Развитие химической теории

В основе любой области естествознания лежит обычное наблюдение за явлениями природы; лишь постепенно на этой основе создается наука.

Юстус Либих [2, с. 2]

Наследие восемнадцатого столетия

В последней трети XVIII в. химия переживала величайший революционный переворот. Перемены в химических знаниях были столь обширными, что связь с прошлым казалась прерванной. Химия получила новую теорию, новую терминологию и номенклатуру. В это время происходило обособление отдельных областей химических знаний, а в промышленности начали возникать специализированные химические предприятия.

В начале XIX в. английский историк науки Уильям Уэвелл характеризовал этот переворот как "шаг к обобщению" [3], а около ста лет спустя Томас Кун определил его как "смену парадигм"[3] [4, с. 24 и cл.].

В книге "Химия и ее история" [5] показано, что периоды накопления и наивысшего развития знаний в истории химии были обусловлены непрерывным и дискретным характером ее развития.

Постепенное накопление опытных данных и сведений (кумуляция) заканчивается фазой наивысшего развития (кульминацией) — коренным, качественным изменением какой-либо теории, метода или системы.

Кульминационные периоды различны по своей эффективности. Лишь некоторые из них открывают новую эпоху. Например, в астрономии это переход к представлениям о гелиоцентрической системе мира от представлений о геоцентрической системе, а в химии — переход к теоретической эпохе от эмпирической.

Бывали в химии кульминационные периоды, которые Уэвелл назвал большими или меньшими "шагами" на пути к прогрессу, например открытие минеральных кислот или создание флогистонной теории Г. Э. Шталя. Эти и многие другие "шаги" способствовали новой эпохе развития химических знаний, но не они определили ее наступление.

В первом томе этой книги приведено обоснование деления истории химии на два этапа — эмпирический и теоретический. Такое деление обусловлено тем, что химия конца XVIII в. переживала процесс глубоких преобразований, или основной кульминационный период. До химической революции[4] решающую роль в развитии химии играл эксперимент, хотя в XVII — XVIII вв. уже все большее значение начинала приобретать теория. Следует помнить, что классификация всегда является лишь дополнительным средством для ориентации в развитии науки, и абсолютизировать ее не следует. Указанная классификация характеризует главную тенденцию в развитии знаний и вовсе не свидетельствует о том, что в один период истории определяющей является только практика, а в другой — только теория [6]. В период развития теории эксперимент по-прежнему сохранил свое особое значение, и именно только в сочетании с экспериментальными методами исследования теория приобрела решающее значение для развития всех областей химии.

Химия стала наукой, по мнению одних, лишь с развитием теоретических представлений, по мнению других, в период между 1540 и 1740 гг. [7]. Ссылаясь на некоторые источники, ряд исследователей утверждают, что развитие химии началось в XVI в., с работ Парацельса и Агриколы, когда постепенно начало складываться понятие научной химии[5]. Кульминационный момент в этом развитии наступил благодаря созданию системы Лавуазье. Тем не менее в предшествующий период химиками также были достигнуты важные теоретические результаты. Среди них особенно выделяется теория флогистона. Она являлась вершиной развития химических знаний до тех пор, пока не была создана антифлогистонная теория Лавуазье. Г. Шталю для объяснения горения нужен был гипотетический флогистон, а Лавуазье смог объяснить процесс окисления и восстановления как результат превращения реально участвующих в этих процессах элементов. С этого момента критерием правильности теории в химии . стало качественное и количественное экспериментальное доказательство. Так, например, закон эквивалентов И. Рихтер сумел обосновать, проводя многочисленные опыты с кислотами и основаниями. Лишь признав необходимость точных доказательств для подтверждения теоретических воззрений, химия превратилась в современную науку.

При этом гипотезы не потеряли своего значения, но появилась возможность четко разграничивать гипотезы и теории. Между ними образовалась динамическая связь, так как объяснения с помощью гипотез способствовали проведению новых экспериментов и выдвижению новых идей. Разграничение понятий "теория" и "гипотеза" нельзя воспринимать как их противопоставление. Теории, как правило, включают в себя гипотезы, потому что область их применения расширяется с появлением новых экспериментальных данных. В то же время гипотеза обычно также содержит рациональное зерно.

В процессе эволюции каждый конечный пункт служит одновременно и исходным пунктом. Например, революция в химии, совершенная Лавуазье, получила дальнейшее развитие при открытии ряда законов и появлении химической атомистики Дальтона.

Социально-экономические основы развития химии

Кульминационный период, знаменующий переход от эмпирической химии к становлению химической теории, характеризуется не только как переломный момент в развитии химических знаний. Этот кульминационный период, вызвавший к жизни новую эпоху, был тесно связан с различными общественными процессами, в частности с промышленной революцией и борьбой буржуазии за власть.

Как правило, химик XVIII в. был по своему происхождению буржуа, а буржуазия к этому времени заметно активизировала борьбу за свою экономическую, политическую и духовную свободу. Представители нарождающегося класса буржуазии чувствовали себя обделенными дворянскими привилегиями. Они были недовольны тем, что развитие промышленного производства определялось в основном узкоцеховой деятельностью ремесленных объединений. К тому же буржуазия стремилась освободиться от догматической идеологии. В XVIII в. подобные взгляды нашли отражение и в произведениях философов, поэтов и экономистов, в статьях и книгах по химии. В тот период слепой вере в авторитеты был противопоставлен разум, критерием истинности любого высказывания стала практика. Химики, будь то Шталь или Ломоносов, Бергман или Пристли, представляли интересы буржуазии. Поэтому они разделяли ее экономические и естественнонаучные воззрения. Углубление химических знаний, по их мнению, должно было способствовать улучшению производственных процессов и тем самым, выражаясь современным языком, развитию капиталистических отношений в промышленности.

Поэтому химики XVIII в. вели борьбу с алхимией как с односторонней, нацеленной лишь на получение золота и потому неэкономичной химией. В то же время они выступали против голого эмпиризма и ремесленных тайн, которые, по их мнению, мешали создать рациональную химию, направленную на познание природы и применение полученных знаний на практике. Они стремились к использованию химических знаний в производстве и выступали против пренебрежительного отношения к практической (производственной) деятельности. Ремесленник, производящий изделия, и фабрикант, руководящий предприятием,- эти люди должны быть равноправными гражданами общества, не менее уважаемыми, чем привилегированное дворянство [8, с. 54 и cл.].

С середины XVIII в. химики стали публиковать труды в основном на национальных языках. Большая часть химических сообщений, книг и журналов предназначалась для практиков. Издавая учебники и книги с описанием различных экспериментов, химики способствовали развитию самообразования. Они постепенно освобождали язык от латинизмов, в результате чего изложение в книгах становилось более простым и конкретным. В XVIII в. быстро росло число публикаций химических работ, необходимых прежде всего ремесленникам, аптекарям, врачам, хозяевам предприятий, землевладельцам и т. п.

Но одновременно химики стремились пробудить и интерес к науке; они хотели, чтобы применение химических знаний в ремеслах не было самоцелью, и пытались убедить общество в полезности химических методов и представлений для совершенствования знаний о природе веществ. Называя этих ученых химиками, мы несколько осовремениваем реальную историческую картину. Дело в том, что в XVII в. термин "химия" употребляли еще сравнительно редко. Лишь после Шталя этот термин получил широкое распространение. Это было связано с тем, что химия в то время постепенно завоевывала популярность, тогда как алхимия теряла свои позиции. В XVIII в. химия наиболее тесно была связана с медициной, и фармацией. Некоторые ученые (Бекман, Гермбштедт) старались показать, какую пользу приносит химия для развития ремесел и сельского хозяйства, и доказать, что она могла бы принести еще большую пользу. Гермбштедт провел даже цикл занятий для владельцев ряда предприятий.

К концу XVIII в. число открытий в области химии настолько возросло, что уже ощущалась нехватка в научно-технических журналах. Это хорошо отражено в работах Виглеба [9] и Гмелина [10], в которых важнейшие исследования приведены в хронологическом порядке. Вдохновенно и подробно описывали химики приборы, установки и методы исследования, которые, как правило, были ими же и разработаны. Тем самым они "вводили" читателя в свою лабораторию, раскрывая перед ним психологию научного творчества.

Сделанные химиками в XVIII в. открытия и изобретения, а также разработанные теории привели к крупным успехам в прикладной, экспериментальной и теоретической химии. Химия стала одной из движущих сил промышленной революции. Например, изобретение метода пудлингования[6] и создание пламенной печи вывели металлургию из "тупика", в котором она могла оказаться из-за ограниченных ресурсов такого сырья, как древесина. Ведь древесина шла на отопление и была ниболее распространенным строительным материалом: дома, мосты, мельницы, повозки, суда были в основном деревянными. Из древесины добывали деготь, поташ и уголь. Древесный уголь не только использовался в качестве топлива, но служил восстановителем в различных химических процессах. Стремление найти замену этому сырью заметнее всего ощущалось в Англии, где, с одной стороны, площади, занятые лесами, были очень невелики, а с другой стороны, стала рано развиваться металлургия. Именно в Англии в 1735-1783 гг. произошла замена древесного угля на каменный в процессах получения чугуна и стали (методом пудлингования). Это позволило увеличить объем доменных печей и повысить их продуктивность. Но для работы более крупных доменных печей требовался больший приток воздуха, который не могли обеспечить ни водяные колеса, ни даже воздуходувки новой конструкции [11, с. 562 и cл.].

Проблема была решена Уаттом, создавшим паровую машину. Эта машина в течение последующих ста лет, вплоть до изобретения дизеля и электромотора, продолжала оставаться самым мощным двигателем. Работа паровой машины не зависела от природных условий и обеспечивала непрерывность подачи воздуха. В горном деле паровая машина позволила усовершенствовать воздушный и водяной режимы и тем самым увеличить добычу угля и руды. В производствах, связанных с обработкой металла, эта машина вытеснила водяное колесо. Благодаря применению паровой машины металлургия поднялась на качественно новую ступень развития.

В других отраслях промышленности тоже происходили подобные процессы. Так, например, текстильная и стекольная промышленности не могли развиваться без достаточной сырьевой базы — серной кислоты, соды и хлора. На увеличение добычи природной соды едва ли можно было рассчитывать. Положение существенно изменилось лишь после того, как в конце XVIII в. Леблан предложил способ получения соды из имеющегося в достаточном количестве сырья — природной поваренной соли, извести и угля [6]. Сода, полученная по методу Леблана, оказалась лучшего качества и к тому же более дешевой, чем природная. Производство такой соды начало удовлетворять растущие потребности текстильной промышленности, быстро развивающейся в результате создания прядильных и ткацких машин.

