Поскольку поток времени бесконечен, а судьба изменчива, не приходится, пожалуй, удивляться тому, что часто происходят сходные между собой события. Действительно, если количество основных частиц мироздания неограниченно велико, то в самом богатстве своего материала судьба находит щедрый источник для созидания подобий…
Ярко-зеленые заросли кустарника покрывают изрезанную линию побережья Коста-Рики, а затем сворачивают вглубь материка, туда, где берег реки Сиерпе образует удобную маленькую бухту. Мы уселись в машину и двинулись в тряский путь через плантации пальм к берегу, а там пересели на лодку и поплыли вниз по течению. Широкая река, со всех сторон окруженная бесконечными мангровыми зарослями, впадает прямо в Тихий океан. Поборовшись с волнами в устье реки, мы наконец причалили к берегу на краю Национального парка Корковадо на полуострове Оса — это один из последних обширных участков дикой природы, сохранившихся в Центральной Америке. После долгого насыщенного путешествия мы были совершенно без сил и решили заночевать в темноте и тишине дождевого леса.
Наш заслуженный сон был прерван сигналом к побудке — тяжелыми, низкими гортанными криками шумной стаи ревунов, резвящихся в кронах деревьев. Вот тебе и природная тишина.
У ревунов, чьи голоса разносятся на четыре с лишним километра вокруг, чрезвычайно развитая глотка и гортань, что позволяет им сообщать о своем местонахождении соседним (и не только соседним) стаям (а также туристам). Крик ревуна не спутать ни с чем, однако эти обезьяны обладают и другой способностью, отличающей их от капуцинов, беличьих обезьян и других обезьян Нового Света, также обитающих в дождевых лесах. Ревуны обладают полноценным трихроматическим зрением.
Анализ ДНК ревунов показывает, что они приобрели эту способность примерно таким же путем, как и их дальние родичи из Старого Света, но в другое время и в результате совершенно независимой серии событий. Кроме того, ревуны питаются нежными молодыми листьями, как и другие приматы с трихроматическим зрением. Примеры независимого воспроизведения эволюции обезьян на этом не заканчиваются. У ревунов, как и у их дальних африканских и азиатских родственников, более высокое содержание ископаемых генов обонятельных рецепторов, чем у всех их ближайших родственников из Нового Света. Ревуны тоже частично обменяли свою способность распознавать запахи на способность различать цвета.
Поразительно.
Эволюция цветового зрения, переход к лиственной диете и потеря генов обонятельных рецепторов у ревунов произошли на другом континенте через 20 млн или 25 млн лет после того, как эти изменения произошли у предков африканских и азиатских обезьян. История этих приматов говорит о том, что при одинаковых условиях даже в разных частях света и в разное время некоторые виды животных могут приобретать или терять одинаковые признаки.
Ревун — прекрасный пример распространенного в природе явления, называемого конвергентной эволюцией. У представителей самых разных систематических групп можно найти сходные признаки, возникшие независимым путем. Например, ласты пингвинов, тюленей и дельфинов служат одной и той же цели при плавании, но все эти животные произошли от разных предков, у которых ластов не было. Крылья птерозавров, птиц и летучих мышей также служат примером конвергентной эволюции, как и форма тела ихтиозавров и дельфинов, змей и безногих ящериц. И это лишь некоторые из множества известных примеров. Широкое распространение этого явления показывает, что в одинаковых условиях виды часто находят одинаковый путь адаптации.
Однако в деталях процессы эволюции многих конвергентных структур у разных видов могут различаться. Крылья птиц, летучих мышей и птерозавров различаются по своему строению: в этих трех случаях максимальная поверхность крыла образована разными частями передней конечности. На уровне ДНК за эти различия в структурной организации отвечают разные гены. В случае ревуна и других обезьян (а также во многих других примерах, которые я приведу ниже) замечательно то, что похожие события в эволюции различных видов сопровождаются изменением одних и тех же генов, часто даже одних и тех же оснований в последовательности ДНК. В четвертой главе мы уже видели пример такого точного повторения: у птиц, способных видеть в ультрафиолетовом свете, одно и то же изменение коротковолнового опсина происходило не менее четырех раз. А в пятой главе мы познакомились с пятью группами организмов, у которых ген того же самого опсина был инактивирован в результате мутаций и стал ископаемым геном. Смысл этих примеров в том, что они являются фактическим доказательством повторения эволюционных событий на самом глубоком и основополагающем уровне.
Но это лишь вершина айсберга.
Ниже я приведу много других примеров того, как эволюция воспроизводит саму себя. Некоторые повторяющиеся адаптации вам уже знакомы из предыдущих глав: эволюция нового панкреатического фермента у жвачных животных, появление антифриза у ледяных рыб, а также потеря генов, ответственных за расщепление галактозы, у дрожжей. Далее мы рассмотрим несколько новых признаков, таких как темная или светлая окраска тела, которая не раз возникала одним и тем же способом у совершенно непохожих организмов. Наблюдая, как одинаково развиваются неродственные виды, мы получаем исчерпывающее доказательство того, как естественный отбор, действуя на уровне вариаций ДНК, влияет на их эволюцию.
Способность естественной истории к самовоспроизводству вызывает резонный вопрос — как и почему это происходит. Как я покажу далее, для ответа на этот вопрос нужно учесть такие факторы, как вероятность, время и отбор, а также арифметику больших чисел, определяющую частоту событий в ДНК и в природе вообще. Повторяемость природных событий и лежащая в основе этого явления арифметика составляют главное содержание этой главы и объясняют основные идеи всей книги.
Чтобы лучше понять конвергентную эволюцию, давайте сначала подробнее поговорим об обезьянах ревунах и о том, почему мы полностью уверены в том, что их способности эволюционировали независимо от таких же способностей обезьян Старого Света.
