 1 плюс, минус 0,15 герца.

Передача информации с борта автоматической межпланетной станции будет происходить сеансами, ежедневно по 2-4 часа, в соответствии с программой наблюдений. Управление работой бортовой аппаратуры автоматической межпланетной станции производится с Земли, из координационно-вычислительного центра.

Измерение параметров ракеты осуществляется автоматизированным измерительным комплексом, наземные станции которого расположены в различных пунктах Советского Союза.

Передачи о движении третьей космической ракеты будут вестись всеми радиостанциями Советского Союза.

Очередной сеанс работы радиотехнических средств начнется 4 октября в 13 часов московского времени. В это время ракета будет находиться над пунктом в Индийском океане, с координатами 80 градусов восточной долготы, 5 градусов южной широты на расстоянии 108 тыс. км над Землей. Сеанс работы радиотехнических средств будет продолжаться около 2 часов.

Радионаблюдения за ракетой могут вестись с территории Европы, Азии, Африки и Австралии.

Запуск третьей советской космической ракеты и создание автоматической межпланетной станции позволит получить новые данные о космическом пространстве и явится дальнейшим вкладом советского народа в международное сотрудничество по освоению космоса.

Сообщение ТАСС

О ДВИЖЕНИИ ТРЕТЬЕЙ СОВЕТСКОЙ КОСМИЧЕСКОЙ РАКЕТЫ

В соответствии с намеченной программой научных исследований 7 октября в б часов 30 минут московского времени на борту автоматической межпланетной станции было произведено включение аппаратуры, предназначенной для получения изображения невидимой с Земли части Луны и последующей передачи этого изображения на Землю.

Для фотографирования Луны автоматическая межпланетная станция снабжена системой ориентации и фототелевизионной аппаратурой со специальными устройствами для автоматической обработки фотопленки.

Время процесса фотографирования было выбрано так, чтобы станция на своей орбите находилась между Луной и Солнцем, которое освещало около 70 процентов невидимой стороны Луны. При этом станция находилась на расстоянии 60-70 тыс. км от поверхности Луны.

Включенная специальной командой система ориентации повернула станцию таким образом, чтобы объективы фотоаппарата были направлены на обратную сторону Луны, и дала команду на включение фотоаппаратуры.

Фотографирование Луны продолжалось около 40 минут и при этом было получено значительное количество снимков Луны в двух различных масштабах.

Обработка фотопленок (проявление и фиксирование) была автоматически произведена на борту межпланетной станции.

Передача сигналов фотоизображений Луны на Землю производилась при помощи специальной радиотехнической системы. Эта система одновременно обеспечивала передачу данных научных измерений, определение элементов орбиты, а также передачу с Земли на межпланетную станцию команд, управляющих ее работой. Телевизионная аппаратура обеспечила передачу полутонового изображения с высокой разрешающей способностью.

Первые снимки невидимой части Луны, полученные в результате предварительной обработки, будут опубликованы в газетах 27 октября с необходимыми описаниями и в последующем — в научных изданиях.

Для наименования кратеров, хребтов и других особенностей невидимой части Луны Академией наук СССР создана комиссия.

На борту автоматической межпланетной станции была также размещена аппаратура, предназначенная для проведения научных исследований в межпланетном пространстве. Полученные результаты научных исследований записаны на пленку наземными станциями и в настоящее время обрабатываются.

Работа автоматической межпланетной станции на первом обороте показала, что:

успешно обеспечен полет космического объекта по сложной, заранее рассчитанной орбите;

решена задача ориентации объекта в пространстве;

осуществлена радиотелемеханическая связь и передача телевизионных изображений на космических расстояниях;

получено изображение недоступной до сих пор исследованиям обратной стороны Луны и ряд других научных результатов.

На 20 часов 27 октября межпланетная станция будет находиться над точкой земной поверхности с координатами 38 градусов 6 минут западной долготы и 6 градусов 30 минут северной широты на расстоянии 484 тыс. км от центра Земли.