Благодаря исследованиям химиков в XVIII в. были созданы лучшие способы отбеливания, оказавшие громадное влияние на развитие текстильной и бумажной промышленности; возможности отбеливания с помощью кислого молока или при выгорании тканей на траве под солнцем, конечно, были очень ограниченными. Химики заменили кислое молоко серной кислотой, а огромные луговые пространства — камерами для отбеливания хлором. Отбеливающее действие хлора было открыто Шееле, а технологическое решение этого метода было разработано Бертолле [6].

В отличие от соды способы получения серной кислоты были известны. Рост производства серной кислоты требовал не создания новых методов, а совершенствования технологии — стеклянные сосуды были заменены в XVIII в. на вместительные свинцовые камеры [6]. Примерно в это же время европейским химикам удалось получить новый материал — фарфор, который, правда, уже с VII в. был известен в Китае [6]. С середины XIX в. фарфор, импортировавшийся ранее в Европу в виде дорогой посуды, стал общедоступным.

В XVIII — начале XIX вв. результаты работ химиков оказали большое влияние на развитие и других отраслей промышленности: дубильного, красильного и пивоваренного производств. Разработка способа получения сахара из свеклы в это время позволила развивать пищевую и кондитерскую промышленности независимо от импорта сырья (тростникового сахара). Это привело к значительному улучшению питания населения европейских стран [6, с. 125].

Экспериментальная практика

В экспериментальных химических исследованиях тоже началась новая эпоха, которая прежде всего ознаменовалась выделением химии в самостоятельный раздел науки. Начало искусства экспериментирования относится к эпохе Возрождения [6]. В то время создавались методы и приборы, с помощью которых ученые пытались проникнуть в суть явлений природы и исследовать свойства веществ, их состав, превращения и строение.

Начиная с XVII в. при различных университетах и академиях стали создаваться лаборатории; в Германии первая лаборатория появилась в 1609 г. в университете г. Марбурга. Однако в этих лабораториях, организованных чаще всего на медицинских факультетах (лишь иногда на горнодобывающих или стекольных предприятиях), занимались, как правило, решением чисто практических задач. В лабораториях, принадлежащих феодальным властителям, наряду с попытками получить золото химики занимались также и практическими работами — изготовлением стали, пороха, глазури, красок, стекла. Также обстояли дела в лабораториях аптекарей или ремесленников. В течение XVIII в. на основе этих "экспериментальных учреждений" постепенно возникли современные лаборатории: во Франции — при Академии наук, в Англии — при научных обществах, в Германии — при академиях и университетах.

Лаборатория придворной королевской аптеки (Кенигсберг, 1778 г.)

Некоторые ученые, например Пристли, Кавендиш, Троммсдорф или Виглеб, создавали лаборатории у себя дома; другие, например Шееле, экспериментировали в лабораториях при аптеках. Во Фрейберге при Горной академии возникла лаборатория, которой руководил И. Генкель (а позднее В. А. Лампадиус) и где среди других студентов обучался М. В. Ломоносов[7].

Открытие и описание состава и свойств веществ стало главной задачей экспериментаторов в XVIII — начале XIX вв. Хотя возможность практического использования полученных ими результатов не отрицалась (химики слишком тесно были связаны с промышленной буржуазией, чтобы не думать о ее выгодах), но на передний план выдвигались научные интересы. Либих подчеркивал это позднее (в XIX в.) столь решительно, что даже вопрос о практической применимости он считал враждебным науке [12, с. 30 и 180].

Лаборатория Джозефа Пристли (1775г.)

Точные представления о составе веществ и их реакциях, полученные путем систематических исследований, стали главным критерием в химии к концу XVIII в. Отныне в основу трактовки любых химических превращений были положены не остроумные умозрительные заключения, а результаты специально поставленных исследований. Вот почему в середине XIX в. Пастер назвал лаборатории, в которых такие исследования осуществлялись, храмами нового времени. Виглеб в 1777 г. охарактеризовал новую ситуацию следующим образом: "Теперь необходимо либо приводить более полные доказательства, либо сохранять полное молчание; доказательства, однако, должны представлять собой не какую-либо фантазию, а действительные факты" [107, с. 319].

В XVIII в. для экспериментальных работ начали разрабатываться специальные лабораторные приборы и методы исследования веществ. Важнейшими приборами считались различные печи и "зажигательные стекла", поскольку достижение определенных высоких температур было сложным делом. Коренной переворот в этой области был совершен лишь в середине XIX в. благодаря работам Бунзена (с изобретением горелки Бунзена). В лабораториях широко использовали паяльную трубку, а точное измерение температур проводили с помощью термометров. Использование новых материалов (например, пробки, каучука) облегчило сборку перегонных аппаратов; их работа была значительно усовершенствована после создания противоточного лабораторного холодильника. Микроскоп, зеркала с платиновой поверхностью и пневматические ванны — таково было основное лабораторное оборудование в XVIII в. В конце XVIII в. к ним добавилось электричество. С помощью электричества Г. Кавендишу в 1784 г. удалось разложить воду на водород и кислород. Исследования Л. Гальвани и А. Вольта привели в 1795 г. к открытию электрохимического ряда напряжений металлов. В 1798 г. Риттер[8] нашел, что ряд напряжений металлов Вольта совпадает с последовательностью их сродства к кислороду, а также с последовательностью, в которой один металл вытесняет другой из его солей. Тем самым Риттер, по мнению Оствальда, заложил основы электрохимии, развитие которой очень скоро значительно обогатило химическую науку. Риттер предполагал, что электричество и химия должны соединиться в единое целое.

К концу XVIII в. высокого уровня достигли и методы анализа "мокрым путем". В то время уже существовали различные приборы, необходимые для проведения таких операций, как выпаривание, фильтрование, осаждение. Использование разнообразных реагентов широко вошло в повседневную практику лабораторий. Химики стали применять и количественные методы исследования. Так, К. Ф. Венцель и И. В. Рихтер использовали их при изучении реакций нейтрализации кислот и оснований.

Необходимым оборудованием лабораторий стали весы. Их чувствительность позволяла проводить измерения с точностью до 1 мг. В это время весы уже повсюду были признаны как контрольный прибор для количественного доказательства химического превращения.

Ко всем этим (сравнительно небольшим) достижениям экспериментальной химии следует добавить открытие за период с 1751 по 1798 г. семнадцати химических элементов (см. приложение в конце книги) — больше, чем за все предыдущее время[9].

Новая химия и историография

Наступление нового периода в развитии химии оказалось наиболее заметным в области теории. В это время произошел окончательный отказ химиков от признания четырех первоэлементов Эмпедокла и Аристотеля — огня, воды, воздуха и земли, а заодно и от "химии", построенной на этой основе арабскими учеными и Парацельсом. В конце XVIII в. элементом стали называть любое вещество, которое в результате химических операций было не способно к дальнейшему разложению[10]. Примерно тогда же была разработана соответствующая номенклатура составных частей соединений,- химики заговорили на новом языке [6].

В разных европейских странах этот переворот произошел с небольшими различиями во времени, но в один и тот же исторический период. Межгосударственные границы не препятствовали научному общению химиков. Этому не мешало даже то, что уже с середины XVIII в. латинский язык научных статей постепенно стал уступать место национальным языкам. Перевод статей и их публикация в журналах осуществлялись очень быстро [8]. Войны, правда, наносили ущерб межнациональным научным контактам, но не прерывали их полностью, как это произошло позднее — в период первой мировой войны. Случались, конечно, дискуссии и даже споры из-за приоритета. Число химиков было еще невелико, многие знали друг друга лично, некоторые из них время от времени работали вместе над какой-нибудь проблемой. После завершения обучения многие молодые ученые пытались продолжить свое образование в лаборатории у какого-либо известного химика в своей стране или за границей.

В XVII-XVIII вв. уже существовало деление химиков на две группы — на специалистов в области "чистой", или теоретической, химии и в области "прикладной", или практической, химии. Первые проводили научные исследования и преподавали в учебных заведениях. Вторые создавали или совершенствовали способы получения важных для практики веществ (среди которых значительное место занимали лекарства). Особняком стояли попытки создания химической технологии на основе результатов физических и химических исследований [8].

Формированию химических знаний, которые вызвали к жизни химическую историографию, способствовал ряд обстоятельств. Во-первых, чувство исторического самосознания у буржуазии, которая постепенно начала брать в руки экономическую и политическую власть. Во-вторых, после работ Лавуазье химия стала формироваться в научную дисциплину, история которой представляла значительный интерес для понимания путей развития этой новой области естествознания. В дальнейшем эта история стала предметом специальной дисциплины — истории химии.

Первые попытки историко-химического анализа были предприняты еще в XVI в. Р. Валленсисом и в XVII в. Г. Конрингом, А. Кирхнером, О. Борхом и И. Кункелем. Шталь тоже занимался вопросами истории химии, критически относясь к воззрениям своих предшественников.

Книга И. Виглеба "Историко-критическое исследование алхимии..." (1777 г.) завершила начальный период разработки историографии химии и в то же время положила начало подлинно научной историографии химии. В 1790-1791 гг. Виглеб первым опубликовал данные о развитии химии и "открытиях нового периода" в хронологическом порядке с 1651 до 1790 г. Тем самым эта книга явилась продолжением созданной Бергманом и переведенной с латинского Виглебом книги по истории химии в древнем мире и в средневековье [8, с. 5, 16 и сл.][11].

От системы Лавуазье к атомистике Дальтона

Бог устроил все по мере, числу и весу.

И. Рихтер [13]

В 80-х гг. XVIII в. новая система Лавуазье получила признание у ведущих естествоиспытателей Франции — К. Бертолле, А. де Фуркруа и Л. Гитона де Морво. Они поддержали новаторские идеи Лавуазье и совместно с ним разработали новую химическую номенклатуру и терминологию. В 1789 г. Лавуазье изложил основы разработанной им системы знаний в учебнике "Начальный курс химии, представленный в новом виде на основе новейших открытий".

Лавуазье разделял элементы на металлы и неметаллы, а соединения на двойные и тройные. Двойные соединения, образуемые металлами с кислородом, он относил к основаниям, а двойные соединения неметаллов с кислородом — к кислотам. Тройные соединения, получающиеся при взаимодействии кислот и оснований, он называл солями.