Наличие полноценного цветового зрения у ревунов, обнаруженное во время масштабного исследования обезьян Нового Света, оказалось для ученых неожиданностью. Эта способность у ревунов, как и у приматов Старого Света, могла возникнуть в результате реализации одного из двух альтернативных эволюционных сценариев. В первом случае ревуны могли унаследовать цветовое зрение от своего общего предшественника с обезьянами Старого Света. Во втором, который, как я уже говорил, и имел место, ревуны должны были обзавестись цветовым зрением в результате последовательности событий, не связанной с эволюцией обезьян Старого Света.
Откуда мы знаем, какой сценарий правильный?
Допустим, какие-либо два вида организмов имеют общие признаки. Чтобы установить, унаследованы ли они от общего предшественника или появились независимо, нужно посмотреть, как связаны эти виды на эволюционном древе. Отмечая наличие или отсутствие признака на эволюционном древе, можно проследить историю возникновения этого признака. Каждая точка ветвления на древе соответствует общему предку исходящих из этой точки ветвей. Если у всех видов, произошедших от данного предка, этот признак есть, то, скорее всего, предок также обладал этим признаком (рис. 6.1 а). Однако если две ветви, обладающие данным признаком, соединяются с другими ветвями, в которых этого признака нет, то, вероятнее всего, в двух ветвях этот признак появился независимым образом (рис. 6.1 б).
Рис. 6.1. Альтернативные варианты появления общих признаков у разных видов. Разные виды организмов могут обладать общим признаком (звездочка), если они унаследовали его от общего предка (A) или в результате независимой эволюции этого признака у данных видов после их отделения от общего предка (Б). Рисунок Лианн Олдс.
Теперь давайте взглянем на эволюционное древо приматов Старого и Нового Света (построенное на основании наследования SINE, LINE и других последовательностей ДНК), изображенное на рис. 6.2.
Рис. 6.2. Полноценное цветовое зрение возникало у приматов дважды. На основании распределения способности к цветовому восприятию и эволюционных связей между приматами, представленных на этой диаграмме, можно сделать вывод о том, что полноценное цветовое зрение возникало у приматов дважды (стрелки): один раз у общего предка человекообразных и других обезьян Старого Света, второй раз — у ревунов. Из статьи Giladet at., 2004, PloSBiology 2 (1): e5 (с изм.).
Из рисунка следует, что ближайшими родственниками ревунов являются другие обезьяны Нового Света, но ни один из этих видов не обладает полноценным цветовым зрением. Теоретически возможно, что у предшественника обезьян Нового Света цветовое зрение было, но все потомки, кроме ревуна, эту способность потеряли. Однако такой сценарий предполагает лишь одно приобретение и слишком много потерь. Более простое объяснение, подразумевающее гораздо меньшее количество эволюционных изменений, заключается в том, что ревун произошел от предшественника с дихроматическим зрением и самостоятельно приобрел способность различать цвета.
К счастью, чтобы докопаться до истины, мы не обязаны полагаться лишь на информацию, заключенную в эволюционном древе. Удвоение генов оставляет в ДНК свои следы. Анализ последовательности и организации современных генов опсинов в ДНК приматов Старого Света, а также ревунов и других обезьян Нового Света проливает свет на их историю. Из текста ДНК однозначно следует, что удвоение гена опсина у приматов Старого Света и у ревуна — несвязанные события. Мы можем это утверждать, поскольку в этих двух случаях размеры удвоенных фрагментов ДНК разные. У приматов Старого Света вне кодирующей последовательности каждого из двух генов имеются одинаковые последовательности длиной по 236 пар оснований. Это означает, что при создании гена средневолнового опсина была удвоена еще и прилежащая последовательность из 236 пар оснований. А у ревуна к удвоенным генам опсина примыкают гораздо более протяженные некодирующие участки. Такое могло произойти лишь в том случае, если удвоение гена опсина у ревуна произошло независимо от удвоения гена опсина у нашего с вами предка.
Кроме того, дополнительным доказательством независимости двух событий является степень сходства генов в каждой паре. Со временем после удвоения гена в каждой его копии накапливаются мутации. Чем раньше произошло удвоение, тем больше различие между двумя копиями. Так вот, у приматов Старого Света последовательности двух генов опсина различаются более чем на 5 %, тогда как гены ревуна различаются лишь на 2,7 %. Это означает, что удвоение гена опсина у ревуна произошло позднее, чем у приматов Старого Света. Это заключение вполне согласуется с палеонтологическими доказательствами более поздней эволюции обезьян Нового Света, начавшейся после разделения южноамериканского и африканского континентов.
Конвергентная эволюция опсинов ревуна и приматов Старого Света не сводится лишь к удвоению генов. Вспомним, что для полноценного цветового восприятия необходима тонкая настройка опсинов на разные длины волн и что на значение максимума поглощения опсинов MWS и LWS влияют аминокислоты, расположенные в трех ключевых позициях этих молекул. Средне- и длинноволновые опсины ревуна настроены на те же самые длины волн, а в трех ключевых позициях имеют те же самые аминокислотные остатки, что и аналогичные опсины человека и других приматов Старого Света. Это означает, что в ходе эволюции «нового» опсина MWS у ревуна и «нового» опсина MWS у приматов Старого Света произошло три одинаковые замены.
Анализ ДНК свидетельствует о том, что эволюция зрения и обоняния у ревунов шла тем же путем, что и у приматов Старого Света за миллионы лет до этого. Удвоение гена опсина, тонкая настройка ключевых позиций в молекулах опсинов и отмирание генов, ответственных за обоняние, повторились в той же последовательности и где-то с теми же деталями.
