Глава 4 Скрытый порядок

Когда в 1980 году я сказал друзьям, что вместе с X. Хаббардом работаю над многочленами второй степени от комплексной переменной… меня спросили: «И ты надеешься найти что-то новоеР».

Адриен Дуади


Вы уже знаете, что такое размерность, самоподобие и непрерывность, и теперь мы готовы с головой окунуться в обширный мир фракталов и познакомиться поближе с самым знаменитым из них — множеством Мандельброта. Не стоит забывать, что на основе очень простых правил можно построить чрезвычайно сложные фигуры, как вы уже увидели из предыдущих глав этой книги. Этот принцип выполняется не только для фракталов, о которых мы уже рассказали и о которых поговорим и в этой главе. Ему также подчиняется великое множество явлений природы. Фрактальная геометрия предлагает аналогии и модели, которые, возможно, помогут нам в будущем найти некий универсальный закон Вселенной. Если этот закон существует, то в нем должна учитываться его извечная противоположность — хаос.


Действительно ли Мандельброт открыл множество Мандельброта?

Множество Мандельброта, также именуемое множеством М, обладает многими примечательными свойствами. Возможно, самое привлекательное и загадочное из них таково: это множество бесконечно сложно, но строится по очень простым правилам, понятным любому, кто умеет складывать и умножать. Однако стоит отметить, что при построении множества Мандельброта сложение и умножение придется выполнить несколько триллионов раз. Поэтому множество Мандельброта было открыто только с появлением современных компьютеров.

Как мы расскажем позднее, теоретические основы, благодаря которым открытие множества Мандельброта стало возможным, были сформированы в 20-е годы прошлого столетия усилиями французских математиков Гастона Жюлиа (1893–1978) и Пьера Фату (1878–1929). В 1918 г. Жюлиа опубликовал несколько статей о комплексных числах, где описал свойства определенных множеств, которые в то время нельзя было изобразить графически. Позднее эти множества получили название множеств Жюлиа.

В 1978 г. французский математик Адриен Дуади (1935–2006) и американец Джон Хамал Хаббард (р. 1945) с помощью специально созданной программы смогли получить первые изображения множеств Жюлиа — нечеткие и невысокого качества. Годом позже Мандельброт опубликовал собственные изображения, полученные в научно-исследовательском центре IBM. Первое изображение множества Мандельброта датируется 1981 г. Оно было получено совместными усилиями Роберта Брукса и Петера Мательски.

Дуади и Хаббард подробно изучили множество Мандельброта, доказав, что оно является связным и компактным и что его внутренняя часть состоит из счетного множества компонентов. Наконец, они же записали каноническую формулу множества Мандельброта — квадратичную комплексную функцию z2 + с.

В свое время Мандельброт сказал, что крупнейшей проблемой для исследователей при изучении этого множества станет написание алгоритма его визуализации. В своей книге «Фрактальные объекты» он признает первенство работ Жюлиа и Фату, а также отмечает: «Я работал так, как ненавидят работать теоретики: я любовался незабываемыми картинами, используя компьютер как микроскоп, имея в своем распоряжении примитивные инструменты 1980 года».


КОМПЛЕКСНЫЕ ЧИСЛА НЕ ТАК СЛОЖНЫ, КАК МОЖЕТ ПОКАЗАТЬСЯ

Вещественные числа обозначают все точки, расположенные на числовой прямой, причем каждому числу соответствует точка и каждой точке соответствует число. Существуют правила сложения, вычитания, умножения и деления вещественных чисел. Так называемые комплексные числа определяются аналогичным образом стой лишь разницей, что им в соответствие ставятся точки, расположенные не на прямой, а на плоскости, которая называется комплексной плоскостью. Существует три способа определения комплексных чисел: в прямоугольной системе координат, в полярных координатах и в алгебраической форме. Комплексные числа обычно обозначаются буквой z. В прямоугольных координатах любому комплексному числу z сопоставлена точка с двумя координатами — вещественной и мнимой. Мнимые координаты откладываются на вертикальной оси, мнимая единица обозначается буквой i. Мнимое число i является квадратным корнем из -1. Именно поэтому комплексные числа долгое время назывались мнимыми. Они не так сложны, как может показаться, и благодаря им удалось упростить многие теории и формулировки. Для обозначения комплексных чисел на плоскости используется прямоугольная система координат, в которой по горизонтальной оси откладывается значение вещественной части, по вертикальной оси — значение мнимой части. Запишем одно и то же комплексное число через декартовы координаты, в алгебраическом виде и в полярных координатах:

z = (1/2, √3/2) = (1/2) + (√3/2i) = 160°

В этой формуле z — комплексное число, вещественная часть которого равна 1/2, мнимая — √3/2. Это равносильно тому, что радиус-вектор соответствующей точки комплексной плоскости имеет длину 1 и образует угол в 60° с горизонтальной осью. Для сложения двух комплексных чисел достаточно сложить по отдельности их вещественные и мнимые части. Например, если z1 = (-2,4) и z2 = (3,1), их сумма равна (1, 5). Если представить эти числа графически, то мы увидим, что их сумма — это всего лишь точка на диагонали параллелограмма, образованного радиус-векторами этих чисел. Чтобы выполнить умножение, достаточно следовать простым правилам: i2 заменяется на -1, так как i равно квадратному корню из -1:

z1z2 = (-2 + 4i)(3 + i) = —2(3 + i) + 4i(3 + i) = (-6 — 2i) + (12i — 4) = -10 + 10i.

