Глава VIII Обновление теории

Старое не разрушается, но исчезает, расплывается благодаря созданию нового, и часть этого нового оказывается сущею в старом, хотя она и не была в нем видна.

В. И. Вернадский


Движение мысли и техника

Наука — искание истины. История науки — история идей и теорий, движения научной мысли. Казалось бы, при чем тут техника? Для быстроты движения людей техника необходима. Но что она дает для быстроты движения бесплотных идей?

Очень много. С помощью техники наука стала развиваться с космической, никогда прежде не виданной скоростью. Например, число научных работ в нашем веке увеличивается в геометрической прогрессии.

Могла ли существовать наука без техники? Без часов, микроскопов, телескопов, призм, химических реактивов, электрических приборов и великого множества других приспособлений, выдуманных и построенных человеком?

Одними лишь рассуждениями науку не создать. Наши биологические приборы — органы чувств — имеют очень ограниченные возможности. Глаз видит крохотную часть спектра электромагнитных волн и предметы лишь очень ограниченных размеров. Ухо ощущает незначительный диапазон звуковых волн, да и тот с годами убывает. Еще более ограниченны (даже в сравнении с животными) возможности обоняния, вкуса, осязания.

Наши органы чувств имеют еще один серьезный недостаток, с точки зрения науки. Они не у всех людей одинаковы. Даже цвета большинство людей воспринимают по-разному. А уж о звуках или вкусовых ощущениях и говорить нечего.

Галилей проводил физические опыты, используя вместо секундомера удары своего сердца. Однако известно, как сильно различаются между собой пульсы разных людей. У одного и того же человека сердце то колотится очень часто (при возбуждении), то успокаивается и бьется медленно (во время сна). Что бы вышло, если б каждый ученый полагался лишь на биение собственного сердца?

У техники этих недостатков нет. Она необычайно расширяет окружающий нас мир, открывая нам его мельчайшие малости (атомы, ядра атомов, элементарные частицы) и огромные огромности (световые годы астрономии, миллионы лет геологической истории). Физик О. Винер предлагал считать технику продолжением человеческих органов чувств и движений.

Техника бесстрастна, объективна. Большинство людей видят листья зелеными, а немногие — дальтоники — синими или серыми. Для техники цвета и вовсе нет. Есть просто излучение или поглощение световых волн определенной частоты. Вот и все. Так же как вместо «громко» или «тихо» прибор отмечает количество децибеллов — число, определяющее силу звука. Конечно, и приборы не все одинаково точны. Но уж одно то, что они дают цифровые показатели вместо неопределенных слов «много» или «мало», «сильно» или «слабо», делает их незаменимыми для науки.

Почти всеми своими успехами наука обязана технике. А современная техника была бы невозможна без науки.

Без поддержки техники некоторым идеям невозможно войти в науку. Так, атомы, выдуманные древнегреческим философом Демокритом, более двух тысяч лет ждали того времени (прошлый век), когда они стали доказанным научным фактом. Предположения о великой древности Земли, высказанные некогда мудрецами Древней Индии, лишь через три тысячи лет укрепились в науке (тоже прошлый век) после создания стройной системы геологии.

Нечто похожее происходит в истории каждой науки. Вдруг появляется новый прибор или новый метод анализа, после которого следует лавина новых фактов. Она сметает одни идеи и вливает силы в другие. Она пробуждает новые мысли и гипотезы.

Так случилось и с четвертичной геологией. Еще сравнительно недавно, пятьдесят лет назад, она, казалось, стала выдыхаться и многие споры геологов-четвертичников заходили в безнадежные тупики.

Сколько было оледенений? По количеству террас и отложениям ледников и теплых межледниковий судить невозможно. Для каждого района разное получается количество. Потому что число террас, высота их, число слоев морены или древних торфяников очень изменчиво. Сопоставить разные районы и разные континенты и вовсе затруднительно. Как узнаешь, одновременно или нет протекали оледенения в Европе и Америке? Надо отыскать такие «геологические часы», которые одинаково и одновременно действовали на обоих этих континентах.

Вышло так, что в каждом мало-мальски значительном районе в пределах великих ледников появилась своя собственная, местная схема оледенения.

Есть легенда о строительстве Вавилонской башни. Люди захотели возвысить ее до небес, чтобы достичь обители богов. Поднялась башня к облакам. Да помешало людям многоязычие. Они говорили на разных языках, не понимали друг друга, все чаще ссорились и, в конце концов, переругавшись окончательно, забросили великую стройку и разбрелись по всему миру.

Подобный конец стал угрожать строителям великой ледниковой теории. Почти в каждой европейской стране появилась своя особенная схема истории четвертичного периода. В некоторых странах подобных схем оказалось несколько. В нашей стране число их, пожалуй, перевалило за десяток. Геологи, работающие в соседних районах, давали (и дают) предполагаемым оледенениям и межледниковьям имена по названиям местных рек, озер или деревень своего района. И количество оледенений у этих исследователей-соседей часто не совпадает.

Четвертичная геология заходила в тупик (не тогда ли проклюнулись первые ростки антигляциолизма?). И не было видно выхода из него, местные схемы и названия множились, дробились, враждовали.

Четвертичная геология преодолевает теперь этот кризис при помощи двух новых методов исследований: радиогеологии и спорово-пыльцевого анализа.


Пыль на страницах каменной книги

В двадцатых годах нашего века исследователи болот стали обращать внимание на споры и пыльцу растений, заключенных в торфяниках. Болотоведам для различных целей важно знать состав растительности, остатки которой слагают торф. Однако не все остатки сохраняются за долгие века и тысячелетия.

Высшие растения размножаются при помощи пыльцы и спор. Эти мельчайшие половые клетки рассеиваются растениями ежегодно в неисчислимых количествах. Они витают в воздухе неделями, путешествуют из страны в страну, а подчас и с континента на континент. Они плавают в речных, озерных и морских водах, попадают в легкие животных, в пищу, в почву.

Обычно пыльца и споры имеют очень прочные, устойчивые оболочки. Они противостоят химическим воздействиям, почти не разрушаются в воде и на воздухе и способны очень долго сохраняться в горных породах. Споры и пыльца растений разных видов достаточно характерны. По ним можно определить вид растения.

Метод определения растений по спорам и пыльце назвали спорово-пыльцевым анализом. В конце сороковых годов была основана новая наука — палинология («палино» — «разбрасывать, распылять», «пале» — «тонкая мука», «логос» — «учение»).

Оказалось, что споры и пыльца растений могут быть использованы для разных целей. Они помогают в расследовании преступлений, в производстве лекарственных препаратов, в определении сортов меда. Они интересуют и медиков, так как пыльца может быть причиной некоторых заболеваний (например, эпидемий сенной лихорадки), и металлургов, так как при тонком фасонном литье модели осыпают спорами плавуна. Когда потребность в этих спорах сильно возросла, пришлось проводить специальные научные изыскания, чтобы найти им подходящую замену.

И все-таки наиболее ценные результаты, пожалуй, получены палинологией в четвертичной геологии.

Как определить, образовались глинистые и песчаные слои в студеных ледниковых озерах и реках или в теплых межледниковых водоемах? Чем отличаются отложения разных межледниковых эпох?

На эти очень важные вопросы дает ответ спорово-пыльцевой анализ. Ответ не всегда точный, но это все-таки несравненно больше, чем полное отсутствие ответа.

Предположим, в береговом обрыве обнажены межледниковые отложения. Из каждого слоя отбирают образцы и отправляют в лабораторию. Здесь их растирают в порошок, обрабатывают химическими реактивами и с помощью центрифуг отделяют пыльцу и споры от прочих частиц и растительных остатков.

