Животные предки человека при переходе своем от древесного к наземному образу жизни вступали в более частый и тесный контакт с пресноводными водоёмами не только для питья воды, но и для добывания пищи, которой являлась рыба и различные обитатели воды (ракообразные, моллюски, водные растения и др.). По мере развития культуры вырабатывалась и совершенствовалась техника вылова рыбы; это дело зависело не только от изобретения орудий лова - гарпунов, копий, крючков, удилищ, сетей, различных постоянных установок в виде вершей, а также и от чрезвычайной ловкости. Эта ловкость сохранилась и у ныне живущих туземных племен. Пример позаимствуем у Миклухи-Маклая, который сблизился с обитателями Новой Гвинеи и среди них имел ряд расположенных к нему людей; один из них, по имени Туй, являл пример необычайной ловкости; о нём Миклуха-Маклай рассказывает так: "вода там была (в отливе) немного ниже колена, и дно, разумеется, хорошо видно. Вдруг Туй сделал энергичный прыжок, и одна из рыбок оказалась пойманной. Туй ловил их ногой. Он сперва придавил её ступней, потом поднял, ухватив между большим и вторым пальцем ноги. Согнув колено, он протянул руку и, высвободив добычу, положил рыбу в мешок... стоя на одной ноге, поднял другую убитую камнем рыбку. Все это было сделано не только очень искусно, но даже и весьма грациозно".
Для успешности лова рыбы требовалось также знание сроков времени наиболее выгодного лова, в частности при прохождении рыб вверх по течению рек для нереста. Для проходных рыб - это стихийное явление, когда они идут сплошной массой и так густо, что животные могут хватать рыб с берега. Естественно, что и люди приноравливались к использованию такой биологической особенности ряда рыб (рис. 21). Очевидно, что это сопровождалось наблюдением над реками и их обитателями. Охота носила хищнический характер, что в период обилия рыбы не отражалось резко на ее количестве. Но с течением веков и с усовершенствованием установок для механического вылова рыбы обилие её ценных сортов упало настолько, что государственная власть была вынуждена принимать охранные мероприятия, регламентируя методы, сроки и условия лова ценных промысловых рыб. Вылавливая то или другое количество их при движении к местам икрометания, необходимо пропускать к нерестилищам достаточную массу самцов и самок, чтобы обеспечить размножение рыб и удержать их численность на какой-то высоте. Конечно, такие мероприятия могут обосновываться не "ползучим эмпиризмом" обыденных наблюдений, а научным изучением биологии и экологии рыб как с общебиологических, так и с специально промысловых точек зрения. Этим ведают ихтиология, гидробиология и другие науки, промысловое рыборазведение. К сожалению, люди поздно пришли к сознанию необходимости рационального использования водных пищевых рессурсов, ибо за предшествовавшее историческое время хищническая охота привела к уменьшению численности весьма ценных промысловых рыб (например, осетровых). Само собою понятно, что такое истребление рыб отражается и на структуре биоценозов, сочленами которых являются соответственные виды рыб.
Рис. 21. Верши для вылова рыбы в Бельгийском Конго (по Бернатцику)
Однако человек влияет на мир пресных вод не только непосредственным истреблением тех или других его представителей.
Нуждаясь в воде для питья, хозяйственных и технических целей, люди издревле селились в непосредственной близости рек, озер и других водоёмов. Следствием такой близости являлся намеренный или случайный спуск отбросов жизнедеятельности хозяйства и промышленности в водоёмы, что неминуемо вело к загрязнению воды и к последующему влиянию на её обитателей. В некоторых местах и поныне отхожие места устраиваются близ воды или непосредственно над водой, например над рекой (рис. 22).
Рис. 22. Уборная над рекой в одном из южных селений (фот. Е. Н. Павловского)
Понятно, что все речные и озерные суда сбрасывают накопляющиеся отбросы хозяйства, экскременты людей и скота в воду; сточные (клоачные) воды некоторых крупных городов также сбрасываются в реки; наконец отбросы производства фабрик и заводов, сооруженных близ водоёмов, неминуемо спускаются в них.
Биологические последствия такого, разнообразного по своему характеру загрязнения, весьма различны; они отражаются на составе биоценозов соответственных водоёмов. Загрязнение водоёмов бывает и вне деятельности человека, находясь в зависимости от наземных животных; но "деятельность" человека перекрывает все прочие влияния.