Система Лавуазье основывалась на точных качественных и количественных исследованиях. Этот довольно новый вид аргументации он использовал, изучая многие спорные проблемы химии — вопросы теории горения, проблемы взаимного превращения элементов, которые были весьма актуальны в период становления научной химии. Так, для проверки представления о возможности взаимного превращения элементов Лавуазье в течение нескольких дней нагревал воду в запаянном сосуде. В итоге он обнаружил в воде незначительное количество "земли", установив при этом, что изменения общего веса сосуда вместе с водой не происходит. Образование "земель" Лавуазье объяснил не как результат их выделения из воды, а за счет разрушения стенок реакционного сосуда.

Для ответа на этот вопрос шведский химик аптекарь К. Шееле в то же время использовал качественные методы доказательства, установив идентичность выделяющихся "земель" и материала сосуда.

Таблица элементов Лавуазье. Из книги Лавуазье 'Начальный курс химии' (1789 г.)

Лавуазье, как и Ломоносов, учитывал существовавшие с древности наблюдения о сохранении веса веществ и систематически изучал весовые соотношения веществ, участвующих в химической реакции[12]. Он обратил внимание на то, что, например, при горении серы или при образовании ржавчины на железе происходит увеличение веса исходных веществ. Это противоречило теории флогистона, согласно которой при горении должен был выделяться гипотетический флогистон. Лавуазье счел ошибочным объяснение, согласно которому флогистон обладал отрицательным весом, и окончательно отказался от этой идеи.

Другие химики, например М. В. Ломоносов или Дж. Мэйоу, пытались объяснить окисление элементов и образование оксидов металлов (или, как тогда говорили, "известей") как процесс, при котором частицы воздуха соединяются с каким-либо веществом. Этот воздух может быть "оттянут обратно" путем восстановления. В 1772 г. Лавуазье собрал этот воздух, но не смог установить его природу. Первым об открытии кислорода сообщил Пристли. В 1775 г. ему удалось доказать, что именно кислород соединяется с металлом и вновь выделяется при его восстановлении, как, например, при образовании "извести" ртути и ее восстановлении. Систематическим взвешиванием было установлено, что вес металла, участвующего в этих превращениях, не изменяется.

Сегодня этот факт, казалось бы, убедительно доказывает справедливость предположений Лавуазье, а тогда большинство химиков отнеслись к нему скептически. Одной из причин такого отношения было то, что Лавуазье не мог объяснить процесс горения водорода. В 1783 г. он узнал, что, используя электрическую дугу, Кавендиш доказал образование воды при сжигании смеси водорода и кислорода в закрытом сосуде. Повторив этот опыт, Лавуазье нашел, что вес воды соответствует весу исходных веществ. Затем он провел эксперимент, в котором пропускал водяной пар через железные стружки, помещенные в сильно нагреваемую медную трубку. Кислород соединялся с железными стружками, а водород собирался на конце трубки. Таким образом, воспользовавшись превращениями веществ, Лавуазье сумел объяснить процесс горения и качественно, и количественно, и для этого ему уже не нужна была теория флогистона [6]. (Пристли же и Шееле, которые, открыв кислород, фактически создали основные предпосылки для появления кислородной теории Лавуазье, сами твердо придерживались позиций теории флогистона. Кавендиш, Пристли, Шееле и некоторые другие химики полагали, что расхождения между результатами опытов и положениями теории флогистона удастся устранить путем создания дополнительных гипотез.)

Антуан Лоран Лавуазье (1743-1794) с женой

Антуан Лоран Лавуазье родился в 1743 г. в семье зажиточного адвоката. В юности изучал математику, физику и химию (последнюю у Г. Ф. Руэля — способного химика, энтузиаста науки). Уже в двадцатилетнем возрасте Лавуазье написал свою первую статью о лучшем способе освещения улиц Парижа, за что получил золотую медаль Академии наук. Лавуазье участвовал в геологической экспедиции, а в 25 лет стал адъюнктом химии Парижской академии. Будучи весьма состоятельным человеком, он смог оплатить вступление в "Генеральный откуп"[13]. Дочь другого генерального откупщика Мари Польз стала его женой и сотрудницей. Их дом долгое время был местом встречи выдающихся людей того времени. Материальное положение позволило Лавуазье приобрести для своей лаборатории превосходное оборудование. Как член "Генерального откупа" и разнообразных комиссий Парижской академии наук он вынужден был заниматься такими проблемами, как контроль за качеством продуктов или снабжение водой морских судов и т. п. В 1776 г. ему было поручено руководство Управлением порохов и селитр, и он во многом способствовал тому, что производство пороха во Франции резко возросло, а качество пороха значительно улучшилось. Лавуазье немало сделал для популяризации химических знаний. Будучи хорошим экспериментатором, он устраивал в своей лаборатории демонстрации опытов, на которые приглашал даже не только специалистов-химиков, пробуждая таким образом у широкого круга людей интерес к науке.

После Великой Французской буржуазной революции (1789 г.) Лавуазье был избран членом Совета Парижа и Комиссии по управлению королевским имуществом. Одновременно он принимал активное участие в деятельности Комиссии по разработке метрической системы мер. Но в ноябре 1793 г. вместе с другими генеральными откупщиками он был арестован и 8 мая 1794 г. казнен. В формулировке обвинений, которые привели Лавуазье на гильотину, чувствуется предвзятость и демагогичность; его обвиняли в шантаже французского народа, в том, что он якобы подмачивал табак и добавлял в него вредные для здоровья вещества. Казнь Лавуазье была воспринята некоторыми учеными как результат террора якобинской диктатуры в ответ на травлю Марата. Другие считали ее трагической ошибкой или наказанием за участие Лавуазье в "Генеральном откупе" (14, с. 83, 138, 380)[14].

Лавуазье прожил чрезвычайно творческую жизнь, и вклад его в науку очень велик. Он был казнен в 50 лет. В 1862 г. в Париже было издано собрание его работ в шести томах. Наиболее полная его биография — "Лавуазье (1743-1794)" — была написана в 1888 г. Э. Гримо. В 1890 г. М. Бертло издал книгу "Революция в химии — Лавуазье"; Г. Кальбаум и А.Гофман в 1897 г. опубликовали работу "Распространение теории Лавуазье в Германии", а в 1910 г. появилась книга М. Шпетера "Лавуазье и его предшественники". В 1900 г. в Париже был воздвигнут бронзовый памятник Лавуазье.

Надежность и полнота опытных данных, ясность аргументации и простота изложения способствовали быстрому распространению системы Лавуазье в Англии, Голландии, Германии, Швеции, Италии. В Германии представления Лавуазье были изложены в двух работах д-ра Гиртаннера (из Геттингена): "Новая химическая номенклатура на немецком языке" (1791 г.) и "Основы антифлогистонной химии" (1792 г.). Благодаря Гиртаннеру впервые появились немецкие обозначения веществ, соответствующие новой номенклатуре, например кислорода, водорода, азота. Работавший в Берлине Гермбштедт опубликовал в 1792 г. учебник Лавуазье в переводе на немецкий язык, а М. Клапрот после того, как он повторил опыты Лавуазье, признал, новое учение; взгляды Лавуазье разделял и знаменитый немецкий естествоиспытатель А. Гумбольдт. В 1790-х годах в Германии не раз публиковались работы Лавуазье [139, с. 92- 94].

Большинство химиков Англии, Голландии, Швеции, Италии (среди них: Кирван и Хиггинс — в Англии; Троствейк, Дейман, ван Марум — в Голландии; Жиобер, Бруньятелли и др.- в Италии, Гадолин — в Швеции) разделяли взгляды Лавуазье [15, с. 156]. Нередко в историко-научной литературе можно прочесть, что для признания теории Лавуазье химикам понадобилось достаточно много времени. Однако по сравнению с 200 годами непризнания астрономами взглядов Коперника 10-15-летний период дискуссий в химии не так уж велик.

До начала XIX в. крупнейшими химиками и физиками Франции были коллеги Лавуазье — К. Бертолле, А. де Фуркруа, Гитон де Морво, Л. Воклен. В значительной степени благодаря их стараниям была создана Политехническая школа, в которой особое внимание уделялось техническим и естественнонаучным дисциплинам и откуда вышли многие выдающиеся естествоиспытатели и инженеры[15]. Опыт работы Политехнической школы оказал большое влияние на развитие науки во многих странах. Оно особенно усилилось после проведенной Фуркруа в конце XVIII — начале XIX вв. реорганизации всей государственной системы преподавания, что способствовало повышению уровня образования и усилению внимания к естествознанию во всех развитых странах.

Стехиометрия — Рихтер, Фишер, Бертолле, Пруст

В последней трети XVIII в. одной из важнейших была проблема, которая многие века интересовала ученых: химики хотели понять, почему и в каких соотношениях соединяются вещества друг с другом. К этой проблеме проявляли интерес еще греческие философы [6], а во времена Возрождения ученые выдвигали идею о сродстве веществ и даже строили ряды веществ по сродству. Парацельс писал, что ртуть образует с металлами амальгамы, причем для разных металлов с различной скоростью и в такой последовательности: быстрее всего с золотом, затем с серебром, свинцом, оловом, медью и, наконец, медленнее всего с железом. Парацельс считал, что причиной этого ряда химического сродства является не только "ненависть" и "любовь" веществ друг к другу[16]. В соответствии с его представлениями металлы содержат серу, и, чем меньше ее содержание, тем чище металлы, а чистота веществ в значительной мере определяет их сродство друг к другу. Г. Шталь объяснял ряд осаждения металлов как результат различного содержания в них флогистона. До последней трети XVIII в. многочисленные исследования были направлены на то, чтобы расположить вещества по величине их "сродства", и многие химики составляли соответствующие таблицы. Для объяснения различного химического сродства веществ выдвигались и атомистические представления, а после того, как в конце XVIII — начале XIX вв. ученые стали понимать влияние электричества на протекание некоторых химических процессов, для этой же цели пытались использовать и представления об электричестве. Основываясь на них, Берцелиус создал дуалистическую теорию состава веществ, в соответствии с которой, например, соли состоят из положительно и отрицательно заряженных "оснований" и "кислот"[17]: при электролизе они притягиваются к противоположно заряженным электродам и могут распадаться при этом на элементы вследствие нейтрализации зарядов.

Со второй половины XVIII в. особенно много внимания ученые стали уделять вопросу: в каких количественных соотношениях взаимодействуют друг с другом вещества в химических реакциях? Уже давно было известно, что кислоты и основания могут нейтрализовать друг друга. Предпринимались также попытки установить содержание кислот и оснований в солях. Т. Бергман и Р. Кирван нашли, что, например, в реакции двойного обмена между химически нейтральными сульфатом калия и нитратом натрия образуются новые соли — сульфат натрия и нитрат калия, которые тоже являются химически нейтральными. Но ни один из исследователей не сделал из этого наблюдения общего вывода. В 1767 г. Кавендиш обнаружил, что количества азотной и серной кислот, нейтрализующие одинаковые количества карбоната калия, нейтрализуют также одинаковое количество карбоната кальция. И. Рихтер первым сформулировал закон эквивалентов (см. ниже)[18], объяснение которому было найдено позднее с позиций атомистической теории Дальтона.