Уточнение характеристик орбиты автоматической межпланетной станции показывает, что она будет существовать с момента запуска примерно полгода и совершит при этом 11-12 оборотов вокруг Земли. По истечении этого срока межпланетная станция войдет в плотные слои атмосферы Земли и сгорит в ней.

СЛАВА НАУКЕ!

В сентябре 1959 года космическая ракета, созданная также советскими людьми, коснулась поверхности Луны. 4 октября новое событие — советские люди запустили по направлению к Луне еще один космический корабль.

Уже при запуске первой космической ракеты нужны были поразительные точности расчетов и безупречная автоматика. Еще большей точности расчетов требовал запуск второй советской космической ракеты, которой нужно было не только вырываться из поля земного тяготения, но и попасть на Луну. Такой же точности потребовал и полет нового космического корабля.

Наша советская наука вступила в полосу ярчайшего расцвета. Уже недалеко то время, когда человек не только будет посылать ракеты на Луну, но и сам начнет совершать межпланетные путешествия.

Третья советская космическая ракета — это ракета мира. Это новое мирное послание человечеству. Она убедительно свидетельствует о том, что СССР располагает прочной материально-технической базой для досрочного выполнения семилетнего плана, успешного строительства коммунизма.

Слава советской науке!

А. ДИГИЛЕВИЧ,

депутат Верховного Совета БССР, бригадир штукатуров, Минск

ТРЕТЬЯ СОВЕТСКАЯ КОСМИЧЕСКАЯ РАКЕТА

Устройство автоматической межпланетной станции

Автоматическая межпланетная станция — это космический летательный аппарат, оснащенный сложным комплексом радиотехнической, фототелевизионной и научной аппаратуры, специальной системой ориентации, устройствами программного управления работой бортовой аппаратуры, системой автоматического регулирования теплового режима внутри станции и источниками энергопитания.

Специальная радиотехническая система обеспечивает измерение параметров орбиты станции, передачу на Землю телевизионной и научной телеметрической информации, а также передачу с Земли команд управления работой аппаратуры на борту межпланетной станции.

Система ориентации обеспечила ориентацию межпланетной станции в космическом пространстве относительно Солнца и Луны, необходимую для фотографирования невидимой стороны Луны.

Все управление работой бортовой аппаратуры станции осуществляется с наземных пунктов по радиолинии, а также автономными программными бортовыми устройствами. Подобная комбинированная система дает возможность наиболее удобно управлять проведением научных экспериментов и получать информацию с любых участков орбиты в пределах радиовидимости из наземных пунктов наблюдений.

Для поддержания заданного теплового режима внутри станции непрерывно действует автоматическая система терморегулирования. Она обеспечивает отвод тепла, выделяемого приборами, через специальную радиационную поверхность в окружающее космическое пространство. Для регулирования теплоотдачи снаружи корпуса установлены жалюзи, открывающие радиационную поверхность при повышении температуры внутри станции до +25°С.

Система энергопитания содержит автономные блоки химических источников тока, обеспечивающих питание кратковременно действующей аппаратуры, а также централизованный блок буферной химической батареи. Компенсация израсходованной энергии буферной батареи осуществляется за счет солнечных источников тока. Питание бортовой аппаратуры производится через преобразовательные и стабилизирующие устройства.

Установленный на борту автоматической межпланетной станции комплекс научной аппаратуры обеспечивает дальнейшее развитие исследований космического и окололунного пространства, начатых на первых двух советских космических ракетах.

Автоматическая межпланетная станция представляет собой тонкостенную герметичную конструкцию, имеющую форму цилиндра со сферическими днищами. Максимальный поперечный размер станции 1200 миллиметров, длина — 1300 миллиметров (без антенн). Внутри корпуса на раме размещена бортовая аппаратура и химические источники питания. Снаружи установлена часть научных приборов, антенны и секции солнечной батареи. В верхнем днище имеется иллюминатор с крышкой, автоматически открывающийся перед началом фотографирования. На верхнем и нижнем днищах имеются малые иллюминаторы для солнечных датчиков системы ориентации. На нижнем днище установлены управляющие двигатели системы ориентации.