Детальное сравнительное изучение населения водоёмов разной степени загрязнения показало, что видовой состав его вариирует, смотря по характеру загрязнения водоёма. Многочисленные и продолжительные наблюдения позволили установить приспособление многих одноклеточных организмов, а также и многоклеточных сочленов планктона и бентоса к обитанию в воде различной степни и характера загрязнения органического происхождения. Одни из таких организмов нуждаются в органических веществах и остатках, как в пище; другие же не могут существовать в их присутствии.
В силу таких соотношений оказалось возможным определять наличие или отсутствие в испытуемой воде органических веществ и продуктов их минерализации и окисления по обнаружению видов пресноводных обитателей, которые способны существовать в воде определенного состава. Колквиц и Марсон выделили около 800 видов пресноводных обитателей, начиная от бактерий и кончая червями, моллюсками и насекомыми, которые оказались весьма чувствительными к присутствию в воде органических веществ как в растворенном, так и во взвешенном состоянии. Благодаря этому нахождение того или другого вида, обладающего известным характером чувствительности, в рассматриваемой пробе воды может быть использовано в качестве "биологического реагента" для определения степени её загрязненности. Такие виды пресноводных обитателей получили наименование показательных организмов, а самый метод их использования известен, как "биологический анализ воды". Наравне с химическим анализом он завоевал себе широкую сферу применения.
Рис. 23. Схема сапробных зон (по Долгову и Никитинскому)
Показательные организмы объединяются в группы, которые свойственны пресным водам различной степени загрязнения. В этом последнем отношении различают четыре степени загрязнения (рис. 23).
Полисапробные воды, сильно загрязненные свежими, легко разлагающимися органическими веществами (белки, углеводы), соответствующими началу самоочищения сточных вод; кислородные условия в этих водах анаэробные; углекислоты и сероводорода много; в иле отмечено наличие сернистого железа (FeS); потребность в кислороде организмов, типичных для таких вод, весьма малая. Для полисапробных вод характерны показательные организмы - полисалробы; их немного по числу видов (Колквицем и Mapсоном указаны 37 видов), но численность преобладающих видов бывает огромная: смена биоценозов может происходить необычайно быстро. Главным обитателем этих вод являются бактерии (до миллионов в 1 куб. см воды), в том числе серные бактерии, а также бесцветные жгутиковые, инфузории. Интенсивность развития преобладающих видов в полисапробных водах весьма высокая.
α-мезосапробные воды - свежие органические вещества в них уже прошли этап первичного разложения до аминокислот и амидов; выделяется аммиак; загрязнение в целом более слабое, соответствующее слабой степени очищения сточных, вод; наряду с восстановительными процессами в воде развертываются и окислительные процессы при полуанаэробных кислородных условиях; вода при стоянки все же загнивает. Показательными организмами являются α-мезосапробы: бактерии, синезеленые водоросли, зеленые жгутиковые, инфузории, черви; разнообразие видов значительно большее, чем в полисапробных водах. Колквицем и Марсоном указаны 158 показательных организмов - α-мезосапробов.
β-мезосапробные воды, в которых процесс естественного самоочищения приводит способные загнивать органические вещества к разложению до минеральных соединений, до амония, нитритов и нитратов, благодаря чему вода при стоянии не загнивает (процесс минерализации). Кислородные условия аэробные; это хорошо биологически очищенные сточные воды; показательными организмами служат β-мезосапробы. Разнообразие видов большое, - Колквицем и Марсоном указано 319 β-мезоcапробов. Преобладание отдельных видов слабое; смена биоценозов довольно медленная. β-мезосапробами являются некоторые бактерии (в 1 куб. см их десятки тысяч), синезеленые водоросли, многочисленные диатомовые, зеленые водоросли, зеленые жгутиковые, разнообразные инфузории, коловратки, черви, некоторые ракообразные, насекомые, моллюски и рыбы.
Олигосапробные воды практически чистые, частично или полностью закончившие процесс естественного самоочищения; в последнем случае количество остающихся органических веществ в них незначительно; бактерий в 1 куб. см меньше тысячи. Показательными организмами являются олигосапробы; потребность их в кислороде большая, видов много; Колквицем и Марсоном указаны 362 олигосапроба, в их числе: зеленые водоросли, диатомеи, перидинеи, хризомонады, гидры, коловратки, мшанки, ракообразные, насекомые, моллюски и рыбы.
Указанное подразделение вод по степени их загрязненности является относительным, потому что один и тот же загрязненный водоём с течением времени проходит различные стадии самоочищения, которые постепенно переходят одна в другую. Количество бактерий от несметного числа их в полисапробных водах падает до сотен в пробе олигосапробных вод.
