Глава 2 Рождение кванта энергии

Обладая обширными знаниями по электродинамике и термодинамике и находясь в поисках более глубокого толкования второго начала, Планк приступил к изучению темы, которая стала фундаментальной в его карьере, — излучение черного тела. Исследования приведут его к формулировке квантовой гипотезы, о гигантском значении которой он и сам не догадывался.

Давайте представим, что мы прогуливаемся по парку теплым весенним вечером. На улице свежо, и мы садимся на освещенную солнцем скамейку. Лучи согревают нас, и постепенно нам становится очень хорошо. Проходит какое-то время, и ощущение комфорта нас не покидает: мы достигли состояния равновесия, когда наше тело больше не нагревается, но мы не чувствуем и холода. В этот момент вся энергия излучения, достигающая нас от Солнца, отражается нами, таким образом мы не поглощаем и не излучаем чистую энергию.

Теперь представим полость, стенки которой имеют фиксированную температуру, то есть находятся в термическом равновесии. Внутри она заполнена электромагнитным излучением, и на каждый участок внутренней поверхности воздействует определенное количество излучаемой энергии за единицу времени. Обозначим буквой К количество энергии, которое воздействует в секунду на квадратный метр поверхности. Из этого количества часть будет поглощена — обозначим эту часть буквой а (а — коэффициент поглощения). Для поддержания температуры стенка должна излучать энергию так же интенсивно, как поглощает ее. Если мы обозначим через Е энергию, излучаемую в секунду на квадратный метр поверхности, получим следующее равенство:

аК = Е.

Это означает: поверхность поглощает то же количество энергии, что и излучает. То есть мы видим такой же баланс энергии, как в ситуации, когда мы сидим на солнце.

Интенсивность излучения К в полости по определению находится в состоянии равновесия, поэтому не зависит от материала поверхности. Приведенное выше выражение можно записать в виде:

Κ= E/a,

что подводит нас к закону, открытому Густавом Кирхгофом примерно в 1860 году: частное от деления энергии, излучаемой телом, на коэффициент поглощения представляет собой величину, не зависящую от материала, но на которую влияет температура тела.

Согласно закону Кирхгофа тело тем лучше излучает энергию, чем лучше поглощает ее. Опыт, приведенный на схеме, лучше объяснит этот феномен. Наполним резервуар горячей водой. Часть его внешней боковой поверхности предварительно зачерняем, используя копоть от пламени свечи. Внешнюю поверхность с другой стороны резервуара покрываем отражающим материалом, например алюминиевой фольгой. Если мы поместим два термометра (один — рядом с затемненной поверхностью, другой — рядом с фольгированной), то сможем наблюдать, что термометр рядом с затемненной поверхностью покажет большую температуру.

Закон Кирхгофа гласит, что чем лучше тело поглощает излучение,тем лучше испускает его. Для доказательства достаточно простого опыта: затемненная часть испускает больше тепла, чем покрытая фольгой, хотя они имеют одну температуру.


Герр профессор Планк

Обычный рабочий день Макса Планка выглядел примерно так: по утрам ученый писал, затем проводил занятия, после следовал завтрак и небольшой отдых, далее — музицирование, прогулки, переписка. Среди увлечений Планка был и альпинизм: в 79 лет он мог подняться на пик Гроссвенедигер высотой 3674 м. С 1890 по 1927 год, в котором ученому исполнилось 72 года, он преподавал в Берлинском университете. У Планка было четыре лекции в неделю, также он вел семинары. Планк читал трехгодичный цикл лекций, включавший механику, гидродинамику, электродинамику, оптику, термодинамику и кинетическую теорию. Каждая из дисциплин занимала семестр. Как видите, Планк владел всеми разделами физики, известными в его время.

Планк читает в своем кабинете в 1908 году. В это время он преподавал в Берлинском университете.


«Чрезвычайная ясность»

Индийский физик Шатьендранат Бозе (1894-1974), о котором мы поговорим позже, посетив занятия Планка в Берлине, заметил: «Побывав на лекциях Планка, я понял, что значит физика как единое целое, в котором развитие науки происходите общей позиции с необходимым минимумом предположений». Занятия Планка посещала и Лиза Мейтнер, более того, она вошла в круг его близких знакомых и смогла узнать ученого как приветливого и гостеприимного человека: «Вначале лекции Планка показались мне, несмотря на чрезвычайную ясность, несколько безликими, почти скучными. Но очень скоро я поняла, какое это заблуждение и как мало это вяжется с личностью Планка». Педагогическая деятельность ученого не ограничивалась занятиями: его «Лекции о термодинамике» до сих пор используются во многих вузах, также он писал очерки и статьи для широкой публики.


Вывод очевиден: хотя обе поверхности имеют равную температуру, близкую к температуре горячей воды, черная поверхность испускает больше тепла, чем покрытая фольгой. Но есть еще кое-что — то, что физики называют принципом детального равновесия: для каждой частоты или длины волны количество поглощенной и излученной энергии равно. То есть тело излучает и поглощает энергию одинаково на всех частотах. Если мы обозначим через К интенсивность излучения на данной частоте, через Еv — испускаемое на этой частоте излучение на единицу поверхности за единицу времени, через αν — соответствующий коэффициент поглощения, то получим следующее выражение:

ανKv = Εν.

Так как Кv — интенсивность излучения в полости, по уже упомянутым причинам она не может зависеть от свойств материала стенок полости. Соответственно, мы приходим к заключению, что коэффициент

Kv = Evν

представляет собой величину, зависящую только от температуры полости и частоты излучения.

Это заключение имеет первостепенную важность в нашей истории. Поскольку функция Кv не связана со свойствами вещества, из которого сделаны стенки полости, то она является универсальной и зависит только от природы теплового излучения. Об этом факте Макс Планк в своей речи на вручении Нобелевской премии в июне 1920 года сказал следующее:

«С тех пор как Густаф Кирхгоф показал, что свойства теплового излучения, которое образуется в пустом пространстве, ограниченном любыми равномерно нагретыми поглощающими и излучающими телами, вполне независимы от природы этих тел, было доказано существование некоторой универсальной функции, зависящей только от температуры и длины волны, но никоим образом не от особенных свойств какого-либо вещества; и отыскание этой замечательной функции сулило более глубокое проникновение в сущность связи между энергией и температурой, связи, которая является главной проблемой термодинамики, а следовательно, и всей молекулярной физики»[1 Перевод с немецкого Вл. Семенченко.].