Полученной точке соответствует радиус-вектор, угол которого равен сумме углов радиус-векторов данных чисел, а длина (которая называется модулем) равна произведению длин этих радиус-векторов.



Импульсивно-компульсивные вычисления

Важнейший вывод всех упомянутых работ был таков: с помощью очень простой формулы можно получить сложные результаты. Как мы увидим чуть позже, этот вывод имел большое значение для всей науки в целом.

В итеративной процедуре результат вычислений, полученный на предыдущем этапе, является входным значением для вычислений на следующем этапе. Суть этого метода в том, что с некоторым числом выполняется определенная операция, она же выполняется над полученным результатом, затем над результатом, полученным на следующем этапе, и так до бесконечности. В формальном виде это можно представить так:

xn+1 = f(xn).


Чтоб лучше понять, о чем идет речь, представим, что этой операцией является возведение числа в квадрат. В этом случае запись примет следующий вид:

xn+1 = xn2


Примем в качестве начального значения любое число, например x0 = 2. Тогда на первом шаге получим х1 = 22 = 4; затем х2 = 42 = 16, х3 = 162 = 256 и так далее. Полученная последовательность чисел (в нашем примере это последовательность 2, 4, 16, 256….) называется орбитой, а точка, к которой стремится эта последовательность (в нашем случае это бесконечно удаленная точка), называется аттрактором.

Если рассматривать эту же операцию возведения в квадрат, но выбрать начальное значение, меньшее 1, например x0 = 0,5, то аттрактором будет 0. Если x0 = 1, результат на любом шаге всегда будет равен 1. В этом случае говорят, что орбита состоит из одной точки, которая называется фиксированной точкой.

В конце XIX в. математики, физики и биологи проявляли большой интерес к итеративному процессу, в котором значение, полученное на предыдущем шаге, возводилось в квадрат и складывалось с некой константой. На языке математики это называется семейством квадратичных функций вещественной переменной. Интерес научного сообщества был вызван тем, что это семейство функций было связано с рядом различных теорий, которые со временем были объединены в так называемую теорию хаоса.


Точки-пленники, или Как найти выход из лабиринта

Жюлиа и Фату первыми исследовали итерируемые комплексные функции, и полученные ими результаты легли в основу всех последующих работ в области фрактальной геометрии. Помимо прочего, Жюлиа и Фату изучали поведение комплексных чисел при их последовательном возведении в квадрат и сложении результата с константой. В виде формулы это выражается так:

zn+1 = zn2 + c,

где z — комплексное число, с — комплексная константа. Суть формулы проста: нужно взять число, умножить его на само себя, сложить с константой с и повторять эти действия над каждым полученным результатом снова и снова. В полученной последовательности комплексных чисел каждое число зависит только от выбора начальной точки и константы с.

В 1906 г. Фату доказал, что если применить эту операцию ко всем точкам комплексной плоскости, то большинство полученных орбит будут заканчиваться на бесконечности, за исключением четко определенного множества точек, внутренняя часть которого сегодня известна как множество Фату. Эти точки можно назвать «пленниками», а остальные точки — «изгнанниками». Точки на границе между ними, «охранники», образуют множество Жюлиа.

Рассмотрим подробнее эту операцию при с = (0, 0). Квадрат комплексного числа — это точка комплексной плоскости, модуль радиус-вектора которой равен квадрату модуля радиус-вектора исходной точки, а угол с горизонтальной осью в два раза больше исходного.

В следующей таблице приведены значения z, z2, z4, z8, z16, z32 для трех разных комплексных чисел: внутри единичной окружности (иными словами, модуль этого числа меньше единицы), на единичной окружности и, наконец, вне единичной окружности. На рисунке приведено геометрическое представление всех трех случаев.




В таблице вверху приведены расчеты для трех типов орбит.

Орбита, описанная в левой части таблицы, стремится к началу координат; та, что в центре таблицы, описывает единичную окружность; та, что справа, уходит в бесконечность.

На рисунках представлено графическое изображение этих трех орбит на комплексной плоскости.


Мы видим, что для точки внутри окружности орбита стремится к началу координат, для точки вне окружности — уходит в бесконечность, а точка, которая находилась на единичной окружности, по-прежнему остается на ней. Чем больше модуль исходного числа, тем быстрее оно удаляется от единичной окружности. Таким образом, комплексная плоскость делится на две части: «пленников», которые находятся внутри единичной окружности, и точек вне ее, которым «удалось сбежать». В этом случае множество Жюлиа представляет собой единичную окружность — множество точек-«охранников». Заметим еще один факт (впоследствии он сыграет очень большую роль): множество Жюлиа инвариантно по отношению к квадратичной функции, то есть любая орбита, начало которой находится на множестве Жюлиа, останется на этом же множестве.

Заметим, что существуют две фиксированные точки: (0, 0) и (1, 0). В этом случае точка (0, 0) является аттрактором, так как к ней стремятся орбиты всех точек внутри окружности. Говорят, что в этом случае внутри единичной окружности располагается область притяжения аттрактора — точка (0, 0). Точка (1, 0) является неподвижной точкой — репеллером, так как рядом с ней существуют точки, например, (1, 01, 0), орбиты которых уходят в бесконечность.

Если мы будем считать бесконечность еще одной точкой плоскости и обозначим ее знаком <*>, то будем говорить, что точка °° является неподвижной, а ее область притяжения будет состоять из всех точек, лежащих вне единичной окружности.

Единичная окружность — простейший пример множества Жюлиа. Оно обладает теми же свойствами, что и большинство множеств Жюлиа: оно является границей области притяжения аттрактора (0, 0) и , динамика в окрестности точек этого множества неустойчива.