В результате от полукилограммового образца остается крохотная щепотка пыльцы, спор и не отделенных от них клеток водорослей и растительной ткани.

У палинологов имеется множество таблиц, по которым они сличают увиденные под микроскопом частички. Это напоминает определение минералов. Только здесь главное не цвет, а форма зерен. Пыльца и споры напоминают микроскопические округлые кристаллики. Иногда у них есть воздушные мешочки, иногда они подобны пропеллеру. Если еще учесть, что размеры пылинок — сотые и тысячные доли миллиметра, то не удивительны их длительные, едва ли не кругосветные путешествия.

Правда, пыльца некоторых растений (лиственницы, например) не очень устойчива и плохо сохраняется в ископаемом состоянии. Это, конечно, снижает возможности анализа. Способность пыльцы к большим перелетам усложняет реконструкцию природной остановки: пыльца, встреченная в образце, могла принадлежать растениям, находящимся в десятках и сотнях километров от этих мест.

Отдельные пылинки могут попасть в образец случайно. К тому же важно знать не только какие растения жили здесь в то время, когда осаждался слой, но и выделить среди них главенствующие и редкие. Для этого подсчитывают количество в образце спор и пыльцы каждого вида растений.

Если, к примеру, в образце содержится пятьдесят процентов пыльцы ели и тридцать — пыльцы луговых растений, в этих местах росли когда-то еловые леса среди лугов.

Конечно, сложностей и неопределенности в спорово-пыльцевом методе много. Однако для выяснения природы межледниковий он дает незаменимые материалы. Крупные растительные остатки, кости животных и каменные орудия человека встречаются сравнительно редко. А пыльца и споры присутствуют почти во всех слоях. Лишь в ледниковых отложениях да в хорошо перемытых речных песках их мало.

Спорово-пыльцевой анализ получил особенно широкое распространение в нашей стране. Одним из первых было исследовано на споры и пыльцу знаменитое лихвинское обнажение. Палинологический анализ подтвердил, что климат во время лихвинского межледниковья был несколько теплее современного. В районе Калуги тогда, судя по ископаемой пыльце, росли широколиственные леса, с обилием граба. Было немало и хвойных деревьев: ели, пихты. Жили здесь вечнозеленый тис, грецкий орех, кувшинки Эвриала и бразения и некоторые другие растения, сохранившиеся с более древнего, третичного времени. Такие необычайные для современных ландшафтов растения в составе флоры получили название экзотов.

Палинологический анализ позволяет определить относительный возраст слоев горных пород. Чем больше пыльцы экзотов, тем обычно древнее слой. Чем больше пыльцы современных растений, тем слой моложе.

Еще существеннее другой признак: последовательность появления видов растений в пачке слоев.

В лихвинском разрезе сразу же ниже морены (в которой содержится ничтожное количество спор и пыльцы) залегает суглинок с обилием пыльцы ели: следы еловых лесов.

Во втором слое появляется пыльца сосны и широколиственных пород — дуба, черной ольхи, ясеня, а также пыльца экзотов — папоротника Осмунда, живущего теперь лишь в Юго-Восточной Азии. Очевидно, во времена накопления этого слоя местный климат был мягче современного.

В третьем слое преобладает пыльца ели и дуба, а также граба и дальневосточной кувшинки бразении. Это свидетельствует о теплом и влажном климате.

На геологическом разрезе, внизу: межледниковые лихвинские глины (горизонтальная штриховка), лежащие между слоями ледниковых песков, под мореной. Выше — пыльцевые диаграммы лихвинского разреза (слева направо): содержание пихты, сосны, ели, дуба, граба и березы. Фазы изменения растительности (снизу вверх, от настоящего к прошлому): еловые леса (V), сосново-еловые (IV), елово-широколиственные (III), дубово-грабовые (II), смешанные дубово-грабовые и елово-пихтовые (I). Вверху слева — пыльца некоторых растений, характерных для межледниковых эпох, справа — для ледниковых.

В следующем, четвертом слое содержание в образцах пыльцы граба достигает сорока — шестидесяти процентов, а дуба — снижается до двадцати процентов. Обнаружена здесь и пыльца некоторых теплолюбивых водных растений, сохранившихся теперь лишь на юге Азии или Европы. Известно, что граб любит климат влажный (шестьсот — семьсот миллиметров осадков в год) и теплый, со среднегодовой температурой не ниже +6°. Следовательно, остатки граба могут служить неплохим «геологическим термометром».

Следующий слой беден пыльцой граба и дуба. Главенствует пихта. На смену широколиственным приходят хвойно-широколиственные леса.

И наконец, в нижнем, шестом слое преобладает пыльца ели (до семидесяти восьми процентов), сосны, березы. Редки — ольха, ива.

Так менялась растительность в лихвинское межледниковье: еловые леса постепенно обогащались широколиственными породами, становились из елово-сосновых — елово-дубовыми. Затем пришел черед широколиственным грабово-дубовым лесам. Позже в них вновь стали появляться хвойные (пихта, ель). И завершается все, как и началось, еловыми лесами…

Обычно результаты спорово-пыльцевых анализов представляются в виде диаграмм. По вертикали наносится геологический разрез. Цифры о содержании откладываются напротив каждого исследованного образца. В целом по разрезу видно, что растения как бы накатывались и отступали, подобно волнам.

Порядок чередования господствующих растений обнаруживает ясную закономерность: холодолюбивые леса сменяются теплолюбивыми и возвращаются вновь. Значит, сначала было холодно (нижний слой), затем тепло. Позже вновь наступили холода, и, наконец, надвинулся ледник (отложилась морена). Для межледниковья — вполне правдоподобная картина.

А в Рославле, южнее Смоленска, и в некоторых других местах обнаружены между двумя моренами межледниковые отложения, где пыльца широколиственных теплолюбивых растений встречается в большом количестве дважды. Образует как бы две волны.

Судя по пыльцевым диаграммам, история растительности в это время была такова. Сначала (нижние слои), после таяния ледника, росли здесь еловые леса, сменившиеся сосновыми борами и чуть позже березовыми рощами. Началось потепление. В лесах стали преобладать дубы и вязы, хотя сохранилось немало ели. Но вновь, по-видимому, похолодало: широко распространилась береза, затем ель и снова береза. Пока, наконец, не вернулось тепло (пыльца дуба, вяза, липы, лещины).

В лихвинское межледниковье было как будто одно потепление. Росло немало третичных видов и в значительном количестве пихта. А в рославльских отложениях — сразу две волны потепления, разделенные прохладным интервалом. И мало экзотов, нет пихты.

Судя по всему, это две разных межледниковых эпохи: лихвинская — древняя, рославльская — более поздняя.

На берегу реки Мги, недалеко от Ленинграда, между двумя моренами залегают отложения рек, озер и морей (песок, глина), в которых пыльцевые спектры отличаются от лихвинских и рославльских.

Над нижней мореной лежит слой, где чередуются тонкие прослои глин и песков. Такие слои называются «ленточными глинами».

Каждый слой песка или глины подобен годовому кольцу дерева. Как мы уже знаем, подобные годовые слои можно использовать в качестве «геологических часов». Одновременно они могут служить неплохими индикаторами климатов прошлого.

В ленточных глинах и песках мгинского разреза обнаружены пыльца и споры тундровых мхов и кустарничков с преобладанием карликовой полярной березы. Последующее потепление оттеснило тундру на север, уничтожило вечную мерзлоту. Появились березовые и сосновые перелески, постепенно превратившиеся в сплошные леса.

Потепление продолжалось, открывая путь пришельцам с юга — широколиственным деревьям: дубам и вязам. В лесах некоторое время росло очень много орешника.