Иеремия Вениамин Рихтер (1762-1807)

Иеремия Вениамин Рихтер (1762-1807) — немецкий химик — родился в Гиршберге (Силезия; ныне г. Зелёна-Гура). Изучал математику, естественные науки и философию в Кенигсберге, где работал Иммануил Кант (1724-1804). В книге "Метафизические основы естествознания" (1786) Кант утверждал, что любое учение о природе содержит ровно столько собственно естествознания, сколько в нем математики. В 1789 г. Рихтер написал диссертацию, посвященную использованию математики в химии. Работа в Бреслау в администрации горнодобывающей промышленности, а позднее в лаборатории красок на королевской фарфоровой фабрике в Берлине привела Рихтера к отчетливому пониманию важного значения весовых соотношений для химии. Так же как пифагорейцы и Кеплер, а позднее Менделеев, Рихтер считал, что все в мире устроено "по мере, числу и весу". В работе "Стехиометрия или искусство измерения химических элементов" (1792-1793 гг.) он сформулировал закон нейтрализации, который более известен под названием "закон эквивалентов".

Рихтер установил, что раствор, получающийся при смешении растворов двух химически нейтральных солей, тоже нейтрален. Он провел многочисленные определения количеств оснований и кислот, которые, соединяясь, дают химически нейтральные соли. Рихтер сделал следующий вывод: если одно и то же количество какой-либо кислоты нейтрализуется различными, строго определенными количествами разных оснований, то эти количества оснований эквивалентны и нейтрализуются одним и тем же количеством другой кислоты. Выражаясь современным языком, если к раствору сульфата калия, например, добавить раствор нитрата бария до полного осаждения сульфата бария, то раствор, содержащий нитрат калия, тоже будет нейтрален: K24 + Ba(NО3)2 = 2KNO3 + BaSО4. Следовательно, при образовании нейтральной соли эквивалентны друг другу следующие количества: 2К, 1Ва, 1SО4 и 2NО3. Полинг обобщил и сформулировал в современном виде этот "закон соединительных весов" (эквивалентов или эквивалентных пропорций): "Весовые количества двух элементов (или их целочисленные кратные), которые, реагируют с одним и тем же количеством третьего элемента, реагируют друг с другом в тех же количествах" [1].

Вначале работы Рихтера почти не привлекли внимания исследователей, поскольку он пользовался еще терминологией флогистонной теории. Кроме того, полученные ученым ряды эквивалентных весов были недостаточно наглядны, а предложенный им выбор относительных количеств оснований не имел серьезных доказательств. Положение исправил Э. Фишер, который среди эквивалентных весов Рихтера выбрал в качестве эталона эквивалент серной кислоты, приняв его равным 100, и составил, исходя из этого, таблицу "относительных весов" (эквивалентов) соединений. Но о таблице эквивалентов Фишера стало известно только благодаря Бертолле, который, критикуя Фишера, привел эти данные в своей книге "Опыт химической статики" (1803 г.). Бертолле сомневался, что состав химических соединений постоянен. Он имел на это основание. Вещества, которые в начале XIX в. считались чистыми, на самом деле были либо смесями, либо равновесными системами различных веществ, а количественный состав химических соединений во многом зависел от количеств веществ, участвующих в реакциях их образования.

Некоторые историки химии считают, что, подобно Венцелю, Бертолле также предвосхитил основные положения закона действия масс[19], который аналитически выражал влияние количеств взаимодействующих веществ на скорость превращения. Немецкий химик К. Венцель в 1777 г. показал, что скорость растворения металла в кислоте, измеряемая количеством металла, растворившегося за определенное время, пропорциональна "силе" кислоты. Бертолле сделал многое для учета влияния масс реагентов на ход превращения. Однако между работами Венцеля и даже Бертолле, с одной стороны, и точной формулировкой закона действия масс — с другой, существует качественное различие.

Как крупный ученый и один из основоположников новой системы химии Бертолле пользовался большим авторитетом. Он преподавал в широко известной Политехнической школе; как признанный химик сопровождал Наполеона в его походах в Италию и Египет. Большое значение для практики имела разработка Бертолле способов отбеливания тканей и бумаги хлором.

Негативное отношение Бертолле к закону нейтрализации Рихтера не могло длиться долго, так как против положений Бертолле энергично выступил Пруст.

Жозеф Луи Пруст (1754-1826)

Как и Лавуазье, Пруст был учеником Руэля. Сначала он управлял аптекой в Париже, а затем с 1791 г. был профессором Университета в Мадриде.

Проделав в течение 1799-1807 гг. массу анализов, Пруст доказал, что Бертолле сделал свои выводы о различном составе одних и тех же веществ, анализируя смеси, а не индивидуальные вещества, что он, например, не учитывал содержания воды в некоторых оксидах. Пруст убедительно доказал постоянство состава чистых химических соединений и завершил свою борьбу против взглядов Бертолле установлением закона постоянства состава веществ[20].

Атомистическая теория Дальтона

Закон постоянства состава веществ был подтвержден Дальтоном, правда, на основе совершенно других исследований и рассуждений. В то же время благодаря оригинальному подходу к изучению состава веществ Дальтон открыл и закон простых кратных отношений[21]. Но главным образом Дальтон известен в истории науки созданием "химической атомистики"- теории атомного строения веществ, которое определяет их химические свойства.

Джон Дальтон (1766-1844)

Джон Дальтон (1766-1844)[22] был сыном ткача, образование получил у инструментального мастера Элиа Робинсона. С 13 лет Дальтон занимался самообразованием, изучая механику, математику, астрономию и географию и даже сам проводил занятия по этим предметам в школе. Благодаря содействию известных английских ученых Дальтон в 1794 г. стал преподавателем математики и естествознания в Новом колледже в Манчестере, в котором ранее преподавал и Дж. Пристли. В 1800 г. Новый колледж был переведен в Йорк; однако Дальтон остался в Манчестере, где он активно участвовал в работе городского Литературно-философского общества, основанного в 1781 г. и объединявшего людей, интересовавшихся наукой. На собраниях Общества читались лекции, проходили дискуссии по вопросам литературы, натурфилософии, политики, торговли и искусства. С 1785 г. Общество начало публиковать наиболее важные из этих работ. В 1794 г. Дальтон прочитал в Обществе свой первый доклад о цветовой слепоте — заболевании, которым он сам страдал и которое потом получило название "дальтонизм". С 1787 г. он занимался метеорологическими наблюдениями и записывал их в своем дневнике "наблюдений за погодой". В течение 57 лет до самой смерти Дальтон ежедневно делал такие записи. В работе "Метеорологические наблюдения и опыты", опубликованной в 1793 г., он подробно описал метеорологические приборы: разнообразные термометры, барометры, устройства для определения температуры замерзания жидкостей. Интерес к метеорологии привел Дальтона в дальнейшем к изучению газов и в конце концов к созданию атомистической теории.

Еще в XVI и XVII вв. атомистические представления играли важную роль при объяснении химических явлений [6]. В Англии эти идеи получили распространение в результате работ Р. Бойля и И. Ньютона. Атомы, или корпускулы[23], рассматривались как отдельные плотные и непроницаемые частицы очень малых размеров. Эти представления сохранили свое значение и в XVIII в., однако на их основе химикам уже трудно стало объяснять новые факты. Согласно этим представлениям, разделение и соединение атомов осуществлялось чисто механически за счет их различных форм — с помощью крючочков и колечек, пор и зубцов, входящих в зацепление или разъединяющихся.

В 1789 г. У. Хиггинс[24] выступил против флогистонной теории с позиций атомизма, но его аргументы были лишь умозрительными. В отличие от него Дальтон для подтверждения положений созданной им теории не только использовал новейшие результаты других химиков (систему Лавуазье, закон эквивалентов Рихтера, закон постоянства состава Пруста), но и провел самостоятельные исследования.

В конце XVIII в. Дальтон начал заниматься изучением атмосферы, состояния газов при изменении температуры и давления, поглощения газов жидкостями. Основываясь на том, что удельный вес кислорода больше удельного веса азота, Дальтон пытался доказать, что в равнинном воздухе кислорода содержится больше, чем в горном. Но проведенные ранее исследования Пристли показали, что независимо от высоты воздух содержит 21 "часть" (объёмных процентов) кислорода и 79 "частей" (объёмных процентов) азота. Каким же образом могло осуществляться постоянное распределение в такой смеси газов с различными удельными весами? Некоторые химики пытались объяснить это тем, что воздух, быть может, является каким-то видом химического соединения. Дальтон однако таким объяснением не довольствовался, а изучил свойства различных по удельному весу газов. Он обнаружил, что газы при соприкосновении смешиваются друг с другом, даже если более тяжелый газ находится ниже более легкого. Таким образом, любой газ ведет себя в пространстве так, как будто в системе находится только он один. Каждый газ оказывает свое собственное (парциальное) давление, и общее давление газовой смеси является суммой парциальных давлений всех газов.

В 1802 г. Дальтон и одновременно Гей-Люссак обнаружили, что все газы одинаково расширяются при нагревании. В 1803 г. друг Дальтона У. Генри обратил его внимание на то, что растворимость газов в индифферентных жидкостях пропорциональна их давлению. Изучая растворимость газов в жидкостях, Дальтон обнаружил, что каждый газ растворяется так, как будто в системе нет других газов.

21 октября 1803 г. перед семью членами Манчестерского литературно-философского общества Дальтон сделал сообщение об опытах по поглощению газов и объяснил поведение газов с позиций атомизма. Он утверждал, что частички (атомы) имеют шарообразную форму и окружены тепловой атмосферой. Они неизменяемы; химические реакции протекают как процесс разделения или соединения нескольких атомов. Химическими методами нельзя вызвать разрушение или воссоздание атома. Различие между элементами Дальтон объяснял различием их атомов, поскольку каждый элемент состоит из определенного вида атомов с определенным весом. Каждое соединение состоит из определенного количества атомов и может образоваться только при строгом их соотношении (1:1, 1:2, 2:3 и т. д.). Атомы одного вида равны между собой; вес соединения равен сумме весов входящих в него атомов[25]. Эта гениальная гипотеза выдвинула Дальтона в первые ряды ученых, заложивших основы химической теории. Дальтон стремился установить относительные веса наименьших частиц простых и сложных тел. Отправной точкой для него служили весовые соотношения, в которых элементы входят в состав соединений. Поскольку не было никаких способов определения числа атомов, образующих соединение, он считал, что при образовании соединения атомы входят в него в простейших соотношениях. Так, если для двух элементов было известно только одно соединение, то Дальтон предполагал, что соотношение атомов в нем равно 1:1. Если существовали два различных соединения, то, по мнению Дальтона, можно было предположить, что соотношения атомов в них равны 1:1 или 1:2. И так далее. Наконец, для расчета относительных атомных весов элементов Дальтон использовал в качестве эталона водород, приняв его вес за единицу. В XX в. термин "атомный вес" был заменен термином "атомная масса".