При биологическом анализе воды следует учитывать сезонную смену организмов водоёма по временам года. Некоторые показательные организмы могут встречаться в двух близких по степени и характеру загрязнения водах.
При характеристике описанных выше вод, находящихся на разной степени загрязнения, принято говорить о полисапробной и мезосапробной зонах загрязнения и об олигосапробной зоне. К олигосапробной зоне относятся большие чистые озера и реки в их естественном состоянии. В мелких, сильно зарастающих водоёмах с богато развитой животной жизнью нередко под влиянием разложения отмирающих растительных и животных организмов развивается слабое естественное загрязнение, достигающее степени β-мезосапробной зоны, а вместе с тем появляются и характерные для этой зоны организмы. Толща воды и дно водоёма нередко разнятся по степени загрязнения; в то время как водная толща по химизму воды и характеру ее флоры и фауны относится к олигосапробной зоне, заиленное дно водоёма, где происходит скопление и разложение органических остатков, принадлежит к β-мезосапробной зоне с загрязнением естественного происхождения.
Приведем примеры некоторых показательных организмов.
Zooglea ramigera - зооглеи, представляющие скопления бактериальных клеток в слизи, имеющие форму ветвистых кустиков или ягод (LXXVIII, 1).
Таблица LXXVIII. Полисапробы: Рис. 1. Зооглея (Zooglea ramigera), общий вид и часть колонии при большом увеличении (по Вислоуху). - Рис. 2. Беггиатоа (Beggiatoa alba) (по Вислоуху). - Рис. 3. Хромациум (Chromatium okenii) (по Вислоуху). - Рис. 4. Червь тубифекс (Tubifex tubifex) (по Удекему). - Рис. 5. Вбуравливание тубифекса в грунт дна (по Альстербергу).
Beggiatoa alba (LXXVIII, 2) - серобактерия, имеющая вид белых подвижных нитей, ползающих по субстрату. Необходимым условием жизни серобактерий, встречающихся и в чистых серных источниках, является присутствие сероводорода, в изобилии скопляющегося в полисапробной зоне. Развиваясь обильно, виды беггиатоа образуют большие белые пленки, быстро разрастающиеся и расползающиеся. При малом увеличении микроскопа хорошо можно видеть нити беггиатоа, крупинки серы внутри них и их характерное движение.
Chromatium okenii - подвижная пурпурная серобактерия, плавающая с помощью жгутика на переднем конце клетки (LXXVIII, 3); при массовом развитии загрязненная вода окрашивается пурпурными бактериями в розоватый цвет.
Tubifex tubifex - красный кольчатый червь 1-1,2 см длины (LXXVIII, 4); развиваясь в массах и живя в черном гниющем илу, выставив над поверхностью его задний слегка колеблемый конец тела, тубифекс образует местами на дне сильно загрязненных водоёмов пурпурно-красные пятна (LXXVIII, 5).
Eristalis tenax - описание "крыски"- личинки пчеловидки или иловой мухи - см. выше в главе 16.
Преобладающие биоценозы полисапробной зоны по их ведущему сочлену могут быть названы биоценозами серобактерий; они имеют белый (Beggiatoa) или розоватый (пурпурные бактерии) цвет.
Sphaerotilus natans представляет прикрепленные одним концом нити, состоящие из цилиндрических клеток. Развиваясь массами, сферотилус образует на поверхности подводных предметов сероватые налеты в виде пучков или войлока, хорошо видимые простым глазом (LXXIX, 1).
Таблица LXXIX. α-Мезосапробы: Рис. 1. Сферотилус (Sphaerotilus natans), хлопья и отдельная нить (по Вислоуху). - Рис. 2. Осциллятория (Oscillatoria princeps) (по Вислоуху). - Рис. 3. Эвглена (Euglena viridis) при большом и при малом увеличении (по Вислоуху). - Рис. 4. Антофиза (Anthophysa vegetans) (по Вислоуху). - Рис. 5. Туфелька (Paramaecium caudatum) (по Полянскому и Стрелкову). - Рис. 6. Трубач голубой (Stentor coeruleus) (из Вислоуха).
Oscillatoria princeps, О. tenuis, О. splendida (LXXIX, 2) нитчатые синезеленые водоросли, образующие темно-зеленые подушки и плёнки в загрязненных водах. Нити осциляторий, подобно беггиатоа, способны к скользящему движению; помимо того, конец нити с более узкими молодыми клетками иной формы, чем прочие, совершает характерные медленные колебательные движения; под микроскопом хорошо видно движение нитей, быстро расползающихся и покрывающих тонким темнозеленым налетом стенки стеклянного сосуда, в котором они помещены.