Позже дубово-вязовые леса стали замещаться елово-грабовыми. А на смену им пришла таежная растительность: сначала сосново-еловые леса с примесью широколиственных деревьев, а затем сосново-березовые леса. Вновь началось похолодание. И наконец, слой морены — свидетельство вторжения ледника.

Чередование волн растительности этого межледниковья достаточно своеобразно. Надо еще учесть, что под Ленинградом верхняя морена, оставленная последним ледником, имеет возраст десять — двадцать тысячелетий (подсчеты велись, в частности, по ленточным глинам). Далеко на юг она не заходит. Она явно моложе рославльской верхней морены. Значит, мгинское межледниковье моложе рославльского.

Спорово-пыльцевой анализ позволяет выделить на Русской равнине отложения по крайней мере трех межледниковых эпох, которые разделяют четыре ледниковые эпохи. Возможно, имеется и более древнее межледниковье и соответствующая ледниковая эпоха. Об этом геологи спорят до сих пор.

Для Русской равнины обычно приняты такие названия (от древних эпох к современности):

окская ледниковая эпоха;

лихвинское межледниковье;

днепровская ледниковая эпоха (в это время, как считается, ледники достигали наибольшей величины и простирались по Днепру до широты Киева);

рославльское (одинцовское) межледниковье;

московская ледниковая эпоха;

мгинское (микулинское) межледниковье;

валдайская ледниковая эпоха (ледники доползали лишь до Валдайской возвышенности);

послеледниковое время, голоцен.

В таком виде основные этапы четвертичной истории Русской равнины напоминают «классическую» альпийскую схему:

оледенение гюнц;

межледниковье гюнц-миндель;

оледенение миндель;

межледниковье миндель-рисс;

оледенение рисс (оно обычно считается самым обширным);

межледниковье рисс-вюрм;

оледенение вюрм.

Некоторые исследователи Альп отмечают еще древнейшее догюнцское похолодание (дунайскую ледниковую эпоху), так же как некоторые исследователи Русской равнины пишут о доокском оледенении.

Однако классическая альпийская схема за последние десятилетия так усложнилась, что оледенений порой насчитывают более десятка. Одних только дунайских оледенений — три, да миндельских — три…

Между прочим, ученые Северной Америки обычно признают четыре оледенения:

небрасская ледниковая эпоха;

афтонское межледниковье;

канзасская ледниковая эпоха;

ярмутское межледниковье;

иллинойская ледниковая эпоха;

сангамонское межледниковье;

висконсинская ледниковая эпоха (наиболее значительная).

Чем вызвано сходство «классических схем» расчленения четвертичного периода России, Америки и Европы? Или действительно «холодные волны» ледников накатывались одновременно в разных местах? Или просто ученые ненароком приводили свои наблюдения и выводы к признанным схемам Пенка и Брюкнера?

Трудно ответить на этот вопрос. Сопоставлять слои горных пород, растительность и животный мир районов, удаленных один от другого на тысячи километров, — дело очень деликатное.

Отдельные виды животных или растений могут распространяться из одного центра, подобно волне от упавшего в воду камня. Они достигают отдаленных районов не вдруг. И за то время, пока они распространяются все шире и шире (обычно в полосе одной климатической зоны), в центре, откуда они вышли, обстановка может измениться. Не исключено их полное вымирание у себя на родине и сохранение лишь в отдельных районах. Поэтому остатки одних и тех же мамонтов Азии и Америки могут встречаться в слоях разного возраста. Ведь мамонты переходили из Азии на Аляску. Ко времени их процветания в прериях и тайге, окружающей Великие озера, они могли полностью исчезнуть в неуютных нагорьях Сибири.

Возможно, одни и те же виды образуются независимо в нескольких районах. Так, первобытный человек вовсе не обязательно произошел от одного предка. Есть мнения о «двух ветвях» предков человека, давших начало современным расам. Некоторые антропологи предполагают несколько таких ветвей. Тогда родословное древо современного человечества уподобляется настоящему дереву с разветвленными корнями, соединяющимися в единый ствол — Homo sapiens, человек разумный.

Правда, проследить родословную человека нелегко. Она до сих пор не выяснена полностью. Лучше обстоит дело с орудиями труда.

Каменные палеолитические орудия разных народов на разных континентах обнаруживают очень много общего. Первые орудия грубо оббиты, неровны, часто получены случайными сколами, однообразны. Затем, этап за этапом, идет улучшение их качества, красоты, орудия становятся разнообразнее.

Более сложные и совершенные произведения следуют за простыми и несовершенными. И поэтому одни и те же этапы развития каменных орудий отмечаются и у бушменов Африки, и у аборигенов Австралии, и у индейцев Америки, и у древних жителей Европы.

Предположим, вы нашли каменные рубила, обработанные так, как это делали в верхнем палеолите. Одно рубило — под Москвой, другое — в американских прериях, третье — в африканской саванне, четвертое — в Новой Зеландии.

Можно ли утверждать, что эти рубила изготовлены одновременно? Можно. Ведь все орудия изготовлены в одно и то же «археологическое время», в эпоху верхнего палеолита.

Но как признать одновременность появления этих орудий, если, скажем, в Европе рубило изготовлено сорок тысяч лет назад, в Америке — двадцать, в Африке — десять, а в Новой Зеландии — тысячу лет назад? Выходит, «астрономическое» время появления этих орудий разное.

«Археологическое» время не совпадает с «астрономическим». Первое показывает как бы местное время для отдельных районов. А второе — всеземное время, солнечное.

То же и с «палеонтологическим» временем, отмечающим появление, расцвет, вымирание различных видов животных и растений. Спорово-пыльцевые диаграммы — один из видов «палеонтологических часов». Если в нескольких районах получены сходные спорово-пыльцевые диаграммы, значит, можно говорить о палеонтологической одновременности событий. Но из этого вовсе не следует, что события происходили в один и тот же год — одновременно по «астрономическим часам».

Однако сравнительно недавно ученым открылись пути для преодоления трудностей, связанных с расхождениями в показаниях разных «геологических часов».


Всеземное время

В начале нашего века для каждого более или менее значительного района существовали свои собственные «геологические часы» (так мы условились называть любой способ определения последовательности событий прошлого: палеонтологические остатки, ступени террас, слои горных пород).

Как сопоставить между собой показания всех «геологических часов» для всей Земли?

До нашего века попытки изобрести такие всеобщие часы кончались неудачей. Правда, для последних тысячелетий оказалось возможным подсчитывать астрономические годы по ленточным глинам, по годовым слоям. Но уж слишком мал измеряемый интервал.

Любые измерения невозможны без ошибок, неточностей. Даже для истории четвертичного периода несколько тысячелетий не имеют существенного значения. Но что делать, если невозможно сравнить историю нескольких районов, а расхождение часов достигает сотен тысячелетий?

В 1909 году появилась книга Джона Джоли с названием «Радиоактивность в геологии». Идеи физиков о радиоактивном распаде атомов из лабораторий перешли в геологию. Один из основателей современной геохимии В. И. Вернадский опубликовал несколько работ о значении исследований радиоактивности для познания Земли. В России по его инициативе была организована радиевая экспедиция (1909 год), а позже — Радиевый институт.

Родилась новая наука — радиогеология.

При радиоактивном распаде излучается тепло. Количество радиоактивных атомов в земной коре очень велико. Распад их происходит постоянно. По некоторым подсчетам, излучаемого при этом распаде тепла должно хватить на то, чтобы плавить земную кору, вспучивать горные гряды и прогибать каменную твердь на многие километры.

Геологи очень обрадовались. Наконец-то найден основной источник энергии Земли, главная сила, направляющая течение геологических процессов!