Во времена Дальтона было известно только одно соединение водорода с кислородом. Поэтому Дальтон решил, что вода состоит из одного атома водорода и одного атома кислорода. Для углерода и кислорода были известны два соединения. Считалось, что одно из них состоит из одного атома кислорода и одного атома углерода, а в другом на один атом углерода приходятся два атома кислорода.

Если, например, по данным анализа в 100 частях воды содержится 11,11 части водорода и 88,89 части кислорода, то атомный вес кислорода определяется из следующего соотношения: 11,11:88,89 = 1:х (х = 8). Этот метод был положен в основу определения соединительных, или эквивалентных, весов, однако по сравнению с известными в настоящее время значениями они оказались не очень точными. Дальтон сам уточнял некоторые аналитические данные; например, для кислорода в 1803 г. он нашел значение относительного атомного веса равным 5,66, а в 1810 г.- равным 7.

Рассчитанные таким образом значения атомных весов использовались и в дальнейшем (но в настоящее время они интересны только тем, что помогают понять метод Дальтона). Намного более точными оказались относительные атомные веса многих элементов, определенные Берцелиусом[26].

В основу сообщения Дальтона от 21 октября 1803 г. легли определенные им относительные "атомные веса" шести элементов и тринадцати соединений. Они были недостаточно точны (впоследствии некоторые из них были исправлены им самим и Берцелиусом), но это оказалось не столь уж важным: решающее значение имел сам метод.

В начале XIX в.- во время спора между Бертолле и Прустом — Дальтон не только подтвердил закон постоянства состава соединений, но и открыл закон простых кратных отношений. Этот закон Дальтон вывел на основе данных о составе двойных соединений и атомистической гипотезы, согласно которой предполагались целочисленные соотношения атомов в соединениях. В 1805 г. Дальтон опубликовал основные положения атомистики и первую таблицу атомных весов в "Мемуарах" Литературно-философского общества Манчестера.

В 1807 г. английский химик Т. Томсон, знакомый с Дальтоном, в книге "Новая химическая система" впервые изложил взгляды Дальтона для широкого круга читателей, а через год Дальтон опубликовал первую часть своей основополагающей работы "Новая система химической философии". В 1812 г. она была переведена на немецкий язык, а позднее — еще раз опубликована в третьем томе издаваемой Оствальдом серии "Классики точных наук".

Химические символы конца XVIII в. А — по К. Ф. Кильмейеру (цит. в [25]), Б — по П. О. Аде и Ж. А. Ассенфрацу

Для того чтобы атомистическая теория стала более наглядной, Дальтон предложил систему знаков для обозначения элементов и их соединений. Они отличались от алхимических обозначений и от символов, предложенных французскими химиками П. О. Аде и Ж. А. Ассенфрацем в конце XVIII в., не только по форме. Для обозначения элементов Аде и Ассенфрац использовали алхимические символы, штрихи и кружки, полуокружности, треугольники и квадраты, но все эти обозначения имели только качественный характер. Дальтон придал своим символам одновременно и количественное значение: они обозначали не только определенный элемент, но и атом с определенным весом. Атомы элементов он представлял с помощью шарообразных символов, которые, поставленные рядом, позволяли представить строение химических соединений. Для кислорода он использовал обозначение в виде кружка, для водорода — кружок с точкой, для серы — кружок с крестом. В соответствии с этим вода обозначалась с помощью кружка и кружка с точкой. Знаки Дальтона вскоре были заменены Берцелиусом новыми обозначениями, на которых основан современный химический язык.

Химические символы Дж. Дальтона

Однако атомистическая теория Дальтона нашла признание далеко не у всех химиков. Особенно это оказалось сложным потому, что атомные веса, предложенные Дальтоном, на самом деле были эквивалентными весами. Поэтому при их использовании возникали трудности, которые впервые удалось преодолеть лишь спустя 50 лет.

Тем не менее идеи и основные положения теории Дальтона получили широчайшее признание у химиков. К сожалению, сам Дальтон был настолько убежден в правильности разработанных им атомистических представлений, что решительно отклонял какие-либо идеи, дополняющие и развивающие атомистическую гипотезу.

Развитие атомистической гипотезы и дуалистическая система Берцелиуса

Вся наша теория есть не что иное, как искусство представлять себе внутренний ход явлений конкретным образом, и она приемлема и достаточна, если все известные в науке факты согласуются с ней. И хотя, к сожалению, часто обнаруживается, что последнее условие не соблюдается, в течение определенного периода в развитии науки ошибочная теория так же, как и правильная, полностью выполняет свое назначение. Постепенно накапливается опыт, обнаруживаются факты, которые не согласуются с теорией, что вынуждает искать новые объяснения этим фактам. По мере накопления опыта от эпохи к эпохе эти представления, несомненно, в какой-то степени трансформируются, и полностью правильное объяснение, пожалуй, вообще невозможно. Но даже если эта цель не может быть достигнута, все же не следует пренебрегать усилиями приблизиться к ней.

Й. Я. Берцелиус [16, с. 444-445]

Гей-Люссак: закон объемных отношений

Атомистическая теория Дальтона была достаточно наглядна; она убедительно объясняла законы стехиометрии — закон эквивалентных весов, закон постоянных отношений (постоянства состава) и закон простых кратных отношений. Однако эта гипотеза была сложна для практического применения. На ее основе не были определены точные значения атомных весов (атомных масс).

В том же году, когда увидела свет первая часть книги Дальтона "Новая система химической философии", французский химик Ж. Л. Гей-Люссак опубликовал результаты исследовании об объемах реагирующих друг с другом газов (1808 г.).

В 1802 г. Гей-Люссак открыл (независимо от Дальтона) закон Равномерного расширения газов при нагревании, а с 1805 г. стал проводить систематические измерения объемов различных газов и продуктов их взаимодействия. Вместе с А. Гумбольдтом[27] он точно определил объемные соотношения водорода, кислорода и образующихся при их взаимодействии паров воды. Гей-Люссак и Гумбольдт установили, что из двух объемов водорода и одного объема кислорода образуются ровно два объема паров воды. Гей-Люссак исследовал и другие газы и их смеси и обнаружил, что 1000 мл (2 объема) монооксида углерода реагируют с 500 мл (1 объемом) кислорода, образуя 1000 мл (2 объема) диоксида углерода; 1000 мл азота соединяются с 3000 мл водорода, превращаясь в 2000 мл аммиака, а 1000 мл азота и 1000 мл кислорода превращаются в 2000 мл монооксида азота. На основе этих результатов Гей-Люссак открыл в 1808 г. закон объемных отношений[28]: объемы газов, реагирующих друг с другом или образующихся в результате химической реакции, соотносятся как небольшие целые числа, например 1:1, 1:2, 1:3 и т.д.

Жозеф Луи Гей-Люссак (1778-1850)

По сравнению с Дальтоном Жозеф Луи Гей-Люссак был молодым ученым. Но тем не менее он уже успел получить важные научные результаты и поэтому приобрел известность. Гей-Люссак родился в 1778 г. в семье юриста в г. Сент-Леонар во Франции. В годы учебы в Париже молодой химик пользовался особым расположением К. Бертолле. Гей-Люссак был смелым естествоиспытателем и часто шел на риск, проводя эксперименты с легко взрывающимися веществами. В 1804 г. совместно с физиком Ж. Био он совершил полет на воздушном шаре на высоте 7000 м. Бертолле познакомил Гей-Люссака с Гумбольдтом. Проведение совместных экспериментов, участие в экспедициях, общий круг знакомых — все это способствовало возникновению дружбы между Гей-Люссаком и Гумбольдтом. Гей-Люссак вел большую преподавательскую работу: он был профессором физики и химии в Политехнической школе, в Сорбонне и вел занятия в Ботаническом саду[29]. С 1808 по 1840 г. совместно с Д. Араго Гей-Люссак издавал "Анналы физики и химии". Когда в 1808 г. Араго из-за его политических убеждений грозило увольнение из Политехнической школы, Гей-Люссак защитил своего коллегу, заявив, что в случае увольнения Араго он также будет вынужден покинуть учебное заведение.

В 1810 г. во второй части своей работы "Новая система химической философии" Дальтон решительно выступил против открытого Гей-Люссаком закона объемных отношений, увидев в нем не подтверждение, а угрозу своей атомистической гипотезе. Дальтон много размышлял на эту тему. Первоначально он даже предполагал, что в одном объеме кислорода содержится столько же атомов, сколько и в одном объеме водорода. "Однако позднее я стал придерживаться другого мнения, и к этому привел меня следующий аргумент: один атом оксида азота состоит из одного атома азота и одного атома кислорода. Теперь, если в одинаковых объемах содержится одинаковое число атомов, то при взаимодействии одного объема азота с одним объемом кислорода должен образоваться один объем оксида азота, но, согласно данным Генри, образуются примерно два объема; поэтому оксид азота в том же объеме может содержать только половину атомов (по сравнению с азотом и кислородом)" [17].

Некоторые другие данные, казалось, также противоречили атомистической гипотезе Дальтона. Например, согласно представлениям Дальтона, плотность монооксида углерода как вещества, состоящего из двух атомов, должна быть больше плотности кислорода как вещества, состоящего из одного атома, однако на самом деле она была меньше. Точно так же плотность паров воды оказалась меньше плотности кислорода.

Ни Дальтону, ни Гей-Люссаку не удалось объяснить противоречия между атомистической гипотезой и газовыми законами.