Изучение конвергентной эволюции цветового зрения у приматов и восприятия ультрафиолетового света у некоторых птиц показывает, что родственные виды могут приобретать похожие признаки, однако конвергенция ни в коем случае не ограничена степенью родства. Вспомните историю эволюции родопсина, настроенного на восприятие тусклого синего света, у глубоководного угря и у афалины (глава 4), а именно появление трех идентичных аминокислотных остатков в ключевых положениях их опсинов. Одна и та же история, но разные гены и крайне далекие друг от друга виды.
История эволюции опсинов вызывает вопрос более общего плана: насколько часто появление одинаковых признаков у разных видов организмов связано со сходными эволюционными изменениями ДНК? Давайте рассмотрим четыре примера того, как с помощью похожих механизмов с участием одного и того же гена или одних и тех же генов у разных видов и в разное время возникали одинаковые признаки.
Задолго до появления у обезьяны колобуса особой пищеварительной системы и способности переваривать листья это же свойство развилось у предка таких обычных жвачных животных, как коровы, овцы и козы. Есть ли какое-то сходство в эволюции пищеварения у обезьян и у коров? Безусловно, есть.
Вспомним, что одним из механизмов адаптации к новому способу питания у колобуса было появление специализированной панкреатической рибонуклеазы, расщепляющей питательные вещества в смеси листьев и бактерий. Этот фермент возник в результате удвоения и тонкой настройки гена, кодирующего обычную рибонуклеазу. У коровы этот ген также удвоился и подвергся тонкой настройке в соответствии с условиями в пищеварительной системе этого животного. Мы знаем, что эти события у обезьян и коров произошли независимо, поскольку удвоение гена рибонуклеазы произошло у всех жвачных, но у ближайших родственников жвачных, таких как гиппопотамы и дельфины, а также у ближайших родственников колобуса ген рибонуклеазы только один. Таким образом, эти группы жвачных животных не могли унаследовать удвоенные гены от общего предшественника.
Кроме того, африканские колобусы — не единственные жвачные обезьяны. В Азии существует еще одна группа жвачных обезьян. Эффектный немейский тонкотел (рис. L цветной вкладки) — находящийся под угрозой вымирания вид обезьян, распространенный во Вьетнаме, Лаосе, Камбодже и Китае, — также имеет удвоенный ген рибонуклеазы.
Жианши Цанг из Университета Мичигана обнаружил, что удвоение гена рибонуклеазы у обезьян происходило в разное время и приводило к образованию разного количества генов (трех у африканских видов, двух у азиатских). Однако впоследствии в ферментах произошло несколько совершенно идентичных изменений. Вероятность случайного совпадения изменений у двух групп обезьян чрезвычайно низка. Гораздо более вероятно, что параллельные изменения в структуре ферментов у обеих групп обезьян являются результатом естественного отбора, настраивавшего ферменты на работу в более кислой среде передней кишки.
Возникновение ископаемых генов и полное исчезновение генов тоже повторяются. В предыдущей главе я рассказывал об избирательной потере функций семи генов метаболизма галактозы у дрожжей S. kudriavzevii. Но существуют еще три вида дрожжей, принадлежащие к разным родам и разделенные миллионами лет эволюции, которые также потеряли все или почти все гены, связанные с метаболизмом галактозы, и больше не могут расщеплять этот сахар. На основании эволюционного родства между дрожжами можно с уверенностью утверждать, что в ходе эволюции эта группа генов независимым образом была потеряна как минимум три раза, а может быть, и больше. Скорее всего, в каждом случае ослабевало влияние естественного отбора, что и приводило к разрушению и исчезновению генов.
Ослабление влияния естественного отбора также объясняет повторяющуюся эволюцию признаков у животных, обитающих в пещерах. Например, известно множество видов пещерных рыб, которые лишились глаз и окраски. Поскольку эти рыбы относятся к разным семействам, куда также входят рыбы, живущие в поверхностных водах и обладающие зрением, становится ясно, что потеря зрения и пигментации происходила в истории многократно. Пещерные рыбы позволяют выяснить, имеют ли эти внешние признаки какие-то более глубокие общие основания.
Не так давно Мередит Протас и Клифф Табин с медицинского факультета Гарвардского университета, Билл Джеффри из Университета Мэриленда и их сотрудники изучили эволюцию альбинизма у слепых рыб, обитающих в поземных водоемах в мексиканских пещерах (рис. 6.3).
Рис. 6.3. Эволюция альбинизма у слепых пещерных рыб. В то время как живущие в поверхностных водах представители вида Astyanax mexicanus выглядят как обычные рыбы, многие их пещерные родственники, например обитатели пещер Молино и Пачон, в ходе эволюции не раз теряли зрение и окраску в результате мутации в одном и том же гене. Фотография любезно предоставлена Мередит Протас и Клиффом Табином из Гарвардского университета.
Эти рыбы (Astyanax mexicanus) принадлежат к тому же отряду, что и пираньи и ярко окрашенный неон-тетра, однако обитатели примерно 30 пещер на территории Мексики потеряли свою окраску. Ученые обнаружили, что в двух исследованных ими популяциях рыб в результате делеции фрагмента ДНК был инактивирован один и тот же ген, ответственный за пигментацию, однако делеции в каждой популяции были разными. Это доказывает, что популяции, населяющие разные пещеры, утратили окраску независимым образом.
Развитие альбинизма у пещерных рыб проще всего объяснить ослаблением естественного отбора. Какая разница, как вы выглядите, если вокруг темно? Однако для многих других животных окраска тела важна для выбора партнера, спасения от врагов и других важных функций, находящихся под влиянием естественного или полового отбора. Один из самых распространенных вариантов окраски — черный. У многих видов мех, чешуя или перья в той или иной степени окрашены в черный цвет. Существуют и вариации внутри одного вида — особи разного пола или из разных популяций могут различаться по количеству черных полос или пятен на теле. Во многих случаях естественный или половой отбор влиял на один и тот же ген, ответственный за окраску тела позвоночных животных.