Частный случай zn+1 = zn2, который обычно записывается в виде z —> z2, — это своеобразный вход в мир удивительных и прекрасных фрактальных множеств Жюлиа.

Чтобы получить изображение других множеств Жюлиа, например для с = 0,5 + 0,5i, нам понадобится помощь компьютера. В теории для каждой точки плоскости нужно подтвердить, что ее орбита стремится к нулю или к бесконечности. На практике это невозможно, поэтому, чтобы изобразить множество Жюлиа, нужно использовать альтернативные алгоритмы.

На следующем рисунке показана таблица с данными для орбит нескольких точек, а также изображение множества Жюлиа, соответствующего с = 0,5 + 0,5i.




Три орбиты, которые уходят в бесконечность.



Орбиты для некоторых точек при с = 0,5 + 0,5i.

В верхней таблице орбиты всех точек уходят в бесконечность. В нижней таблице все орбиты стремятся к определенной неподвижной точке (-0,409, 0,275).


При рассмотрении таблиц можно увидеть, что если начальная точка очень удалена от центра, то есть модуль ее радиус-вектора очень велик, то орбита этой точки будет уходить в бесконечность. Но начиная с какого значения выполняется это правило? К счастью, на этот вопрос существует точный ответ. В общем случае радиус окружности будет наибольшим из двух чисел: 2 и модуля с. Любая орбита, начальная точка которой лежит вне этой окружности, будет уходить в бесконечность. Этот результат крайне важен для определения множества Мандельброта, что мы продемонстрируем несколько позже.

На основе этого факта можно разработать алгоритм, который позволит точно определить множество точек-«пленников». Первым приближением границы для с = 0,5 + 0,5i будет окружность радиуса 2. Если мы запрограммируем этот алгоритм так, что он будет обрабатывать пиксели экрана (каждой точке будет соответствовать пиксель), то получим очень большое множество точек (в зависимости от выбранной точности). Тем не менее это множество будет конечным. Компьютер вычислит значение выражения на первой итерации и пометит определенным цветом точки, которые уже на первой итерации оказались вне окружности радиуса 2. Остальные точки будут помечены черным цветом. Граница множества черных точек будет вторым приближением множества Жюлиа. Для оставшихся черных точек (на каждой итерации их будет все меньше) произведем вторую итерацию вычислений и выделим цветом точки, которые окажутся вне круга радиуса 2. Остальные точки по-прежнему будут черного цвета.

Эти действия будут повторяться для всех точек черного цвета, которых с каждым разом будет становиться все меньше, пока изменения множества черных точек не станут неразличимы на экране. Этот алгоритм, который называется алгоритмом времени убегания (escape time), для с = —1 дает следующее изображение множества Жюлиа:



Множество Жюлиа, соответствующее с = -1 с последовательными приближениями (изображены в виде линий вокруг множества точек черного цвета), рассчитанными по алгоритму времени убегания.


Различным значениям с соответствуют различные множества Жюлиа:



Анализ этих фигур показывает, что существует два принципиально разных класса множеств Жюлиа: те, которые образованы одной фигурой (такие множества Жюлиа называют связными), и те, что разделены на бесконечное множество отдельных точек вблизи друг от друга (такие множества называют несвязными).

На основании этой классификации можно разделить значения константы с, которую мы будем называть комплексным параметром, на два отдельных множества: те, которые порождают связные фигуры для итерации zn +1 = z2 + с, и те, что порождают несвязные фигуры.


ИГРА В ХАОС

Алгоритм нахождения последовательных приближений множества Жюлиа работает очень медленно. Чтобы быстро получить достаточно детальное изображение множества Жюлиа, обычно используется другой алгоритм, который носит название игры в хаос. В предыдущей главе мы говорили о так называемых аффинных преобразованиях, которые при итеративном применении дают линейный фрактал. Теперь нам понадобится найти преобразования, которые при итеративном применении дают множество Жюлиа. Однако эти преобразования не могут быть аффинными, так как множества Жюлиа не обладают линейным самоподобием. В свою очередь, когда к точкам, находящимся вблизи множества Жюлиа (и вне его) применяются итеративные преобразования z —> z2 + с, орбита этих точек уходит в бесконечность. Иными словами, множество Жюлиа выступает в роли репеллера. Если же теперь мы рассмотрим обратное преобразование, то множество Жюлиа будет уже не репеллером, а аттрактором. Как записывается это обратное преобразование? Пусть w — следующая точка итерации w = z2 + с. Если мы хотим перейти к предыдущей операции, нужно выделить z из этого уравнения. Получим два решения:

z = +√(wc);

z = -√(wc).

Игра в хаос выглядит так: выбирается произвольная начальная точка, затем рассчитываются два изображения в соответствии с предыдущими преобразованиями. Процесс повторяется для всех полученных точек, результаты отображаются на экране. Чем больше итераций мы выполним, тем точнее будет полученное изображение множества Жюлиа.


Вселенная в одной песчинке

Деление множеств Жюлиа на связные и несвязные возникло не случайно. Именно в ходе исследований множества Жюлиа был открыт один из самых удивительных математических объектов — множество Мандельброта.

На первый взгляд, составление подобной классификации множеств Жюлиа невозможно, так как считалось, что для этого нужно проанализировать все возможные точки всех возможных множеств Жюлиа для каждого параметра с, которых бесконечно много. Однако Мандельброт использовал теорему, которую независимо друг от друга доказали Жюлиа и Фату примерно в 1919 г. Согласно этой теореме, орбита точки 0 определяет, является ли множество Жюлиа связным или нет. В частности, эта теорема подтверждает, что если орбита этой точки уходит в бесконечность, то множество Жюлиа несвязное; в противном случае множество Жюлиа является связным. Эта теорема имеет огромное значение, так как теперь достаточно выполнить итерацию для единственной точки z0 = (0,0), чтобы определить природу множества Жюлиа.