Но как измерить эту функцию? Если мы рассмотрим предыдущее выражение, интенсивность излучения Еv испускаемого телом с соответствующим αν = 1, совпадает с интенсивностью излучения в равновесии с ним Кv. Но это как раз и есть модель абсолютно черного тела, о котором мы говорили в первой главе, то есть тела, поглощающего все излучение на всех частотах. Абсолютно черного тела в природе не существует, однако сам Кирхгоф предположил, что излучение, испускаемое очень малым отверстием, сделанным в полости, стенки которой имеют заданную температуру (см. схему), будет схоже с излучением черного тела при той же температуре. Сходство будет тем больше, чем меньше отверстие. Приводя пример из повседневной жизни, мы можем сказать, что Кv — это словно интенсивность света для каждой частоты, которая возникает в печи, когда мы открываем дверцу духовки, чтобы достать готовую пиццу.

Чем больше печь и чем меньше дверца, тем более полученное излучение будет напоминать ситуацию черного тела.

Густаф Кирхгоф предложил в качестве модели черного тела полость, стенки которой имели постоянную температуру. Излучение испускалось из маленького отверстия, сделанного в полости.


Осцилляторы Планка

В 1894 году, уже будучи преподавателем Берлинского университета и после принятия в члены престижной Берлинской академии наук, Планк начал исследовать излучение черного тела. Без сомнения, этому способствовало то, что физики из находящегося по соседству Имперского физико-технологического инстатута могли измерить спектральное распределение излучения черного тела, то есть определить, как интенсивность излучения соотносится с частотой. Планк в своей автобиографии признался, что для него поиски Абсолюта всегда были самой прекрасной задачей исследователя, поэтому он приступил к изучению данного феномена, управляемого, как мы увидели, универсальным законом, с почти религиозным пылом.

Планка привлекал еще один аспект этой проблемы, который нельзя не учитывать. Когда мы поджигаем дрова в печи, тепловое равновесие отсутствует. Стенки печи холодные, и дровам для достижения требуемой температуры необходим приток воздуха. Через некоторое время, достаточно длительное в хороших печах, достигается равновесие, при котором температура внутри остается постоянной с течением времени. Это лучший момент для приготовления пиццы. Тепловое излучение в полости находится в равновесии с ее стенками, которые поглощают столько же электромагнитного излучения, сколько испускают. Развитие ситуации от начального состояния до равновесия является необратимым процессом, как и смешивание воды разной температуры. Так как в данном случае речь идет частично об электродинамическом процессе, а теория Максвелла — это теория поля, согласно которой электромагнитное поле постепенно заполняет всю полость, Планк надеялся, что сможет получить результат, не прибегая к гипотезе о строении атома и статистической интерпретации энтропии. Очевидно, что Планк находился под влиянием антиатомистических тезисов энергетистов и надеялся доказать, что интерпретация Больцмана не нужна.

Первые шаги Планка на этом пути были связаны с изучением процесса излучения и поглощения излучения. Для этого он ввел осцилляторы (или резонаторы), взаимодействующие с излучением. Осцилляторы Планка представляли собой положительный и отрицательный заряды с эластичным соединением в виде пружины. Они могли испускать и поглощать электромагнитное излучение, напоминая поплавок, который показывает рыбакам поклевку. При этом поплавок колеблется, создавая небольшие волны на поверхности воды, а когда волна подходит к поплавку, он начинает двигаться вместе с ней. Таким образом, поплавок может создавать волны или принимать их, поглощая их энергию.

Так как функция Кирхгофа не зависит от природы вещества, с которым взаимодействует излучение, Планк решил, что на стенках полости можно расположить осцилляторы, резонирующие на всех возможных частотах (см. схему), которые должны быть достаточно простыми, чтобы рассчитать их динамику. Если эксперимент удастся, в конце концов специфические характеристики осцилляторов не будут проявляться, останется только их частота.

Количество энергии, излучаемой и поглощаемой осциллятором такого типа, могло быть рассчитано относительно легко благодаря работам Генриха Герца по электромагнетизму, написанным в конце 1880-х. Планк подтвердил, что в состоянии равновесия, когда осциллятор поглощает столько же энергии, сколько получает за единицу времени, средняя энергия uv на единицу объема и единицу частоты электромагнитного поля, находящегося в полости на заданной частоте n, связана со средней механической энергией осциллятора Uv соотношением:

uv = 8πv²/c³∙Uv

где с — скорость света. Под величиной uv понимается плотность энергии на единицу частоты, или спектральная плотность энергии. Энергия, испускаемая полостью Kv, может быть вычислена в лаборатории пропорционально вышеуказанной величине по формуле:

Kv = c/4∙uv.

На стенках полости, которая для Планка стала моделью черного тела, были установлены осцилляторы с электрическим зарядом. Излучение испускалось через маленькое отверстие.

К радости Планка, в отношении между энергией осциллятора и электромагнитного поля физические характеристики осциллятора, а также его заряд или масса не учтены. В уравнении присутствуют только два элемента — частота и скорость света, которая является универсальной константой. В начале 1897 года Планк думал, что излучение его осцилляторов может быть шагом к пониманию электродинамики необратимости.


Волновые опыты Герца

Немецкий ученый Генрих Герц, доказывая справедливость теории Максвелла, создал в своей лаборатории электромагнитные волны, длина которых значительно превышала световую волну, и доказал, что эти волны имеют сходные со светом характеристики: они распространяются при такой же скорости по прямой линии, отражаются и могут поляризоваться, как и свет. Для генерирования волн Герц использовал колебательный контур: два куска провода, на концах которого — проводящие шарики.

Из-за большой разницы потенциалов шариков с помощью генератора или батарейки, соединенных с индукционной катушкой, достигалось короткое замыкание, при котором между концами провода проскакивала искра, а шарики соединялись с помощью электричества. Далее наблюдались колебания заряда, идущего и возвращающегося от одного шарика к другому. Осциллятор генерировал много волн, их линии поля были похожи на поле от электрического осциллятора, как показано на схеме.

Герц для решения уравнений Максвелла создал теоретическую модель, соответствующую осциллятору. С ее помощью он смог рассчитать линии поля, показанные на схеме, и подтвердить их соответствие наблюдениям. Макс Планк в своих исследованиях излучения черного тела использовал выражение энергии, испускаемой осциллятором Герца.


Но в середине 1897 года Больцман представил в Прусской академии наук короткий доклад, в котором критиковал эту линию исследования. В основе его критики лежало заявление, что уравнения Максвелла так же обратимы, как ньютоновские. Все решения этих уравнений одинаковы, независимо от того, в какую сторону движется время. Планку нужно было искать необратимость в другом месте, и Больцман указывает ему, где: для определения вероятного состояния излучения можно воспользоваться теорией газов.

Таким образом, Больцман рекомендовал Планку воспользоваться его молекулярной теорией теплоты и вероятностной интерпретацией второго начала термодинамики.