Например, голубые северные (снежные) гуси бывают либо белыми, либо «голубыми». «Голубой» цвет связан с появлением в перьях черного пигмента (рисунки M и N цветной вкладки).
Окраска гусей меняется в зависимости от места их обитания: голубые гуси чаще встречаются на востоке Канады, а белые — в самой западной части ареала, в Восточной Сибири. Различие в окраске имеет значение при выборе полового партнера. Молодые гуси очень рано запоминают цвет перьев своих родителей и впоследствии предпочитают спариваться с особями того же цвета. За вариации окраски у северных гусей отвечает одно-единственное генетическое различие. Все дело в гене рецептора меланокортина-1 (MC1R). Различие между генами MC1R у белых и голубых гусей состоит всего в одном триплете, кодирующем аминокислоту в позиции 85.
У других птиц вариации последовательности гена MC1R также коррелируют с изменением окраски. Темный и желтый варианты окраски бананового певуна (сахарной птицы) определяются единственным основанием в гене MC1R. Однако эта единственная замена в данном случае происходит в ином положении, чем у голубых и белых северных гусей. Замена еще в одной позиции в данном гене определяет наличие светлого или темного оперения у третьего вида птиц — короткохвостого поморника (рис. O цветной вкладки).
У этих птиц окраска оперения также играет определяющую роль в выборе партнера и находится под влиянием полового отбора. Необыкновенные различия в окраске самцов и самок прекрасных расписных малюров также определяются геном MC1R (рис. цветной вкладки P и Q).
Однако роль гена MC1R в эволюции окраски тела не ограничена миром птиц. Вариации MC1R ответственны за различия между оранжевыми и черными ягуарами, белыми и темными представителями бурых медведей на западе Северной Америки, светлыми и темными ящерицами, а также за варианты окраса домашних собак, кошек и лошадей.
Одним из наиболее изученных примеров влияния гена MC1R на эволюцию диких животных является изменение окраски мешотчатых прыгунов, распространенных в пустынных юго-западных районах США. Во второй главе на примере генетики и эволюции светлых и темных вариантов прыгунов я проиллюстрировал связь между случайными мутациями, отбором и временем. Эти грызуны обитают в песчаных пустынях и на покрытых окаменелой черной лавой участках земли в Аризоне и Нью-Мексико. Соответствующая окраска позволяет этим животным быть менее заметными на фоне светлого песка или черной лавы. Майкл Нахман, Хопи Хекстра и их коллеги из Университета Аризоны показали, что живущие в районе пустыни Пинакате темные прыгуны отличаются от светлых прыгунов четырьмя позициями в белке MC1R. Интересно, что темные прыгуны имеют точно такую же замену в положении 230, что и короткохвостый поморник. Таким образом, мало того что один и тот же ген задействован в эволюции окраски у некоторых видов птиц, рептилий и млекопитающих, в некоторых случаях у разных видов в этом гене произошли совершенно одинаковые замены.
Еще один пример точного повтора эволюционных изменений — изменение окраски ягуарунди и золотистоголовой львиной игрунки. У темноокрашенных ягуарунди в гене MC1R обнаружена делеция 24 оснований. Точно такая же делеция присутствует у золотистоголовых игрунок, у которых, в отличие от других львиных игрунок, все остальное тело черное (цветная вкладка R).
Эволюция жвачных млекопитающих, метаболизм галактозы у дрожжей, альбинизм у пещерных рыб и темная окраска тела у различных птиц, рептилий и млекопитающих — все это иллюстрирует повторяемость эволюционных изменений на фундаментальном уровне, то есть на уровне отдельных генов.
В ранее приведенных примерах конвергентной эволюции опсинов это воспроизведение было настолько точным, что иногда затрагивало одну и ту же пару оснований. В тех случаях, о которых я упомянул только что, изменения воспроизводятся не с такой высокой точностью. Подробное изучение биохимических свойств рибонуклеазы и рецептора MC1R показало, что в каждом из этих белков есть множество различных участков, изменение которых приводит к похожим результатам.
Разница между идентичным воспроизведением эволюции опсинов и не столь точным повторением эволюции других белков показывает, что для одних «проблем» (или адаптаций) эволюция находит множество решений, а для других — лишь одно. Структура опсина такова, что лишь наличие правильных аминокислотных остатков в нескольких ключевых позициях обеспечивает настройку пигмента на восприятие определенной длины волны. Структуру и активность рибонуклеазы и MC1R настроить легче, поэтому существует много разных способов их изменения. Другими словами, в случае некоторых генов и некоторых признаков для получения одного и того же биологического эффекта генетический текст не обязательно должен меняться одинаково.
Более того, оказывается, что в некоторых случаях конвергентная эволюция может начаться из совершенно разных генетических исходных точек.
Одним из важнейших изобретений антарктических рыб был антифриз, состоящий из белков с необычной повторяющейся последовательностью всего трех аминокислотных остатков, чаще всего треонин-аланин-аланин или треонин-пролин-аланин. Этот повтор возник из кодирующей последовательности гена пищеварительного фермента. О происхождении антифриза от гена этого фермента можно судить по его некодирующим последовательностям. Непосредственно прилегающая к гену антифриза последовательность ДНК удивительным образом напоминает последовательность гена фермента, что свидетельствует об образовании гена антифриза из фрагмента ДНК фермента.
Арктические рыбы также живут в очень холодной воде и тоже содержат антифриз в крови и в тканях. Белки-антифризы арктических рыб тоже состоят из повторяющихся последовательностей треонин-аланин-аланин или треонин-пролин-аланин. Понятно, что самым простым объяснением такого совпадения было бы появление белка-антифриза у общего предка арктических и антарктических рыб и его наследование обеими группами потомков.