Для фотографирования Луны наиболее целесообразной была признана схема, по которой фотоаппараты наводились путем поворота всей автоматической межпланетной станции. Установленная на борту станции система ориентации поворачивала и удерживала автоматическую межпланетную станцию в нужном направлении.

Система ориентации была включена после сближения с Луной, в момент, когда станция находилась в заданном положении относительно Луны и Солнца, обеспечивающем необходимые условия для ориентации и фотографирования. Расстояние до Луны при этом составляло в соответствии с расчетом 60-70 тысяч километров.

В начале работы система ориентации, в состав которой входят оптические и гироскопические датчики, логические электронные устройства и управляющие двигатели, прежде всего прекратила произвольное вращение автоматической межпланетной станции вокруг ее центра тяжести, возникшее в момент отделения от последней ступени ракеты-носителя.

Автоматическая межпланетная станция освещается тремя яркими небесными светилами — Солнцем, Луной и Землей. Траектория ее движения была выбрана таким образом, чтобы в момент съемки станция находилась приблизительно на прямой, соединяющей Солнце и Луну. При этом Земля должна была находиться в стороне от направления Солнце — Луна, чтобы не произошло ориентации на Землю вместо Луны.

Указанное здесь положение межпланетной станции относительно небесных светил в момент начала ориентации позволило использовать такой прием: первоначально ее нижнее днище с помощью солнечных датчиков направлялось на Солнце; этим самым оптические оси фотоаппаратов направлялись в противоположную сторону — на Луну. Затем соответствующее оптическое устройство, в поле зрения которого Земля и Солнце уже не могли появиться, отключало ориентацию на Солнце и производило точную ориентацию на Луну. Поступавший с оптического устройства сигнал «присутствия» Луны разрешал автоматическое фотографирование. В течение всего времени фотографирования система ориентации обеспечивала непрерывное наведение автоматической межпланетной станции на Луну.

После того как было произведено экспонирование всех кадров, система ориентации выключилась. В момент выключения системы она сообщила автоматической межпланетной станции упорядоченное вращение с определенной угловой скоростью, выбранной так, чтобы с одной стороны улучшить тепловой режим, а с другой — исключить влияние вращения на функционирование научной аппаратуры.

Полет межпланетной станции

Орбита автоматической межпланетной станции специально приспособлена для решения поставленного комплекса научных задач. Для получения нужной орбиты, кроме обеспечения необходимой скорости и направления движения станции в момент выключения двигателя последней ступени ракеты, использовано также влияние притяжения Луны.

Траектория облета Луны должна была удовлетворять ряду требований. Для обеспечения правильной работы системы ориентации во время фотографирования необходимо было, как сказано выше, чтобы в момент начала ориентации Луна, станция и Солнце располагались приблизительно на одной прямой. Расстояние от станции до Луны в период фотографирования было принято порядка 60-70 тысяч километров.

Характер траектории должен был позволить получить максимальное количество информации на первом витке и особенно на малых расстояниях от поверхности

Земли. Для выполнения этого требования необходимо было обеспечить возможно лучшие условия радиосвязи с межпланетной станцией из пунктов, расположенных на территории Советского Союза.

Было также весьма желательным для целей научных исследований получить траекторию, обеспечивающую движение межпланетной станции в космосе в течение достаточно продолжительного времени.

Облет Луны с возвращением к Земле может производиться при движении по траекториям различных типов. Для получения таких траекторий скорость в конце участка разгона должна быть несколько меньше так называемой второй космической или параболической скорости, равной у поверхности Земли 11,2 километра в секунду. Если траектория полета проходит на расстояниях в несколько десятков тысяч километров от Луны, то ее воздействие сравнительно невелико и движение относительно Земли будет происходить по траектории, близкой к эллипсу с фокусом в центре Земли.