Euglena viridis - зеленое миксотрофное жгутиковое (LXXIX, 5), снабженное глазком, глоткой, пульсирующей вакуолью и многочисленными зелеными хроматрфорами; в темноте или в среде, богатой органическими веществами, хроматофоры бледнеют, а иногда и вовсе обесцвечиваются, и эвглена живет за счет органических веществ, питаясь ими осмотически. Встречается и в полисапробной зоне.
Anthophysa vegetans - бесцветное жгутиковое, головчатые колонии которого то сидят на тонких ветвистых укрепленных на субстрате стебельках, то отрываются и плавают свободно; распадаясь на отдельные клетки, они дают начало новым колониям (LXXIX, 4).
Paramaecium caudatum - обыкновенная инфузория туфелька (LXXIX, 5).
Stentor coeruleus - инфузория трубач, в плавающем состоянии имеет грушевидную форму, в прикрепленном - трубообразную (LXXIX, 6) обладает нежной голубоватой окраской.
Dero limosa - малощетинковый червь с прозрачным четко сегментированным телом, с небольшим количеством щетинок на каждом сегменте; расширенный задний конец тела несет четыре удлиненных жабры.
Tendipes гр. Plumosus - красные личинки Tendipedidae, если они развиваются в массе (о них см. главу 16).
Преобладающие биоценозы α-мезосапробной зоны по ведущей группе организмов могут быть названы биоценозами осцилляторий; они имеют темнозеленый или синевато-зеленый цвет.
Cladothrix dichotoma - ложно дихотомически ветвящиеся нитчатые бактерии характерной формы (LXXX, 1); образуют негустые кустиковидные налеты.
Таблица LXXX. β-Мезосапробы: Рис. 1. Кладотрикс (Cladothrix dichotoma) (по Вислоуху). - Рис. 2. Синедра (Synedra ulna var. splendens) (по Вислоуху). - Рис. 3. Навикула (Navicula aтbigua) (по Вислоуху). - Рис. 4. Клостериум (Closterium moniliferum) (по Вислоуху). - Рис. 5. Сувойка (Vorticella campanula) (из Вислоуха, как и рис. 6-9). - Рис. 6. Коловратка ротифер (Rotifer vulgaris). - Рис. 7. Коловратка ротифер (Rotifer actinurus). - Рис. 8. Коловратка брахионус (Brachionus angularis). - Puc. 9. Коловратка триартра (Triarthra longiseta).
Synedra ulna var. splendens - крупная диатомовая водоросль, отличающаяся тонкой и длинной створкой с параллельными краями. Обычный сочлен микрояерифитона, образующий характерные вееровидные пучки (LXXX, 2).
Navicula ambigua - диатомовая водоросль с эллипсовидным телом и сильно оттянутыми концами (LXXX, 3).
Closierium moniliferum - десмидевная водоросль характерной полулунной формы (LXXX, 4).
Euglena spirogyra - самая крупная из эвглен с вытянутым цилиндрическим телом, спирально исчерченным рядами, состоящими из маленьких бородавок; хроматофоры многочисленные; жгутик короткий.
Euglena tripteris - эвглена с тремя характерными спирально-свернутыми ребрами.
Солнечники Actinophrys sol, Actinosphaerium eichorni.
Stentor polyrnorphus - крупная инфузория до 1 мм длины, с ядром в виде четковидной нити; вследствие симбиоза с водорослями тело иногда приобретает зеленоватую окраску.
Vorticella campanula, V. patellina - обыкновенные сувойки (LXXX, 5).
Stylaria lacustris - водяная змейка, малощетинковый червь с длинным и тонким хоботком у переднего края. Вследствие неполного деления часто встречаются цепи из двух или даже трех особей.
Rotifer vulgaris - планктонно-бентическая коловратка с непрозрачным телом, коротким хоботком и ногой; сидит, прицепившись ногой к субстрату, или свободно плавает (LXXX, 6).
Rotifer actinurus - вид, экологически сходный с предшествующим, отличается необычно узким телом и длинной ногой (LXXX, 7).
Brachionus angutaris - панцырная коловратка яйцевидной формы с кольчато-складчатой ногой (LXXX, 8).
Triarthra longiseta - планктонная коловратка с тремя длинными игловидными придатками (LXXX, 9).
Limnaea auricularia, Viviparus contectus, Valvata piscinalis, Unio tumidus - описание см. выше, в главе 4.
Asellus aquaticus, Daphnia pulex, Daphnia magna - см. главы 19 и 20.