Однако в данном случае сходство антифризов обманчиво.
Антифриз арктических рыб эволюционировал другим путем и в другое время, чем у антарктических рыб. Это подтверждается множеством доказательств. Во-первых, арктические и антарктические рыбы принадлежат к разным ветвям эволюционного древа и относятся к разным отрядам. Во-вторых, понижение температуры воды в Северной Атлантике и в северной части Тихого океана произошло гораздо позднее, около 2,5 млн лет назад, тогда как на юге температура воды понизилась примерно 10–14 млн лет назад. Конечно, сам этот факт не означает, что какие-то антарктические рыбы не могли мигрировать к северу и дать начало арктической ветви. Однако такой сценарий можно исключить, проследив происхождение антифриза по ДНК.
Есть две основные причины считать, что антифриз арктических и антарктических рыб имеет разное происхождение. Во-первых, в ДНК арктических рыб не обнаружено ни малейшего сходства с последовательностью гена пищеварительного фермента, давшего начало антифризу антарктических рыб. Во-вторых, и это главное, эти два антифриза у арктических и антарктических рыб образуются двумя совершенно разными путями. У антарктических рыб последовательности треонин-аланин-аланин или треонин-пролин-аланин закодированы множество раз и разделены последовательностью лейцин-изолейцин-фенилаланин. Именно в этих местах расщепляется синтезируемая белковая последовательность, давая начало отдельным молекулам антифриза. У арктических рыб разделяющие последовательности имеют совсем иное строение и расщепляются другим ферментом. Таким образом, хотя молекулы антифриза у двух групп рыб поразительно похожи, они образуются из белков с разными «разделителями», которые не могут иметь общего происхождения. Эти белки — аналоги, но не гомологи.
Объяснение удивительного сходства последовательностей пептидных антифризов арктических и антарктических рыб заключается в естественном отборе компонентов, предотвращающих образование льда в теле рыбы. Подробные биохимические исследования показали, что действие пептидных антифризов основано на их способности связываться с кристаллами льда и предотвращать их разрастание. Через остатки треонина пептиды связаны с молекулами углеводов, которые, в свою очередь, играют главную роль во взаимодействии с кристаллами льда. Такой простой повтор, как треонин-аланин-аланин, по-видимому, образует оптимальную повторяющуюся структуру для взаимодействия с регулярной повторяющейся структурой кристалла льда. Конвергентная эволюция антифризов арктических и антарктических рыб свидетельствует о том, что для создания антифриза с определенной структурой и функцией природа нашла несколько путей.
Удивительное сходство антифризов при их различном происхождении вызывает вопрос: обязательно ли молекулы с близкими функциями должны иметь сходные последовательности?
Чтобы ответить на этот вопрос, я предлагаю вам сыграть в одну игру. Ниже представлены последовательности четырех небольших природных белков. Посмотрите внимательно на эти последовательности, изображенные с помощью кода, в котором каждая из 20 основных аминокислот обозначается одной буквой.
1. VCRDWFKETACRHAKSLGNCRTSQKYRANCAKTCELC
2. ZFTNVSCTTSKECWSVCQRLHNTSRGKCMNKKCRCYS
3. CRIONQKCFQHLDDCCSRKCNRFNKCG
4. ZPLRKLCILHRNPGRCYQKIPAFYYNGKKKQCEGFTWSGGCGGNSNRFKTIEECRRTCITRKD
Видите ли вы какое-нибудь сходство между этими последовательностями?
Нет?
Не расстраивайтесь, я тоже не вижу, но при этом между ними обязательно должно быть нечто общее.
Суть вот в чем. Четвертый белок в списке принадлежит змее. Я всю жизнь интересовался змеями и всегда разыскивал их, если оказывался в местах, где встречаются любопытные виды. Эта белковая последовательность принадлежит той единственной змее, которая действительно меня напугала. Однажды я посетил небольшой змеиный питомник вблизи озера Баринго в Кении. Один из дрессировщиков с удовольствием продемонстрировал мне очень нервную трехметровую черную мамбу. Змея была настолько крупной и проворной, что я невольно отступил назад, но дрессировщик придвинулся ко мне еще ближе.
Если бы он допустил ошибку, я уже ничего не смог бы вам рассказать. От укуса черной мамбы человек может погибнуть за полчаса. В яде змеи содержатся мощные нейротоксины (под четвертым номером в списке как раз представлена последовательность основного токсина из яда черной мамбы). Смертельное действие этого токсина основано на блокировании так называемых калиевых каналов. Эти каналы играют важнейшую роль в проведении электрических сигналов в нейронах и мышцах. Когда их функция блокирована, нарушается работа нервов и мышц. После укуса черной мамбы у людей обычно прекращается нервная и мышечная активность, и без немедленного введения противоядия люди умирают от остановки дыхания.
Три других белка в списке тоже блокируют калиевые каналы и тоже обнаружены в различных ядах. И вот что забавно: первый принадлежит морскому анемону (актинии), второй — скорпиону, а третий — морской улитке-конусу. Все четыре вида животных относятся к разным типам: анемон — кишечнополостное, скорпион — членистоногое, конус — моллюск, а мамба — позвоночное. Представленные в списке токсины эволюционировали независимо друг от друга и имеют разное строение, но функция у них одна и та же — перекрывание калиевых каналов жертвы. Это разные молекулы, имеющие разное происхождение, но общее смертоносное назначение.
Я очень надеюсь, что рассказ об эволюции этих токсинов, а также другие примеры повторения эволюционных событий вас не просто впечатлили, но по-настоящему потрясли. Мне кажется, что они принадлежат к числу самых ярких и убедительных свидетельств того, как действует эволюция в природе. В этих примерах сочетаются два важнейших элемента — повторяемость событий и совпадение в деталях.