Но радость была преждевременной. Позже выяснилось, что значение радиоактивности в жизни Земли было сильно преувеличено. Сказалась излишняя увлеченность новыми идеями.

Значительно счастливее сложилась судьба других идей радиогеологии, связанных с измерением геологического времени в годах, или, говоря иначе, с абсолютной геохронологией.

Радиоактивные минералы оказались превосходными часами. Распад этих минералов («ход часов») идет непрерывно. На него не влияют как будто физические и химические воздействия извне. Чем не идеальные часы! Единственная сложность: радиоактивные часики ничтожно малы, порою и в микроскоп неразличимы. Узнавая по ним время, приходится проделывать исключительно сложные лабораторные исследования и непростые расчеты.

Геофизическая техника за последние десятки лет развивается так быстро (как и вся техника вообще), что замеры времени по «радиоактивным часам» давно перестали удивлять даже неспециалистов.

Суть этих измерений вы, наверное, знаете. Если распадаются атомы какого-то элемента, накапливаются продукты распада. Чем больше их, тем больше распалось атомов. Зная скорость распада (она постоянна, зависит лишь от строения атома) и измерив количество продуктов распада, можно подсчитать, за какой срок они накопились.

Предположим, некогда остыла и затвердела вулканическая лава, содержащая кристаллики радиоактивных минералов. Кристаллики будут распадаться, а продукты распада — накапливаться в окружающих кристаллах. «Часы» пущены в ход.

Правда, дело осложняется тем, что продукты распада подчас просачиваются из минерала. Тогда определяемый возраст будет занижен. А если в минерале и без того содержались те элементы, которые образуются при распаде, то измерения возраста дадут завышенное значение.

Радиоактивный распад атомов разных химических элементов идет с различной скоростью. То есть каждые «радиоактивные часы» идут по-своему. Показатель их хода — период полураспада: то время, за которое распадается половина всех атомов этого радиоактивного элемента.

Например, период полураспада изотопа рубидия-87 равен пятидесяти миллиардам лет. За всю жизнь Земли (около пяти миллиардов лет) распалось всего лишь пять процентов содержащегося в ней рубидия-87. Эти «часы» идут слишком медленно.

Есть другие изотопы, распад которых происходит в несколько дней или часов. Для измерения геологического времени такие скорости слишком велики.

Геофизики ищут для пород, образовавшихся в разное время, наиболее подходящие «радиоактивные часы». Для геологов-четвертичников пришлось подбирать специальные часы — изотопные. Они основаны на измерении содержания радиоактивных изотопов углерода-14.

Этот изотоп образуется в атмосфере из азота. Под ударами космических лучей разрушаются ядра некоторых элементов. Осколки ядер — нейтроны и протоны. Нейтроны, попадая в ядра азота, превращают их в ядра углерода-14.

В атмосфере весь углерод вовлекается в химические реакции. В большом количестве он поглощается и выделяется живыми организмами. Часть углерода захороняется в осадках, погружается в землю (например, вместе с остатками растений). Теперь это — часы. Количество углерода-14 в них будет убывать по закону радиоактивного распада.

В растениях, оставшихся на поверхности Земли, количество этого изотопа по-прежнему будет постоянным. Потому что здесь углерод все время обновляется под действием нейтронов (под землю они не проникают).

Значит, если мы сравним содержание углерода-14 в погребной древесине и в ныне живущих деревьях, можем узнать, как долго пролежала древесина в земле. Чем дольше, тем меньше в ней будет содержаться углерода-14.

Такой метод дает неплохие результаты, когда измеряемый отрезок времени несколько тысячелетий. Потому что период полураспада изотопа пять тысяч семьсот лет. Выходит, «часы» эти с довольно быстрым «ходом».

Историкам известны даты некоторых событий, происшедших несколько тысячелетий назад. Например, дата смерти египетского фараона Сезостриса III. Найдено было похоронное судно фараона. Кусок его палубы исследовали на содержание изотопа-14. Получился возраст 3700±400 лет, согласующийся с данными историков.

Неоднократные проверки такого рода убедительно доказали точность и надежность этих «радиоактивных часов». Единственный их недостаток — невозможность без грубых ошибок измерять возрасты более сорока тысячелетий. Слишком уж мало тогда остается в образце углерода-14.

Большое преимущество этих «часов»: углерод содержится в веществах, связанных с деятельностью живых организмов и технической деятельностью людей (в торфе, раковинах, древесине, костях, угле, деревянных и костяных орудиях). Благодаря этим часам удалось проследить как бы в едином потоке времени историю последнего великого оледенения Земли, закончившегося около десяти тысяч лет назад.

Особенно популярны радиоуглеродные измерения в Америке. С их помощью хорошо изучены этапы последнего висконсинского оледенения. Например, возраст обломка ели в морене южной Дакоты (глубина 8 м) — двенадцать тысяч лет; раковин моллюсков в предледниковой толще песков — около сорока тысяч лет.

Геофизикам известны еще некоторые «радиоактивные часы», пригодные для четвертичников. Период полураспада урана-234 — двести пятьдесят тысяч лет, а тория-230 — семьдесят пять тысяч лет. Прекрасные часы! Одна беда: слишком редки эти элементы.


Температура исчезнувших морей

Радиогеологи изобрели не только необычайные часы, но и необычайные градусники. Ими можно измерять температуру морей и океанов… бывшую тысячи и миллионы лет назад! Даже температуру тех морей и лиманов, которых и в помине нет. Снова помогли ученым изотопы.

Живые организмы различают изотопы: кислород-18 и кислород-16. Почему и как — неясно. Но различают.

В любом организме отношения кислорода-18 к кислороду-16 постоянно. Его можно определить, используя, например, раковины, содержащие известь.

Еще более удивительный факт: содержание изотопов в морских организмах зависит от температуры воды. Чем холоднее вода, тем охотнее живые существа усваивают кислород-18.

Температура океана (средняя линия — 25 градусов) за последние 300 тысяч лет (сверху вниз — от современности в прошлое).

Если температура воды падает на один градус Цельсия, то в раковинах начинает накапливаться на две сотых процента больше кислорода-18, чем кислорода-16. Измерив содержание в раковине двух этих изотопов, можно судить о былой температуре воды, в которой раковина жила.

Геологи пробурили с корабля скважины в морском дне Атлантики. Здесь в осадках много раковин. В них измеряли отношение изотопов. Оказалось, что в северной части океана обогащение кислородом-18 достигло одной десятой доли процента. Значит, температура воды в Северной Атлантике некогда снижалась на шесть — восемь градусов.

Исследования были продолжены и расширены. Теперь определялось в образцах со дна моря не только отношение изотопов кислорода («геологический термометр»), но и содержание углерода-14 («геологические часы»). Удалось выяснить, как колебалась температура атлантических вод за последние десятки тысячелетий.

В общем, эти данные совпадали с материалами, накопленными при изучении суши. Оледенения, конечно, существенно влияли на температуру воды в океане. Во время оледенений она заметно падала.

Казалось бы, прекрасное согласие данных двух независимых исследований.

Что может быть лучше?

Но тут снова подали свой голос научные «скептики» и «перестраховщики». В нашей обыденной жизни мы недолюбливаем таких людей.

Однако научные скептики не позволяют успокоиться на достигнутом, а научные перестраховщики заставляют постоянно контролировать и уточнять результаты исследований.

Великие ледники требовали огромного количества пресной воды. А она попадает в атмосферу из гидросферы. Чем больше накапливается льда на суше, тем меньше воды остается в океане. Выпаривание и потеря воды, переходящей в лед, должны приводить к увеличению общей солености океана на три процента, а плотности — на два процента.

