Глава 1 Развитие геометрии: Мандельброт против Евклида

«Прямые, те, что параллельны, на бесконечности сходятся!» —

Так непрестанно, упорно Евклид утверждал.

Но вот умер он и лишь после смерти узнал,

Что две параллельных прямых расходятся.

Черт бы всех их побрал!

Пит Хейн. Груки


С давних пор люди пытались понять строение космоса. Они стремились найти законы Вселенной, которым подчиняется движение планет и форма галактик, искали формулы, позволяющие предсказать падение предметов, старались понять полет птиц, изучали анатомию живых существ и строение человеческого разума.

В целом космос делится на две части: микрокосмос и макрокосмос. Макрокосмосом называют множество объектов Вселенной, которые по размерам сопоставимы с нашей планетой, Солнечной системой, галактикой или созвездиями. Микрокосмос, напротив, образуют все объекты, которые по размерам сопоставимы с человеком или даже меньше его. Например, сюда относятся органы нашего тела, вирусы и молекулы. Человеку всегда было интересно то, что нельзя увидеть или предсказать, и это любопытство двигало его в дали макрокосмоса и в глубины микрокосмоса.

Еще с древних времен считалось, что между микрокосмосом и макрокосмосом есть взаимосвязь. В Древней Греции верили, что элементы всего сущего, начиная от макрокосмоса и заканчивая микрокосмосом, воспроизводятся по одним и тем же схемам и правилам. Древнегреческие философы, увидев, что соотношение 1,6180…, позднее названное золотым сечением, присутствует во всех явлениях природы, попытались дать этому рациональное объяснение и тем самым совершили первый шаг к унификации микро- и макрокосмоса. В арабских источниках 650 г. встречаются переведенные тексты изумрудной скрижали, которую, по легенде, написал Гермес Трисмегист (от его имени происходит слово «герметичный»). В изумрудной скрижали раскрываются тайны «первичнои материи» и ее видоизменении, описывается «великое делание» — основной рецепт алхимии. Вторая заповедь скрижали гласит: «То, что находится внизу, соответствует тому, что пребывает вверху; и то, что пребывает вверху, соответствует тому, что находится внизу, чтобы осуществить чудеса единой вещи». Основная цель алхимии — понять таинственную связь между микрокосмосом и макрокосмосом и тем самым обрести мудрость.

Желание греков унифицировать микро- и макромиры нашло отражение в недавно появившемся разделе математики. В одной из многочисленных областей геометрии рассматриваются два основных понятия: самоподобие и непрерывность. Оба эти понятия со временем постепенно уточнялись и дополнялись. Именно о них мы подробно поговорим далее и расскажем о некоторых весьма интересных математических конструкциях.


МАКРОКОСМОС И МИКРОКОСМОС

Американский архитектор финского происхождения Ээро Сааринен говорил о необходимости создания многомерной модели реальности. По его словам, при проектировании всегда следует начинать с больших и меньших объектов, что поможет в конце концов найти оптимальный вариант. Сааринен вдохновил американского архитектора и дизайнера Чарлза Имза на создание научно-популярного короткометражного фильма «Десятые степени» (1968). Имз снял его совместно со своей супругой Рэй Имз на основе книги Киза Боеке «Космический взгляд» (1957). Книга состояла из последовательности изображений разного размера, начиная от масштабов нашей галактики и до картин «человеческого масштаба». На ее страницах можно увидеть человека в городском парке и еще меньшие изображения, показывающие микрокосмос живых существ и строение материи. Центральные части всех снимков и рисунков совпадают; тем самым образуется взаимосвязь между галактиками и атомами, макрокосмосом и микрокосмосом. Это помогает понять соотношение масштабов в теории и на практике. Увидеть все это «вживую» можно на сайте www.powersof10.com.

* * *

В основе практически всей современной науки лежит математика, поэтому не зря степень развития науки или цивилизации оценивают по тому, насколько она «математична». Основным инструментом научного и технического прогресса во всех цивилизациях была геометрия, и в то же время она развивалась благодаря растущим потребностям науки и техники.

Наглядный пример подобного симбиоза являет собой китайская цивилизация. Китайцы бесстрашно пересекали океаны, не боясь затеряться в открытом море, так как имели в своем распоряжении очень точные карты. Геометрию также использовали египтяне при постройке пирамид. В свою очередь, математик и астроном Аристарх Самосский (310–230 гг. до н. э.) с высокой точностью рассчитал расстояние от Земли до Луны. Еще один математик и астроном, Эратосфен (276–194 гг. до н. э.) родом из Кирены, располагая крайне примитивными средствами измерений, тем не менее очень точно вычислил диаметр Земли. Значительно позднее благодаря телескопам-рефлекторам были открыты миллионы звезд, а при помощи параллакса стало возможным найти расстояние до некоторых ближайших звезд.

Согласно историку и географу Геродоту Галикарнасскому, в Древнем Египте была очень развита геометрия и греки считали именно египтян своими учителями и создателями геометрии. Хотя сохранилось лишь несколько чисто практических формул для вычисления длин, площадей и объемов, нам известно, что с их помощью египтяне вычисляли размеры земельных участков, чтобы восстанавливать их после ежегодных разливов Нила. Отсюда происходит слово γεωμετρια — геометрия, измерение Земли» (от древнегреческого γη — Земля и μετρε'ω — измеряю). Слово «геометрия» уже было известно во времена Эратосфена, и когда он поистине гениальным способом вычислил диаметр Земли, то придал словам «измерение Земли» новый смысл.

Геометрия изучает свойства пространства и способы измерения длин, углов и поверхностей различных объектов, которые встречаются в повседневной жизни. Она тесно связана с тем, как мы познаем реальность. Вся информация, которую мы получаем из окружающего мира, все, что мы видим, слышим и ощущаем, выражается в первую очередь в терминах геометрии, и это влияет на все, что мы делаем. Комнаты в домах и земельные участки издавна имеют прямоугольную форму. Траектория падения предметов, орбиты вращения планет, форма моллюсков-наутилусов, форма, которую принимает провисший электрический провод, — все это примеры фигур, изучаемых в классической геометрии. Другие фигуры были неизвестны науке вплоть до начала XIX века.


ЭРАТОСФЕН И ВЫЧИСЛЕНИЕ РАДИУСА ЗЕМЛИ

Люди поняли, что Земля имеет форму шара, очень давно. На это указывали следующие факты: на севере и на юге видимое положение звезд на небе заметно отличалось; когда корабли пропадали из виду на горизонте, последними виднелись мачты; тень Земли на Луне во время затмений имела круглую форму и так далее. Эратосфен, который возглавлял Александрийскую библиотеку (за несколько лет до него эту должность занимал сам Евклид), изобрел очень простой метод для вычисления земного радиуса.



Из папирусов его библиотеки нам известно, что в Сиене (в настоящее время — Асуан) в день летнего солнцестояния предметы не отбрасывали тени и свет проникал на дно колодцев. Предположив, что Александрия находится точно на север от Сиены (в действительности Александрия расположена немного северо-восточнее) и Солнце настолько далеко от Земли, что его лучи параллельны друг другу, Эратосфен измерил длину теней в Александрии в день летнего солнцестояния. Так он показал, что Сиена отстоит от Александрии на 7°12′. Позднее он уточнил расстояние, которое проходили между этими городами караваны торговцев. Оно оказалось равным 5 000 стадиев (хотя точная цифра содержалась и в книгах Александрийской библиотеки). На основе этих данных он произвел нужные вычисления с помощью тригонометрических методов. Приняв один стадий Эратосфена за 185 м, получим вычисленное им значение радиуса Земли в 6 616 км (ошибка составила примерно 17 %). Однако некоторые исследователи считают, что Эратосфен использовал в расчетах египетские стадии — 300 локтей по 52,4 см каждый. В этом случае найденная им длина окружности, проходящей через полюса, равняется 39 614,4 км, что отличается от современного значения в 40 008 км менее чем на 1 %.

* * *

Если судить по тому, о чем мы только что рассказали, может показаться, что геометрия носит чисто практический характер, но история показывает, что это не совсем так. Иногда предметом изучения геометрии становились объекты, невидимые глазу. В трактате «Тимей» Платон говорит о поисках некоего вещества, из которого должно состоять все сущее. Он перечисляет пять основных элементов: огонь, воздух, земля, вода и эфир. Путем логических рассуждений в соответствие каждому элементу ставится геометрическая фигура: огню — тетраэдр, воздуху — октаэдр, земле — гексаэдр, то есть куб, воде — икосаэдр, эфиру — додекаэдр. Эти пять многогранников, которые позднее стали называть Платоновыми телами, — единственные существующие правильные многогранники. (Вспомним, что многогранник называется правильным, если его грани являются правильными многоугольниками, равными между собой, и в каждой вершине сходится одинаковое число граней.)