Это очень точный и удобный способ выяснить, является ли множество Жюлиа связным. Но когда можно считать, что орбита точки (0, 0) уходит в бесконечность? Это нам уже известно: орбита уходит в бесконечность, если в какой-то момент она выходит за пределы окружности радиуса 2 и радиуса, равного |с|.

Мандельброт использовал это свойство, чтобы определить значения константы с, для которой множества Жюлиа являются связными. Когда он изобразил полученный набор значений с на комплексной плоскости, то увидел удивительную фигуру.

Грубо говоря, множество Мандельброта можно считать кардиоидой (кривой в форме сердца), которой касается бесконечное множество окружностей, среди которых выделяется одна наибольшего размера, расположенная слева от кардиоиды. При увеличении этой окружности становится видно, как она соединяется нитями с другими «аналогичными» структурами. Хотя кажется, что повсюду разбросаны отдельные точки, никак не соединенные друг с другом, в действительности множество Мандельброта является связным.

Множество внутренних точек этого множества имеет размерность 2. Несмотря на то что топологическая размерность границы множества Мандельброта равна единице, в 1991 г. японский математик Мицухиро Шишикура доказал, к удивлению многих, что ее размерность Хаусдорфа равна двум[23].

Если внимательно изучить последовательность кругов все меньшего диаметра, которые расположены вдоль горизонтальной оси, можно заметить следующее правило: отношение диаметров соседних кругов стремится к константе, примерно равной 4,6692… Это значение, которое называется постоянной Фейгенбаума, фигурирует в описании множества природных явлений. Причины этого до сих пор неясны.

Изображения множества Мандельброта будут более красивыми, а его границы — более отчетливыми, если использовать алгоритм времени убегания и палитру из нескольких разных цветов. Будем выделять разными цветами точки с различной скоростью убегания. Например, будем обозначать точку зеленым цветом, если ее орбита выходит за пределы окружности радиуса 2 за 11–20 итераций, желтым — если требуется 21–30 итераций (смотрите цветную вкладку в конце книги).



Множество Мандельброта во всем своем великолепии.


Область, расположенная между большой окружностью и кардиоидой, получила название «долина морского конька». В ней обитает множество фигур, которые соединены тысячами разных способов и по форме напоминают морского конька. По всей плоскости располагаются уменьшенные копии целого множества, связанные между собой нитями разной формы. Множество Мандельброта, по-видимому, является фракталом в том смысле, в котором мы ранее использовали это понятие, то есть обладает свойством самоподобия в различном масштабе наблюдений. Однако в действительности это не совсем так. При каждом увеличении мы видим все больше нитей, поэтому всегда можем определить степень увеличения изображения. Существуют серьезные сомнения относительно самоподобия множества Мандельброта. Если нам показать два изображения множества Жюлиа, мы не сможем определить их масштаб, в то время как сделать это для множества Мандельброта несложно. Поэтому множество Мандельброта считается почти самоподобным.

На рубеже XX–XXI вв. китайский математик Тан Лэй выполнил ряд системных исследований множества Мандельброта и его динамики. Некоторые результаты представлены в его книге «Множество Мандельброта: Тема с вариациями» (2000). Изображение множества Мандельброта, приведенное на предыдущей странице, поможет понять всю важность фракталов за пределами математического мира.


Тема с вариациями

Как связано положение точки с в множестве Мандельброта и множество Жюлиа, при генерации которого использовалось это значение с? Это достоверно неизвестно. Можно заметить, что множество Мандельброта содержит всю информацию о форме всех множеств Жюлиа, уменьшенных и видоизмененных. Следовательно, оно является не просто средством классификации связных и несвязных множеств Жюлиа. Например, для всех значений с внутри кардиоиды множество Жюлиа будет напоминать деформированную окружность. Если точка, которой соответствует значение с, располагается внутри одной из касательных окружностей, множество Жюлиа будет разделено на доли. Если же эта точка располагается на одной из многочисленных нитей, то соответствующее множество Жюлиа будет разделено на несколько ветвей. В случае когда эта точка расположена на границе множества, соответствующее множество Жюлиа будет разделено на бесконечное число отдельных частей.

Изучив свойства множества Мандельброта более подробно, мы увидим, что внутри определенной касательной окружности число долей соответствующего множества Жюлиа всегда будет неизменным. Присвоив каждой доле соответствующее число и проанализировав полученные изображения, можно составить карту множества Мандельброта.



Множество Мандельброта и различные множества Жюлиа, рядом с которыми приведены соответствующие значения с, использованные при построении.


Создать целую вселенную, полную замысловатых узоров, цветов, улиток и драконов, можно не только с помощью последовательности квадратичных функций. Существует множество других итераций над комплексными числами, позволяющих создать особый фрактальный мир. Те примеры, с которыми вы успели ознакомиться, очень хорошо показывают, что сложная структура не обязательно строится по сложным правилам. Примеры этому можно найти и в природе. Достаточно вспомнить, что человечество во всем своем многообразии лиц имеет в своей основе один генетический код. Может случиться так, что все это окажется не просто совпадением. Когда-нибудь это поможет открыть универсальный закон Вселенной, о котором мы говорили в первой главе этой книги.