Молекулярная гипотеза Авогадро

Эти противоречия были устранены в 1811 г. итальянским ученым Амедео Авогадро[30]. В работе "Очерк метода определения относительных масс элементарных молекул тел и пропорций, согласно которым они входят в соединения", опубликованной в 1811 г., Авогадро сформулировал закон, названный впоследствии его именем: одинаковые объемы всех газов при одинаковых внешних условиях содержат одинаковое число молекул. Авогадро назвал этот закон очень осторожно гипотезой. Эта гипотеза в сочетании с газовыми законами Гей-Люссака привела Авогадро к предположению, что газы являются многоатомными веществами. При этом он делал различие между "составными молекулами" (les molécules constituantes) — сложными частичками газа, "интегральными молекулами" (les molécules integrantes) — частичками соединения и "элементарными молекулами" (les mol écules él émentaires) — атомами простых веществ. В газообразном состоянии водород, азот и кислород обычно являются двухатомными молекулами. В таком случае становилось понятным взаимодействие одного объема кислорода и одного объема азота с образованием двух объемов монооксида азота. Два атома кислорода (одна молекула) соединяются с двумя атомами азота (одна молекула), образуя две молекулы монооксида азота. Соответственно молекула воды состоит из одного атома кислорода (1/2 молекулы) и двух атомов водорода (1 молекула).

Несмотря на то, что через три года в поддержку идей Авогадро выступил парижский профессор физики А. Ампер, они не получили признания. В XIX в. ученым очень трудно было понять различие между атомом и молекулой. К тому же закон Авогадро относился только к газам; существовало мнение, что в лучшем случае газы представляют собой исключение.

Амедео Авагадро (1776-1856)

В том же году против атомистической гипотезы Дальтона среди других химиков выступил Уолластон. Хотя своими работами он способствовал утверждению закона кратных отношений, однако в 1814 г. Уолластон критически отнесся к предположению Дальтона о том, что число атомов в соединении может быть различным, и поэтому нет надежды на точный расчет значений атомных весов. Поэтому вместо понятия "атомы" Уолластон предложил использовать представление об эквивалентах. При этом он опирался на данные анализов, проведенных И. Рихтером, из исследований которого Уолластон и заимствовал понятие "эквивалент". Уолластон хотел заменить гипотетичность положений атомистической теории надежностью более точных законов эквивалентов. Однако в этом своем стремлении Уолластон перешел разумные границы: под эквивалентными он понимал полные количества веществ, в которых они соединяются друг с другом. Он считал эквивалентами и различные количества одних и тех же веществ, взаимодействующих в сходных реакциях, проводившихся в одинаковых условиях. В этом заключалась ошибка Уолластона, который так и не смог дать точного критерия определения атомных весов.

Проблема точного определения атомных весов не была решена ни Гей-Люссаком, ни Уолластоном. Лишь в 1818 г. Й. Я. Берцелиус опубликовал таблицу атомных весов; приведенные в ней атомные веса были так точны, что подтверждали положения атомистической гипотезы Дальтона. Тем не менее Берцелиус старался найти способ определения атомных весов в соответствии с законом объемных отношений [18].

Берцелиус и его определение атомных весов. Новая система обозначений

Йенс Якоб Берцелиус[31] был одним из известнейших химиков своего времени. В своей научной деятельности Берцелиус объединил период развития химии времен создания кислородной теории Лавуазье с периодом разработки химической атомистики. Он настолько усовершенствовал методы эксперимента и конструкции научных приборов, что они применялись впоследствии несколькими поколениями химиков, а некоторые из них используются и в наше время. Кроме того, Берцелиус создал систему химических обозначений, которые, за исключением небольших изменений, мы применяем и сегодня.

Йенс Якоб Берцелиус (1779-1848)

Берцелиус родился в 1779 г. в селении Вэферсунда в семье учителя. В девятилетнем возрасте он остался сиротой и с юных лет вынужден был зарабатывать себе на жизнь репетиторством и трудом на сельскохозяйственных работах. Медицину и химию Берцелиус изучал, находясь в очень тяжелых материальных условиях. Только непреодолимое стремление к знаниям и упорство в достижении цели помогли ему поступить в 1797 г. в Упсальский университет и успешно закончить его в 1801 г.

После окончания университета в 1802 г. Й. Я. Берцелиус стал адъюнктом медицины и фармации Медико-хирургического института в Стокгольме. В это время Берцелиус подружился с владельцем рудника Вильгельмом Хизингером, в доме которого он жил, и даже проводил вместе с ним химические исследования. Так, в 1802 г., использовав батарею Вольта, он совместно с Хизингером обнаружил, что при пропускании электрического тока через растворы солей щелочных металлов последние разлагаются с выделением составных частей. Годом позже Берцелиус и Хизингер (одновременно с М. Г. Клапротом) открыли элемент церий, названный в честь планеты Церера, обнаруженной в 1801г. Джузеппе Пьяцци. (А в 1817 г. Берцелиус открыл другой элемент, который получил название "селен" от греческого названия луны — Селена. Кроме того, в 1828 г. Берцелиус открыл торий.)

В 1807 г. Берцелиус утвержден ординарным профессором химии и фармации медицинского факультета Королевского Медико-хирургического института в Стокгольме. В 1810 г. он избран Президентом шведской Академии наук, а с 1818 г. назначен ее непременным секретарем. В 1818 г. Берцелиусу пожаловано дворянское звание, а в 1835 г.- титул барона. Но в химии он, безусловно, был королем, так как безраздельно "царил" во всех ее областях. Ученики уважали Берцелиуса и восхищались им — он был авторитетом для всех.

Работы Берцелиуса были посвящены прежде всего исследованию соотношений элементов в соединениях. Берцелиус критически проанализировал историю стехиометрии, использовал известные уже данные и извлек из них выводы для выбора направления своих дальнейших работ. Так, еще в XVIII в. шведский химик Т. Бергман наблюдал, что при взаимодействии химически нейтральных солей вновь образуются нейтральные соли, однако он не дал объяснения этому явлению. Проведя точные анализы, немецкий химик К. Венцель попытался выяснить причины этого. Рихтер обработал математически исследования Бергмана и Венцеля и заложил тем самым основы стехиометрии. Берцелиус внимательно изучал вопросы, которые были предметом дискуссии между Бертолле и Прустом. Научный спор между Бертолле и Прустом восхитил Берцелиуса своим достойным стилем, а также тем, что оба химика смогли выйти из него, не опускаясь до взаимных оскорблений.

Итак, задачу своих исследований Берцелиус видел в наиболее точном определении соотношений, в которых вещества соединяются друг с другом. Ученый провел анализы оксидов и сульфидов многих элементов. Кроме того, он установил, что количества кислорода кислоты и основания в солях соотносятся друг с другом как небольшие целые числа. Этот "кислородный закон" окончательно убедил его в атомном строении материи. Берцелиус охарактеризовал атомистическую гипотезу как крупнейшее событие в истории химии. Однако он критиковал Дальтона за то, что тот упрямо придерживался одной устоявшейся предпосылки и игнорировал результаты Гей-Люссака, которые на самом деле не опровергали, а подтверждали эту гипотезу. Закон объемных отношений и представление, согласно которому в равных объемах газов должно находиться одинаковое количество атомов, взаимно дополняли друг друга. В соответствии с этой гипотезой молекула водяного пара должна состоять из двух атомов водорода (два объема) и одного атома кислорода (один объем).

Берцелиус добился результатов чрезвычайной важности, но достиг он их не одними рассуждениями, а благодаря вычислению (относительных) атомных весов 45 элементов. В 1818 г. он опубликовал их в виде таблицы. В том же году Берцелиус провел сопоставление процентного состава 2000 химических соединений (почти всех соединений, известных в то время) и указал их "атомные веса". Он не пользовался понятием "молекула", а рассматривал молекулы как атомы различной степени сложности.

Берцелиус преобразовал символы, использовавшиеся Дальтоном для обозначения элементов и соединений. В то же время он воспринял идею Дальтона о возможности с помощью знаков отражать качественный и количественный состав соединений. Кроме того, он считал, что в формулах должно быть отражено отношение объемов взаимодействующих газов при образовании исследуемого соединения. Кружки, штрихи и точки в прежних формулах Берцелиус заменил буквами и цифрами. По его мнению, для химических обозначений следовало использовать буквы, чтобы их легко можно было писать и печатать. Они должны были наглядно отражать соотношения элементов в соединениях, указывать относительные количества составных частей (объемов газов), образующих вещество, и, наконец, выражать численный результат анализа так же просто и понятно, как алгебраические формулы в механике [19]. При разработке новых формул Берцелиус использовал начальные буквы латинских названий химических элементов, например S (sulfur — сера). Если названия элементов имели одинаковые начальные буквы, то к обозначению, элемента Берцелиус добавлял вторую букву, например С (carbon — углерод) и Си (cuprum — медь). Если же и вторые буквы названий веществ были одинаковыми, то к начальной букве латинского названия элемента Берцелиус добавлял первую из различающихся согласных букв, например Sn (stannium — олово) и Sb (stibium — сурьма).

Эти преобразования, сделанные Берцелиусом, не только упростили систему обозначений химических соединений, но и способствовали наглядности описания их состава, что было чрезвычайно важно для преподавания и исследовательских работ.

Электрохимия. Вольта, Дэви

Для совершенствования своей системы Берцелиус использовал и данные электрохимии.

В 1780 г. врач Луиджи Гальвани из Болоньи наблюдал, что только что отрезанная лапка лягушки будет сокращаться, если к ней прикоснуться двумя проволочками из разных металлов, соединенными друг с другом. Гальвани решил, что в мышцах имеется электричество и назвал его "животным электричеством".

Продолжив опыты Гальвани, его соотечественник физик Алессандро Вольта предположил, что источником электричества является не тело животного: электричество возникает в результате контакта разных металлических проволочек или пластин. В 1793 г. Вольта составил электрохимический ряд напряжений металлов; правда, он не связал этот ряд с химическими свойствами металлов. Эту связь обнаружил И. Риттер, установивший в 1798 г., что ряд напряжений Вольта совпадает с рядом окисления металлов — их сродством к кислороду или выделением их из раствора. Поэтому причину возникновения электрического тока Риттер увидел в протекании химической реакции.

В это же время Вольта в ответ на недоверие своих коллег, усомнившихся в правоте его объяснений из-за того, что разряды были слишком слабы и стрелка электрометра отклонялась лишь незначительно, решил создать установку, которая позволила бы зарегистрировать более сильные токи.

В 1800 г. Вольта создал такую установку. Несколько пар пластин (каждая пара состоит из одной цинковой и одной медной пластины), уложенные друг на друга и отделенные одна от другой войлочной прокладкой, пропитанной разбавленной серной кислотой, дали желаемый эффект: яркие вспышки и заметные сокращения мышц. Вольта послал сообщение о созданном им "электрическом столбе" президенту лондонского Королевского общества. Прежде чем президент опубликовал это сообщение, он познакомил с ним своих друзей У. Никольсона и А. Карлайла. В 1800 г. ученые повторили опыты Вольта и при этом обнаружили, что при пропускании тока через воду выделяются водород и кислород [20]. В сущности, это было повторное открытие, потому что в 1789 г. голландцы И. Дейман и П. ван Троствейк, используя электричество, возникающее при трении, получили такие же результаты, но не придали этому особого значения.