Если изменялась не только температура, но вдобавок соленость и плотность океанических вод, это могло заметно повлиять на жизнедеятельность раковин. Значит, не следует полагаться на точность геологических термометров.

Был высказан и другой довод. Американский специалист по изотопным методам У. Брёкер указал на некоторое несоответствие показаний «геологических термометров» с данными, полученными другими методами.

«Отступание ледниковых покровов и последовательность пыльцевых спектров в прилегающих областях свидетельствуют, что конец последнего ледникового периода характеризовался значительными колебаниями климата, тогда как океанические данные лишь однозначно указывают на довольно резкий переход от холода к теплу».

Действительно, благодаря достаточно точной датировке некоторых событий выяснилось, что уровень Мирового океана испытывал за последние двадцать тысяч лет значительные колебания на фоне общего поднятия. Об этом, в частности, свидетельствуют ступени океанических террас.

Колебания были вызваны, скорее всего, изменениями ледниковых покровов (об этих изменениях говорят, например, гряды конечных морен). Когда покровы сокращались, уровень воды в океанах повышался за счет теплых вод. При некотором увеличении ледников океан чуточку «мелел».

Но разве обязательно должна столь же заметно колебаться температура океанических вод? Правда, если оледенения были вызваны ослаблением излучения Солнца и общим похолоданием на Земле, то и океаны должны были бы реагировать достаточно чутко на пульсацию светила. Хотя и в этом случае океан имеет «приспособления» для поддержания устойчивости температуры воды.

При понижении уровня океана осушаются огромные территории прибрежных мелей и шельфов. С уменьшением общей площади океана уменьшаются и потери тепла, расходуемого на испарение. Ведь при испарении вода сильно охлаждается. Величина испарения зависит от площади водной поверхности, от температуры и солености воды, от температуры воздуха. Все эти показатели при общем охлаждении Земли изменяются так, что потери на испарение уменьшаются.

Вода лучше удерживает тепло, чем суша и тем более атмосферный воздух. Частые перемены температуры воздуха сопровождаются более плавными, сглаженными колебаниями температуры земной поверхности, а вода на эти изменения реагирует еще более замедленно.

Выходит, на великие холода сферы Земли должны реагировать по-разному. Атмосфера — наиболее чутко. Поверхность суши — отзываясь лишь на более или менее длительные (вековые) воздействия. А для гидросферы существенны, пожалуй, лишь тысячелетние перемены. На более частые колебания она почти не отзывается.


Вторая молодость наук

За последние годы с помощью новой техники обновились старые науки: география, метеорология, океанология и многие другие.

Огромное значение для четвертичной геологии приобрели полярные исследования на современных великих ледниковых щитах: в Гренландии и в Антарктиде.

Ракеты, тонкими иглами пронзающие атмосферу, проводят измерения температур и движений воздуха. Паря над планетой, спутники глазами приборов взирают на облачный покров, фотографируют его, передают сведения на землю. Множество новых фактов и идей открылось климатологам.

Точные геодезические измерения позволили уловить очень медленные поднятия и прогибания земной коры. Геофизические приборы все проницательнее вглядываются в глубокие недра.

Океанологи провели бесчисленные замеры морских глубин, открыли неизвестные доселе подводные хребты, трещины, впадины; геологи установили возраст многих островов.

Интереснейшие материалы были получены при измерениях магнитности горных пород. Они позволили уточнить положение земной оси (полюсов) в прошлом.

Более того, определения былого положения полюсов, проведенные на разных континентах, дали ошеломляющие результаты. Для каждого континента получалось свое положение полюса. Наиболее простое и убедительное объяснение этому несоответствию: континенты перемещались относительно друг друга.

Когда-то намагниченные частицы, осаждаясь, ориентировались подобно стрелке компаса. Осадки окаменели, и частицы замерли в первоначальном положении.

Если слои сохранили свое прежнее положение, то намагниченные частицы должны до сих пор указывать на то место, где во время их осаждения находился геомагнитный полюс. То есть — в одно и то же место со всех континентов, как показывают и теперь стрелки компасов. А раз их показания не сходятся, значит, континенты перемещались. О перемещениях континентов свидетельствуют и многие другие факты (хотя до сих пор эту проблему нельзя считать окончательно выясненной).

Невозможно перечислить все интересные и важные новые сведения, полученные геологами за последние десятилетия. Вспомните хотя бы великие лунные достижения человечества!

И все-таки, как ни велик прогресс техники геологических исследований, как ни много получено новых фактов, геологические теории чуточку отстают. Мысль не поспевает за делом. Лавина мелких сообщений и заметок захлестывает геологию. Больших обобщающих работ немного.

К настоящему времени проведены тысячи определений абсолютного возраста четвертичных пород. Подробно исследованы современные ледники и зоны вечномерзлых пород. Спорово-пыльцевые анализы; находки ископаемых остатков животных плейстоцена; раскопки многочисленных поселений и временных охотничьих стоянок древних людей; сотни тысяч буровых скважин, шурфов и описанных обнажений с четвертичными породами; определения палеотемператур различными методами; детальный анализ ледниковых форм рельефа, а также морских и речных террас; тщательные измерения современных движений земной коры; наблюдения за действующими вулканами, колебаниями уровня воды в реках, озерах и морях, за горизонтальными перемещениями земной поверхности, за миграциями животных и растений и смещениями географических зон… Десятки различных наук предоставляют материалы для исследователей четвертичного периода. Такое непомерное обилие сведений — уже не благо, а беда. Возможно ли охватить мыслью все эти порою противоречивые материалы?

Быть может, из-за этого и по сей день не смолкают горячие споры геологов-четвертичников. Даже ученые, изучающие один и тот же район, высказывают противоречивые мнения. По-прежнему остается множество местных названий, как бы местных геологических языков и диалектов. Тут, пожалуй, с наибольшей полнотой оправдывается старая поговорка: сколько специалистов, столько и мнений.


Против ледников?

В лавине новых фактов можно, конечно, отыскать и такие, которые противоречат современной ледниковой теории. Современной потому, что теория, как все живое, растущее, меняется со временем, приспосабливается к новым фактам.

Мы сейчас вернемся чуточку назад и вспомним некоторые мысли и факты, приводимые антигляциолистами.

Чем объяснить, что в плейстоцене лишь один раз достигли расцвета холодолюбивые животные? Если великие ледники наступали на Северное полушарие несколько раз, то почему холодолюбивые животные не появлялись и не вымирали несколько раз, в соответствии с числом оледенений?

Возможен достаточно простой ответ. Живые существа не способны к быстрым превращениям. Они не меняют свой облик, подобно облакам, сразу же приспосабливаясь к изменчивым условиям среды.

Каждое живое существо передает свои признаки по наследству при помощи микроскопических клеток, в которых имеются специальные, исключительно сложные соединения — гены, спиральные белковые молекулы. Они, словно свитки древних летописей, содержат описание признаков данного существа. Наиболее важные, главные признаки «записаны» наиболее точно и долговечно. А второстепенные признаки могут сравнительно легко исправляться и уточняться. Поэтому мы видим бесчисленное множество разнообразных человеческих лиц, тогда как общее строение черепа и тканей у всех одно и то же.

Для появления нового вида живых существ требуется, чтобы изменилось хотя бы несколько главных признаков. Так, например, всех отличий между современными европейцами, неграми, китайцами, арабами совершенно недостаточно, чтобы говорить о разных видах людей. Вид один — человек разумный. Даже удивительное разнообразие пород собак — от крохотных болонок до медведеподобных сенбернаров — укладывается в рамки одного вида.

Биологи, изучающие закономерности эволюции живых существ, определили, что для создания нового вида требуется (в естественных условиях) по крайней мере сотни тысяч или миллионы лет. Даже активным искусственным отбором за несколько тысячелетий не удалось людям вывести новые виды животных и растений.