Звук хаоса[24]

Во второй половине XX в. музыка и математика, искусство и наука снова начали сближаться благодаря использованию компьютерных программ для цифровой обработки данных. В конце 1910-х гг. Иосиф Шиллингер, советский музыковед, эмигрировавший в США, разработал систему музыкальной композиции, основанную на периодических колебаниях. Он увязал их с ритмом, тоном, гаммами, аккордами и аккордовыми последовательностями. Система изложена в семи книгах, в каждой из которых уделено внимание отдельному аспекту музыкальной композиции. Некоторые ученые считают, что Шиллингер описал создание музыки на компьютере задолго до появления первых компьютеров. По мнению некоторых экспертов, теория Шиллингера до сих пор не получила заслуженного признания, хотя очень серьезно повлияла на Джорджа Гершвина, Глена Миллера (оба были учениками Шиллингера) и Бенни Гудмена.

Модели, основанные на уравнениях и случайных последовательностях, чаще всего использовались при написании музыкальных композиций, но с 1970-х гг. стало возможным создавать алгоритмы на основе фракталов. По мнению многих, фрактальную музыку нельзя назвать подлинным искусством, так как искусство эмоционально, интуитивно и выразительно, в то время как наука рациональна, описательна и доказуема. Однако в большинстве подобных композиций фрактальная музыка служит лишь отправной точкой. Композитор создает фрактальную мелодию, которая сама по себе звучит странно и беспорядочно, затем изменяет ее, пока не получит приятную для слуха композицию. Этот процесс выполняется медленно, а результатом, по мнению многих авторов, будет чисто «компьютерная» музыка. Однако сам по себе компьютер никогда не смог бы создать похожее произведение.

Существует множество программ для создания фрактальной музыки (MusiNum, LMUSe, Gingerbread, The Well Tempered Fractal), которые позволяют автоматически генерировать приятные мелодии. Фил Томпсон, британский программист и музыкант-любитель, начал заниматься фрактальной музыкой как хобби и в 1998 г. выпустил первый альбом Organized Chaos. Его композиции, которые он сам считает открытиями, основаны на множестве Мандельброта. Томпсон создал программу Gingerbread, которая работает следующим образом. Выбирается начальная точка z, затем к ее орбите, получаемой с помощью квадратичной функции, применяются определенные преобразования, в результате чего координаты точек превращаются в ноты. Когда орбита выходит за границы окружности радиуса 2, мелодия начинается снова. Программа предлагает невероятное множество вариантов. Таким образом, с ее помощью можно создать огромное число разнообразных композиций. Без знаний математики и музыки можно создавать классические композиции и поп-музыку, начиная от саундтреков к фильмам и заканчивая фоновой музыкой для сайтов. Создатель программы гарантирует, что количество исходных данных бесконечно велико. Он определяет фрактальную музыку как особую форму композиции, при которой пользователь не «изобретает», а «открывает» музыку.


В поисках определения

Существует ли точное определение фрактала? Мандельброт в книге «Фрактальные объекты» утверждает, что существует только эмпирическое определение и что ни одно теоретическое определение не является полностью удовлетворительным. Иногда говорят, что фракталы — это объекты с дробной размерностью, но это утверждение вдвойне ошибочно, так как размерность фракталов может быть иррациональным (как, например, для треугольника Серпинского) или целым числом (для кривых, покрывающих плоскость, или для границы множества Мандельброта).

Возможно, точнее всего можно определить фрактал через его свойства: фрактал — это фигура, обладающая самоподобием (составные части подобны всей фигуре целиком), которая строится посредством итеративного процесса, зависит от начальных условий и имеет сложную структуру, несмотря на простоту алгоритма построения. Британский математик Кеннет Фальконер в своей книге Fractal Geometry. Mathematical Foundations and Applications («Фрактальная геометрия. Математические основы и приложения», 1990), определяет фрактальную структуру как структуру, обладающую одним из нижеперечисленных свойств:

1. Она слишком неравномерна, поэтому ее нельзя описать в терминах классической геометрии.

2. Ее детали заметны при любом масштабе наблюдений.

3. Она обладает самоподобием в некотором смысле (точным, примерным или статистическим).

4. Ее размерность Хаусдорфа-Безиковича строго больше ее топологической размерности.

5. Она строится с помощью простого рекурсивного алгоритма.

В 1975 г. Мандельброт дал фракталам такое определение: фракталы — это фигуры, которые являются результатом повторяющихся математических процессов, описываются не дифференцируемыми функциями, обладают самоподобием в любом масштабе и имеют фрактальную размерность.

Его не полностью устраивало это определение, и в 1982 г. Мандельброт определил фрактал как множество, у которого размерность Хаусдорфа строго больше, чем топологическая размерность. Тем не менее он сам признавал, что это определение недостаточно общее и не описывает отдельные объекты, которые являются фракталами, в частности кривые, покрывающие плоскость, к которым относятся кривая Пеано и кривая Гильберта (о них подробно рассказывается в первой части второй главы)[25].

Можно принять точку зрения Барнсли, который понимал фракталы как аттракторы систем итерируемых функций, а можно придерживаться определения, которое приводит Джудит Седерберг в книге A Course in Modern Geometries («Курс современной геометрии», 2001). Оно звучит так: фрактал — это множество точек, обладающее самоподобием в строго детерминированном или строго стохастическом (случайном) смысле. Множество Мандельброта не удовлетворяет ни одному из этих определений, что может представлять некоторые неудобства (или наоборот). Седерберг пишет по этому поводу:

«Природа (или математическое описание?) множества Мандельброта — это наглядная аналогия того, что в музыке называется «тема с вариациями»: одни и те же шаблоны повторяются повсюду, но всякий раз несколько по-разному… Рассматривая его, мы постоянно будем видеть что-то новое, но при этом снова и снова будут появляться знакомые очертания. Благодаря этой неизменной новизне, множество Мандельброта можно назвать предельным фракталом, так как оно содержит другие фракталы внутри себя. По сравнению с обычными фракталами оно содержит больше элементов, обладает большей гармоничностью, а его неожиданные свойства еще более неожиданны».