Изображения Платоновых тел, созданные Леонардо да Винчи для знаменитого шедевра Луки Пачоли «О божественной пропорции» (Венеция, 1509).


В свою очередь, немецкий астроном Иоганн Кеплер (1571–1630) в течение двадцати лет безуспешно пытался описать Солнечную систему как гармоничную совокупность сфер и правильных многогранников. Он предположил, что орбиты шести известных в то время планет лежат на поверхностях шести сфер, разделенных вписанными в них многогранниками.

Наибольшая сфера заключает в себе орбиту Сатурна и отделена от орбиты Юпитера кубом. Между Юпитером и Марсом Кеплер поместил тетраэдр, между Марсом и Землей — додекаэдр, между Землей и Венерой — икосаэдр, между Венерой и Меркурием — октаэдр. Вся эта конструкция соответствовала результатам наблюдений, за исключением орбиты Меркурия.




Вверху — гравюра авторства Фредерика Маккензи, на которой изображен Иоганн Кеплер. На иллюстрации внизу изображена модель Солнечной системы из пяти Платоновых тел, которую описал Кеплер в своей книге Mysterium Cosmographicum («Тайна мира», 1596).


Кеплер не смог объяснить разницу в восемь минут дуги между рассчитанной им круглой орбитой («совершеннейшей из траекторий») и результатами наблюдений астронома Тихо Браге (1546–1601). Разочарованный Кеплер понял, что от применения окружностей нужно отказаться. В конце концов он выстроил свою модель на основе эллипсов — в то время эта фигура использовалась редко. Сведения об эллипсах были известны благодаря книге Аполлония Пергского, которая уцелела при разрушении Александрийской библиотеки. Кеплер обнаружил, что эллиптическая орбита идеально соответствует результатам наблюдений Браге.


Ужасное божество

Оставим ненадолго хитросплетения геометрии и рассмотрим подробнее, почему люди так настойчиво стремились понять устройство окружающего мира. Для этого будет полезно ввести новое понятие — хаос.

Космос и хаос — две противоположности. Космос часто считают синонимом упорядоченности, а хаос — то же самое, что и беспорядок. Как и во многих других мифологиях о происхождении богов, в «Теогонии» греческого поэта Гесиода воплощением хаоса была богиня Хаос[1]. С космосом, напротив, не связывалось какое-либо божество. Слово «хаос» происходит от протоиндоевропейского корня ghen, означающего «пустой» или «раскрывшийся». Возможно, в те времена, когда было придумано слово «хаос», оно означало пространство, заключенное между небом и землей. Позднее в силу различных причин этим словом стали обозначать беспорядок.

С самых истоков цивилизации люди наблюдали необъяснимые явления, которые удивляли и внушали страх. О подобных явлениях часто говорят, что они принадлежат к миру хаоса. Согласно «Теогонии» Гесиода, написанной примерно 2700 лет назад, боги появились, чтобы образовать порядок из хаоса и тем самым защитить людей. История науки следует по тому же пути: ученые стремятся найти порядок среди хаоса, и в этом им неизменно помогает математика.

Люди, подобно богам, пытались упорядочить хаос. Платон в свое время утверждал, что природа строится по математическим законам, и на протяжении веков многие ученые разделяли его точку зрения. Для проявлений упорядоченности в природе необходимо найти математическое объяснение. Но как быть с теми явлениями, которые не вписываются в общий порядок?

По мнению популяризаторов науки Иена Стюарта и Мартина Голубицкого, в хаосе среди кажущегося беспорядка формируются новые формы упорядоченности. Но вне зависимости от того, какое определение мы дадим хаосу, в буквальном смысле он означает отсутствие какой бы то ни было упорядоченности. По сути, Стюарт и Голубицкий говорят об особом виде хаоса — математическом понятии, которое появилось в теории динамических систем. Идея о том, что хаос как полное отсутствие упорядоченности не существует, является частью древних верований, согласно которым есть некая общая теория, объясняющая все, будь то теогония, алхимия или наука.


ХАОС КАК ВСЕОБЩЕЕ НАЧАЛО

Поэма «Теогония» греческого автора Гесиода (VII–VIII вв. до н. э.) начинается с описания того, как появилась Вселенная из Хаоса — необозримой бездны, где беспорядочно движутся элементы всего сущего. В глубине этой изначальной бездны существовали две необъяснимые родственные сущности: Эреб (Мрак) и Нюкта (Ночь). Они отделились друг от друга и от своей матери Хаос и породили свои противоположности: Эфир (Свет) и Гемеру (День). День и Ночь объединились и образовали Время. Вслед за ними появилась Гея — элемент стабильности, праматерь, которая в столкновении с хаосом породила все сущее, затем Эрос — любовь, создатель жизни, и Тартар — преисподняя. Они не были потомками Хаоса. Гея без вмешательства мужского начала породила недостающую часть Вселенной — Уран (Небо), которое полностью накрыло ее. Пара Небо-Земля образовала симметричный и равновесный мир в Космосе.

Слово «теогония» означает «происхождение богов», а Гесиод в действительности изложил космогонию — рождение упорядоченной вселенной. Рождение богов в привычном понимании он описал позднее.



Прежде считалось, что это бюст римского философа Сенеки, но современные исследователи пришли к выводу, что перед нами изображение Гэсиода.


Несколько слов о сложности, урбанистике и лингвистике

Большинство ученых сходится во мнении с нобелевским лауреатом по физике Полем Дираком, по словам которого «физические законы должны обладать математической красотой». Ученые всегда чувствовали потребность описать всю Вселенную с помощью простой, логичной и красивой теории. Теория Платона — одна из первых, в которой материя (пять элементов) и геометрия (пять многогранников) связаны между собой. Значительно позднее за ней последовали научные и математические теории Хендрика Лоренца, Анри Пуанкаре, Германа Минковского и Альберта Эйнштейна, в которых материя и геометрия переплетались с пространством и временем.

Но если потребностью науки является нахождение всеобщего простого и красивого закона, значит ли это, что человечество в некотором роде стремится к простоте? К геометрическим фигурам относятся круг, квадрат, треугольник, пятиугольник и прочие правильные многоугольники, а также конические сечения (эллипс, гипербола и парабола), спирали и другие примечательные кривые. Эти фигуры, которые во все времена считались чистыми, божественными и очень символичными, неизменно сопровождали любую деятельность человека. Они, несомненно, являются архетипами в том смысле, который вкладывал в это слово психолог Карл Юнг. Геометрические фигуры в различных качествах применялись на протяжении всей истории человечества. Их можно проследить в архитектуре: так, форму круга имеет Стоунхендж, римские цирки и базилики; квадраты и треугольники встречаются в пирамидах и зиккуратах; пятиугольники — в декоративных элементах и так далее.

Тем не менее существуют и другие структуры. Рон Эглэш, антрополог Политехнического института Ренсселера (штат Нью-Йорк), занимался изучением архитектуры, скульптуры, рисунков на ткани, игр и других явлений культуры африканских народов. Эглэш заметил, что для разных культур характерны различные формы и шаблоны. Города Европы и Америки представляют собой сетку прямых улиц, пересекающихся под прямыми углами. Традиционные африканские поселения, напротив, имеют разнородную структуру: прямоугольные стены окружают прямоугольные участки все меньшей площади, а широкие улицы разделяются на запутанную сеть узких переулков, в которой можно увидеть сложные геометрические законы. Подобные структуры прослеживаются не только в архитектуре: их отголоски можно заметить в многочисленных и разнообразных узорах. Эглэш также обнаружил, что многие африканские поселения построены в соответствии с социальной иерархией.

Место, где будет стоять дом человека, определяется положением, которое он занимает в обществе.



Антрополог Рон Эглэш обнаружил различные типы фрактальных поселений. В их основе лежат квадраты, круги (как показано на верхнем рисунке) и т. д. В центре изображено камерунское поселение, структура которого обладает свойством самоподобия. На нижней иллюстрации приведен морфологический анализ предметов туземной культуры.


Несмотря на очевидные различия между африканскими и европейскими поселениями, обнаруженные Эглэшем, средневековые центры многих европейских городов также имеют неправильную структуру, ведь они развивались подобно живым организмам.