Планк воспринял критику Больцмана довольно спокойно, тем более что обоснованных возражений у него не было. Он изменил курс исследований и вернулся к энтропии — теме, которой владел прекрасно. Соотношение между энергией осцилляторов и энергией излучения нельзя не учитывать.

Игра стоила бы свеч, если бы было возможным выяснить, как соотносится энергия излучения с его частотой и температурой. Но ни Планк, ни кто-либо другой не знал, как определяется энтропия излучения. Обнаруженное соотношение между энергией осцилляторов и энергией излучения позволяло забыть о последней и сфокусироваться на энтропии осцилляторов. Это стало следующей остановкой на пути Планка, и с 1897 по 1900 год он занимался указанными вопросами, а также глубоко изучал работы Больцмана.


На сцену выходит Вин

Вильгельм Вин (1864-1928) родился в Восточной Пруссии и был немного моложе Планка. Он работал ассистентом Гельмгольца, а потом перешел в Имперский физико-технологический институт, находящийся неподалеку от Берлина. В конце столетия он заинтересовался проблемой излучения черного тела. Вин сделал два открытия, внесшие неоценимый вклад в разрешение проблемы, за что в 1911 году был удостоен Нобелевской премии в области физики.

Во-первых, Вин доказал, что интенсивность излучения, испускаемого черным телом, Kv, зависит не только от частоты или только от температуры, а от комбинации обеих. Это заключение сегодня называется законом смещения Вина. Согласно этому закону по мере увеличения температуры преобладает коротковолновое излучение. Таким образом, Вин дал теоретическое обоснование феномену, который можно наблюдать в обычных условиях: свечение раскаленных тел переходит от красного к другому краю спектра по мере нагревания. В таблице ниже показана длина волны, которая обеспечивает максимальное излучение при разных температурах, от абсолютного нуля до температуры поверхности звезд.

Длина волны, при которой интенсивность излучения максимальна в соответствии с температурой (1 мкм = 1 • 10-3 мм)
Температура Длина волны Характерный феномен
-270 °С 1 мм (микроволны) Фоновое космическое излучение
100 °С 8 мкм (инфракрасные) Домашний радиатор
500 °С 3,76 мкм (инфракрасные) Угли барбекю
1535 °С 1,6 мкм Плавленое железо
(инфракрасные короткие)
5770 °С 0,48 мкм (желтый) Температура поверхности Солнца

Закон смещения Вина был доказан экспериментально и служил для Планка руководством в его поисках спектрального распределения излучения черного тела. Вторым важнейшим открытием Вина стало выражение для спектрального разложения, соответствовавшее имевшимся на тот момент экспериментальным данным, хотя удовлетворительное теоретическое обоснование Вин предложить не смог. Согласно этому выражению интенсивность теплового излучения экспоненциально падает в зависимости от частоты, поэтому нередко эту формулу Вина называют экспоненциальным законом.

Накануне 1900 года прогресс в изучении проблемы излучения черного тела выглядел следующим образом.

— Существовала универсальная функция, доказанная Кирхгофом, для формы, в которой интенсивность теплового излучения при заданной температуре зависит от его частоты. Эта функция не зависела от свойств излучающего вещества и соответствовала интенсивности излучения идеального черного тела.

— Планк разработал модель абсолютно черного тела — полость, на стенках которой находились электрические осцилляторы на всех частотах. Эти осцилляторы поглощали и испускали электромагнитные волны согласно законам Максвелла.

— Вин открыл закон смещения: длина волны, на которую приходится максимально интенсивное излучение, обратно пропорциональна температуре черного тела.

— Вин также предложил особую форму для универсального закона Кирхгофа, согласно которой интенсивность излучения экспоненциально падает в зависимости от его частоты. Экспоненциальный закон Вина соответствовал экспериментальным данным, но для него не существовало удовлетворительного теоретического обоснования.

— Планк после больцмановской критики его первых идей об излучении черного тела изучил статистические методы коллеги.

Учитывая все это, мы можем рассмотреть ключевой момент открытия кванта энергии, которое очень символично состоялось на рубеже веков.


Закон смещения Вина

Вин доказал, что спектральное распределение излучения черного тела Kv не зависит от частоты ν и температуры Г, но определяется соотношением:

Κv = ν³F(v/T).

где F — функция, зависящая только от ν/Τ. Для обоснования этого закона Вин использовал аргументы как из теории электромагнетизма, так и из термодинамики. Воспользовавшись опытом изучения газа в термодинамике, он представил закрытый цилиндр, заполненный излучением, с движущимся поршнем внутри.

Цилиндр заполнен тепловым излучением, поверхность поршня полностью отражающая. Объем полости содержит плотность электромагнитной энергии uν(Τ), так что общая содержащаяся электромагнитная энергия — это указанная функция, умноженная на объем цилиндра. Если мы будем перемещать поршень с определенной скоростью ν, с учетом эффекта Допплера частота излучения, отражаемого поршнем, будет отличаться от частоты воздействующего на него излучения. Эффект Допплера состоит в изменении частоты волны, вызванном движением источника. Здесь стоит напомнить, что звук — тоже волна. При приближении поезда мы слышим более пронзительный свист, чем он издает на самом деле, потому что фронт волны сжимается, и количество волн на единицу времени увеличивается, то есть растет частота звука, который мы слышим. Когда поезд удаляется, мы слышим более низкий звук. В случае с поршнем при его движении внутрь частота отраженного излучения будет немного больше, чем частота исходного излучения. Открыть этот закон позволило обнаружение баланса энергии до и после небольшого смещения поршня и использование термодинамического подхода. Можно заключить, что длина волны, на которую приходится максимум излучения λмакс, и температура черного тела связаны уравнением:

λмакс Т = константа = 2,898 мм · К.



Рубенс приходит к Планку

Имперский физико-технологический институт был основан в 1887 году по ходатайству Вернера Сименса, которого можно назвать немецким Эдисоном: он изобретал, получал патенты на электроаппараты и основал компанию, принесшую ему целое состояние. Институт располагался недалеко от Берлина и занимался изучением вопросов физики, имеющих промышленное значение. Конкретной целью создания института указывалась разработка стандартов, что было и остается вопросом чрезвычайной важности для промышленности.

В институте была создана оптическая лаборатория, оснащенная самым современным оборудованием. Руководил ею Отто Люммер (1860-1925), талантливый физик-экспериментатор, ученик Гельмгольца. Люммер работал в институте с момента его создания и занимался разработкой и совершенствованием аппаратов для измерения видимого и инфракрасного излучения.

Немецкая промышленность требовала установления стандарта интенсивности освещения. В этот период началось массовое производство электрических и газовых ламп, и необходимо было ввести стандарт, принятый на международном уровне. На этом основании возник интерес к черному телу: если на излучение черного тела не влияют свойства материала, из которого оно изготовлено, при этом излучение зависит только от температуры, что доказано Кирхгофом, можно ли принять его за стандарт?