САМООПРЕДЕЛЯЕМЫЕ ФРАКТАЛЫ

Существуют различные классификации фракталов по их свойствам. В зависимости от степени самоподобия все фракталы можно разделить на пять больших категорий:

1. Самоповторяющиеся. Эта категория накладывает наиболее строгие ограничения, так как необходимо, чтобы фрактал не изменялся в зависимости от масштаба наблюдений. К этой группе относятся канторово множество, треугольник Серпинского, кривая Пеано, снежинка Коха, кривая дракона, губка Менгера и так далее.

2. Линейные — те, которые строятся с помощью аффинных преобразований. Фракталы этого типа содержат уменьшенные копии всей фигуры целиком, но видоизмененные с помощью линейных функций, как, например, лист папоротника Барнсли.

3. Самоподобные. Фракталы этого типа содержат уменьшенные копии фигуры целиком, видоизмененные с помощью нелинейных функций, как, например, множество Жюлиа.

4. Квазисамоподобные. Фракталы этой группы более или менее идентичны в различном масштабе. Такие фракталы содержат уменьшенные и деформированные копии всей фигуры целиком. Как правило, к этому типу относятся фракталы, определенные с помощью рекурсивных процедур, как, например, множество Мандельброта или фрактал Ляпунова.

5. Статистически самоподобные. Эти фракталы обладают меньшим уровнем самоподобия. В них присутствует какая-либо числовая или статистическая метрика, которая не изменяется в зависимости от масштаба. Сюда относятся случайные фракталы, например траектория броуновского движения, полет Леви, фрактальные пейзажи и броуновские деревья.


Природа не фрактальна

В книгах, посвященных фракталам, часто можно встретить утверждения вида «в природе существует множество фрактальных объектов». В действительности это не совсем так. Когда мы говорим, что, например, граница, дерево или венозная сеть являются фракталами, в действительности имеется в виду, что для них существуют фрактальные модели достаточно высокой точности. В реальном мире не существует фракталов, как не существует прямых или окружностей.

Однако математические модели, описывающие реальность, помогают нам лучше понять ее. Подобно тому как теория относительности описывает орбиту Меркурия точнее, чем ньютоновская механика, фрактальная геометрия описывает форму некоторых объектов точнее, чем геометрия Евклида. Возможно, она точнее описывает и динамику реальных процессов.

Множество Мандельброта содержит бесконечно много деталей, и его рассмотрению в различных масштабах можно посвятить всю жизнь. Точно так же мы можем изучать и реальный мир, начав с молекул, затем перейдя к атомам, а от них — к нейтронам и другим субатомным частицам. Возможно ли, что в один прекрасный день мы достигнем предела? Или же, подобно множеству Мандельброта, предела не существует и здесь? Этого никто не знает.


Избавляемся от мечты о детерминизме

В словарях хаос определяется как «беспорядочная материя, неорганизованная стихия», существовавшая в мировом пространстве до образования известного человеку мира. Однако у ученых есть что добавить к этому определению.

Математическая теория хаоса является частью точной науки. В ней нет места неточностям и неопределенности. Разумеется, название теории хаоса восходит к традиционному смыслу этого слова, но хаос в математике — это не волк, а скорее овца в волчьей шкуре: он открывает нам дорогу в мир хаотичных структур и систем, которыми мы со временем научимся управлять.

Фрактальная геометрия и хаос тесно связаны друг с другом, и понять один из этих разделов математики без другого непросто. Фрактальная геометрия изучает самоподобные и парадоксальные фигуры, а теория хаоса изучает поведение непредсказуемых процессов и занимается поисками упорядоченности в них. Оба этих раздела математики, которые бурно развиваются в последние 20 лет, связаны между собой: среди хаоса формируются фракталы, которые можно использовать в попытках дать определение хаосу. Где же находится точка пересечения теории хаоса и фрактальной геометрии? Теория хаоса возникла в так называемой теории динамических систем. Любая динамическая система состоит из двух частей: состояния (обычно выражается через координаты) и динамики (изменения состояния с течением времени). Эволюцию динамической системы можно представить движением точек в координатном пространстве, каждой точке которого соответствует некое состояние системы. Это пространство называется фазовым пространством. Если эволюция системы подчиняется некоторому закону или законам (даже если их природа неизвестна), они неизменны с течением времени и последующее состояние можно описать через предыдущее, то речь идет о так называемой детерминированной динамической системе. Определение «детерминированная» означает, что эволюцию системы можно предсказать.

Один из самых удивительных результатов современной физики заключается в том, что предсказать поведение многих детерминированных динамических систем через длительные промежутки времени невозможно, так как на каждой итерации накапливаются ошибки. Подобные детерминированные динамические системы, которые очень чувствительны к относительно небольшим изменениям, называются хаотическими. Столь высокая чувствительность означает, что две возможные траектории перемещения точек, которые изначально расположены очень близко друг от друга, с течением времени могут очень сильно разойтись. То, что подобным поведением отличаются системы с большим количеством переменных, было известно давно. Однако, что удивительно, этой же особенностью обладают и очень простые системы.