Эта гипотеза, основанная на теории сложности, показывает, как различные общества использовали нелинейные структуры в своей организации, чтобы поддерживать ряд внутренних взаимосвязей. Они непроизвольно имитировали динамические биологические системы. Колоннады, аркады, ряды зданий, разделенные узкими улочками, — все эти архитектурные элементы напоминают проницаемую оболочку с пустотами, через которые идет взаимообмен. Чем больше подобных сегментов (и, соответственно, пустот), тем больше информации можно передать.



План города, выстроенного по западным традициям, например Барселоны, имеет сетчатую структуру, схожую со строением живых организмов, например, крыла насекомого.


«ПЛАВИЛЬНЫЙ КОТЕЛ» ИСПАНСКИХ ГОРОДОВ

Города эволюционируют, как и живые организмы. В пространстве города, которое понимается как преобразование природного пространства и пространства деревни, образуются объекты двух различных типов: улицы (пустое пространство) и жилые районы (заполненное пространство).

Их форма и развитие по большей части обусловлены человеческим фактором. Например, испанские города развивались в соответствии с моделью, в которой можно выделить четыре периода историко-экономического развития:

— классический средиземноморский город в греко-латинской традиции;

— средневековый мусульманский и христианский город, который в эпоху Возрождения подвергся ярким и причудливым преобразованиям;

— доиндустриальный модернистский город, который затем вступил в эпоху индустриализации;

— постиндустриальный город с пригородами.

Под влиянием Востока и Запада сформировался уникальный облик современных испанских городов, непохожих на остальные европейские мегаполисы. Города Испании отличаются компактностью и древовидной структурой. В узловых элементах этих структур когда-то находились крепости, мечети, церкви и монастыри. Город в целом полностью ограничивается основным структурным элементом — городской стеной.

* * *

Когда основные процессы, происходящие в городах, меняются, можно увидеть, как изменяется исходная структура городов. Цель подобной перестройки — избежать того, что изначально было желаемым: если раньше преобладал взаимообмен между малыми группами, то теперь чаще наблюдаются большие скопления людей и высокие скорости. Чтобы не допустить коллапса, создаются кольцевые магистрали и новые районы, разбитые на квадраты. Являются ли «простые» геометрические фигуры идеальными? Будет ли подобная планировка оптимальной?


Планировка городов: только ли геометрия?

Форма городов является результатом длительного строительства, на которое влияет географическое местоположение. В процесс строительства вмешивается множество людей, принимаются решения, в результате которых появляются объекты, не подчиняющиеся евклидовой геометрии. Необходимо многомерное моделирование, то есть рассмотрение города в различных масштабах и с разных точек зрения.

Если мы посмотрим на город в разных масштабах, то увидим, что некоторые фигуры будут повторяться (итерироваться). Это доказывает, что сеть улиц города подобна ветвям дерева: и улицы, и ветви дерева формируются итеративно. Это дает основания полагать, что в этих процессах сочетаются итеративные операции и случайные события.

Структура кварталов современных западных городов отражает рациональность и порядок, на всей территории безраздельно господствует евклидова логика. Мы всегда пытаемся применить фигуры евклидовой геометрии (окружности, квадраты, кубы) к реальности, но эти фигуры — лишь математическая абстракция, следовательно, их ограничивают возможности нашего интеллекта. В итоге реальность сопротивляется подобному упрощению и упорядочиванию и восстанавливает свою сложную природу (совокупность человеческих, экономических, исторических интересов), отражая тем самым неравномерность взаимоотношений своих составных частей в различном масштабе.

Чтобы понять неравномерную, беспорядочную реальность, нужна альтернативная геометрия, в основе которой будут находиться именно эти взаимоотношения, а не идеальные геометрические фигуры.



Серия изображений структуры города, на которых заметно подобие в различных масштабах.

(Источник: Лаура Элизабет Виолант.)


Геометрия и лингвистика. Знание геометрии врожденно?

Несмотря на все вышесказанное, когда нужно провести определенные границы, а территории недостаточно, то земельным участкам, как правило, придают форму прямоугольников или четырехугольников, как, например, при межевании поля перед

Кажется, что четырехугольники использовались всегда. Действительно, это одна из наиболее часто применяемых фигур наряду с кругом, спиралью и крестом. Некоторые исследователи пытались найти доказательства тому, что знания геометрии являются врожденными и не требуют знания языка или культуры. Это было подтверждено на примере племени мундуруку, живущего в Амазонии. Племя живет изолированно от нашей цивилизации на протяжении четырех сотен лет, со времени прибытия в Южную Америку европейских завоевателей. Знания геометрии, которыми владеют индейцы этого племени, доказывают, что человек обладает геометрической интуицией, которая не зависит от обучения, умения работать с картами и графическими символами и даже от наличия геометрических терминов в языке. Это открытие произвело переворот в неврологии, антропологии, психологии и герменевтике: ведь раньше было невозможно определить, необходим ли язык для познания реального мира.

В ходе современных лингвистических исследований было обнаружено, что существуют универсальные общие для всех языков семантические элементы, а также базовые языковые универсалии, характерные для устной речи. Означает ли это, что помимо одинаковых элементов языка существуют геометрические или арифметические универсалии, единые для всех людей и не зависящие от приобретенных знаний? Являются ли эти знания врожденными, унаследованными? Заложены ли они в нас генетически подобно языковым универсалиям, как утверждает выдающийся американский лингвист и философ Ноам Хомский? В 1957 г. в возрасте всего 29 лет Хомский совершил переворот в теоретической лингвистике, опубликовав работу «Синтаксические структуры». Ранее считалось, что язык, подобно любым другим навыкам, приобретается через обучение. Хомский выдвинул идею о существовании «ментального органа» языка — части мозга, благодаря которой человек обучается языку и использует его практически интуитивно. Кроме этого, он доказал, что существуют общие абстрактные принципы грамматики, присущие каждому человеческому языку, и выдвинул гипотезу о существовании универсальной грамматики.



Туземцы племени мундуруку, какими их увидел французский художник и фотограф Эркюль Флоранс в 1828 г.


Превосходство Евклида

Примерно к 323 г. до н. э. слава греческой науки распространилась по всем государствам, покоренным Александром Македонским. Неудивительно, что египетский царь Птолемей I, создав в Александрии крупный культурный центр, привлек туда афинских ученых. Евклид был назначен главой математической школы.

Первым из философов упоминает об Евклиде Прокл, согласно которому Евклид родился приблизительно в 300 г. до н. э. Относительно точности этой даты имеются сомнения, но достоверно известно, что именно Евклид систематизировал математику того времени, дополнил некоторые труды и привел неопровержимые доказательства утверждений, недостаточно подробно изложенных его предшественниками. Он обобщил и систематизировал геометрию своего времени. До Евклида математика представляла собой набор разрозненных вычислений. Благодаря его усилиям она превратилась в совокупность взаимосвязанных систем.



Греческий математик Евклид, изображенный фламандским художником Юстусом ван Гэнтом.


Известно, что Евклид написал 12 книг, из которых до нас дошли лишь пять: «Начала геометрии», «Данные», «О делении», «Явления» и «Оптика». «Начала» стали обязательными к изучению во всех университетах и научных центрах в течение следующих двух тысяч лет[2]. Считается, что существует около полутора тысяч изданий этой книги на греческом, арабском, латыни и других языках. До середины XX века эта книга была второй по числу проданных экземпляров, уступая лишь Библии.

«Начала» — один из древнейших, красивейших и подробнейших научных трудов среди всех, что дошли до наших дней. Они состоят из тринадцати книг: шесть посвящены планиметрии, три — арифметике, одна — измерениям, три — основам стереометрии. Целью Евклида было изложить основы известной на тот момент математики без какого-либо практического применения. Его труд оказался столь совершенным, что был превзойден лишь в конце XIX века[3]. В его теоремах все видели «истинные» подтверждения реальности, и никто не мог предположить, что возможна иная геометрия.

Чтобы попытаться понять, что побудило Евклида посвятить столько сил написанию столь подробного труда, вернемся к моменту, когда пифагорейцы обнаружили, что диагональ квадрата с единичной стороной равна √2. Это число не является рациональным, то есть его нельзя представить в виде частного целого и натурального чисел. Говоря языком той эпохи, диагональ квадрата была несоизмерима с его стороной. Этот факт сегодня кажется совершенно не удивительным, но некоторые греки, в частности пифагорейцы, считали его подлинным крахом всей математики, пошатнувшим устои космологии. Евклид, которому были известны работы пифагорейцев, стремясь найти выход из этого кризиса, решил сформулировать прочные основы всей геометрии, которые вкупе с непогрешимой логикой позволили бы получить серию непреходящих верных результатов.