Одной из первых разработок Люммера, внесших вклад в разрешение вопроса об излучении черного тела, было создание совместно с Ойгеном Бродхуном (1860-1938) фотометра (или фотометрического кубика) — аппарата для измерения интенсивности излучения. Кубик Люммера — Бродхуна сравнивал интенсивность излучения двух световых потоков: один — от эталонного источника, второй — от измеряемого. Кубик представлял собой две совмещенные стеклянные призмы, на поверхность каждой направлялся свой пучок света. В результате преломления экспериментатор мог наблюдать два смежных световых поля и сравнивать их яркость. Удаляя и приближая эталонный источник света, можно было определить интенсивность излучения от измеряемого источника. Однако возможностей кубика Люммера — Бродхуна было недостаточно для изучения спектрального распределения излучения черного тела, поскольку, как мы уже установили, большая часть теплового излучения испускается в инфракрасной части спектра и потому остается для нас невидимой.


Стандарт интенсивности света

Исследования излучения черного тела в Имперском физико-технологическом институте преследовали практическую цель — установить стандарт интенсивности освещения. В конце XIX — начале XX века существовало несколько стандартов для разных стран и разных видов ламп накаливания. Например, английская свеча представляла собой стандарт интенсивности света одной спермацетовой свечи весом 1/6 фунта, горящей со скоростью 120 гран в час.

Сила света черного тела

Экспериментальные данные и теоретические результаты Планка принесли свои плоды, и в 1948 году, с введением международной единицы — канделы (свечи), — произошел отказ от старых стандартов и переход к новым. Яркость излучения черного тела при температуре затвердевания платины равна 60 канделам на 1 см². Учитывая экспериментальные трудности, с которыми связано создание абсолютно черного тела, а также достижения оптики и радиометрии, в 1979 году появилось новое международное определение канделы: «Кандела — сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540-1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 ватт на стерадиан». На практике получается, что свет свечи примерно равен одной канделе, а лампочка на 40 Вт имеет силу света в несколько десятков кандел.


Вместе с Фердинандом Курльбаумом (1857-1927), который также работал в институте и был учеником Гельмгольца, Люммер в 1892 году разработал усовершенствованный вариант болометра. Этот инструмент концептуально идентичен фотометрическому кубику, но измеряет он интенсивность электромагнитного излучения, независимо от того, является это излучение видимым или нет.

Также в 1895 году Люммер и Вин опубликовали совместную статью, в которой анализировали возможные методы создания абсолютно черного тела. До сих пор физики-экспериментаторы пытались использовать различные зачерненные поверхности, но было очевидно, что их излучение не идентично излучению черного тела, то есть не является одинаковым на всех частотах. Вин и Люммер пришли к выводу, что наилучшая модель черного тела — полость с отверстием. Сам Люммер был удивлен, что эту идею до сих пор никто экспериментально не исследовал, хотя она была предложена Кирхгофом почти 40 лет назад (а чуть позже — и Больцманом).

Первыми вариантами полости с отверстием были фарфоровые сферы с отверстием, внутренняя поверхность которых была зачернена сажей. Сфера погружалась в жидкость с контролируемой температурой. Таким образом были проведены исследования температур от -188 до 1200 градусов Цельсия.

В 1898 году Люммер и Фердинанд Курльбаум разработали и создали черное тело с подведенными электрическими контактами. Электропитание до 100 А позволяло достичь температуры 1500 °С. Используя эту полость и болометр, Люммер и Эрнст Прингсгейм (1859-1917) обнаружили первые отклонения от экспоненциального закона Вина, возникающие в длинноволновой и инфракрасной областях.

Летом 1900 года Курльбаум и Генрих Рубенс (1865-1922), профессор физики Технического университета Берлина, провели более точные измерения спектрального распределения и получили результаты, которые расходились с распределением, предсказанным Вином.

Результаты Рубенса и Курльбаума по интенсивности излучения черного тела до длины волны 51,2 мкм в зависимости от температуры соответствовали закону Рэлея. Закон Вина при этом не выполнялся.


В воскресенье 7 октября 1900 года Рубенс с женой пришли в гости к Планку, и Рубенс рассказал коллеге о своих успехах. Для длинноволновой области закон Вина не выполнялся, но с другой стороны, измерения соответствовали закону, предложенному Рэлеем, о котором мы будем говорить в следующей главе. Когда Рубенсы ушли, Планк направился в свой кабинет. Возможно, именно в тот вечер он открыл закон, подаривший ему мировую славу. Планк не выводил его из первого и второго начал термодинамики, а добавил еще одну производную в выражение, открытое ранее для энтропии системы осцилляторов.

На следующий день Планк отправил Рубенсу открытку с новой формулой:

uv = C ∙ V³/(eav/T - 1).

Через несколько дней Рубенс зашел к Планку и сообщил, что его формула полностью соответствует экспериментальным данным.

Только формальное предположение: ε = hv

Планк немедленно принялся за теоретическое обоснование нового закона. Через два месяца напряженной работы, 14 декабря 1900 года, на заседании Немецкого физического общества был представлен его доклад. Этот день многие считают датой рождения квантовой физики. В докладе Планк сообщил, что обнаружил два альтернативных, хотя и схожих доказательства закона. В обоих вариантах использовалась квантовая гипотеза.

Мы изложим фундаментальные идеи одного из следствий закона Планка об излучении черного тела, которое было опубликовано в Annalen der Physik («Анналы физики») в 1901 году. Отправной точкой является отношение между энергией осциллятора Uv и плотностью энергии электромагнитного поля uv, с которой она находится в равновесии:

uv = 8πv²/c³ ∙ Uv

Теперь необходимо найти энергию Uv осциллятора как функцию частоты и температуры. Для этого Планк воспользовался вероятностной интерпретацией энтропии, предложенной Больцманом, а именно уравнением, связывающим энтропию 5 системы с вероятностью Ω:

S = k ln Ω.

Для расчета Ω необходимо знать, сколько возможных конфигураций имеет система при общей энергии всех осцилляторов. Для того чтобы узнать количество конфигураций, Планк воспользовался предположением, что энергия разделяется на дискретные элементы величиной ε. Чтобы исполнялся закон смещения Вина, Планк был вынужден уточнить, что эти элементы энергии, как он их назвал, должны быть пропорциональны частоте п согласно формуле:

ε = hv.

Эти дискретные элементы позже получили название квантов, а представленное выше выражение было названо квантовой гипотезой. Обозначение h — константа, равная 6,62606957(29) · 10~34Дж/Гц, сейчас называется постоянной Планка.