Anabaena flos aquae, Anabaena spiroides - синезеленые водоросли, массовое развитие которых летом вызывает "цветение" воды, приобретающей зеленоватый оттенок.
Spirogyra nitida, S. gracilis, S. irregularis, Mougeotia parvula - зеленые нитчатые водоросли из Conjugatae, при массовом развитии образующие зеленые пучки и хлопья (водяная вата); клетки спирогиры отличаются характерными спиральными хроматофорами.
Melosira granulata, Synedra acus, Gomphonema, acuminatum, Gymbella cistula - различные диатомовые водоросли.
Volvox globator - колониальное жгутиковое из Chlorophyceae; шарообразные колонирг вольвокс светлозеленого цвета с маленькими дочерними колониями внутри, свободно плавают в воде и иногда развиваются в очень большом количестве.
Gordius aquaticus - волосатик, червь из нематод (Nematodes), с характерным: длинным извивающимся и свивающимся иногда в клубок телом до 30 см в длину.
Crystatella mucedo - мшанка, образующая полупрозрачные опалесцирующие подвижные колонии.
Fredericella sultana - мшанка, образующая ветвистые кустиковидные колонии.
Limnaea stagnalis, Planorbis planorbis, Planorbis carinatus, Ancy. lus fluviatilis, Unio pictorum, Pisidium amnicum, Dreissena polymorpha (см. главу 4-ю).
Daphnia hyalina, Bosmina longirostris, Sida cristallina, Scapholeberis mucronata, Simocephalus vetulus, Bythotrephes longimanus, Leptodora kindti, Gammarus pulex, Astacus astacus - см. характеристику в главах 19-й и 20-й.
Личинки стрекоз - Aeschna grandis, Agrion virgo; личинки подёнок - Polymitarcys virgo, Cloeon dipterum; личинки веснянок - Perla bicaudata, Nemura variegata; личинки ручейников - Phryganea striata, Leptocerus annulicornis, Brachycentrus subnubilus; водяные клопы - Notonecta glauca, Sigara striata; водяные жуки и их личинки - Dytiscus marginalis, Acilius sulcatus, Colymbetes fuscus, Hydrous piceus.
Характеристику см. в главах 6, 7, 8, 9, 10 и 13.
Загрязненные воды с течением времени подвергаются самоочищению под влиянием окислительных процессов и деятельности населяющих их организмов - сапробионтов. Окисляясь, органические вещества разлагаются, и степень загрязнения воды постепенно снижается от полисапробной до мезосапробной и олигосапробной зоны.
Зеленые растения при этом играют выдающуюся роль как продуценты кислорода. Снижению количества бактерий значительно способствуют инфузории, коловратки и другие пожиратели бактерий, столь богато представленные в полисапробной и мозосапробной зонах, которые с уменьшением количества бактерий, под влиянием недостатка пищи и изменившегося химизма воды, погибают сами.
Исследованием установлено, что реки, принимающие сточные воды городской канализации ниже города, постепенно самоочищаются и восстанавливают ту картину жизни олигосапробной зоны, которая наблюдалась в них выше города. Даже в случае больших загрязнений, вносимых крупными городскими поселениями, в реках, подобных Москва-реке, это происходит через 30 или 40 км, а в более крупных реках - еще раньше.
Существенное значение могут иметь загрязнения водоёмов временного характера, связанные с сезоном года или зависящие от других обстоятельств.
Весенние дожди смывают в водоёмы накопившуюся за зиму грязь, характер которой зависит от бытовых особенностей наблюдаемого места. При антисанитарном состоянии поверхности почвы (плохое устройство уборных, отсутствие их) вода загрязняется смываемыми болезнетворными бактериями; потребление такой воды в это время вызывает подъём заболеваемости, например, брюшным тифом. Указанные обстоятельства и являются, повидимому, основной причиной весеннего подъёма заболеваемости брюшным тифом, что характерно для многих мест Ирана (данные эпидемиолого-паразитологических экспедиций акад. Е. Н. Павловского в Иран 1941-1943 гг.).
Водоём может быть загрязнен болезнетворными бактериями и при разных других обстоятельствах. При этом, если он является единственным или главным источником водоснабжения, то при потреблении сирой воды до времени её самоочищения развивается вспышка водной инфекции.