Но для этого требовалось решить небольшую логическую проблему: любое доказательство основывается на одной или нескольких гипотезах, из которых путем логических рассуждений получается результат, называемый тезисом. Истинность тезиса зависит от корректности рассуждений и от истинности исходных гипотез (этот вопрос рассмотрел Аристотель в своих сочинениях под общим названием «Логика»). Чтобы иметь возможность определить истинность гипотез, нужно считать их результатами других рассуждений, гипотезы которых также должны быть истинными. Очевидно, что этот процесс бесконечен: каждая гипотеза обязательно должна являться тезисом, требующим доказательства.

Евклид понял, что не все положения в математике можно доказать, и некоторые из них нужно принять как допущения. В «Началах» он впервые использовал аксиоматический метод, что стало поворотным моментом в истории математики. Евклид рассматривал гипотезы трех типов: определения (в них приводятся значения терминов; всего Евклид формулирует 23 определения), постулаты (у Евклида их пять) и аксиомы (общие утверждения; их тоже пять[4]).

Эта система была выстроена в соответствии с так называемым аксиоматико-дедуктивным методом, который определил путь развития всей современной математики. Бесспорно, если мы тщательно проанализируем утверждения и теоремы, которые предположительно доказаны, то обнаружим некоторые неточности. Например, Евклид использовал принцип, не указанный среди аксиом, согласно которому через две точки можно провести только одну прямую. Но эти ошибки были обнаружены лишь в начале XIX в.[5]

Наибольшая полемика разгорелась вокруг пятого постулата «Начал», так называемой аксиомы параллельности: «В плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной»[6]. Этот постулат напоминает теорему, и кажется, что для него можно привести доказательство. Исследователи «Начал» и авторы комментариев понимали, что этот постулат является интуитивным.

Евклид нечасто использует его, как будто хочет избежать: впервые этот постулат используется лишь в двадцать девятой теореме. Это наводит на мысль, что сам Евклид пытался доказать это утверждение, но, убедившись в том, что это невозможно, добавил его к остальным постулатам.

Позднее это побудило математиков исправить этот «дефект» и найти доказательство пятого постулата. Безуспешные попытки продолжались двадцать веков. Тот, кто считал, что доказал этот постулат, в действительности находил другую, эквивалентную формулировку[7]. Многочисленные бесплодные попытки привели к тому, что доказательство пятого постулата стало четвертой знаменитой задачей греческой математики после квадратуры круга, трисекции угла и удвоения куба. Лишь в XIX в. Карл Фридрих Гаусс и Николай Лобачевский окончательно показали, что этот постулат недоказуем. Это удивительное открытие поколебало уверенность в том, что геометрия Евклида является единственно возможной, и проложило путь так называемым неевклидовым геометриям, о которых мы подробно поговорим чуть позже.


Появление бесконечно удаленной прямой

В эпоху Возрождения ученые и художники начали поиски новых геометрических методов, которые бы позволили точнее изображать реальность. Среди наиболее известных — Филиппо Брунеллески, Леонардо да Винчи и Лука Пачоли, которые в своих работах стремились передать на плоскости ощущение глубины. Благодаря их усилиям сформировались практические основы науки, позднее получившей название «перспектива»[8].

Как мы уже говорили, математика евклидова пространства является одним из ключевых элементов современной научной мысли, причем это в равной степени относится и к естественным дисциплинам, и к гуманитарным наукам и искусству. По Евклиду, математическое пространство — это пустое и абсолютное пространство, в котором формируется реальность, в том числе художественная.

В этом пространстве действуют законы перспективы, что было бы невозможно без математики Евклида, в которой описывается линейное пространство.

Фреска «Афинская школа» Рафаэля, на которой изображены практически все греческие мудрецы — известнейший пример использования перспективы. На фреске под крышей грандиозного архитектурного сооружения изображены представители классической философии, собравшиеся вместе. На этом шедевре Рафаэля время словно остановилось для мудрецов из разных эпох. И среди них наш старый знакомый Евклид. Рафаэль изобразил его в правой части картины. Евклид, согнувшись, что-то объясняет ученикам, рисуя дуги циркулем на маленькой доске. На фреске также есть и Пифагор, он сидит в противоположном углу и что-то пишет на табличке. Пифагор и Евклид изображены в разных сторонах нижней части картины — именно там, где начинаются воображаемые линии, сходящиеся к центру композиции, где расположены Платон и Аристотель. Эти линии теряются на горизонте и уходят в бесконечность.



«Афинская школа». Помимо Евклида и Пифагора, на фреске Рафаэля также изображены Зенон Китийский, Эпикур, Анаксимандр, Аверроэс, Александр Великий, Ксенофонт, Гапатия, Парменид, Сократ, Диоген Синопский, Плотин, Архимед, Заратустра, Клавдий Птолемей, Протоген и сам Рафаэль. Художник вывел себя в образе Апеллеса.


Шаг в бесконечность: проективная геометрия

Формальные принципы и основы проективной геометрии создал Жерар Дезарг (1591–1661). Этот французский математик заметил, что круг в перспективе выглядит как эллипс, а тень, которую отбрасывает на стену круглый предмет, может принимать форму круга, эллипса, параболы или ветви гиперболы в зависимости от угла наклона предмета. (Четыре упомянутые кривые — окружность, эллипс, парабола и гипербола — называются коническими сечениями.) Это означает, что проекция предмета (в нашем примере это тень) преобразует одну фигуру в другую[9].

На основе этих наблюдений Дезарг ввел два новых понятия: бесконечно удаленную точку, называемую также несобственной точкой, и бесконечно удаленную прямую, также называемую несобственной прямой. На плоскости существует бесконечно много несобственных точек, каждой из которых соответствует свое направление. Все такие точки образуют бесконечно удаленную прямую. Аналогично в пространстве существует бесконечно много несобственных прямых, которые в совокупности образуют бесконечно удаленную плоскость. Согласно модели Дезарга, две параллельные прямые пересекаются в бесконечно удаленной точке — несобственной точке, определяемой углом наклона прямой. Иными словами, каждому углу наклона можно поставить в соответствие бесконечно удаленную точку.

Аналогично пересечением двух параллельных плоскостей будет бесконечно удаленная, то есть несобственная прямая. Следовательно, можно сказать, что две прямые, принадлежащие одной плоскости, всегда имеют общую точку (собственную или несобственную), а две плоскости пространства всегда имеют общую прямую (собственную или несобственную). Парабола будет эллипсом с несобственной точкой, гипербола — эллипсом, но уже с двумя несобственными точками. Отсюда следует принцип двойственности, который выполняется для всех теорем, устанавливающих отношение между точками и прямыми. В соответствии с этим принципом если в теореме проективной геометрии мы заменим слово «точка» на «плоскость», а слова «проходит через» — на «пересекаются в», то полученная теорема также будет верной. Благодаря этому принципу теорема «через любые две несовпадающие точки можно провести единственную прямую» имеет парную теорему: «Две несовпадающие прямые пересекаются на единственной плоскости».



Согласно новым принципам, разработанным Дезаргом, конические сечения отличаются друг от друга лишь числом несобственных точек.


Эта теория стала принципиально новой. Было нетрудно представить, что эллипс (замкнутая кривая) в перспективе будет выглядеть как окружность. Например, Дюрер точка за точкой построил все возможные сечения прямого конуса плоскостью. Тем не менее на одном из его рисунков можно увидеть, что фигура, которая в теории должна быть эллипсом, изображена в форме яйца, как будто бы Дюрер не верил своим глазам и ожидал, что по мере приближения к вершине конуса кривая будет более вытянутой по сравнению с обычным эллипсом. Напротив, казалось невозможным, что окружность в перспективе может принимать форму незамкнутой кривой с ветвями, уходящими в бесконечность, то есть форму параболы. Также казалось невозможным, что окружность в перспективе может разрываться подобно гиперболе, которая имеет две отдельные ветви.


Изображаем круглый бассейн на картине

Чтобы лучше понять, как окружность в перспективе принимает форму разных конических сечений, представим, что художник хочет изобразить на картине часть бассейна круглой формы. Художник смотрит на бассейн через воображаемое окно (именно проекцию изображения и запечатлеет на картине художник). В зависимости от угла наклона этого окна проекции будут принимать форму различных конических сечений. Мы поступим иначе: зафиксируем плоскость окна перпендикулярно полу и будем изменять положение наблюдателя и окна относительно бассейна.