Однако траектория далекого облета Луны с прохождением около нее на расстояниях в несколько десятков тысяч километров имеют ряд существенных недостатков. При пролете на больших расстояниях от Луны становится невозможным прямое исследование космического пространства в непосредственной окрестности Луны. При запуске ракеты, произведенном из северного полушария Земли, возвращение к Земле происходит со стороны южного полушария, что затрудняет проведение наблюдений и прием научной информации станциями, расположенными в северном полушарии. Движение вблизи Земли при возвращении происходит вне пределов видимости из северного полушария, и поэтому вблизи Земли прием информации о результатах научных наблюдений оказывается невозможным. При возвращении к Земле ракета входит в плотные слои атмосферы и сгорает, то есть полет заканчивается после первого витка.

Этих недостатков можно избежать, если использовать при облете Луны траектории другого типа, проходящие от нее на малых расстояниях порядка нескольких тысяч километров.

Траектория полета автоматической межпланетной станции проходила на расстоянии 7900 километров от центра Луны и была выбрана с таким расчетом, чтобы в момент максимального сближения станция находилась южнее Луны. Вследствие притяжения Луны траектория автоматической станции в соответствии с расчетом отклонилась к северу. Это отклонение было столь существенным, что возвращение к Земле происходило со стороны северного полушария. При этом после сближения с Луной наибольшая высота станции над горизонтом для наблюдательных пунктов, расположенных в северном полушарии, от суток к суткам увеличивалась. Соответственно возрастали и промежутки времени, на протяжении которых была возможна прямая связь с автоматической станцией. При достаточном приближении к Земле автоматическая станция могла наблюдаться в северном полушарии как незаходящее светило.

Условия для приема информации на подходе к Земле и условия для проведения научных исследований на участке возвращения к непосредственной окрестности Земли оказались достаточно благоприятными. При возвращении к Земле на первом обороте станция не вошла в атмосферу и не погибла, а прошла на расстоянии 47 500 километров от центра Земли, двигаясь по вытянутой орбите весьма больших размеров, близкой по форме к эллиптической. Наибольшее удаление станции от Земли составляло 480 тысяч километров.

Таким образом, при прохождении около Луны оказывается возможным получать траектории движения автоматической межпланетной станции, чрезвычайно интересные и выгодные с точки зрения проведения научных исследований и приема научной информации.

Пролет межпланетной станции вблизи Земли происходит на таких больших расстояниях от ее поверхности, что торможение вследствие сопротивления атмосферы отсутствует. Поэтому, если бы движение происходило только под действием силы притяжения Земли, автоматическая станция оказалась бы спутником Земли с неограниченно большим сроком существования.

Однако в действительности время движения станции ограниченно. Вследствие возмущающего влияния притяжения Солнца ближайшее расстояние орбиты от Земливысота перигея орбиты — постепенно уменьшается. Поэтому, совершив некоторое число оборотов, станция в свое время при очередном возвращении к Земле войдет в плотные слои атмосферы и сгорит.

Величина убывания высоты перигея за один оборот зависит от размеров орбиты и в особенности от высоты апогея,то есть от наибольшего расстояния орбиты от Земли, резко вырастая при увеличении высоты апогея. Поэтому при выборе траектории межпланетной станции необходимо было стремиться к тому, чтобы высота апогея была по возможности меньше и не намного превышала расстояние от Земли до Луны. Необходимо также, чтобы высота перигея на первом обороте была возможно больше. От степени выполнения обоих поставленных требований зависят общее количество оборотов автоматической станции вокруг Земли и время существования станции.