Передача инфекций водой установлена для холеры, брюшного тифа и дизентерии. Источником инфекции являются фекалии, а для брюшного тифа также моча больного. При попадании этих веществ в воду, последняя приобретает заразительные для человека свойства, если вода используется для питья в сыром виде. Известен хорошо прослеженный случай, когда появление (в январе) одного только брюшнотифозного больного вызвало эпидемию брюшного тифа с заболеванием 1004 человек из 8000 населения с 114 смертями (Плимут, Пенсильвания, 1885). Выделения больного выливались без дезинфекции на склонах оврага; замерзшие выделения весною с талой водой были смыты в ручей; бактерии брюшного тифа могут выдерживать замораживание свыше трех месяцев; следовательно, вода весной оказалась зараженной; в таком состоянии она поступала из ручья в общественный водопровод; заболевали лишь те лица, которые пили воду из водопровода; пользовавшиеся собственными незагрязненными колодцами оставались здоровыми; об интенсивности заболевания можно судить по тому, что в день заболевало но сотне и более людей.
Классическим примером водной эпидемии холеры является эпидемия 1892 г. в Гамбурге, снабжавшемся нефильтрованной водой из каналов реки Эльбы, которые были заражены холерными вибрионами; в пограничном же с Гамбургом Альтоне, водопроводная вода которого не была заражена, наблюдались лишь единичные случаи холеры контактного происхождения. Водные инфекции развиваются, как правило, внезапно, с катастрофической быстротой достигают максимума и также быстро падают, если распознана и устранена главная причина их развития.
Помимо рассмотренного наружного загрязнения, водоёмы могут получать бактериальное загрязнение путем подпочвенной фильтрации зараженных жидкостей из резервуаров, отхожих мест, клоачных ям, неисправной системы канализации и др. При такой подземной циркуляции жидкостей с ними в водоносный слой подпочвы могут проникнуть возбудители различных заразных кишечных болезней и заражать воду, например, колодцав (рис. 24).
Рис. 24. Подземная циркуляция жидкости и заражение подпочвенной воды (ориг. схема Е. Н. Павловского)
В одной из экспедиций В. Н. Павловского в Среднюю Азию на юге Таджикистана был поставлен такой опыт; в помойную впадину почвы, куда из столовой сваливались различные отбросы, было заложено около полупуда соли; уже на другой день в ближайшем колодце в 15 м от ямы вода стала соленой.
В другом селении той же зоны, стоящем на весьма пористой и легко проницаемой почве, колодцы содержали воду с явными признаками свежего фекального загрязнения. Показателем такого её состояния является наличие в; ней аммиака, и азотистой кислоты при высоком титре нахождения кишечной палочки. В некоторых же случаях при близком соседстве колодца и отхожего места он содержал воду с явно гнилостным запахом, настолько сильным, что "воду можно было принять за разбавленные нечистоты". Само собой разумеется, что такое положение является угрожающим и что при появлении брюшнотифозных больных всегда возникает опасность развития вспышки этой болезни.
Водоёмы могут загрязняться также и другими болезнетворными бактериями, как-то: палочкой сибирской язвы, палочками столбняка, возбудителями дизентерии, бактериями туляремия, а так же дизентерийными амебами и другими микроорганизмами. Есть основание полагать, что лошади заражаются сапом, а крупный рогатый скот - ящуром при питье воды, инфицированной возбудителями этих болезней.
Результат подобных загрязнений воды в каждом отдельном случае зависит от множества причин - химического состава воды, температуры, степени освещения и прозрачности воды, стоячего или подвижного её состояния, характера сапробной флоры, в составе представителей которой могут быть виды микроорганизмов, "неуживающиеся" с попавшим в воду возбудителем болезни (микробы-антагонисты), стадий самоочищения воды и других обстоятельств.
Вода может быть и механическим разносчиком яиц паразитических червей; с фекалиями в воду могут попадать яйца аскарид, власоглава, цепеня вооруженного, цепеня невооруженного, цепеня карликового и других глист. Человек заражается этими паразитами, как при питье воды с яйцами глист, находящимися в инвазирующем (заражающем состоянии), так и при поедании сырой огородной зелени, которая поливалась зараженной водой (рис. 25).