Когда бассейн будет наиболее удален от окна, его проекция примет форму эллипса. Приблизим наблюдателя и окно к бассейну так, что часть бассейна будет располагаться между наблюдателем и картиной. Проекция бассейна на плоскость окна по-прежнему будет иметь форму эллипса, но часть бассейна уже не будет видна на картине, так как будет располагаться слишком низко. Поместим наблюдателя еще ближе к бассейну, так, чтобы он располагался на краю бассейна. В этом случае луч, соединяющий глаз наблюдателя и точку окружности бассейна, в которой находится наблюдатель, будет параллелен картине и никогда не пересечет ее плоскость либо же пересечет ее в бесконечно удаленной точке. Так как одна из точек окружности будет бесконечно удаленной, проекция окружности примет форму параболы.

Что произойдет, когда наблюдатель войдет в бассейн? В этом случае плоскость, проходящая через точку, в которой расположен наблюдатель, и параллельная окну, пересечет окружность в двух точках А и В. Проекциями этих точек будут бесконечно удаленные точки. Часть бассейна, которая будет располагаться позади наблюдателя, в перспективе примет форму незамкнутой кривой с двумя асимптотами. Эти асимптоты будут параллельны прямым, соединяющим наблюдателя и точки А и В соответственно. Дугу окружности, расположенную позади наблюдателя, также можно спроецировать на плоскость окна. Мы получим еще одну кривую, симметричную первой, которая будет представлять собой не что иное, как еще одну ветвь гиперболы.



Изображение круглого бассейна в зависимости от положения наблюдателя.

(Источник: Мария Изабель Бинимелис.)


Открытия Дезарга позволили разработать общую теорию проекций, изучением которой занимались геометры первой половины XIX в., среди которых отметим Гаспара Монжа и Жан-Виктора Понселе. Благодаря проективной геометрии, созданной этими математиками, стала возможной разработка неевклидовых геометрий и евклидовых моделей для них. В первых книгах о перспективе, написанных французскими исследователями начала XVII в. на основе работы Дезарга, описывалась так называемая проекция Кавалье, или военная перспектива. В 1794 г. Монж описал теорию построения ортогональных проекций трехмерных объектов на плоскости. Созданная Монжем дисциплина сегодня называется начертательной геометрией и используется при построении чертежей. В свое время начертательная геометрия в корне изменила военно-инженерное дело.



Ортогональная проекция.

(Источник: Лаура Элизабет Виолант)


В архитектуре эта проекция стала использоваться значительно позже: проекция Кавалье и аксонометрическая проекция (в ней трехмерный объект изображается на чертеже при помощи проекций на три оси, находящиеся на плоскости чертежа) стали применяться в конце XIX в.

Вклад Дезарга можно вкратце описать так: в параллельной проекции эпохи Возрождения лучи зрения считались параллельными; в теории Дезарга они сходятся в бесконечно удаленной точке. Иными словами, проекция Кавалье равносильна центральной проекции, в которой взгляд художника «обращен в бесконечность». Русский художник-супрематист Эль Лисицкий полагал, что с появлением этой проекции с субъективной живописью будет покончено, так как не будет существовать точки, в которой находится наблюдатель: художник берет на себя роль творца, поскольку его взгляд исходит из бесконечности.


ПОЯВЛЕНИЕ КООРДИНАТ

Появление работ Рене Декарта и Пьера Ферма, создателей так называемой аналитической геометрии, ознаменовало начало современной геометрии. Они впервые ввели оси координат, с помощью которых точки геометрических фигур можно выразить в численном виде. Следовательно, появляется возможность использовать алгебраические методы. Таким образом, геометрические задачи сводились к алгебраическим. Решение алгебраической задачи позволяло дать ответ к исходной, геометрической задаче.



За год до публикации «Геометрии» Декарта Ферма писал: «Всякий раз, когда в заключительном уравнении имеются две неизвестные величины, налицо имеется геометрическое место, прямая или кривая».


Сумма углов треугольника

Некоторое время в механике и других областях физики геометрия занимала второстепенное положение по отношению к так называемым дифференциальным уравнениям[10]. Это положение вещей изменил Гаусс, «принц математиков»: он заложил фундамент геометрии, в которой изучались дифференцируемые функции, иными словами, дифференциальной геометрии. Гаусс изучал кривые и поверхности в пространстве и определил базовое обозначение меры кривизны поверхности. Например, с увеличением радиуса окружности ее кривизна уменьшается. Продолжив эти рассуждения, получим, что кривизна прямой равна нулю, что и следовало ожидать.

Выполнить расчет кривизны поверхности сложнее. Если говорить упрощенно, то для двух точек данной поверхности кратчайшая кривая, соединяющая две эти точки (так называемая геодезическая линия) и не выходящая за пределы данной поверхности, будет являться кривой наименьшей кривизны. Это утверждение является более общим по отношению к постулату, который гласит, что на евклидовой плоскости кратчайшей линией между двумя точками является прямая[11]. В такой трактовке евклидово пространство — это частный случай пространства, имеющего нулевую кривизну.

На основе этих рассуждений Гаусс доказал, что существуют поверхности, на которых сумма углов треугольников, образованных геодезическими линиями, превышает 180° либо, напротив, меньше 180°. Можно доказать, что из пятого постулата Евклида следует, что сумма внутренних углов треугольника равна 180°, поэтому открытие Гаусса противоречит пятому постулату. Судя по дневникам Гаусса, примерно в 1824 г. он пришел к следующему выводу: доказать пятый постулат, исходя из остальных постулатов, нельзя, так как он не зависит от них. Кроме того, можно создать полностью логичную геометрию, где этот постулат невыполним, и при этом не возникнет никаких противоречий с остальными четырьмя. Хотя в те годы Гаусс уже считался ведущим математиком Европы, он решил, что общество не готово к открытию такого масштаба, и не опубликовал свои записи.

Некоторые исследователи утверждают, что именно Гаусс первым рассмотрел вероятность того, что наша Вселенная имеет неевклидову геометрию. Говорят, что он поднялся на три горные вершины с теодолитом, чтобы измерить углы треугольника, образованного этими горами, но точность измерений оказалась недостаточной, чтобы сделать какие-то выводы. Любопытно, что можно экспериментально доказать, что физическое пространство не является евклидовым, но доказать его «евклидовость» не получится. Евклидовы пространства нулевой кривизны — это граничный случай, разделяющий пространства положительной и отрицательной кривизны. В измерение кривизны, как и в любое другое измерение, может вкрасться ошибка: всегда будет существовать вероятность, что отклонение от нуля слишком мало, чтобы его можно было обнаружить. Следовательно, нельзя доказать экспериментально, что данное пространство однозначно является евклидовым.

Вскоре после Гаусса еще один ученый пришел к тому же выводу, и он нашел в себе смелость опубликовать свои изыскания. В его труде пятый постулат Евклида был заменен следующим: «Через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, параллельные ей». Речь идет о геометрии Лобачевского. В действительности к этому выводу независимо друг от друга пришли два математика: Николай Лобачевский и венгр Янош Бойяи, сын Фаркаша Бойяи, друга самого Гаусса. Фаркаш Бойяи увидел в работах Лобачевского свои же идеи и настолько заинтересовался геометрией Лобачевского, что в 62 года начал изучать русский язык, чтобы прочесть его труды в оригинале. На это ему понадобилось всего несколько месяцев.

Бойяи и Лобачевский не пытались доказать пятый постулат Евклида исходя из других постулатов. Вместо этого они заметили, что постулат о параллельности прямых должен быть независимым от остальных. До них в отличие от многих своих предшественников этим же путем следовал Иоганн Ламберт. Ученые пришли к выводу, что независимость пятого постулата имеет большое значение: можно заменить его другим постулатом о параллельности прямых, возможно даже противоположным по смыслу, получить новую непротиворечивую систему постулатов и, как следствие, полностью непротиворечивую геометрию. Независимо друг от друга Бойяи и Лобачевский выбрали один и тот же альтернативный постулат и исследовали полученную неевклидову геометрию, приведя для ее теорем доказательства, аналогичные доказательствам Евклида.


АБСОЛЮТНАЯ ГЕОМЕТРИЯ

Абсолютная геометрия — это часть геометрии, которая выводится из первых четырех постулатов Евклида. Она называется абсолютной, так как является общей частью евклидовой и неевклидовой геометрий. Как мы уже показали, отличие между ними заключается лишь в пятом постулате о параллельности прямых.

Большое историческое значение имеет четырехугольник Саккери, рассмотренный Джироламо Саккери, и четырехугольник Ламберта, рассмотренный немецким математиком Иоганном Ламбертом. Они использовались для доказательства пятого постулата, но безуспешно. Саккери пытался показать, что отрицание пятого постулата ведет к противоречию, и тем самым доказать его. Однако он совершил ошибку, посчитав некоторые результаты неверными лишь на основании того, что они противоречили интуиции.