Есть старая латинская поговорка: repetitio est mater doctrinae, повторенье — мать ученья. А что верно для обучения, то верно и для науки. Примеры адаптации отдельных видов, безусловно, весьма информативны, но повторение эволюционных изменений, иногда в мельчайших деталях, говорит о том, что под влиянием похожих факторов получаются похожие результаты. Эволюция обладает замечательной способностью воспроизводиться.
До сих пор мой рассказ о повторении эволюционных событий сводился к рассмотрению вопроса «как»: каким образом приобретаются похожие способности или теряются определенные признаки. Но мы пока ничего не сказали о том, почему это происходит. Почему эволюция воспроизводит саму себя? Ответ складывается из трех основных составляющих — вероятности, отбора и времени, вступающих в игру по законам простейшей математики эволюции (см. главу 2). Возможно, эти арифметические выкладки покажутся (или уже показались) вам лишними и непонятными, однако взаимосвязь этих трех элементов и их влияние на информационное содержание ДНК полностью объясняют, почему одни и те же события в естественной истории повторяются вновь и вновь.
Во второй главе, когда мы знакомились с основными движущими силами эволюции, у нас еще не было возможности проследить за ходом эволюции на уровне ДНК. Теперь мы знаем, что эволюция опсинов, рибонуклеаз, рецептора MC1R, ферментов, ответственных за расщепление галактозы, и т. д. включала повторяющиеся и иногда совершенно идентичные изменения соответствующих генов. То, что во второй главе было «просто» теорией, мы подтвердили примерами эволюции видов на самом фундаментальном уровне — на уровне отдельных элементов ДНК.
Значение открытий, о которых идет речь в этой главе, можно заключить в ряд общих тезисов, касающихся основных факторов эволюции: i) Стечением времени ii) идентичные или эквивалентные мутации случайным образом возникают снова и снова, iii) причем их судьба (сохранение или устранение) зависит от действия отбора на тот признак, на который эти мутации влияют.
Оставшуюся часть главы я посвящу рассмотрению этих утверждений, используя реальную математику мутаций, реальные биологические факты и реальные примеры из этой и предыдущих глав, чтобы показать, почему эволюция может повторяться и повторяется. Расчеты и закономерности, выявленные на основании анализа ДНК, не оставляют сомнений в том, что причиной и исчерпывающим объяснением биологической эволюции является сочетание случайных мутаций, естественного отбора и фактора времени.
За доказательствами мы с вами обратимся к миру очень больших чисел. Предупреждаю, что по пути вам может прийти в голову мысль: «Это невозможно!» На самом деле противники дарвиновской теории эволюции достаточно часто привлекают математический псевдоанализ, чтобы обосновать ее «невозможность». Однако в их аргументах всегда остается неучтенным один или несколько важных факторов. Мы увидим, что при учете всех факторов оказывается, что эволюция посредством специфических отбираемых изменений в ДНК не просто возможна, а возможна «с избытком».
Давайте начнем с фактов, касающихся эволюции ультрафиолетового зрения у птиц. В четырех разных отрядах птиц есть и те, кто видит ультрафиолетовый свет, и те, кто видит только фиолетовый. Это означает, что переход от одной способности восприятия к другой происходил независимо не менее четырех раз. На способность воспринимать ультрафиолетовый или фиолетовый свет влияет аминокислота, находящаяся в положении 90 в последовательности коротковолнового опсина. Птицы, в опсине которых в этом положении находится остаток серина, настроены на восприятие фиолетового света, а те, у которых в этом месте находится остаток цистеина, — на восприятие ультрафиолетового света.
Эти аминокислотные остатки кодируются основаниями ДНК, расположенными в позициях 268–270 в последовательности гена коротковолнового опсина птиц. Более точный анализ показывает, что наличие в этом участке серина или цистеина определяется лишь одним основанием, находящимся в положении 268 (табл. 6.1).
Таблица 6.1. Повторяющаяся эволюция УФ-чувствительного опсина
Зебровая амадина, серебристая чайка, нанду и волнистый попугайчик принадлежат к разным отрядам. Основное различие между их опсинами состоит в замене A на T в положении 268, которое произошло в ходе эволюции как минимум четыре раза.
Какова вероятность того, что одна и та же конкретная мутация произойдет у разных видов животных? Пришло время арифметики.
Вероятность мутации конкретного основания у большинства животных — от рыб до людей — составляет примерно 1 на 500 000 000 оснований ДНК. Это означает, что замена A в положении 268 в одной копии гена опсина SWS в среднем происходит у одного птенца из 500 млн. В организме каждый ген представлен в двух копиях, поэтому средняя[15] вероятность такого события увеличивается до 1:250 млн птенцов. Однако вариантов замены в этой позиции три: основание A может быть заменено на T, C или G. В соответствии с генетическим кодом только замена A на T приведет к образованию цистеина и к появлению у птиц способности воспринимать ультрафиолетовый свет. Если вероятность всех этих замен одинакова (она неодинакова, но мы с вами проигнорируем существующее небольшое различие), то лишь в одном случае из трех произойдет необходимый переход. Замена основания A на основание T в данной позиции происходит примерно у одного из 750 млн птенцов.
Вам кажется, что это слишком редкое событие?
Но мы пока не учли количество птенцов, ежегодно появляющихся на свет. По данным многолетних исследований, популяции многих видов птиц насчитывают от одного до 20 млн особей и более. За год птицы такого многочисленного вида, как серебристые чайки, производят на свет не менее 1 млн птенцов (и возможно, эта цифра сильно занижена). Поделим это значение на частоту мутаций и получаем, что замена серина на цистеин в данной позиции происходит один раз в 750 лет. По сравнению с человеческой жизнью это может показаться очень долгим сроком, но сейчас мы с вами должны настроиться на иную временную шкалу. Только у одного этого вида птиц за какие-то 15 тыс. лет данная мутация может независимо произойти 20 раз.