Изобретение Вольта привлекло к себе сразу же внимание ученых, поскольку с помощью этой батареи он сделал и другие удивительные открытия, например, выделил различные металлы из растворов их солей.

Как мы уже отмечали, в 1802 г. Берцелиус и Хизингер обнаружили, что соли щелочных металлов при пропускании через их растворы электрического тока разлагаются с выделением входящих в их состав "кислот" и "оснований"[32]. Водород, металлы, "оксиды металлов", "щелочи" и т. д. выделяются на отрицательном полюсе; кислород, "кислоты" и т. д.- на положительном [21]. Это явление не находило разгадки, пока в 1805 г. Т. Гротгус[33] не создал удовлетворительной гипотезы. Он воспользовался атомистическими представлениями и предположил, что в растворах мельчайшие частицы веществ (в воде, например, атомы водорода и кислорода) связаны друг с другом в своеобразную цепочку. Проходя через растворы, электрический ток воздействует на атомы: они начинают выходить из цепочки, причем отрицательно заряженные атомы осаждаются на положительном полюсе, а положительно заряженные — на отрицательном полюсе. При разложении воды, например, к отрицательному полюсу движется атом водорода, а к положительному полюсу — освобожденный из соединения атом кислорода. Гипотеза Гротгуса стала известна почти одновременно с гипотезой Дальтона. Довольно быстрое признание учеными обеих гипотез показывает, что химикам в начале XIX в. стали привычны атомистические представления.

Открытия, сделанные с использованием электричества в последующие годы, произвели еще большую сенсацию, чем гальванический столб, созданный Вольта.

Карикатура на опыты с газами в Королевском институте (около 1810 г.)

В 1806 г. Гемфри (Хамфри) Дэви начал свои опыты с электричеством в Королевском институте в Лондоне. Он хотел выяснить, действительно ли при разложении воды под действием электрического тока наряду с водородом и кислородом образуются также щелочь и кислота. Дэви обратил внимание на то, что при электролизе чистой воды количества образующихся щелочей и кислот колеблются и зависят от материала сосуда. Поэтому он стал проводить электролиз в сосудах из золота и обнаружил, что в этих случаях образуются только следы побочных продуктов. После этого Дэви поместил установку в замкнутое пространство, создал внутри вакуум и заполнил его водородом. Оказалось, что в этих условиях под действием электрического тока не происходит образования из воды кислоты или щелочи, а при электролизе выделяются только водород и кислород.

Дэви был так увлечен изучением разлагающей силы электрического тока, что начал изучать его влияние и на многие другие вещества. И в 1807 г. ему удалось из расплавов едкого кали (гидроксида калия КОН) и каустика (гидроксида натрия NaOH) получить два элемента — калий и натрий! До того ни едкое кали, ни каустик не удавалось разложить ни одним из известных методов. Так подтвердилось предположение, что щелочи — сложные вещества. Электрический же ток оказался сильным восстановителем.

Гемфри Дэви (1778-1829)

Гемфри Дэви родился в 1778 г. в Пензансе (графство Корнуэлл, Англия); его отец был резчиком по дереву[34]. Школу Дэви посещал неохотно и впоследствии считал счастьем, что многие часы в детстве он провел не за школьной партой, а наблюдая за природой. Свои последующие успехи в естественных науках Дэви приписывал свободному развитию его личности в детстве. Дэви интересовался природой, поэзией и философией.

После смерти отца в 1794 г. шестнадцатилетний Дэви поступил в обучение к врачу, где он занимался приготовлением лекарств. Свободное время он посвящал тщательному изучению системы Лавуазье. Через три года Дэви переехал в Клифтон (вблизи Бристоля), чтобы заниматься исследованием лечебного действия газов в недавно основанном Пневматическом институте доктора Т. Беддоиса. Работая в этом институте с монооксидом углерода, Дэви чуть было не погиб. С "веселящим" газом (оксидом азота N2О) ученому повезло больше: Дэви открыл его опьяняющее действие и приобрел популярность благодаря остроумному описанию этого эффекта. Изучая действие электрического тока на различные вещества, Дэви открыл щелочные элементы калий и натрий. Необыкновенные свойства щелочных металлов способствовали тому, что их открытие привлекло особое внимание.

По рекомендации графа Румфорда[35] Дэви в 1801 г. занял должность ассистента, а спустя год — профессора в Королевском институте. Правда, вначале Румфорд был разочарован очень юным видом нового сотрудника и его довольно неуклюжими манерами. Но вскоре он был покорен эрудицией Дэви и предоставил ему прекрасные условия для научной работы. Дэви полностью оправдал заботу руководителей института, сделав сенсационные открытия в области электрохимического выделения новых элементов и изучения свойств различных соединений.

В Лондоне Дэви быстро усвоил манеры, принятые в высшем обществе. Он стал светским человеком, но в значительной степени утратил свою природную сердечность. В 1812 г. английский король пожаловал ему дворянство. В 1820 г. Дэви стал президентом Королевского общества[36], но шестью годами позже по состоянию здоровья вынужден был отказаться от этой должности. Умер Дэви в Женеве в 1829 г.

Дэви знаменит не только результатами своих экспериментов, но также разработанной им электрохимической теорией. Он хотел разрешить проблему сродства веществ, которая давно занимала химиков. Некоторые из них составляли так называемые таблицы сродства, например Э. Жоффруа (1718г.), Т. Бергман (около 1775г.) (который предложил впоследствии использовать введенное Гёте в литературу выражение "родство душ"), Л. Гитон де Морво (около 1789 г.) и Р. Кирван (1792г.).

Электричество казалось Дэви ключом к пониманию стремления веществ вступать во взаимодействие. По его мнению, химическое сродство основано на различном электрическом состоянии элементов. Когда два элемента реагируют друг с другом, контактирующие между собой атомы заряжаются противоположными зарядами, за счет чего атомы притягиваются и соединяются. Таким образом, химическая реакция представляет собой как бы перераспределение между веществами противоположных по знаку электрических зарядов. При этом выделяются тепло и свет. Чем больше разность этих зарядов между веществами, тем легче протекает реакция. По мнению Дэви, разлагающее действие тока на вещество заключалось в том, что ток возвращал атомам электричество, которое они утратили при образовании соединения [22].

Дуалистическая теория

Берцелиус воспринял теорию Дэви и объединил в единое целое электрохимические и атомистические представления. По мнению Берцелиуса, электричество возникает не при соприкосновении двух веществ, как полагал Дэви, а является свойством самого вещества. Берцелиус считал, что каждый атом содержит положительные и отрицательные заряды (полярности). Вещества с преобладающим положительным зарядом при электролизе направляются к отрицательному электроду, а с преобладающим отрицательным — к положительному. Так электролиз помогал определить электрическую природу веществ. Берцелиус в отличие от Дэви считал, что соединения тоже электрически не нейтральны, а как и отдельные элементы биполярны.

Сродство элементов Берцелиус рассматривал также как следствие их электрического состояния. Он составил электрохимический ряд напряжений, основываясь на величине электрического заряда элемента. Самому электроположительному элементу калию Берцелиус противопоставил самый электроотрицательный элемент кислород. В середине ряда напряжений Берцелиус расположил водород — сравнительно электронейтральный элемент. Кроме того, Берцелиус назвал несколько элементов, которые могут проявлять себя и как электроположительные, и как электроотрицательные. Например, сера по отношению к кислороду положительна, а по отношению к металлам отрицательна.

Сродство веществ Берцелиус объяснял величиной полярностей, которая может возрастать при повышении температуры. При взаимодействии двух элементов атомы, по его мнению, располагаются друг к другу противоположными полюсами. При этом они обмениваются электричеством. Под действием электрического тока атомы соединения вновь приобретают первоначальную полярность, и оно разлагается на составные части[37].

"Если электрохимические представления правильны, то из этого следует, что существование каждого химического соединения зависит только от действия двух противоположных сил — положительного и отрицательного электричества. Поэтому каждое соединение должно состоять из двух частей, связанных воедино силами электрохимического взаимодействия, и никакой третьей силы не существует. Отсюда следует, что каждое сложное вещество, которое состоит из нескольких составных частей, может быть разделено на части, из которых одна заряжена положительно, а вторая — отрицательно. Так, например, сульфат натрия — это соединение не серы, кислорода и натрия, а серной кислоты и едкого натра, каждый из которых в свою очередь может разделиться на два элемента — один электроположительный и другой электроотрицательный. Точно так же квасцы можно рассматривать не как сложное вещество, состоящее непосредственно из элементов, а как продукт взаимодействия сернокислого глинозема (отрицательного элемента) и сернокислого калия (положительного элемента). Таким образом, электрохимическая теория оправдывает то, что я называю сложным атомом первого, второго, третьего и т. д. порядка",- писал Берцелиус [18, с. 77].

На основе именно этой гипотезы Берцелиус смог объяснить важнейшие положения химии и создать так называемую дуалистическую систему. Важнейшим в этой системе было предположение, что сложное вещество состоит из двух частей — электроположительной и электроотрицательной.

Берцелиус различал соединения первого, второго и третьего порядков. К первым он относил соединения кислорода с металлами — основные оксиды (например, К2О или СuО), а также соединения кислорода с неметаллами — кислотные оксиды (например, SO3 или СО2). К соединениям второго порядка — соли (типа ВаОSO3 — "сернокислый оксид бария"). Соединениями третьего порядка Берцелиус считал двойные соли (например, квасцы). Поскольку в то время еще не существовало отчетливых представлений о составе веществ, приведенные здесь формулы Берцелиус записывал несколько по-иному. Например, вместо К2О он писал КО.

Даже еще в 1819 г. Берцелиус разделял ошибочное убеждение Лавуазье, что все кислоты содержат кислород, хотя уже в 1810 г. были известны бескислородные неорганические кислоты, например, Дэви доказал что соляная кислота состоит только из водорода и хлора.

Установлению точных атомных весов элементов и соединений в значительной степени способствовали еще два открытия.

Изоморфизм и закон удельных теплоемкостей

В 1818 г. Э. Мичерлих обнаружил, что различные вещества, например калиевые соли фосфорной и мышьяковой кислот, имеют одинаковые кристаллические формы. Изучение этого явления, названного изоморфизмом, позволило сделать выводы о составе некоторых соединений, а в случае соединений, для которых были известны данные анализа, облегчило расчет относительных атомных весов.