Второе начало термодинамики позволяет использовать энтропию для расчета соотношения между энергией и температурой. После ряда преобразований Планк получил:

uv = 8πh/c³ ∙ v³/hv/kT.

Это та же формула, которую Планк предложил в октябре, но ее новый вид позволяет получить точные выражения для двух констант, С и а, появляющихся в законе. Их величина — С = 8πh/c³ и а = h/k — связывает эти две константы с другими постоянными, такими как скорость света с и постоянная Больцмана k. Весьма важно появление последней константы, взятой из определения энтропии. В последней главе мы рассмотрим некоторые важнейшие следствия отношений между разными постоянными.

Еще раз рассмотрим концептуальные элементы доказательства Планка.

— Электродинамика позволяет сформулировать отношение между механической энергией осциллятора и электромагнитным полем, с которым энергия находится в равновесии. Это отношение строится на предположении, что осциллятор поглощает столько же энергии, сколько излучает. Как можно было ожидать, отношение не зависит от физических характеристик осциллятора, таких как заряд или масса, но связано с частотой и универсальной константой — скоростью света. Это соответствует закону Кирхгофа, согласно которому спектральное распределение излучения не может зависеть от физических характеристик вещества, из которого изготовлены стенки полости.

— Второе начало термодинамики позволяет получить соотношение между внутренней энергией и температурой из выражения энтропии.

— Наконец, вероятностная интерпретация энтропии Больцмана позволяет рассчитать энтропию системы осцилляторов.


Математический вывод закона Планка

Для расчета энтропии взаимодействующих осцилляторов определенной частоты S = klnΩ необходимо рассчитать количество возможных конфигураций Ω. Это количество зависит от всех доступных способов распределения элементов энергии Р величиной ε между количеством осцилляторов, равным Ν. Обозначим элементы энергии кружками, границы элементов, соответствующих одному осциллятору, — крестиками. Любую конфигурацию можно записать в следующем виде.

Этот пример означает, что у первого осциллятора имеется три элемента энергии, у второго — один, у третьего — три, у четвертого — два и так далее. Возможное количество конфигураций нам дает комбинаторика, согласно которой:

Ω = (N + Р-1)!/Р!(N-1)!.

В цепочке у нас есть N + Р - 1 символов. Факториал в числителе означает все возможные комбинации крестиков и кружков. Факториалы в знаменателе показывают, что порядок, в котором идут кружки и крестики, не имеет значения, так как осцилляторы и элементы энергии неразличимы. Планк прибегнул к известному приближению, формуле Стирлинга, по которой Inn! = nlnn - n. И так как N и Р значительно больше единицы, получается:

S = k[(N + Р)lп(N + Р) - PlnP - N/ln/N].

Пользуясь тем, что UN = Pε, и вводя среднюю энергию каждого осциллятора, UN= NU, Планк пришел к следующему выражению:

S = к[(1 + U/ε)ln(1 + U/ε) - (U/ε)lnU/ε].

Для того чтобы выражение энергии, получаемое из выражения выше, соответствовало закону смещения Вина, Планк доказал, что S может быть только функцией частного U/v. Это заставляет прибегнуть к гипотезе ε = hv, в которой h — константа, называемая сегодня постоянной Планка. С учетом этого получается:

S = к[(1 + U/hv)ln(1 + U/hv) - (U/hv)lnU/hv].

Второе начало термодинамики дает нам отношение между энергией и температурой:

1/T = dS/dU

Вычисляя производную и U, мы получаем среднюю энергию осциллятора:

Uv = hv/(ehv/kT - 1)

Используя отношение между энергией осциллятора и электромагнитным полем, с которым он находится в равновесии, получаем выражение:

uv = 8πh/c³·v³/(ehv/kT - 1)

которое представляет спектральное распределение энергии, обнаруженное Планком эмпирическим путем.


К этим факторам Планк добавил квантовую гипотезу, необходимую для выполнения закона, правильность которого была доказана эмпирически. Также отметим, что каждый осциллятор может поглощать и испускать энергию излучения в величине, пропорциональной V. Когда осциллятор поглощает или испускает электромагнитное излучение, его энергия

увеличивается или уменьшается на величину hν. Кроме того, энергия осцилляторов квантуется. Энергия осциллятора с частотой v может принимать следующие величины: hv, 2hv, 3hv, ..., nhv.

Из всех этих составляющих, на взгляд Планка, самой значимой была не квантовая теория, а необходимость прибегнуть к вероятностной интерпретации Больцмана. Нужно понимать, что в конце века электродинамика и термодинамика были достаточно изучены, при этом идеи Больцмана вызывали довольно бурную полемику, особенно в Германии. И Планк стал первым из физиков после самого Больцмана, который использовал его методы. Тот факт, что идеи Больцмана привели его к успеху, поразил самого Планка, и по сравнению с этим квантовая гипотеза отходила на второй план. Как мы увидели, Планк был вынужден прибегнуть к ней, чтобы достичь нужного результата, а именно соответствия закону, который он открыл несколькими месяцами ранее и скрупулезно вместе с Рубенсом проверил его соответствие экспериментальным данным. Только использование квантовой теории позволяло привести расчет вероятностных состояний системы осцилляторов к ожидаемому результату.

Если статьи Эйнштейна (1879-1955) или Шрёдингера (1887-1961) можно сравнить с сочинениями Моцарта, они наполнены вдохновением и внутренней логикой, то статья Планка, опубликованная в 1901 году в Annalen der Physik, похожа на джазовую композицию, а его формула ε = hν — на гениальную импровизацию.

В письме Р. В. Вуду 30 лет спустя Планк размышлял над своей работой и называл то, что сделал, «актом отчаяния».


«Я бился шесть лет (с 1894 года) над проблемой равновесия между излучением и веществом без каких бы то ни было успехов. Я понимал, что эта проблема имеет фундаментальную важность для физики, и я узнал формулу, описывающую распределение энергии в нормальном спектре (то есть спектр черного тела); следовательно, требовалось найти любой ценой теоретическую интерпретацию, однако эта цена могла быть высокой».


Имперский физикотехнологический институт в районе Шарлоттенбург в Берлине. Здесь проводились исследования излучения черного тела, которые привели Планка к формулировке квантовой гипотезы.

Генрих Рубенс, профессор Имперского института физики и технологии в лаборатории. Ему удалось с огромной точностью измерить интенсивность излучения черного тела в инфракрасной части спектра. Эти исследования имели определяющее значение для работы Планка.


Когда Планку пришлось использовать выражение ε = hν, он воспринимал его как исключительно формальное предположение, однако эти формальные костыли привели ученого к искомому результату. Впоследствии многие физики указывали на радикальные последствия этой на первый взгляд невинной гипотезы.