Четыре отряда, к которым принадлежат перечисленные виды, являются древними — у их предков были десятки миллионов лет на то, чтобы выработать ультрафиолетовое или фиолетовое зрение. При такой вероятности мутаций замена A на T только у одного вида чаек за миллион лет произошла свыше 1200 раз. Улавливаете идею?
А если эволюционное изменение не должно быть таким точным? Я рассказывал, что за темную окраску перьев у северного гуся, короткохвостого поморника, бананового певуна и других животных отвечают разные мутации гена MC1R (я уверен, что существует великое множество животных, окраска которых определяется вариантами гена MC1R, но здесь привожу лишь несколько хорошо изученных биологами примеров).
Из имеющихся данных понятно, что темная окраска меха, перьев или чешуи возникает в результате как минимум десяти разных мутаций MC1R. При наличии десяти позиций для мутаций и при одинаковой вероятности мутаций (она одинаковая, поскольку все участки ДНК подвержены мутациям в равной степени) получаем, что вероятность появления темной окраски, связанная с изменениями гена MC1R, в десять раз выше, чем вероятность конкретной точечной замены в гене коротковолнового опсина. Таким образом, темную окраску будет иметь один детеныш из 75 млн. Частота появления темной окраски в популяции зависит от плодовитости вида. У тех видов, которые производят 750 тыс. детенышей в год, новый темный детеныш появляется каждые 100 лет (10 тыс. новых черных вариантов за 1 млн лет). У тех видов, которые производят ежегодно 7,5 млн детенышей, черный детеныш появляется один раз в десять лет. Даже у малочисленных видов, производящих не более 75 тыс. детенышей в год, детеныш с новым вариантом черной окраски появляется один раз в 1 тыс. лет.
Теперь вас не удивляет, что черные мыши, черные птицы и черные ящерицы имеют мутации в одном и том же гене? Или что некоторые виды животных имеют одну и ту же замену в гене MC1R?
А как обстоит дело с ископаемыми генами? Легко ли они образуются? Они образуются очень легко. В то время как для изменения функции гена обычно существует лишь несколько возможностей, для нарушения функции гена таких возможностей множество. Примерно 5 % всех точечных мутаций приводят к прерыванию последовательности гена. Кроме этих простых «опечаток» вставки и делеции не кратного трем числа оснований также приводят к нарушению считывания генетической информации. Небольшие вставки и делеции встречаются достаточно часто. На основании этих данных можно сказать, что испортить ген примерно в 50 или 100 раз «легче» (то есть вероятнее), чем произвести специфическую точечную мутацию. Применяем уже знакомую нам арифметику и получаем, что одно животное из примерно 2 млн родится с новым потенциальным ископаемым геном. Из данных табл. 6.2 видно, что частота возникновения ископаемых генов и гораздо более специфических мутаций зависит от скорости размножения.
Таблица 6.2. Частота появления похожих мутаций в одном и том же гене за 1 млн лет
А теперь вдумайтесь: по оценкам ученых, на Земле сегодня существует около 10 тыс. видов птиц. Из цифр в таблице абсолютно ясно, что одни и те же мутации повторяются у всех видов птиц, за исключением самых редких, и возникали несчетное количество раз у их вымерших предков.
Но такая картина вовсе не ограничена миром птиц. Многие другие группы животных имеют сравнимую численность популяции и скорость воспроизводства, а некоторые даже более плодовиты. Мы не будем вновь заниматься вычислениями, чтобы удостовериться, что в гигантских популяциях рыб, насекомых или ракообразных некоторые мутации повторяются еще чаще.
Итак, мутации происходили и происходят в избытке. Возникает другой вопрос: останется ли в популяции новая, потенциально «полезная» мутация или исчезнет, потеряется? Здесь в дело вступает естественный отбор.
В четырех предыдущих главах мы говорили о сохранении, расширении, модификации или разрушении заключенной в ДНК информации в результате действия или бездействия естественного отбора. Я рассказывал о возможной судьбе генов в трех разных ситуациях. В главе 3 мы познакомились с действием очищающего отбора, сохраняющего информацию ДНК на протяжении миллиардов лет в условиях постоянного потока мутаций. В главе 4 мы оценили положительную роль естественного отбора в удвоении генов и тонкой настройке генов, в результате чего на основе «старых» генов создается новая информация и новые признаки. В главе 5 мы увидели, что в отсутствие естественного отбора, сохраняющего гены, текст ДНК разрушается и стирается. А в данной главе мы проследили за тем, как одинаковые или эквивалентные изменения в ДНК вновь и вновь отбираются (или допускаются, если естественный отбор ослабевает).
На фундаментальном уровне, то есть на уровне ДНК, отбор контролирует относительную успешность распространения альтернативных форм отдельных генов. Допустим, мы имеем две последовательности ДНК, A и B, различающиеся по одной или нескольким позициям. В зависимости от условий отбора существуют три варианта развития событий. Если последовательность A лучше обеспечивает выживание или репродуктивный успех организма, чем B, преимущество оказывается на стороне A. Напротив, если последовательность B обеспечивает лучшие показатели выживаемости и воспроизводства по сравнению с последовательностью A, преимущество получает B. Третья возможность заключается в том, что ни одна из последовательностей не дает преимущества или что они определяют признак, который уже не важен для выживания и воспроизводства. В этом случае частота встречаемости вариантов A и B будет колебаться случайным образом — «дрейфовать».