Рис. 25. Обеспеченность заражения паразитическими червями (по макету Е. Н. Павловского)
Во всех рассмотренных случаях заражение происходит при пищевом потреблении воды; но в некоторых случаях заражение от воды является контактным; "контакт" с водой происходит при купании, при умывании и при соприкосновении с рабочими целями. При купании в покровы тела человека может вбуравиться Cercaria ocellata (церкария сосальщика птиц Trichobilharzia ocellata), выходящая в воду из промежуточного хозяина, которым является моллюск Limnaea stagnalis; они вызывают зудящую болезненную сыпь в местах внедрения, но дальнейшего развития паразита в теле человека, повидимому, не происходит. Через воду можно заразиться анкилостом идами (Ancylostoma duodenale и Necator americanus), если в ней имеются жизнеспособные личинки этих нематод, обладающие способностью вбуравливатыся в покровы тела человека. Только этим путем люди заражаются в тропических и субтропических странах различными видами бильгарций (раздельнополые сосальщики рода Schistosornuni), являющимися возбудителями тяжелых тропических болезней (шистозомозы или бильгарциозы). Контактным путем можно заразиться от воды туляремией и возбудителем болезни Вейля - Leptospira icterohaemmorrhagiae; этой формой желтухи заражаются, например, в Японии рабочие, подолгу работающие в загрязненной воде рисовых полей. В контактном порядке возможно заражение при купании и сибирской язвой.
Всё рассмотренное касается санитарной гигиены, эпидемиологии и паразитологии, которые ведают практическими методами оценки санитарно-гигиенического состояния водоёмов, надзора над техникой использования водопроводной сети города и селений, обеззараживания питьевой воды, выбора головных источников для питания вновь сооружаемых водопроводов и распланирования селений по отношению к водоёмам в целях избежания загрязнения воды и мн. др. Хотя все перечисленные задачи и носят специально прикладной характер, тем не менее, в своей первооснове они связываются с изучением условий круговорота веществ в воде и с особенностями течения жизни флоры и фауны в водоемах различных типов вне влияния на них человека и в зависимости от его деятельности. В виду специфичности воды как среды обитания, изучение особенностей этой среды, состава свойственных ей флоры и фауны, взаимоотношений водных организмов со средой их обитания в конкретной обстановке места и времени и установление общих закономерностей жизни водоёма того или другого типа, как целого, отходит к ведению комплексной науки, именуемой гидробиологией.
Весьма велика и чревата последствиями роль человека в создании самих водоёмов, которые заселяются флорой и фауной различного видового состава, что по-разному отражается на практическом значении таких водоёмов для здоровья.
Одни водоёмы возникают случайно, вследствие небрежности водопользования, другие же специально устраиваются людьми для различных хозяйственных и технических надобностей. Продолжительность их существования варьирует от немногих дней до столетий. Выше мы видели немало примеров, что и в эфемерных водоёмах успевает развиваться животное население. Особое значение имеют грандиозные гидротехнические строительства, резко изменяющие географию целых областей.
Вследствие небрежности создаются временные лужи в местах разбора воды у колодцев, водопоев, водоразборных колонок различного типа. Такие водоёмы могут служить местом выплода малярийных комаров, которые здесь же поблизости в селении находят себе избыточный источник питания кровью человека и домашних животных. Даже такие "водоёмы", как держащиеся всего несколько дней скопления воды в полуразбитой, выброшенной на задний двор посуде, в консервных банках и т. п., могут оказаться местом выплода биологически специализированных организмов, проходящих часть своего жизненного цикла в воде. Во многих тропических странах имеется весьма опасная для человека болезнь - желтая лихорадка, возбудитель которой (фильтрующийся вирус) передается комаром Aedes aegypti (= Stegomyia fasdata). Этот вид адаптирован к условиям жизни в ближайшем соседстве с человеком; водный период метаморфоза Ае. aegypti при высокой температуре тропиков проходит быстро - всего в несколько дней; поэтому Ае. aegypti успевает выплодитъся из таких "водоёмов" как черепки битой посуды, прежде, чем) высохнет в них вода. Более того, он использует для откладки яиц и различные вместилища для воды хозяйственного значения (бочки, ёмкие кувшины и др.). Могут создаваться совершенно своеобразные взаимоотношения между этим видом комара и человеком, что тяжко отражается на последнем.
Классический пример известен в истории сооружения Панамского канала. Одним из величайших препятствий в работе являлись тропические болезни, косившие приезжих рабочих и специалистов; особенно свирепствовала желтая лихорадка. Случаи заболевания ею наблюдались даже в самом хорошо оборудованном госпитале. В конце концов, дознались, в чем было дело. Для защиты больных от заползания термитов ножки кроватей были поставлены в чашки с водой. Вот эти-то ничтожные "водоемы" и использовались комарами-переносчиками желтой лихорадки для откладывания яиц; здесь же вылуплялись личинки, линяли на куколок и из куколок выходили окрыленные комары. Самки их пили в больничных палатах кровь больных желтой лихорадкой и при повторном кротососании заражали этой болезнью других больных или здоровых, обеспечивая внутрибольничные (внутридомовые) заболевания желтой лихорадкой. Когда дознались в чем дело водные изоляторы кроватей были убраны, палаты были хорошо засетчены, и внутрипалатные заболевания прекратились.