Начало несчастий

Первые годы XX века были самыми счастливыми в жизни Планка. Он был женат на Марии Мерк (1861-1909), у него родились дети — Карл, Грета, Эмма и Эрвин. У него была прекрасная репутация исследователя и профессора, в доме Планков встречались музыканты, ученые, студенты и интеллектуалы той эпохи. Благодаря жалованью профессора и писательским гонорарам ученый не был стеснен в средствах и при этом периодически получал помощь от состоятельного тестя. И весь этот чудесный мир пошатнулся после смерти его жены в 1909 году. Хотя спустя совсем короткое время Планк женился вновь, несчастья с тех пор не оставляли его.

Сына Карла Планк потерял во время войны, в 1916 году. В 1917 году через неделю после родов умерла его дочь Грета. Вторая дочь, Эмма, взяла на себя заботы о ребенке. Ее дружеские отношения со свояком переросли в нечто большее, и Эмма вышла замуж за вдовца в январе 1919 года. Но в декабре этого же года Эмма повторила судьбу своей сестры — она тоже умерла после родов.

В письме Максу Борну Эйнштейн рассказывает, как тяжело ему было видеть Планка после смерти Эммы и как он не мог сдержать слез. Перед смертью второй дочери Планк писал своему коллеге Рунге:


«На Земле есть еще много прекрасных вещей и великих дел, которые нужно совершить, в конце концов ценность жизни определяется тем, как она была прожита. И так каждому человеку вновь приходится возвращаться к своему долгу продолжать жить дальше и выказывать своим близким ту любовь, которой он хотел бы, чтобы любили его».


Вторая жена Планка, Марга фон Хёсслин (1882-1948), всегда поддерживала мужа, а испытаний на его долю выпало немало. В письме, которое Марга написала в 1948 году Эйнштейну, мы читаем: «Он [Планк] полностью раскрывал свои человеческие качества только в семье». С Маргой у Планка родился пятый сын, Герман. Второй брак, забота о двух внучках, воспитанием которых ученый занимался лично, близкие отношения с сыном Эрвином помогли ему пережить несчастья.


Первая мировая война: от манифеста 93-х до отречения Вильгельма I

Германия вторглась в Бельгию 4 августа 1914 года. Макс Планк был в то время ректором Берлинского университета. Начало войны он воспринял с воодушевлением. Волна патриотизма захлестнула всю страну, и большинство немецких ученых и интеллектуалов испытывали те же настроения. Это объясняет появление манифеста, который был подготовлен в ответ на обвинения германской стороны в зверствах при вторжении в Бельгию. Манифест, опубликованный 4 октября 1914 года, носил название «К культурному миру», но больше он известен как Манифест 93-х, так как документ подписали 93 немецких интеллектуала. Среди них были великие немецкие ученые того времени: Планк, а также Габер, Клейн, Ленард, Нернст, Оствальд, Вин и многие другие. Текст был написан драматургом Людвигом Фульдой. Имеются основания полагать, что ни Планк, ни некоторые другие подписавшиеся текст манифеста не читали (что не снимает с них ответственности).

Этот документ воплощал фанатичный патриотизм и содержал фразы вроде: «Вильгельм II за 26 лет своего правления проявлял себя как блюститель всеобщего мира», «Неправда, что наши войска зверски свирепствовали в Лувене. Против бешеных обывателей, которые коварно нападали на них в квартирах, они с тяжелым сердцем были вынуждены в возмездие применить обстрел части города» или даже «Без немецкого милитаризма немецкая культура была бы давным-давно уничтожена в самом зачатке».

Планк и его коллеги не могли или не хотели верить, что те же самые молодые люди, которые несколько месяцев назад смеялись в университетских коридорах, теперь вступили в армию и сожгли библиотеку в Лувене. Речи Планка в качестве ректора и ученого, его письма 1914 года коллегам и членам семьи проникнуты патриотическими чувствами и милитаристской риторикой. В письме 1914 года Вину мы можем прочесть:


«Кроме всех ужасов, есть какое-то неожиданное величие и красота: простое решение всех трудных вопросов национальной политики благодаря сплоченности всех партий, возвышение всего, что есть хорошего и благородного».


Но в 1915 году Планк стал более сдержанным в оценках и вскоре в кругу близких начал высказывать сомнения относительно приверженности к Манифесту 93-х. В этой новой сдержанности определяющую роль сыграл Хендрик Антон Лоренц (1853-1928), практически безоговорочно занимавший вершину европейской теоретической физики конца XIX — начала XX века. Лоренц, с которым Планк поддерживал хорошие отношения, жил в нейтральных Нидерландах и владел языками всех сторон конфликта: немецким, английским и французским. Этот факт, а также его способность к состраданию помогали Лоренцу понимать, какое горе война приносила в оба враждующих лагеря.

Лоренц в своих письмах объяснил Планку, что немецкие войска действительно совершили зверские преступления в Бельгии. В течение 1915 года ученые виделись дважды, в Берлине и в Лейдене, и могли обменяться своими впечатлениями о войне. С этого момента Планк начал активную общественную деятельность. С одной стороны, он хотел показать своим соотечественникам, что Германия также ответственна за развязывание войны и что не всегда ее войска вели себя славно и достойно. С другой стороны, старания ученого были направлены на сохранение международных научных связей. В конце концов, война рано или поздно закончится, а наука не знает границ.

В начале 1916 года Планк отправил Лоренцу открытое письмо с просьбой опубликовать его и передать выдающимся ученым других стран. Это письмо представлялось ученому неким публичным оправданием за ошибку, которую он совершил, подписав Манифест 93-х. И хоть и не безоговорочно, но Планк приобрел имидж умеренного и честного человека у обеих сторон конфликта. В письме ученый объяснял, что Манифест был подписан главным образом с целью поддержать немецкие войска в начале этой судьбоносной для Германии войны; что история должна будет анализировать факты и определять степень вины; что несмотря на войну и страдания, которые она вызывает, существуют области интеллектуальной и нравственной жизни, которые лежат за пределами национальных различий.

Летом 1915 года, когда немцы использовали отравляющие газы против войск союзников при Ипре, началась открытая конфронтация между немецкими, с одной стороны, и английскими и французскими учеными — с другой. Ведущие немецкие химики, возглавляемые будущими лауреатами Нобелевской премии Фрицем Габером (1868-1934) и Отто Ганом (1879— 1968), активно участвовали в подготовке атаки. В ответ французы исключили этих ученых из своих академий. Подобные меры обсуждались и в английских научных обществах. Планк выступал против того, чтобы Берлинская академия физики и математики принимала меры в отношении академий вражеских стран. Благодаря его участию было принято решение отложить все эти действия до конца войны. Также в Берлинском университете Планк прилагал много усилий, призывая своих коллег к большей сдержанности, чтобы избежать разрыва связей с другими странами.