В 1776 г. французский математик Пьер Симон Лаплас категорично заявил, что если бы ему были известны скорость и положение всех частиц во Вселенной в определенный момент времени, то он смог бы с идеальной точностью узнать прошлое и предсказать будущее. Свыше 100 лет это утверждение казалось верным. Из него следует, что свободы воли не существует, так как все детерминировано, по меньшей мере в теории. Такое видение мира позднее стало называться детерминизмом Лапласа. Применительно к науке оно означает, что если нам известны законы, которым подчиняется некое явление, известны начальные условия и даны средства расчетов, то мы можем с полной уверенностью предсказать будущее состояние изучаемой системы.

В конце XIX в. Пуанкаре задался вопросом, будет ли Солнечная система неизменно стабильной. Этот французский математик первым задумался над вероятностью того, что поведение системы существенно зависит от начальных условий:

«Поведение системы можно проанализировать, повторяя один и тот же эксперимент с одинаковыми начальными значениями в одинаковых условиях, чтобы было возможным получить одинаковые результаты. Это приводит нас к принципу причинности. Если одни и те же причины ведут к одним и тем же следствиям, речь идет о сильной причинности. Однако в большинстве случаев возможно достичь лишь схожих начальных условий, поэтому говорить о сильной причинности нельзя. Схожие причины имеют схожие следствия».

В 1903 г. Пуанкаре так охарактеризовал случайность: «Случайность служит мерой нашего невежества».

Наука XX в. засвидетельствовала крушение детерминизма Лапласа, вызванное двумя разными причинами. Первая вытекает из принципа неопределенности Гейзенберга в квантовой механике. Согласно ему существует фундаментальное ограничение точности, с которой можно измерить положение и скорость частицы. Однако непредсказуемость поведения системы в целом (и вторая причина, опровергающая детерминизм Лапласа) вызвана не принципом Гейзенберга.

В крупном масштабе некоторые события являются предсказуемыми, другие — нет. Траекторию полета мяча можно предсказать, траекторию полета воздушного шара, которая подчиняется дуновению ветра, предугадать не получится. И мяч, и воздушный шар подчиняются законам Ньютона. Но почему предсказать траекторию движения воздушного шара сложнее? Движение воды в тихой реке стабильно, равномерно, и его можно легко описать с помощью уравнений. Тем не менее в других условиях движение воды может быть нестабильным, непостоянным, могут образовываться завихрения. Чем обусловлена эта принципиальная разница? Советский физик Лев Ландау предположил, что с ростом скорости движения воды совокупность колебаний, по отдельности простых, приводит к тому, что поведение всего потока в целом предсказать нельзя. Однако было доказано, что теория Ландау ошибочна. Явления природы становятся непредсказуемыми из-за роста ошибок измерения и, как следствие, из-за неопределенности эволюции системы ввиду ее хаотической динамики. Именно хаотическая динамика и является второй причиной краха детерминизма Лапласа. Квантовая механика подтверждает, что начальные измерения не могут быть абсолютно точными, а хаотическая динамика делает невозможными любые попытки предсказать поведение системы.


Бабочка в Бразилии и моль в Сингапуре

Как мы уже отмечали, первым математиком, который «открыл» хаос или по меньшей мере попытался интуитивно понять его, был Пуанкаре. В 1890 г., когда Пуанкаре работал над решением астрономической задачи трех тел (суть задачи — определить положение и скорости трех тел произвольной массы, взаимодействующих по закону тяготения Ньютона, например Солнца, Земли и Луны, в любой момент времени), он обнаружил, что тела в этой задаче могут вращаться по хаотическим орбитам. Спустя восемь лет его соотечественник Жак Адамар опубликовал работу о хаотическом движении трех частиц, имевшую огромное влияние, в которой доказал, что траектории этих частиц нестабильны и отклоняются друг от друга. Адамар анализировал движение трех частиц при наличии трения вдоль поверхности с отрицательной кривизной. Эта поверхность впоследствии получила название «бильярд Адамара».

В 1963 г. американский математик и метеоролог Эдвард Лоренц занимался изучением определенных уравнений, которые, как он надеялся, помогли бы предсказывать погоду, и попытался представить их графически с помощью компьютеров. Самые быстрые компьютеры того времени были довольно медленными по сравнению с сегодняшними, поэтому как-то раз Лоренц вышел попить чаю, пока компьютер не закончит расчеты. Вернувшись, он обнаружил очень странную фигуру, которая получила название аттрактора Лоренца.



Графическое изображение аттрактора Лоренца.


Лоренц посчитал, что произошла какая-то ошибка, и повторил расчеты несколько раз, но результат не изменился. Тогда он подумал, что проблема заключена в самой системе. Тщательно изучив ее и подставив различные параметры, он заметил, что начальные условия были очень похожими, но результаты симуляций заметно отличались. Лоренц обратил внимание на то, что система, созданная им самим, позволяла указывать начальные условия с точностью не более трех знаков после запятой, но в действительности программа работала с шестью знаками после запятой, а три последних знака задавались случайным образом. Лоренц пришел к выводу, что эти незначительные, практически незаметные ошибки в начальных условиях увеличивались экспоненциально. К сожалению, Лоренц опубликовал свои результаты в специализированных метеорологических журналах, и о них никто не вспоминал почти десять лет.

Это явление, которое сегодня носит название чувствительности к начальным условиям, упоминается уже в работах Адамара и неявно в работах Пуанкаре. Если углубиться в историю, то можно вспомнить шотландского физика Джеймса Клерка Максвелла, который в 1876 г. занимался изучением различных хаотических событий, например искр, с которых начинается лесной пожар, или камня, с падением которого обрушивается лавина[26].