Ламберт, напротив, в посмертно изданной книге «Теория параллельных линий» (1766) приводит похожие рассуждения, что и Саккери, но не содержащие ошибок. По-видимому, он представлял, что можно сформировать геометрию без пятого постулата, так как писал: «Я склоняюсь к мысли, что гипотеза острого угла верна на некоторой сфере воображаемого радиуса». Этот немецкий математик также открыл несколько интересных формул, описывающих треугольники гиперболической геометрии, показав, что сумма углов в таких треугольниках всегда меньше 180°. По формуле Ламберта для этих треугольников справедливо следующее соотношение:

(π — (α + β + Y)) = CSαβγ,

где

α + β + Y — сумма углов треугольника (выраженная в радианах);

С — положительный коэффициент пропорциональности, связанный с неизменной кривизной гиперболического пространства, в котором находится треугольник;

Sαβγ — площадь треугольника.

* * *

Использование нового постулата привело к созданию новой совокупности теорем и выводов, которую стали называть гиперболической геометрией. Лобачевский и Бойяи пришли к необычным выводам: через одну точку проходит бесконечно много прямых, параллельных данной; сумма углов треугольника меньше 180° для двух данных параллельных прямых существует третья прямая, перпендикулярная одной из них и параллельная другой, и так далее.

Все это противоречило интуиции: подобную ситуацию нельзя было представить, не переосмыслив понятия прямой, плоскости и другие. Тем не менее с точки зрения логики новая геометрия была абсолютно корректной. Это вызвало крупный кризис в математике XIX в., который наложился на другие противоречия той эпохи. Как бы то ни было, в трудах Лобачевского и Бойяи было окончательно показано, что постулат о параллельности прямых не связан с остальными и что Евклид совершенно справедливо включил его в число постулатов, так как его нельзя логически вывести из предыдущих.


Немного топологии

Немецкий математик Август Мёбиус (1790–1868), современник Бойяи и Лобачевского, известен благодаря ленте, носящей его имя. Чтобы сделать ленту Мёбиуса, достаточно взять полоску бумаги и соединить ее концы, повернув один из них на 180°. Если мы «пройдем» вдоль полученной поверхности, то обойдем всю ленту целиком и попадем в исходную точку, не переходя на «другую сторону», которой фактически не существует. Если мы разрежем ленту вдоль по линии, равноудаленной от краев, то получим не две ленты Мёбиуса, а одну в два раза большей длины.



Лента Мёбиуса — поверхность, соединенная «двумя сторонами».


Это приводит к удивительному результату: согласно Мартину Гарднеру, лента Мёбиуса, строго говоря, не является двумерным объектом, так как имеет определенную толщину (ведь не существует листа бумаги с нулевой толщиной). Если мы будем рассматривать ленту Мёбиуса как трехмерный объект, то увидим, что ее поперечное сечение имеет форму прямоугольника. Саму ленту в этом случае следует рассматривать как «скрученную призму». Если бы ее сечение имело форму четырехугольника, то перед тем как склеить два конца ленты, мы могли бы повернуть их друг относительно друга всего на четверть оборота, на пол-оборота (как обычную ленту Мёбиуса) или на любое другое число оборотов. А если бы ее сечение имело форму пятиугольника, а не четырехугольника? Какой объект получился бы в этом случае? Изучением подобных объектов и всех геометрических тел, которые остаются неизменными после различных преобразований, занимается область математики под названием топология, о которой мы поговорим в следующих главах.


Путешествие вокруг Гренландии. Модель Вселенной

Спустя несколько лет после открытия гиперболической геометрии, в 1851 г., немецкий математик Бернхард Риман (1826–1866), ученик Гаусса, выступил с обязательным докладом в Гёттингенском университете, чтобы получить возможность претендовать на пост приват-доцента. Этот доклад получил невероятную известность. В нем Риман обрисовал новое видение геометрии, уделив основное внимание изучению многообразий с произвольным числом измерений в различных пространствах. Используя интуитивно понятный язык и не приводя доказательств, он ввел понятие дифференцируемого многообразия (обобщение понятия дифференцируемой поверхности). Понятие «многообразие» содержит отсылку к изменяющимся координатам, которые описывают совокупность точек некоторого объекта, а прилагательное «дифференцируемое» означает, что многообразие является гладким и не содержит складок или разрывов. Согласно Риману, классические поверхности являются двумерными многообразиями, кривые — одномерными многообразиями, а точки имеют число измерений, равное нулю. Также существуют трехмерные и многомерные многообразия, которые, однако, не так просто изобразить графически.

Кульминацией первой части доклада стало определение понятия тензора кривизны, которое является обобщением понятия гауссовой кривизны на многообразиях. Кривизна кривой в точке рассчитывается путем построения соприкасающейся окружности и вычисления величины, обратной радиусу этой окружности. Так, кривизна окружности радиуса 2 во всех точках будет равна 0,5, а прямая будет иметь кривизну, равную нулю, так как соприкасающаяся окружность для этой прямой будет иметь бесконечно большой радиус.

Очевидно, что это определение непросто обобщить для всей поверхности, так как для каждой точки поверхности можно построить бесконечное множество соприкасающихся окружностей. Какую из них нужно выбрать? На этот вопрос ответил Риман, разработав так называемый тензор кривизны, причем не только для поверхностей, но и для многообразий с произвольным числом измерений.



На этой иллюстрации показано, что с увеличением кривизны радиус соприкасающейся окружности уменьшается.

(Источник: Мария Изабель Бинимелис.)


Во второй части доклада Риман рассмотрел модель, которая наилучшим образом объяснила бы физическое пространство — пространство, в котором мы живем. Сколько в нем измерений? Какова его геометрия?

В трактовке Римана любое пространство (будь то плоскость, трехмерное пространство или любое другое) можно изучить с помощью дифференцируемого многообразия. Если ввести на этом многообразии понятие расстояния, или метрику, то мы определим геодезические линии (напомним, что это кратчайшие линии, соединяющие две любые точки поверхности) и геометрию на этом многообразии. Так, плоскость сама по себе не является евклидовой или неевклидовой. Лишь введение евклидовой метрики на плоскости подтверждает правильность пятого постулата Евклида, и, как следствие, плоскость становится евклидовой. Если ввести на этой плоскости другую метрику, то этот постулат, возможно, перестанет выполняться.

Например, для расчета евклидовой метрики, то есть расстояния между двумя точками с известными координатами, нужно построить треугольник: одной стороной этого треугольника будет отрезок, соединяющий данные точки, двумя другими сторонами будут проекции этого отрезка на линии, которые параллельны перпендикулярным осям координат и проходят через данные точки. Таким образом, в полученном треугольнике можно будет вычислить гипотенузу по теореме Пифагора, как показано на следующем рисунке:



Евклидово расстояние (метрика) между точками Р и Q равно гипотенузе прямоугольного треугольника, получаемого построением прямых, параллельных осям координат X, Y и проходящих через точки Р и Q. Длина искомой гипотенузы вычисляется по теореме Пифагора.


МЕТРИКА МАНХЭТТЕНА

Еще одним примером метрики, эквивалентной евклидовой метрике, является так называемое манхэттенское расстояние, рассчитываемое по формуле d((х1,ух), (х2,у2)) = |x2 - x1 | + |y2 - y1|. Эта метрика измеряет расстояние, пройденное пешеходом между двумя точками в городе, разделенном на прямоугольные кварталы. И снова мы видим, что плоскость сама по себе не является евклидовой или неевклидовой, а ее свойства зависят от используемой метрики.



* * *

Риман вновь изучил основные положения евклидовой геометрии. Проанализировав второй постулат, гласящий, что «ограниченную прямую можно непрерывно продолжать по прямой», он заметил, что это положение следует отличать от утверждения «всякая прямая является бесконечной». Он пришел к выводу, что в рамках этого нового подхода ко второму постулату необходимо отказаться от пятого постулата. Риман заменил его следующей фразой: «любые две прямые пересекаются». Путем подобных рассуждений он пришел к так называемой эллиптической геометрии.

Этот концептуальный переход будет проще понять, если мы рассмотрим геометрию поверхности Земли. Какую форму имеют кратчайшие линии, соединяющие две данные точки, то есть геодезические линии? Учтем, что они будут иметь наименьшую кривизну, а наименьшей кривизне соответствует наибольший радиус окружности. Следовательно, эти линии будут лежать на больших кругах земного шара, например на экваторе или меридиане. Этот результат, относящийся к сферической геометрии, прекрасно известен пилотам дальнемагистральных самолетов. Если самолет находится в одной точке экватора, а нужно попасть в другую точку экватора, то пилот должен следовать вдоль линии экватора. Однако если самолет находится в точке с координатой 30° северной широты, а пункт назначения находится на этой же широте, то кратчайший путь будет проходить ближе к северу. Теперь становится понятно, почему самолеты, следующие, например, из Парижа на Гавайи, летят через Гренландию, хотя Гавайи находятся южнее Парижа.