В конце войны, когда рушилась монархия Вильгельма II, в письме Эйнштейну в октябре 1918 года особенно хорошо выражен дух и образ мыслей Планка:


«И здесь есть еще кое-что, что я ясно вижу и ради чего я готов трудиться так хорошо, как только умею: для нас будет большим счастьем, даже спасением, если венценосец сам, добровольно отречется от своих прав. Я не могу идти дальше слова «добровольно» в данном вопросе, потому что, во-первых, я должен быть верным своей клятве и, во-вторых, есть то, чего вы никогда не поймете, [...] не знаю, жалость и нерушимая приверженность к тому, чему я принадлежу, к тому, что воплощено в фигуре монарха».


Вильгельм II отрекся от трона 9 ноября 1918 года. После провозглашения Веймарской Республики Планк выразил поддержку Немецкой народной партии — крайне правой партии националистического толка.


Гибель карла под Верденом

Карлу Планку было 25 лет, когда его отец стал ректором Берлинского университета. В это время у Карла не было постоянной работы, он страдал от депрессий. Макс Планк связывал проблемы своего сына с общими трудностями поколения, которое не могло отличить то, чего оно хочет, от того, что может совершить.

Когда вспыхнула война, Карл поступил в артиллерийское училище, Эрвин отправился на фронт, а их сестры начали работать в Красном Кресте. В этот момент Макс Планк был подхвачен патриотическим духом, который господствовал в немецком обществе. В письме своей сестре в сентябре 1914 года он ликует: «В какие славные времена мы живем! Какое прекрасное чувство — называть себя немцем!»

Битва при Вердене продолжалась почти весь 1916 год, с февраля по декабрь. Наступление немецких войск в районе Вердена имело целью не столько разгромить, сколько измотать французскую армию. Развертывание операции происходило так же, как и в других немецких наступлениях на Западном фронте: многообещающее начало, практически полный разгром французской армии, позиционная война и частичное восстановление сил французов. В Верденской операции погибло более 200 тысяч человек. Одним из них стал Карл Планк.

Карл погиб 26 мая 1916 года от ран, полученных в бою. Планк видел, как его коллеги теряли сыновей (такое же горе пришлось пережить и близкому знакомому Планка, Вальтеру Нернсту, лауреату Нобелевской премии в области химии 1920 года), но признавал, что «страдание, которое приносит война, по-настоящему ранит того, кто чувствует его на своем собственном теле». К гибели сына примешивалось чувство неудовлетворенности от того, что он как отец не понимал Карла до войны. Сын так и не смог заняться тем, что имело бы ценность в глазах отца. Призыв в армию и смерть в бою изменили все. В одном из писем Планк с горечью признает: «Если бы не было войны, я никогда не узнал бы его ценность, а сейчас, когда я знаю ее, я потерял его». Как далеко позади остались патриотические призывы, звучавшие в начале войны!


Охотник за талантами

Планк всегда поддерживал лучших ученых своей страны и старался помогать им. Он не только заботился о своих учениках в Берлине, но лично развернул активную деятельность для того, чтобы лучшие немецкоговорящие физики перебрались в его город. С этой целью в период между 1905 и 1930 годами он использовал все свое влияние, находясь на разных ответственных постах. Все те люди, кто был связан с Планком, отмечают его доброжелательность и прекрасный характер. Встречи у него дома, музыкальные вечера, научные дискуссии, поездки в горы — все это придавало месту в окружении Макса Планка дополнительную привлекательность.

После смерти Больцмана в 1906 году Планк подумывал о том, чтобы принять предложение от Венского университета и занять место Больцмана на кафедре теоретической физики. В конце концов он решил остаться в Берлине, и сюда для работы с прославленным ученым переехала Лиза Мейтнер, талантливая воспитанница Больцмана. Планк принял Лизу в своем доме и, хотя первоначально был настроен скептически из-за того, что Мейтнер была женщиной, впоследствии все больше поддерживал ее, понимая ее исключительную одаренность.

Мейтнер начала работать в Институте химии при университете с Отто Ганом (он также был частым гостем в доме Планков) и между 1907 и 1938 годами интенсивно занималась проблемами ядерной физики. Химик Ган и физик Мейтнер сделали немало открытий в эти годы. Важнейшее из них — расщепление ядра урана — было осуществлено в конце их совместной работы, когда Мейтнер пришлось покинуть Германию из-за своего еврейского происхождения.

В 1912 году Планк назначил Лизу Мейтнер своим ассистентом и таким образом обеспечил ей научный заработок, ведь ее деятельность в Институте химии не оплачивалась. Более того, женщина-ученый Мейтнер не имела права пользоваться главным входом в институт, и специально для нее в подвале была сделана дверь. По всей видимости, ученые мужи не могли смириться с дамой-ученым, и один взгляд на нее в коридорах института отвлекал их от высокой миссии. Через несколько лет Мейтнер была назначена адъюнкт-профессором института с более соответствующим ее статусу жалованьем. В 1914 году она получила прекрасное предложение от Пражского университета, однако Планк приложил все силы, чтобы Лиза осталась в Берлине, и ради этого убедил директора института Фишера вдвое увеличить ее жалованье.

В 1918 году Мейтнер и Ган открыли протактиний. В 1919 году она получила профессорское звание, вероятно став первой женщиной-профессором в Германии.


Планк и музыка

В Европе в конце XIX — начале XX века музыка была необходимой составляющей хорошего воспитания. Во многих буржуазных домах имелись фортепиано. Согласно архивным данным, в 1845 году в Париже было более 60 тысяч фортепиано. В XIX веке Германия стала центром европейской музыки. Немцами были великий Бетховен, родившийся в Бонне, Брамс, родившийся в Гамбурге, а также Мендельсон, Шуман, Вагнер и Малер. Большинство величайших композиторов XIX века были немцами. Многие из физиков, с которыми был знаком Планк, тоже хорошо играли на каком- либо инструменте. Эйнштейну покорились фортепиано и скрипка, Гейзенберг имел репутацию прекрасного пианиста. Пауль Эренфест (1880- 1933), нидерландский физик австрийского происхождения и близкий друг Альберта Эйнштейна, играл на фортепиано. Вместе с Эйнштейном они с удовольствием исполняли сонаты Брамса. Планк пел в университетском хоре и писал музыку — ему принадлежит оперетта под названием Liebe im Walde («Любовь в лесу»). Во время религиозных служб в университете ученый играл на органе, музицировал на фортепиано и виолончели. Кроме того, он имел талант композитора. В те времена Германия переживала такой расцвет музыки, какого больше не было нигде и никогда. Музыка всегда была частью мира Планка. После его переезда в Берлин Имперский физико-технологический институт получил большую фисгармонию, сделанную по заказу министерства. Планк был назначен ответственным за проверку инструмента и возможности его использовать для вокального сопровождения. Этот эпизод ясно говорит о глубине музыкальных познаний Планка.