Лоренц опубликовал свои открытия в 1963 г. в документе, предназначенном для Нью-Йоркской академии наук, в котором привел комментарий, оставленный его коллегой-метеорологом: «Если эта теория верна, то взмах крыльев чайки может навсегда изменить погоду». Позднее, согласно все тому же Лоренцу, когда он не мог подобрать название для речи, с которой должен был выступить на заседании Американской ассоциации содействия развитию науки в 1972 г., его коллега, Фелипе Мерилис, предложил такое название: «Может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?».

В любом случае нет никаких сомнений, что Лоренцу был известен следующий отрывок из «Силы слов» Эдгара По:

«К примеру, когда мы жили на Земле, то двигали руками, и каждое движение сообщало вибрацию окружающей атмосфере. Эта вибрация беспредельно распространялась, пока не сообщала импульс каждой частице земного воздуха, в котором с той поры и навсегда нечто было определено единым движением руки. Этот факт был хорошо известен математикам нашей планеты. Они достигали особых эффектов при сообщении жидкости особых импульсов, что поддавалось точному исчислению — так что стало легко определить, за какой именно период импульс данной величины опояшет земной шар и окажет воздействие (вечное) на каждый атом окружающей атмосферы».

Суть открытия Лоренца, которое позднее получило название «эффект бабочки», такова: существует вероятность, что малейшее изменение начальных условий системы, подобное движению воздуха, вызванному взмахом крыла бабочки, по отношению к климату Земли может повлечь за собой цепочку последствий, которые окажут существенное влияние на всю систему[27].

Хотя выражение «бабочка, которая машет крыльями» дошло до наших дней, о местонахождении бабочки и последствиях взмаха ее крыльев ведется обширная дискуссия, которую мы не будем воспроизводить в этой книге.


Притяжение хаоса

Если динамическая система будет функционировать достаточно долго, в ее фазовом пространстве появится множество точек, которое называется аттрактором. Аттрактором может быть точка, кривая, поверхность или какое-то сложное множество неправильной структуры, которое называют странным аттрактором.

Фрактальный характер хаоса проявляется в странных аттракторах. Если изобразить орбиты странного аттрактора и последовательно увеличивать их, то можно заметить самоподобие, характерное для фракталов.

Иногда динамические системы зависят от определенного параметра, благодаря чему их проще использовать при моделировании реальных систем. Значение этого параметра особенно важно, чтобы понять, как рождается хаос. При определенных значениях параметра динамическая система демонстрирует нормальное поведение, но иногда даже после малейших изменений появляется хаос. Особенно важную роль играет изучение этих систем и параметра, определяющего их поведение, с целью выявить точки перехода, в которых система начинает проявлять хаотические свойства.

Существование подобных динамических систем, в которых сосуществуют порядок и хаос, заставляет нас признать, что они тесно взаимосвязаны: в любой упорядоченной системе всегда явно или неявно присутствует хаос, а в любой хаотической системе явно или неявно присутствует порядок. Если система демонстрирует все более хаотическое поведение или, напротив, становится стабильной и упорядоченной, она потенциально может снова изменить свое поведение.

Примером того, как хаотическая система неявно является упорядоченной, может служить солитон Джона Рассела. Если мы бросим камень в пруд, на поверхности воды возникнут небольшие волны, которые вскоре исчезнут. Однако в 1834 г. шотландский ученый Джон Скотт Рассел (1808–1882) заметил крайне странное явление: в некоторых ситуациях волны порождали новую волну со своими характеристиками, и эта новая уединенная волна, так называемый солитон, могла проходить сотни километров, не теряя формы. Рассел несколько километров следовал за подобной волной вдоль канала и констатировал, что она шла против течения, не ослабевая. Солитон Рассела — это физическое явление, при котором сочетание дисперсии и нелинейности порождает упорядоченность.

На практике солитон Рассела используется для повышения качества передачи данных в оптоволоконных сетях. Так, в 1988 г. удалось передать солитон на расстояние свыше 4 ООО км.

Переход от ламинарного к турбулентному течению потока — один из наиболее наглядных примеров того, каким путем может рождаться хаос. В эксперименте Тэйлора-Куэтта поток проходит между двумя концентрическими цилиндрами, вращающимися с разной скоростью. С ростом скорости вращения внутреннего цилиндра поток перестает быть равномерным и разбивается на множество водоворотов. Еще более заметные изменения происходят, когда внешний и внутренний цилиндры вращаются в противоположных направлениях. В этом случае в потоке появляются спирали и завихрения. С изменением скорости вращения обоих цилиндров открывается своеобразный ящик Пандоры: в потоке появляются волнистые и турбулентные спирали. Результаты будут отличаться в зависимости от того, скорость какого цилиндра будет увеличена первой.



На фотографии изображен воссозданный солитон Джона Скотта Рассела в канале Юнион близ Эдинбурга. 12 июля 1995 г.


Фракталы и теория хаоса — относительно новые разделы математики, которые невозможно было бы исследовать без мощных современных компьютеров. Нет никаких сомнений, что «случайные» явления теперь описываются и классифицируются точнее, чем раньше. Однако удивительное, революционное открытие случайного поведения некоторых очень простых детерминированных систем приводит к очевидному парадоксу: хаос является детерминированным. Несмотря на то что четко заданные правила не содержат никакого элемента случайности, тем не менее они порождают случайные события.

Открытие вездесущности хаоса можно считать третьей революцией в физике XX в. наряду с появлением теории относительности и квантовой механики.

Загрузка...