Таким образом, каждую новую мутацию ожидает один из этих трех вариантов развития событий. Она может активно сохраняться, активно удаляться или оставаться без внимания со стороны естественного отбора. Например, если у птицы есть ген коротковолнового опсина с триплетом AGC в положениях 268–270, она, скорее всего, видит в фиолетовом диапазоне спектра. Теперь рассмотрим девять вариантов изменения этой последовательности в результате мутаций каждого из трех оснований триплета.
Не будь естественного отбора, в опсинах птиц существовали бы все варианты замен. Однако исследование 45 видов птиц из 35 семейств показало, что у всех видов в данном положении находится либо серин, либо цистеин. Вероятность того, что это результат простой случайности, пренебрежимо мала. Значит, в ходе эволюции птиц все другие возможные изменения в этой позиции вновь и вновь отсеивались. Такова сила естественного отбора.
Статистический анализ помогает выявить неслучайный характер последовательностей ДНК, но математика — не единственный способ понять, как действует естественный отбор. Лабораторные эксперименты и изучение физиологии видов дают дополнительную информацию, которая в сочетании с текстом ДНК позволяет составить более полную картину. В данном случае нам известно, что птицы с цистеином в определенном положении способны видеть в УФ-диапазоне спектра, тогда как птицы с серином в этой позиции не воспринимают ультрафиолетовый свет. Единственным объяснением того, что на этом месте стоит только серин или цистеин, является влияние естественного или полового отбора. А лучшее объяснение многократного появления цистеина в этой позиции — что время от времени возникают сходные условия, при которых птицам из разных видов, семейств и отрядов становится выгодно видеть в ультрафиолетовом свете.
Точно так же лучшим объяснением конвергентной эволюции трихроматического зрения у обезьян ревунов, рибонуклеазы у жвачных животных, темной окраски у птиц, млекопитающих и рептилий, антифриза у рыб и мощных нейротоксинов у различных животных является сходство условий отбора, способствующего появлению похожих признаков.
Хотя преимущества антифриза и смертоносных токсинов, убивающих добычу, очевидны, эволюция этих способностей показывает, что отбор работает с тем материалом, который есть под рукой. Отбор благоприятствовал появлению двух практически идентичных вариантов антифриза из двух совершенно непохожих фрагментов ДНК, а также смертельных токсинов из разных исходных материалов. Толчком к изобретению здесь, безусловно, послужила необходимость, но закрепились эти изобретения благодаря совокупному действию случайных мутаций и естественного отбора.
Однако если в результате изменения образа жизни какой-либо признак становится ненужным, естественный отбор остается слеп к мутациям в соответствующих генах. Мутации, разрушающие гены, неизбежны и могут появиться в любом месте текста ДНК. Мы видели, что ген опсина SWS разрушался не менее пяти раз в разное время и пятью разными способами у разных позвоночных животных. У дрожжей трижды происходило разрушение семи генов, составляющих путь метаболизма галактозы. Похожие условия (отсутствие необходимости) снова и снова приводили к сходным результатам.
Не всякая потенциально «полезная» мутация успевает распространиться по всей популяции. На самом деле в большинстве случаев новые мутации теряются случайным образом, прежде чем успевают достичь значимой частоты. Лишь некоторые новые мутации будут поддержаны отбором — в зависимости от того, насколько важные преимущества они обеспечивают. Данные в табл. 6.2, показывают, что высокая частота мутаций предоставляет эволюции широкие возможности, однако эволюция использует лишь некоторые из них.
Важно подчеркнуть, что условия жизни представителей одного и того же вида могут различаться, поэтому одна и та же мутация в одних местах может распространиться, в других оказаться отбракованной, а в третьих остаться без внимания со стороны естественного отбора. Это приводит к тому, что представители некоторых видов, таких как мешотчатые прыгуны, ягуары или северные гуси, могут различаться по многим признакам. Я рассказывал о частоте появления новых мутаций, но на самом деле в популяции обычно присутствуют одновременно две или несколько альтернативных форм генов. И в таком случае эволюция заключается не в «ожидании» новых мутаций, а в повышении или понижении частоты встречаемости альтернативных форм в ответ на изменение внешних условий. Как мы видели в главе 2, временная шкала действия отбора такова, что признак может быстро распространиться или быстро исчезнуть.
Почти 2 тыс. лет назад писатель и философ Плутарх в «Жизнеописании Сертория» очень близко подошел к определению природы эволюции и предсказал возможность повторения исторических событий (см. цитату в начале главы). Он правильно подчеркнул длительность временного интервала («поток времени бесконечен»), фактор вероятности («судьба»), большое количество и разнообразие материала («количество основных частиц мироздания неограниченно велико») и пришел к выводу, что исторические события должны повторяться («часто происходят сходные между собой события» и «созидание подобий»).
Плутарх умело описал роль вероятностного измерения в истории, но ничего не сказал о детерминистском аспекте эволюции — о естественном отборе. Среди множества возможных случайных событий в ДНК естественный отбор отсеивает большинство изменений и способствует распространению лишь немногих из них. Создание наиболее приспособленного — это не дело случая, а, как более 30 лет назад сформулировал известный биолог Жак Моно, результат случайности и необходимости. Повторяющаяся эволюция признаков является результатом совокупного влияния двух факторов — вероятности эквивалентных мутаций и сходства условий отбора.
Мы с вами уже продвинулись далеко вперед по сравнению с теоретическими подсчетами из главы 2. Тем не менее вы вполне можете поинтересоваться: что ж, с мышами, дрожжами и попугаями мы разобрались, но как обстоит дело с людьми?
Власть случайности и необходимости простирается не только на минувшие эпохи и «низшие» виды организмов. Мутации и естественный отбор продолжают действовать в реальном времени, в том числе и на нас с вами. Об этом мы и поговорим в следующей главе.
Очень ядовитый орегонский (желтобрюхий) тритон. Фотография Стивена Хольта.