Рис. 26. Хауз (фот. Е. Н. Павловского)
Водоёмы хозяйственного и технического значения весьма разнообразны по своему характеру. К ним относятся канавы, копанки на огородах, ямы для замочки льна, каналы оросительной системы в Средней Азии и в других местах, водовместилища питьевой воды для людей и для животных, пруды обыкновенные, пруды рыборазводные, хаузы (рис. 26), вместилища воды противопожарного назначения, искусственно создаваемые озера для водного спорта и купания, рисовые поля.
К этому перечислению типов водоёмов следует добавить, что они рассеяны в различных климатических зонах разнообразных географических ландшафтов, и что они возникают и поддерживаются в различных хозяйственных и бытовых условиях. Следовательно, характер их растительного и животного населения будет вариировать, смотря по указанным причинам и в зависимости от продолжающегося влияния человека на рассматриваемые водоёмы. Приведем несколько частных, но поучительных примеров.
Рис. 27. Оросительные каналы Средней Азии (фот. Е. Н. Павловского)
При небрежном содержании оросительной сети более мелкие ее части зарастают с берегов растениями, что замедляет быстроту течения воды и создает удобные места для выплода малярийных комаров (рис. 27). Прорыв бортов более крупных каналов или фильтрация через рыхлый грунт ведет к заболачиванию прилежащих мест и также к выплаживанию переносчиков малярии. Весьма важным местом их размножения являются рисовые поля; хотя чеки их и соединяются друг с другом, вода практически в них стоячая; при малой глубине чеков она сильно прогревается; в ней развивается богатый планктон и обильное животное население; естественно, что рисовые поля являются щедрыми поставщиками малярийных комаров (рис. 28).
Рис. 28. Рисовые поля (фот. Е. Н. Павловского)
При различных стройках остаются часто выемки почвы (рис. 29); в них с течением времени скопляется вода, появляется растительность и животное население; формируется водоём не только "ненужный" для каких-либо надобностей, но прямо вредный для здоровья человека, если он принимает аюфелогенный характер; таковы, например, выемки лёссового грунта для изготовления кирпичей по близости кирпичеобжигательных печей в Средней Азии (рис. 30).
Рис. 29. Карьер (фот. Е. Н. Павловского)
Так как водоёмы являются поставщиками переносчиков не только малярии, но также японского энцефалита (Culex pipiens, С. tritaeniorhynchus, Aedes togoi и др.), туляремии (Aedes lutescens, Ae. vexans, Mansonia richiardii) и кроме того, местами обитания промежуточных хозяев ряда паразитических червей человека и домашних животных, то видовой состав их биоценозов и характер соотношений с человеком может принимать в каждом отдельном случае особый характер, определить и понять который можно, опираясь на рассмотрение биоценозов применительно к ведущим их сочленам.
В рассматриваемых отношениях можно довольно скоро почувствовать эффект влияния человека на жизнь водоема.
Рис.30. Анофелогенный водоем в выемке грунта для кирпича; вдали кирпичный завод (фот. П. Симанина)
В других же случаях необходимо заглядывать далеко впереди предусматривать последствия, которые скажутся через многие годы. Речь идет о крупнейших гидротехнических сооружениях, благодаря которым создаются новые крупные географические объекты (например, Московское море, Рыбинское море) и резко изменяется режим крупной реки и жизни в ней (сооружение водонапорных плотин гидроэлектрических станций, например Днепрострой, предстоящий частичный спуск озера Севан-Гокча). Если очертания новых "морей" и водоёмов не получают более или менее резко оформленных границ, то в таких местах создаются новые удобные анофелогенные зоны, что приводит к последующему развитию заболеваемости малярией.
Перегораживание рек плотинами может вести к обмелению остающейся ниже части реки, особенно если образующийся выше плотины резервуар воды используется для целей орошения. Это обстоятельство и механическая преграда в виде плотины препятствуют прохождению рыб в верховье реки для нереста, что может весьма ощутительно отразиться в будущем на рыбном промысле. Поэтому параллельно сооружают рыбопроходы, но конструкция их не всегда успешно отвечает их назначению.
При таких крупных строительствах необходимо детальное гидробиологическое изучение исходного водоёма, чтобы правильно обосновать прогноз дальнейшей жизни его в связи с новым, строительством и внести необходимые для того коррективы.