Если виды образуются так нескоро, то ледниковые эпохи, длившиеся лишь десятки тысячелетий, не должны всякий раз преображать облик животных или растений. И только весь ледниковый период, общее среднее похолодание на Земле способно было заметно воздействовать на живое вещество планеты, «перечеканить» его хотя бы в одной лишь приполярной зоне. В результате появились мамонты, шерстистые носороги, северные олени, овцебыки.

Труднее объяснить тот факт, что некоторые виды животных и растений ухитрились пережить оледенения в самом их центре, в Северной Европе.

Гипотеза «перезимовки» не столь уж безнадежна, как это представляется на первый взгляд. Даже в Гренландии, почти полностью покрытой ледяным щитом, на обнаженных ото льда нагорьях и побережьях развит растительный покров и живут некоторые высшие животные, приспособленные к суровому климату. Мускусный бык, например, питается зимой замерзшей подснежной травой и обитает на плоскогорьях высотой около километра, где ледников, как ни странно, нет.

Да и не покрывали, пожалуй, ледники сплошь всю ледниковую область.

Американским геологам удалось установить, что почти на всей Аляске и на северо-западных полярных островах Канады ледников не было. И Гренландия, возможно, не была полностью погребена подо льдами. И в Скандинавии должны бы сохраниться нагорья, недоступные ледникам.

Движения материковых ледников не так просты, как это иногда кажется. Покрылась, мол, Скандинавия ледниками, и потекли они медленно и дружно во все стороны с возвышенности.

В Северной Америке удалось восстановить историю некоторых ледниковых языков. Они порой вторгались на сотни километров к югу, и очертания их были достаточно сложны.

Ледники вели себя, подобно чудовищным амебам. Они то вытягивали, то сжимали свои «отростки». Они перетекали с места на место, и центры их перемещались в зависимости от того, где накапливалось больше льда. Вовсе не обязательно, чтобы эти центры всегда были только в горных странах. Великие ледники начинали свою жизнь в горах. Достигнув расцвета, они должны были переползать с возвышенностей, образуя местные центры оледенений.

Вверху — морские террасы севернее Сан-Франциско. На графике, сверху вниз: шкала времени в тысячелетиях от настоящего, ледниковые эпохи закрашены. Линия колебаний уровня Черного моря. Схема черноморских террас. Схема средиземноморских террас. Слева — шкала высот над современным уровнем моря, в метрах.

Об этом можно судить хотя бы по нынешним ледникам Гренландии. На гигантском острове ледяная шапка сидит немножко набекрень. Наиболее толстый слой льда — в восточной части Гренландии, несмотря на то что здесь подо льдом никаких гор или возвышенностей нет и поверхность земли находится на уровне моря. Зато здесь выпадает наибольшее количество осадков, которые накапливаются, образуя гигантские ледяные возвышенности. Толщина льда и поведение ледников зависят не только от среднегодовых температур и высоты гор, откуда стекают первые ледяные потоки, а и от того, откуда и каким образом питаются ледники снегом и влагой, насколько активно идет их таяние.

Материковые ледники существуют лишь за счет непрерывного питания (поглощения вещества и переработки его) и столь же непрерывного отмирания и обновления своих отдельных частей. (Сквозь живые существа также беспрестанно течет поток атомов и молекул, и все наши клетки со временем обновляются. Еще Кювье отметил, что жизнь — это вихрь атомов. А ледник можно считать круговоротом воды и льда.)

Своевольное поведение материковых ледников делает очень правдоподобной гипотезу «перезимовки». Ведь когда говорится о центре оледенения, то имеется в виду тот район, откуда предполагается течение первых ледников. Со временем центр этот должен перемещаться. И ничего удивительного, если некоторые нагорья Скандинавии избежали ледяного плена. Подобные безледные районы — безжизненные оазисы — есть в Антарктиде, а обитаемые — в Гренландии.

По нынешним географическим зонам трудно судить о географических зонах ледниковой эпохи. Обычно считается, что материковый ледник сдвигал все эти зоны к югу и как бы сжимал их.

Но, кроме того, и перестраивались географические зоны. Они более или менее отличались от нынешних.

Придя к такому выводу, ученые выделили особую предледниковую «перегляциальную зону», в которой оформлялась особая перегляциальная растительность и животный мир. Нечто подобное можно видеть и сейчас (об этом писал еще Чарлз Дарвин) на юге Южной Америки: «…ледники спускаются в долину и текут мимо деревьев и вечнозеленых кустов, где охотятся пантеры и порхают экзотические бабочки».

Перегляциальная флора не была такой, как нынешняя тундровая. В ледниковые эпохи растения образовывали своеобразные сообщества, где вместе с представителями арктических тундр уживались обитатели степей: эфедра и некоторые формы полыни.

В ледниковые эпохи отдельные группы первобытных людей могли временами заходить далеко на север, к Полярному кругу. Эпохи оледенений, как выясняется, не были подобными долгой и суровой полярной зиме. Скорее, они напоминали зиму в нашей средней полосе: преобладают морозы, но случаются порой и сильные оттепели.

Подобные «оттепели» отмечаются в истории последнего оледенения. В Северной Америке, например, граница последнего ледника в области Великих озер за последние тридцать тысяч лет дважды сдвигалась к югу.

Можно считать, что некоторые загадки истории растительности, животного мира и человека в четвертичный период не дают еще основания для отказа от ледниковой теории. Без ледниковой теории они вряд ли объясняются проще.

А вот деятельность морских, речных и озерных вод и льдов действительно нередко недооценивается сторонниками ледниковой теории. Иногда почти невозможно отличить следы действия льдов от размывающей деятельности морских волн. Отложения, неотличимые от морены, могут накапливаться вдоль морских берегов при сносе песка, глины, пыли и обломков скал с суши или при оползании крутых береговых и подводных уступов.

Впрочем, обо всем этом пишут и сторонники ледников. Даже Кропоткин, боровшийся против гипотезы «дрейфа айсбергов», не исключал обширных холодных морей. Точнее, он пришел к заключению, что после таяния ледника образуются на некоторое время обширнейшие озера, нечто вроде холодных пресноводных морей. В дальнейшем с этой идеей согласились многие исследователи. А оригинальный мыслитель Б. Л. Личков предложил несколько иной вариант: у края отступающего ледника создавались великие речные равнины.

Изучение ледниковых отложений Русской и Североамериканской равнин показало, что здесь действительно широко распространены древние озерные и речные песчано-глинистые слои, в которых содержатся остатки холодолюбивых растений. Слои эти обычно залегают на донных ледниковых моренах. Значит, после великих ледников наступало время великих рек и озер, за которым следовало теплое межледниковье.

На морских побережьях тоже наблюдается нечто подобное: выше моренных отложений залегают морские осадки. Стало быть, и тут после великих ледников наступала пора великих наводнений, вторжений моря. О том же говорят и ступени террас на берегах морей.

Чем же были вызваны речные, озерные и морские «потопы»? Казалось бы, ответ очевиден: таяли ледники, и от этого увеличивалось общее количество воды на планете.

Если растопить все нынешние ледники, то по подсчетам ученых уровень моря поднимется «всего лишь» на полсотни метров. Следовательно, если морские террасы были образованы в результате подъема уровня моря при таянии великих ледников, то самая высокая терраса должна находиться на высоте порядка пятидесяти метров.

Однако на Кольском полуострове описаны следы послеледникового наступления моря на сушу, во время которого морские волны плескались там, где теперь находится плоская ступенька террасы — на ста тридцати метрах над современным уровнем моря.