Геодезическая линия (кратчайший путь между двумя данными точками) от Парижа до Гавайских островов проходит через Гренландию и Канаду.


Чтобы найти кратчайшую линию, соединяющую две точки Земли, нужно найти плоскость, проходящую через эти точки и центр Земли, затем провести линию пересечения найденной плоскости и поверхности Земли, как показано на следующем рисунке:



Если говорить о параллельности прямых, то нетрудно заметить, что в сферической геометрии подобного понятия не существует, так как любые две «прямые» (большие круги) пересекаются. Треугольники на поверхности земного шара могут иметь два или даже три прямых угла: чтобы построить такой треугольник, достаточно поместить две его вершины на экваторе, а третью — на одном из полюсов. В отличие от евклидовой геометрии, где все треугольники имеют сумму углов, равную 180°, в гиперболической и сферической геометрии все обстоит совершенно иначе. В сферической геометрии сумма углов треугольника всегда больше 180° и различается у разных треугольников. В одних треугольниках она может быть равной 190°, в других — 250°. Однако доказано, что два треугольника одной и той же площади имеют равную сумму углов.



Треугольник, построенный на поверхности сферы. Сумма углов этого треугольника больше 180°.


ГЕОМЕТРИЯ ПРОСТРАНСТВА

Какая из трех геометрий «настоящая»? Какая из трех геометрий, о которых мы рассказали выше, лучше описывает реальный мир? Со временем стало понятно, что геометрия Евклида является полностью приемлемым приближением реальности, если речь идет об объектах, сопоставимых по масштабу с Землей, но на больших расстояниях все уже не столь очевидно. Если мы попробуем измерить расстояния на поверхности сферы и найти кратчайшие расстояния на ней, то поймем, что наш мир описывается эллиптической геометрией (геометрией Римана). При путешествиях со скоростями, близкими к скорости света, пространство-время будет описываться геометрией Минковского, которая является неевклидовой. Но что происходит во Вселенной вдали от поверхности Земли, если не брать в расчет время? Действительно ли мы живем во вселенной, пространство которой подчиняется законам геометрии Евклида?

Гаусс по просьбе короля Ганновера некоторое время занимался геодезическими исследованиями. В ходе исследований ему потребовалось измерить углы треугольника, образованного тремя горными вершинами, отстоящими друг от друга на расстояние около 50 миль. Отклонение полученной суммы углов от 180° было меньше допустимой ошибки измерений; таким образом, найденная сумма углов треугольника соответствовала всем трем гипотезам. В свою очередь, Лобачевский заметил, что треугольник, вершины которого расположены на Земле, будет слишком мал, чтобы заметить расхождения с евклидовой геометрией. Лобачевский занялся астрономическими исследованиями, но ему также не удалось прийти к какому-либо выводу, так как разница при измерении расстояний между Землей и Солнцем составила менее одной тысячной секунды. Тогда он обратился к треугольникам большего размера и занялся наблюдениями параллакса звезд. Однако ни ему, ни кому-то другому не удалось найти треугольник, где сумма углов отличалась бы от 180°, несмотря на то что в гиперболической геометрии эта разница возрастает с увеличением площади треугольника.

Согласно теории относительности, нашу Вселенную наилучшим образом описывает эллиптическая геометрия (геометрия Римана). Б. Льюис говорил: «В общей теории относительности Эйнштейна геометрия пространства — это риманова геометрия. Свет движется вдоль геодезических линий, а кривизна пространства зависит от природы материи, его составляющей».


Эрлангенская программа. Что же такое геометрия?

Для утверждения в должности профессора факультета философии и члена совета Эрлангенского университета Феликс Клейн (1849–1925) в 1872 г. написал доклад (правда, он так и не был зачитан публично), который можно считать одним из ключевых трудов по геометрии наряду с диссертацией Римана и «Началами» Евклида.

В своем докладе Клейн попытался дать формальное определение геометрии, выйдя за рамки интуитивных представлений. Он систематизировал множество появившихся в то время разделов геометрии в так называемой эрлангенской программе, где привел их классификацию в зависимости от свойств, которые остаются неизменными для определенных групп преобразований[12]. Понятие группы было известно до Клейна, но именно он открыл фундаментальную взаимосвязь геометрии и групп преобразований. Так, евклидова геометрия изучает свойства фигур и тел, которые не изменяются при движениях без деформации. К подобным движениям, которые называются изометрическими преобразованиями (в переводе с греческого «изометрия» означает «равного размера»), относится перенос, симметрия, вращение и их композиции. Инвариантами этих преобразований являются, к примеру, расстояние между точками, площадь поверхности, углы между прямыми и так далее.

Аналогично аффинная геометрия изучает свойства фигур, инвариантные относительно аффинных преобразований (к ним относятся изометрические преобразования, растяжения и сжатия). Проективная геометрия изучает свойства, инвариантные относительно группы проекций, топология занимается изучением инвариантов непрерывных преобразований.

Помимо прочего, Клейн доказал, что евклидову геометрию, аффинную геометрию и неевклидовы геометрии можно считать частными случаями проективной геометрии. Если не вдаваться в детали, то доказательство основано на рассмотрении преобразований проективного пространства, которые оставляют неизменным определенное коническое сечение, называемое абсолютным. В зависимости от типа конического сечения результатом будет тот или иной раздел геометрии.

Если оставить в стороне технические вопросы, то это утверждение приводит к очень важному результату: геометрия Евклида является согласованной (непротиворечивой) тогда и только тогда, когда непротиворечивыми являются неевклидовы геометрии. Так был положен конец спорам о том, имеют ли смысл неевклидовы геометрии. Тем не менее еще несколько лет вопрос оставался открытым, так как некоторые исследователи считали рассуждения Клейна ошибочными.

Эрлангенская программа открыла путь к изучению абстрактных геометрических пространств. Теперь математики могли не ограничиваться фигурами на плоскости или в трехмерном пространстве. Стало возможным изучать множество измерений и переменные, которые не обязательно являются пространственными. Например, можно говорить о пространстве переменных термодинамики, описывающих состояние газа, которое может иметь больше трех измерений: давление, объем, температуру и различные концентрации веществ, из которых состоит газ. Мы можем изучать геометрические свойства этих переменных, но уже с абстрактной точки зрения.


О частичке пыльцы и геометрии в природе

Если мы попытаемся описать Вселенную с помощью фигур, которые изучал Евклид, то столкнемся со множеством ограничений. Фигуры геометрии природы очень далеки от идеальных фигур евклидовой геометрии.

В начале XIX в. шотландский ботаник Роберт Броун исследовал каплю жидкости, которая осталась в магматической породе при ее затвердевании. Изучив каплю под микроскопом, Броун увидел следы мельчайших частиц, которые безостановочно совершали абсолютно хаотичные колебания. Он уже наблюдал подобное движение, когда изучал движение частичек пыльцы в воде. Броун дал этому явлению такое объяснение: жизненная сила молекул растения сохранилась спустя много лет после его смерти. Однако впоследствии это объяснение было признано неубедительным. Броун начал склоняться к мысли, что подобные колебания, получившие название броуновского движения, имеют физическую, а не биологическую природу. Например, с уменьшением размеров частиц или с ростом температуры скорость движения частиц увеличивалась.

Лишь в 1905 г. Альберт Эйнштейн изучил броуновское движение с точки зрения кинетической теории газов, разработанной Джеймсом Клерком Максвеллом и Людвигом Больцманом. В наши дни это явление объясняется следующим образом: частица пыльцы, погруженная в жидкость, соударяется с молекулами жидкости, и при каждом соударении траектория частицы изменяется. С одной стороны, отклонения ее движения произвольны, с другой стороны, так как микроскоп позволяет увидеть только колебания определенной величины, истинная траектория частицы намного сложнее наблюдаемой.

Броуновское движение стало одним из первых явлений природы, в котором прослеживаются признаки самоподобия в различном масштабе. На рисунке приведена траектория броуновской частицы, зафиксированная в 1912 г. французским физиком Жаном Батистом Перреном. Положение частицы фиксировалось каждые 30 с.



Графическое изображение броуновского движения частицы. Можно оценить сложность траектории и ее самоподобие в различных масштабах. На нижней иллюстрации приведено увеличенное изображение траектории движения между точками А и В верхнего изображения.