Планк и Мейтнер всегда тесно общались, именно он убедил Лизу остаться на должности даже после введения расистских законов. Мейтнер выдержала до 1938 года, а затем бежала из страны не без риска для жизни, так как на тот момент выезд был сильно затруднен. Если бы не Планк, скорее всего, она покинула бы Германию на несколько лет раньше.

Еще один пример деятельности Планка по привлечению талантов в немецкую науку — сам Эйнштейн. После того как Планк прочел в 1905 году его статьи по фотоэффекту и специальной теории относительности, он заинтересовался молодым ученым. В 1913 году Вальтер Нернст и Макс Планк поехали на отдых с семьями в Цюрих и посетили там Эйнштейна, чтобы убедить его перебраться в Берлин.


Лиза Мейтнер и расщепление урана

Когда Лиза Мейтнер была вынуждена бежать из Германии, она совместно с Отто Ганом и Фрицем Штрассманом (1902-1980) проводила эксперименты над ураном, бомбардируя его ядро нейтронами. Ученые пытались воспроизвести опыты Энрико Ферми, которые должны были привести к получению новых трансурановых элементов. Когда Мейтнер уже была в безопасности в Стокгольме, 19 декабря 1938 года она получила письмо от Гана, в котором тот сообщал ей последние результаты: среди остатков облученного урана они нашли вещество, которое предварительно приняли за радий, но которое было, без сомнений, радиоактивным барием. Атомный вес урана 238, бария — 137. В это время к Мейтнер в Швецию на рождественские каникулы приехал ее племянник, также физик, Отто Фиш. Она показала Фишу письмо Гана, и тетушка с племянником пошли прогуляться.

Лиза Мейтнер и Отто Ган работают в лаборатории.


Искра атомной бомбы

Эта прогулка — легендарный эпизод в истории физики XX века. Они остановились около дерева, Мейтнер достала карандаш, бумагу и начала делать расчеты. Эти записи показали, что расщепление ядра было не только возможным, но также, согласно формуле Эйнштейна Е = mc², при этом должно было выделяться огромное количество энергии. Через несколько дней Фиш встретился с Нильсом Бором и рассказал ему о результатах расчетов, которые они сделали с тетей. Бор немедленно понял эпохальный характер открытия. В январе он отправился в Соединенные Штаты и привез с собой новость о расщеплении ядра. С тех пор началась гонка за контролем над ядерной энергией. Через несколько лет, после окончания войны, Лиза Мейтнер по приглашению нескольких университетов и исследовательских центров поехала в Соединенные Штаты. Пресса в погоне за сенсацией придумала историю, что она бежала из Германии, унося с собой секрет создания атомной бомбы, и передала его союзникам. В Голливуде Лизе даже предложили сделать фильм на основе этой истории, однако Мейтнер отвергла это предложение, заявив, что уж лучше пройдется голой по Бродвею.


Нернст и Планк предложили молодому коллеге место в Прусской академии наук, кафедру в Берлинском университете (без академической нагрузки) и направление в Институт физики, над созданием которого в это время работали. Условие, что он не должен будет читать лекции, было важным для Эйнштейна, который хотел заниматься только исследовательской деятельностью. Он принял эти условия, а Планк с Нернстом подготовили письмо прусскому министру образования, в котором описывали достоинства молодого физика. Эйнштейн вступил в новые должности в Берлине 7 декабря того же года. В переписке с другом ученый признает, что это предложение привлекло его прежде всего возможностью работать бок о бок с Планком. Эйнштейн и Планк дружили и тесно общались до прихода к власти Гитлера.

Среди талантливых ученых, которые вращались в звездной орбите Планка, ближе всех к нему находился Макс фон Лауэ (1879-1960). Он был профессором-ассистентом Планка между 1905 и 1909 годами, они вместе работали над проблемами термодинамики электромагнитного излучения. Фон Лауэ был удостоен Нобелевской премии в области физики в 1914 году за предсказание дифракции рентгеновских лучей, что подтверждало их волновой характер.

Лауэ был почитателем таланта и хорошим другом Эйнштейна, а кроме того, стал одним из экспертов по вопросам относительности в 1920-х годах. Он был единственным антифашистом в Прусской академии наук и гораздо более решительно, чем Планк, противостоял режиму. Однако фон Лауэ полностью осознавал всю тяжесть жизни при нацистах, поэтому не осуждал коллегу и друга за некоторое малодушие. Фон Лауэ, выступая на похоронах Планка, произнес следующие слова:


«Передо мной самый простой венок без подписей. Его положил я от имени всех его учеников, среди которых и я сам, в знак нашей любви и безграничной благодарности».


Фон Лауэ и дифракция рентгеновских лучей

Макс фон Лауэ полагал, что, так как рентгеновские лучи представляют собой очень короткие волны по сравнению с межатомными расстояниями в кристаллической решетке, лучи на такой решетке могут дифрагировать. Расстояние между атомами кристаллической решетки примерно 1,2 нанометра (один нанометр (нм) — одна миллиардная часть метра, или 10-9м). Фон Лауэ предсказал дифракцию рентгеновских лучей (длина волны которых могла быть до 10 нм) на твердых веществах, имеющих кристаллические решетки, так же, как это происходит на дифракционных решетках с видимым излучением. Дифракция рентгеновских лучей после ее открытия стала важным инструментом для распознавания структуры кристаллических решеток; так, она была использована для вывода пространственной структуры сложной макромолекулы. Одним из самых эффектных открытий, которому способствовала дифракция рентгеновских лучей, стала структура двойной спирали молекулы ДНК. Эта структура была предложена Уотсоном и Криком на основании модели дифракции рентгеновских лучей на кристаллах ДНК.


Первоначально статья, опубликованная Планком в 1901 году в Annalen der Physik, в которой впервые упоминалось о квантовой теории, не получила должного резонанса. Немногие могли понять ее значение, да и тепловое излучение в эпоху великих открытий рентгеновских лучей и радиоактивности считалось второстепенной темой. В последующие годы физики использовали два подхода к работам Планка. Одни, например Джеймс Джинс (1877-1946), Эренфест и Лоренц, критиковали ученого и утверждали, что закон излучения черного тела, сформулированный Планком, не основан на известных постулатах. По их мнению, квантовая теория была чуждым элементом для физики той эпохи. Вторые, среди них можно выделить Эйнштейна, начали применять открытие Планка к другим проблемам физики со все возрастающим успехом. Со временем квантовая теория полностью изменила концепцию современной физики.

Загрузка...