Нечто подобное наблюдается и в Скандинавии, и на северо-востоке Северной Америки. Некоторые морские террасы четвертичного возраста возвышаются на сто пятьдесят метров над уровнем моря!

Выходит, образование морских четвертичных террас нельзя связывать только с таянием великих ледников. Причины тут более сложные и интересные.


Гляциотектоника

Тектоника — это наука, изучающая движения земной коры, смятие в складки и дробление слоев горных пород. А гляциотектоника изучает ледовую тектонику. Она связана не только с поведением ледников, но и с воздействием ледников на подстилающие горные породы и в целом на земную кору.

Ледник давит на свое ложе и деформирует его. Вдобавок ледник течет и движением своим тоже производит немалую работу…

Совсем недавно с помощью сейсмических наблюдений была обнаружена странная закономерность. В некоторых районах, где построены большие водохранилища гидроэлектростанций, начинаются усиленные подземные толчки, возникает угроза крупных землетрясений. Геологи стали искать причины этого явления. Выяснилось, что подземные толчки усиливались по мере накопления воды: чем «тяжелее» становилось водохранилище, тем чаще происходили землетрясения. Значит, все дело в дополнительных нагрузках на земную кору.

Масса воды в крупных водохранилищах достигает миллиарда тонн. Под таким грузом земная кора начинает чуточку прогибаться. В результате подобных движений образуются землетрясения.

Земная кора имеет глыбовую структуру. Она напоминает сплошное ледяное поле, сложенное смерзшимися льдинами разных размеров и толщины. И плавает на очень плотной, но в тоже время текучей мантии.

Водохранилище располагается на одной глыбе или на линии контакта нескольких. Оно своей тяжестью чуточку вдавливает эту глыбу в мантию. Приходят в движение и соседние глыбы.

Вертикальные движения обломков земной коры называются изостатическими, то есть движениями выравнивания. Ведь благодаря им глыбы земной коры стремятся к равновесию.

Какое же тогда действие должен оказывать на земную кору и на ее глыбы (блоки) гигантский ледяной покров?

Плотность мантии, на которой «плавает» земная кора, в три раза превышает плотность льда. Значит, каждые тридцать метров ледяного покрова будут, в соответствии с законом Архимеда, вытеснять десятиметровый слой вещества мантии (надо только помнить, что мантия вязкая, подобна смоле, и вытесняется медленно, столетиями).

Толщина Гренландского ледяного покрова около трех тысяч метров. Значит, под его тяжестью остров погрузился в море на один километр. Когда ледник растает, остров станет расти из моря, как гриб после дождя.

А теперь вспомним о морских террасах.

Всплыванием земной коры, освобожденной от ледяного пресса, объясняют некоторые геологи необычайно высокий уровень отдельных морских террас, расположенных на северных окраинах Америки и Евразии. Это явление хорошо изучено геологами в Скандинавии и Северной Америке. Наиболее быстро всплывают именно те участки, где предполагаются центры оледенений.

Карта послеледникового поднятия Северной Америки; горизонтали через 50 метров. На врезках: послеледниковое поднятие района Осло (в метрах) и южной Швеции (внизу) за 10 тысяч лет.

Об этом явлении геологи догадались еще в середине прошлого века. Сейчас, с помощью специальных приборов, его даже удается измерить. Обнаружено, что в центрах оледенений до сих пор сохраняется «излишняя» прогнутость земной коры (до пятнадцати метров). Значит, изостатические движения здесь должны еще долго продолжаться. До сих пор наибольшее поднятие земной коры отмечено на востоке Гудзонова залива — триста метров. Считается, что скорость «всплывания» достигает одного метра в сто лет. Это очень большая скорость: за миллион лет десять километров…

Американские ученые связывают изостатические движения не только с ледниковым покровом, но и с гигантскими послеледниковыми озерами. Масса воды в этих озерах была велика — не всякому морю столько отпущено. Заполнение водой и высыхание озер должны были вызывать движения земной коры.

Но если земная кора в одном месте вспучивается, то в другом она должна прогибаться, иначе между корой и мантией будет образовываться вакуум. При гигантских давлениях земных недр это невозможно.

На схеме современных движений поверхности земли в Северной Европе и Северной Америке видно, что зоны поднятий окружены зонами погружений. Эти погружения как бы восполняют поступление вещества в поднимающихся зонах и поэтому называются компенсационными. Подобные выгибания земной коры и смещения отдельных блоков сопровождаются землетрясениями, обновлением старых разломов, а в некоторых местах — вулканическими извержениями.

Под ледниками происходят и менее внушительные процессы: уплотнение одних горных пород, дробление других, смятие и выживание третьих, наименее устойчивых. И все это лишь за счет тяжести льда. Если бы вместо ледника была иная порода, ничего в принципе не изменилось бы. Важен добавочный вес, давящий на земную кору, а с чем он связан, не имеет значения. Другое дело гляциодислокации, связанные с течением ледников.

Под брюхом ползущего ледника сдираются слои подстилающих пород, перетираются и перемешиваются, образуя донную морену; на поверхности земли в этих местах остаются впадины, выбоины, ложбины и гряды. Под напором льда срезаются отдельные бугры, «втягиваются» в тело ледника и переносятся на многие километры. Известны случаи, когда такие крупные обломки и целые слои (их часто называют отторженцами) имели солидные размеры и сдвигались на сотни километров от мест своего первоначального залегания.

Карты скоростей современного поднятия района Великих озер Северной Америки (в метрах за 1000 лет) и Скандинавии (в метрах за 100 лет). В центре — широтный разрез Гренландского ледникового щита. Стрелками показано прогибание земной коры под тяжестью ледника и поднятие — при таянии (отступании) ледника.

Датский ученый Джонструп сто лет назад исследовал геологическое строение островов Мен и Риген в Балтийском море. Он описал здесь перемятые и сдвинутые слои горных пород, местами разорванные и нагроможденные один на другой. Он отметил, что сила, которая вызвала эти нарушения, была направлена с севера, со стороны Балтийского моря, и предположил, что сползавший с возвышенной Скандинавии ледник основательно «покорежил» оказавшиеся на его пути острова. Позже ученые предположили, что здесь происходили обычные вертикальные и горизонтальные перемещения блоков земной коры, не имеющие никакого отношения к ледникам. Но сравнительно недавно геологи вновь вернулись к идеям Джонструпа.

Победа ледниковой теории позволила по-своему осмыслить природу давно обжитых и изученных мест.

В Киевской области возле города Канева были известны значительные нарушения слоев горных пород. Геолог Дмитрий Соболев предположил, что это — гляциодислокации. Ему поначалу не хотели верить. В ту пору, пятьдесят лет назад, многие ученые еще не представляли себе необычайной мощи великих ледников.

Чуть позже Соболева опубликовали свои работы и другие исследователи, объяснявшие геологические особенности некоторых районов Европы и Русской равнины развитием гляциодислокаций. Так, возвышенности между Вышним Волочком и Торжком, образование которых прежде связывали с поднятиями блоков земной коры, теперь признаны нагромождением отторженцев. Известный геолог-четвертичник Москвитин исследовал древние породы, слагающие Вышневолоцко-Новоторжский вал. Оказалось, что это — отторженцы, сдвинутые с Валдайской возвышенности. Они проделали вместе с ледником путь в сто пятьдесят километров.

За последние полвека изучены отторженцы в современных ледниках Шпицбергена. Обычно отторженцы залегают в виде линз в грядах конечных морен. Возможно, иногда ледник тащит отторженец перед собой, подобно бульдозеру (по-видимому, такое явление наблюдали жители Альп более трехсот лет назад; помните, об этом мы писали в начале книги).