Строго говоря, траектория броуновской частицы не отражает физическую действительность. Положение частицы фиксировалось каждые 30 с и обозначалось точкой, затем эти точки соединялись прямыми. Следовательно, физическую действительность отражают только точки, которые обозначают положение броуновской частицы по прошествии определенного промежутка времени. Так, если мы рассмотрим две соседние точки А и В, будем обозначать положение частицы с интервалом не в 30 с, а в 0,3 с и будем соединять полученные точки прямыми, то снова получим ломаную линию той же сложности, но меньших размеров. Можно выбрать еще меньший интервал, например 0,003 с, но и в этом случае ситуация принципиально не изменится. Траектория броуновской частицы имеет одинаково сложную структуру вне зависимости от выбора временного интервала наблюдений.

Интересно, что этот факт заметил еще Перрен в 1906 г. В частности, он обратил внимание на то, что для выбранной точки траектории броуновской частицы нельзя провести касательную, и отметил:

«Говоря языком геометрии, кривые, не имеющие касательных, могут считаться правилом, в то время как правильные кривые — такие, например, как окружность, — любопытным, но весьма частным случаем.

<…> Те, кто впервые слышит о кривых без касательных, часто склонны полагать, что в природе не существует ни подобных сложных конструкций, ни даже намека на них.

Не покидая экспериментально подтверждаемой реальности, мы наблюдаем под микроскопом проявление броуновского движения на примере малой частицы, взвешенной в толще жидкости. Мы видим, что направление прямой, соединяющей точки, соответствующие двум очень близким во времени положениям частицы, изменяется по мере уменьшения временного промежутка между двумя измерениями совершенно беспорядочно. Беспристрастный наблюдатель заключит из этого, что он имеет дело с кривой, к которой нельзя провести касательную».

Комментарий Перрена остался без внимания, и этим вопросом никто не занимался до конца 1960-х годов, когда французский и американский математик Бенуа Мандельброт вновь поднял эту тему. Если бы исследователи уделили больше внимания наблюдениям Перрена в начале века, то фундамент нового раздела геометрии был бы заложен на шесть десятилетий раньше.

Бенуа Мандельброт родился в Польше в 1924 г. в семье литовских евреев и в 1936 году эмигрировал во Францию, где поселился его дядя Шолем — один из участников и основателей группы Бурбаки[13]. Члены группы Бурбаки, в частности, отрицали возможность применения геометрических фигур и графиков для иллюстрации понятий или доказательств: они считали, что зрение может обманывать разум.

В 1945 г. дядя порекомендовал Бенуа ознакомиться с 300-страничной рукописью французского математика Гастона Жюлиа под названием «Записка о приближении рациональных функций». В соответствии с идеями школы, членом которой он являлся, Шолем Мандельбройт посоветовал племяннику забыть о геометрии. Мандельброт не последовал совету дяди, хотя и обратился к рукописи лишь в 1970 г., когда с помощью компьютеров в исследовательском центре IBM имени Томаса Джона Уотсона получил иллюстрации, удивившие научное сообщество высоким уровнем детализации. Позднее эти иллюстрации стали называться множествами Мандельброта.

Вместе со своими предшественниками Мандельброт вывел на передний план в математике и естественных науках новую дисциплину, которая приобрела огромное значение. Этой дисциплиной была фрактальная геометрия.

«Фрактальная геометрия заставит вас на все смотреть другими глазами. Дальше читать опасно. Вы рискуете потерять свое детское видение облаков, лесов, галактик, листьев, перьев, цветов, скал, гор, бегущих ручьев, ковров, кирпичей и многого другого. Ваше восприятие этих вещей никогда больше не будет прежним».

Так начинается книга «Фракталы повсюду» (Fractals Everywhere) английского математика Майкла Барнсли, профессора Австралийского национального университета и знаменитого исследователя в этой области. По его мнению, фрактальная геометрия — это прежде всего новый язык. Следуя аналогии между геометрией и лингвистикой, приведенной в разделе этой книги об урбанистике, и используя метафору, придуманную исследователями Хартмутом Юргенсом, Хайнцем-Отто Пайтгеном и Дитмаром Заупе, рассмотрим некоторые фундаментальные свойства этого раздела геометрии.

Алфавит западных языков (например, латыни) имеет ограниченное число символов. В восточных языках, например в китайском, количество различных символов огромно. В западных языках слова, имеющие смысл, образуются путем сочетания букв. В языках Востока, напротив, символы сами по себе обладают значением. Аналогично западным языкам традиционная геометрия (например, евклидова или риманова) оперирует немногочисленными элементами, в частности прямыми, окружностями и так далее. С их помощью создаются другие, более сложные конструкции, обладающие определенным смыслом в зависимости от контекста.

Фрактальная геометрия, напротив, соответствует семейству восточных языков в том смысле, что ее элементы сами по себе имеют смысл и отличаются от объектов традиционной геометрии. Каковы же эти элементы? Проще всего определить их с помощью правил вычислений или алгоритмов, которые можно считать значимыми единицами языка фракталов. Алгоритмы — это правила и инструкции построения конкретных фигур, для выполнения которых часто требуется прибегать к помощи компьютера.

С этой точки зрения классическая геометрия является первым приближением структуры физических объектов. Подобные объекты с очень высокой степенью точности описывает дифференциальная геометрия. Например, наблюдатель, находящийся на Земле, может убедиться, что сфера является адекватной моделью для Луны. Тем не менее для астронавта, который находится поблизости от Луны и может наблюдать кратеры на ее поверхности, подобная модель уже не будет корректной. Смоделировать сложные и нерегулярные окружающие нас структуры с помощью традиционных приемов очень сложно. Фрактальная геометрия в некотором роде заполняет собой этот промежуток. Ее можно использовать, чтобы с точностью описать очертания как листа дерева, так и всего дерева целиком.

Фракталу сложно дать общее определение, поскольку многие из них неприменимы ко всем существующим семействам фракталов. Возможно, лучшим способом будет указать общие черты математических процессов, результатом которых являются фракталы. В конечном итоге наиболее интересной чертой фракталов и основой их фундаментальных математических свойств являются отличительные особенности процессов, порождающих фракталы.

Так, фрактал формируется как результат бесконечного числа итераций (повторений) четко определенного геометрического преобразования. Это преобразование, как правило, очень простое и определяет итоговый вид фрактала. Благодаря тому что эта процедура повторяется бесконечное число раз, ее результатом будут внешне чрезвычайно сложные структуры.



Во фрактальной геометрии сложная фигура может получаться в результате удивительно простого процесса. Верно и обратное: не следует недооценивать возможные результаты простого процесса, часто они могут оказаться весьма сложными.

Основная мысль Мандельброта такова: многие природные объекты (горы, облака, побережья, капилляры) на первый взгляд невероятно сложны, но в действительности обладают одним и тем же геометрическим свойством — неизменностью в различных масштабах.

В 1975 г. Мандельброт опубликовал книгу «Фрактальные объекты: форма, случайность и размерность» в которой объясняется, что неологизм «фрактал» происходит от латинского fractus («сломанный, разбитый»). Позднее американский автор научно-популярных книг Джеймс Глейк в книге «Хаос. Создание новой науки» рассказал, что одним зимним вечером Мандельброт работал над книгой и задумался над тем, какое название можно дать фигурам, размерности и всему разделу геометрии, который описывался в книге. Он начал бегло пролистывать латинский словарь. Прилагательное fractus, происходящее от глагола frangere («ломать»), и звучание родственных ему английских слов fracture («излом»), fraction («обломок») показались подходящими. Так он придумал новое слово — фрактал.

В 1982 г. он публикует новую книгу «Фрактальная геометрия природы» с удивительными иллюстрациями, созданными при помощи компьютерных технологий. На 15-й странице первого издания этой книги Мандельброт предлагает определение, но сам же и уточняет, что оно не охватывает отдельные множества, которые по разным причинам также относятся к категории фракталов. Его определение звучит так: «Фрактал — это множество, хаусдорфова размерность которого строго больше его топологической размерности». (Более подробно об этих и других видах размерности будет рассказано в главе 2, стр. 67.)

Были предложены и другие определения. По сути, для этого понятия до сих пор не существует ни точного определения, ни единой общепринятой теории.

Мандельброт не изобрел фракталы — они всегда существовали и «ждали», пока кто-то обратит на них внимание и раскроет их тайны. Они были незримыми спутниками человека с самого начала, подобно хаосу, ставшему невидимой «рукой, качающей колыбель», которая, согласно английской поговорке, и правит миром. Мандельброт умер в Кембридже 14 октября 2010 г.

Загрузка...