Воздействие Луны не ограничивается тем эффектом, который она производит в период первого тесного сближения. Возмущения орбиты станции от притяжения Луны не носят такого регулярного характера, как возмущения от притяжения Солнца и в сильной степени зависят от периода обращения станции вокруг Земли. Влияние Луны может оказаться существенным, если на каком-то из последующих оборотов произойдет повторное, достаточно тесное сближение с Луной. В этом случае сближение станции и Луны произошло бы примерно в том же месте лунной орбиты, что и первый раз. В случае повторного тесного сближения характер движения станции может существенно измениться. Если межпланетная станция пройдет около Луны с южной стороны, то есть второе сближение будет того же типа, что и первое, то резко увеличится количество оборотов и время существования станции при сохранении основного свойства ее траектории — приближения к Земле со стороны Северного полушария. Если повторное прохождение будет со стороны севера, то высота перигея орбиты уменьшится и в случае достаточно сильного возмущения может произойти соударение с Землей при ближайшем же возвращении к ней.

На тех витках орбиты, где не происходит тесное сближение с Луной, Луна тем не менее оказывает некоторое воздействие на движение станции. Хотя сила притяжения Луны в этом случае весьма мала, однако, действуя на значительном числе витков траектории, притяжение Луны оказывает заметное влияние на движение автоматической станции, вызывая уменьшение высот перигея и времени существования станции на орбите.

Картина движения автоматической межпланетной станции под влиянием одновременно действующих сил тяготения Земли, Луны и Солнца весьма сложна. Характер прохождения вблизи Луны при первом сближении является определяющим для дальнейшего движения межпланетной станции.

Так как никакой коррекции движения межпланетной станции в путине производится и весь полет ее определяется в конечном счете параметрами движения в конце участка разгона (в основном величиной и направлением скорости), то ясно, что реализация описанной выше траектории космической станции возможна лишь при чрезвычайно совершенной системе управления ракетой-носителем на участке разгона.

Расчеты показывают, что при отклонении от заданной точки прохождения станции через картинную плоскость на тысячу километров минимальное расстояние между Землей и станцией при ее возвращении будет менятьсяна5-10 тысяч километров, а время наибольшего сближения с Землей — на 10-14 часов. Картинной плоскостью в данном случае названа плоскость, проходящая через центр Луны перпендикулярно линии Земля — Луна.

Для того чтобы предельное отклонение минимального расстояния между Землей и станцией не превышало 20 тысяч километров, необходимо потребовать такой точности управления на участке выведения ракеты, которая обеспечивает отклонение точки пересечения картинной плоскости не более 3000 километров. На первый взгляд это условие, предъявляемое к системе управления ракетой, кажется более легким по сравнению с условиями, диктуемыми задачей попадания в Луну, так как для обеспечения попадания предельное отклонение ракеты от точки прицеливания или расчетной точки прохождения картинной плоскости не должно превышать радиуса Луны, то есть должно быть примерно вдвое меньше, чем 3000 километров. Однако в случае движения станции по облетной траектории ошибки выведения ракеты влияют на отклонение точки пересечения картинной плоскости значительно больше, чем для попадающего варианта, реализованного второй космической ракетой.

Действительно, как сообщалось, отклонение скорости выведения ракеты на участок свободного полета на один метр в секунду при варианте попадания в Луну приводит к отклонению точки пересечения картинной плоскости на 250 километров, а в случае варианта запуска с облетом Луны это отклонение будет равным 750 километрам, то есть в три раза больше. Только из сопоставления этих цифр видно, что реализация заданного варианта облетной траектории предъявляет не менее, а даже более жесткие требования к точности системы управления ракетой, чем в варианте попадания.

Как было сказано, при прохождении межпланетной станции вблизи Луны траектория станции претерпевает сильное возмущение, которое заставляет изменить первоначальное направление движения, обусловив возвращение станции к Земле со стороны северного полушария. Это же возмущающее действие Луны существенно усиливает влияние отклонений параметров движения в конце участка разгона от их расчетных значений на характер движения станции при ее возвращении к Земле после облета Луны. Поэтому даже небольшие ошибки определения этих параметров приводят к весьма существенным ошибкам расчета характеристик движения межпланетной станции при ее возвращении к Земле.

Загрузка...