В современных ледниках наблюдать отторженцы трудно. Они надежно спрятаны в толще льда. Поэтому вернее можно судить об этих оригинальных геологических образованиях, изучая следы великих оледенений.

Гляциодислокации у г. Канева на Днепре. Вверху — слои дочетвертичных пород перед вторжением ледника. В центре — смятие пород под давлением льда. Внизу — современное геологическое строение района.

Если огромная линза древних отложений залегает в более молодой четвертичной толще, если выше или ниже ее встречена морена и если поблизости нет никаких гор, откуда могла бы сползти эта линза, то надо сделать вывод, что перед нами отторженец.

Трудно найти более убедительное подтверждение ледниковой теории. Гигантские отторженцы не могла бы оторвать от коренных пород и передвинуть по равнине в целости и сохранности на многие километры никакая иная геологическая сила, кроме ледников. Айсберги не переносят таких больших линз. Ведь некоторые из отторженцев столь обширны, что на них можно уместить небольшой городок.

По-видимому, в образовании крупных отторженцев принимал участие не только ледник, но и приледниковые изостатические колебания земной коры. Не случайно крупные отторженцы обычно приурочены к зонам разломов земной коры. На окраине ледника, под тяжестью ледяной толщи опускались блоки горных пород, а перед ледником — поднимались. С этих поднятых блоков, вероятно, и «состругивал» ледник линзы отторженцев.

Если бы антигляциолистам как-нибудь по-своему удалось объяснить происхождение отторженцев, в ледниковой теории появилась бы опасная брешь.


Лёсс

Среди многих загадок четвертичного периода одна связана с необычайной горной породой — лёссом. Лёсс встречается только в отложении четвертичного периода и образует слои мощностью до 150 метров.

В недавно вышедшей солидной научной монографии, посвященной лёссу, сказано: «Едва ли можно сейчас высказать какое-либо мнение о происхождении лёсса, не приобретая этим себе многочисленных научных противников. До сих пор среди исследователей нет согласия по многим основным вопросам лёссовой проблемы».

Лёссом геологи интересуются уже полторы сотни лет. Ему посвящены тысячи научных работ. И — «нет согласия»! В чем же дело? У лёсса несколько особенностей.

В нем порой больше воздуха, чем твердого минерального вещества. Как говорят геологи, у лёсса очень высокая пористость. Поры видны невооруженным глазом.

Толщи лёсса не обнаруживают заметной слоистости. Этим они напоминают донные морены. Но если морены содержат в себе и микроскопические глинистые частицы, и метровые валуны, то лёсс исключительно однороден. Он растирается в пудру, в порошок, потому что он почти сплошь состоит из пылеватых частиц диаметром в сотые доли миллиметра. В породе содержится до семи процентов известковых частиц, и она шипит и пучится, если капнуть на нее соляной кислотой.

Цвет лёсса палевый и желтовато-серый. Лёсс легок, порист. На нем охотно живут растения.

Лёсс не любит воду, особенно если находится под нагрузкой (скажем, в основании дома). Намокая, он резко уменьшается в размерах, рушатся крохотные перегородки между порами, порода проседает, образуются провалы. Сооружения, построенные на лёссах, порой трескаются и рушатся.

Некоторые особенности лёсса наводят ученых, изучающих его, на довольно смелые сравнения: «Успехи современного грунтоведения позволяют показать, что лёсс, подобно живому организму, приспосабливается к современной географической среде и меняет свои свойства при изменении этой среды».

Так считает автор упомянутой монографии о лёссе, советский ученый Н. И. Кригер. Возможно, в словах его есть доля преувеличения. Любая горная порода, лежащая близ поверхности земли, открыта воздействиям географической среды (например, изменению влажности) и «приспосабливается» к ним. Вообще все на свете — живое и мертвое — изменяет свои свойства под воздействием окружающей среды. А живые существа вдобавок способны сами изменять среду, размножаться, изменяться (сохраняя свои основные качества), реагировать на раздражения… Одним словом, как ни загадочен лёсс, а тайны жизни несравненно сложнее и многообразнее. Тем не менее лёсс был и остается загадочной горной породой. О нем еще будет высказано немало интересных мнений.

Идеи о происхождении лёсса менялись в соответствии с общими успехами геологических наук. Сначала указывали на связь его с наводнениями (потопами) и катастрофическими подъемами и опусканиями земной поверхности. В середине прошлого века, когда геологи для познания прошлого стали внимательнее изучать современные геологические процессы, было отмечено сходство лёсса с пылеватыми осадками озер, рек и морей. Кропоткин и Зюсс находили лёссовидные отложения в ледниковых озерах и среди водно-ледниковых толщ. А некоторые ученые обратили внимание на сходство частиц, слагающих лёсс с пылью, разносимой ветром.

Лёссовые породы (отмечены точками), разделенные линзой морены. Ледник двигался справа. Судя по разрезу, лёссы накапливались вблизи ледника.

К концу прошлого века были высказаны десятки мнений о происхождении лёсса. Связывали его и с извержениями вулканов (вулканическая пыль), и с космической пылью, и с выветриванием, и с оледенением.

Несколько позже, в период расцвета почвоведения, Л. С. Берг обосновал почвенную гипотезу происхождения лёсса. В лёссе к тому времени были обнаружены слои ископаемых почв, остатки степной и отчасти тундровой растительности, а также беспозвоночных наземных животных. Да и пустоты в лёссе расположены вертикально, словно они созданы корнями растений.

Исследования мерзлотоведов показали, что в условиях вечной мерзлоты, где замедлено биологическое разложение горных пород, дробление идет в основном до образования зерен диаметром в сотые доли миллиметра, то есть — типично лёссовых частиц.

Распространение лёсса на Земле тоже имеет свои закономерности. Лёсс «любит» среднюю полосу с умеренным климатом. Много его в Европе, особенно на Украине, в Средней Азии, в Китае, в Северной и Южной Америке. Нет его вовсе в пустынях и влажных тропиках, мало — в Африке и Австралии.

Успехи четвертичной геологии позволили уточнить и время широкого распространения лёсса. Он наиболее часто появлялся во вторую половину плейстоцена. Его образование связывают с ледниковыми эпохами. Ученые Северной Америки выделяют чаще всего четыре основных горизонта лёсса — столько же, сколько и моренных горизонтов (по числу главных оледенений). И даже лёссы висконсинской (последней) ледниковой эпохи разделяют на две части — так же, как и эту эпоху.

Во всяком случае, должна быть какая-то связь лёссов с оледенениями. Если бы для лёссов достаточно было только пустынь и ветров, то вокруг нынешней Сахары их было бы в избытке. А их там нет.

За последние годы выяснилась невозможность связать происхождение лёсса с какой-то одной причиной: деятельностью ветра, воды, морозного выветривания почвенных процессов. Стали предлагаться комбинации двух или нескольких идей.

Если они и проседают при замачивании, то не очень сильно.

Другое дело — настоящий лёсс. Его проблема окончательно еще не решена. Возможно, загадку его происхождения лучше всего разделить на четыре главных вопроса:

откуда взялись лёссовые частички,

как они переносились и накапливались,

чем вызваны основные особенности лёсса,

как ухитрился лёсс не потерять свои нынешние свойства за долгие века своего существования?

Если лёсс — типично четвертичная порода, подобно моренам, то и познать ее можно только в связи с историей всего четвертичного периода. Так же как жизнь человека невозможно понять, не зная той исторической эпохи, в которую жил этот человек.

Сейчас нас интересует лёсс не только как любопытный природный объект. На лёссах стоят заводы и дома, на лёссах строят дороги и аэродромы, лёссы употребляются как строительный материал. И конечно, лёсс немало может нам рассказать о природных условиях ледниковой эпохи.

Загрузка...