Второе открытие было сделано в 1819 г. П. Дюлонгом и А. Пти. Oни сформулировали закон удельных теплоемкостей для твердых элементов, показав, что произведение удельной теплоемкости и атомного веса элемента — величина постоянная. Убедившись в справедливости этих законов, Берцелиус исправил атомные веса некоторых элементов (в основном металлов), для которых ранее он вычислил завышенные значения.

Сложность определения атомных весов для Берцелиуса заключалась в следующем. Используя закон объемных отношений, Берцелиус рассматривал в ряде случаев соединительные (эквивалентные) веса как атомные веса. Но все же в большинстве случаев он определял атомные веса элементов довольно точно, о чем свидетельствует, например, весьма точная его вторая таблица атомных весов, опубликованная в 1826 г.

В последующее десятилетие обнаружились все наиболее значительные противоречия дуалистической системы. Берцелиус пережил крушение своей гипотезы, но принципиальный взгляд Берцелиуса на судьбу любой идеи помог ему пережить это без обиды[38]. Пытаясь спасти дуалистическую систему, Берцелиус выдвигал дополнительные гипотезы, и все-таки ему пришлось убедиться в том, что химики пошли по иному пути.

Начиная с 1821 г. Берцелиус регулярно издавал ежегодные обзоры об успехах физики и химии, и именно на страницах этих книг происходила большая часть дискуссий. На немецкий язык первые три тома этого издания перевел X. Г. Гмелин, а последующие 24 — Ф. Вёлер. В ежегодниках Берцелиус объективно и критически оценивал результаты важнейших исследований, как подтверждающих, так и опровергающих его систему. Однако в последнем выпуске Берцелиус все-таки выступил против данных и воззрений, противоречащих его системе. В течение многих лет эти "Ежегодные сообщения" играли роль важнейшего международного химического журнала.

Написанный Берцелиусом многотомный "Учебник химии" отличался ясным и четким изложением материала[39]. При жизни Берцелиуса этот учебник выдержал пять изданий (каждый раз в переработанном и расширенном виде) и был переведен на многие языки — французский, английский, итальянский, голландский, немецкий. Наглядность, простота и точность изложения оказались очень эффективным оружием в борьбе против умозрительных натурфилософских идей.

От теории радикалов к структурной химии

Явление, наблюдаемое однажды, не может быть предметом спора. Рассуждения на основе такого наблюдения могут привести к совершенно разным мнениям. Взгляды на природу вещей должны непрерывно совершенствоваться путем познания новых фактов и их научного обобщения.

Август Кекуле [23, с. 58]

Элементный анализ и изомерия

Во второй трети XIX в. быстрыми темпами стала развиваться новая область химии — органическая химия, которая вскоре

превратилась в самостоятельный раздел химии; ее развитие имело большое значение для совершенствования теоретических представлений в химии в целом[40].

Со времен Аристотеля было принято разделение природных веществ на три "царства природы" — минералов, растений и животных. Даже в 1675 г. французский химик Николя Лемери в "Курсе химии", выдержавшем затем в течение 80 лет многочисленные переиздания, использовал эту классификацию [24]. Однако в XVIII в. в химической литературе начали различать органическую и неорганическую химию [25, с. 91 и cл.]. Так, например, это новое понятие об органической химии встречается в работе Т. Бергмана "Химические и физические сочинения" (1780 г.), но широкое признание оно получило в начале XIX в., когда стало известно, что в телах растительного и животного происхождения встречаются одни и те же химические вещества [26, с. 93 и cл.].

Долгое время понятие "органическая химия" отождествляли главным образом с понятием "химия веществ растительного и животного происхождения". Оно противопоставлялось представлению о неорганической химии. На протяжении тысячетилетий в ремеслах и фармации, а позднее в прикладной химии использовались различные органические вещества, растительные экстракты и продукты животного происхождения, такие, как жиры, красители и т. д.

С созданием качественного анализа (XVI-XVIII вв.) химики стали все в большем количестве анализировать органические вещества. Особенного успеха достигли в этом Р. Глаубер и К. Шееле[41].

Глаубер изучил различные соли уксусной кислоты и такие неизвестные до того вещества, как ацетон и акролеин. При перегонке каменного угля он выделил фракции, содержащие бензол и фенол, которые описал как "прозрачные и светлые масла". При обработке некоторых растений азотной и серной кислотами, а также поташом (К2СО3) ученый получил алкалоиды [27].

Шееле считал, что главная цель и задача химии заключается в том, чтобы разлагать вещества на составные части, изучать их свойства и различными способами соединять вещества вместе [28]. Шееле открыл многие органические кислоты: винную (1769 г.), мочевую (1776 г.), молочную (1780 г), лимонную (1784г.), галловую (1786 г); из оливкового масла он выделил глицерин (1783г.). При действии на глицерин азотной кислотой Шееле получил щавелевую кислоту, которую ранее он же обнаружил при окислении сахара азотной кислотой. Полученная Шееле щавелевая кислота оказалась тождественной "кисличной" кислоте, выделенной несколькими годами ранее Виглебом. Из красителя "берлинская лазурь" Шееле получил синильную кислоту. "Полное собрание сочинений по физике и химии" Шееле было опубликовано на немецком языке в Берлине в 1793 г. [29][42]. Примерно в то же время Лавуазье установил, что основными составными частями органических соединений являются углерод, водород и кислород. Эти качественные определения он дополнил количественными, заложив тем самым основы элементного анализа. Используемые им приемы были очень просты, но результаты оказывались достаточно хорошими. Это дало Лавуазье возможность сделать первые теоретические обобщения. Он обратил внимание на то, что в органических веществах группы атомов ведут себя как элементы, т. е. при химических превращениях не разлагаются на составные части. Такие группы Лавуазье назвал радикалами. Лавуазье, например, представлял себе органические кислоты как оксиды сложных радикалов[43].

В период между 1790 и 1810 гг. не появилось ни одной теории, продолжающей эту идею Лавуазье, хотя число экспериментальных данных по определению количественного состава органических веществ заметно возросло (работы Т. Е. Ловица, А. Фуркруа, Г. Розе, У. Праута, Г. Кирхгофа, Ф. Сертюрнера, Д. Дальтона, Т. де Соссюра, Ж. Пруста и особенно Ж. Гей-Люссака, Л. Тенара и М. Шеврёля).

В 1811-1813 гг. М. Шеврёль проанализировал и установил состав жирных кислот, в частности масляной, капроновой и стеариновой. Эти кислоты состояли из большого числа атомов углерода, кислорода и водорода. Эти удивительные соединения поражали химиков: как они могли вообще существовать, имея в своем составе большое количество одинаковых атомов углерода и водорода, которые не обладали каким-либо сродством друг к другу? Почему они имели кислотные свойства, если кислорода, который в соответствии с кислородной теорией определял кислотные свойства соединений, содержалось в них совсем немного? И как можно согласовать такой состав с теорией электрохимического дуализма? Прошло несколько десятилетий, прежде чем удалось ответить на эти и подобные вопросы. Опираясь на представления Лавуазье о составе органических веществ, Берцелиус в своей статье "Опыт теории химических пропорций и химического действия электричества" (1818 г.) попытался несколько сгладить различие между органическими и неорганическими веществами [30][44]. Как и неорганические, органические вещества состояли из двух частей, однако функции элемента в них выполняли радикалы — группы атомов.

Работы Гей-Люссака, посвященные изучению циана, подтвердили эти представления, потому что циан вел себя точно так же, как радикал: он играл роль единого элемента.

Но вот обнаружилось еще одно неожиданное явление. До 1820-х годов основная заповедь химиков гласила (и опыт не противоречил этому): вещества с одинаковым качественным и количественным составом обладают одинаковыми свойствами. Такое представление настолько укоренилось, что когда два молодых химика получили одинаковые результаты анализов для двух различных веществ, то в их адрес посыпались обвинения в недобросовестной работе. Ф. Вёлер проанализировал (1822 г.) циановокислое серебро (цианат серебра), а годом позднее Ю. Либих установил точно такой же состав серебряной соли гремучей кислоты (фульмината серебра). Тем не менее дополнительная проверка подтвердила правильность этих аналитических данных.

В последующие годы был получен еще ряд аналогичных результатов. Так, Фарадей, изучая состав масляного газа, обнаружил в нем углеводород С4Н8, имеющий тот же процентный состав, что и этилен. А в 1828 г. Вёлер установил, что мочевина по своему составу идентична циановокислому аммонию (цианату аммония). Берцелиус в 1830 г. показал, что виноградная и виннокаменная кислоты имеют один и тот же состав, но разные свойства.

Гей-Люссак первым среди химиков признал все эти результаты правильными и высказал предположение, что если различные вещества имеют один и тот же элементный состав, то взаимное расположение атомов у них должно быть различным. Этому явлению Берцелиус в 1830 г. дал название "изомерия"[45], считая, что изомерные вещества имеют различное положение атомов, так как атомы в них группируются в радикалы различными способами [31]. Немного позднее Берцелиус ввел для изомерных соединений также понятия "полимерия" и "метамерия" в зависимости от того, имеют ли вещества одинаковые или различные атомные веса.

Спор между Вёлером и Либихом по поводу правильности результатов анализа серебряных солей гремучей и циановой кислот был улажен; позднее между этими учеными возникли личные дружеские отношения, сыгравшие большую роль в развитии химии. Характеры обоих ученых отлично дополняли друг друга. Они осуществили несколько совместных работ, а их переписка представляет сейчас ценное литературное наследие [32].

Вёлер, Либих и теория радикалов[46]

Фридрих Вёлер был одним из самых известных ученых и наиболее популярных преподавателей. Он написал учебник "Основы химии", состоящий из двух частей — "Неорганическая химия" (1831г.) и "Органическая химия" (1840 г.). В 1849 г. Вёлер опубликовал "Примеры для упражнений в аналитической химии". Его труды многократно переиздавались и были переведены даже на датский и шведский языки. Совместно с И. Поггендорфом и Ю. Либихом Вёлер издавал "Словарь по чистой и прикладной химии". К числу важнейших научных достижений Вёлера относятся получение им алюминия (1827 г) и металлического бериллия (1828г.), а также синтез мочевины (1828 г.).

Фридрих Вёлер (1800-1882)

Фридрих Вёлер родился в 1800 г. в Эшерсхайме (близ г. Франкфурта-на-Майне) в семье придворного шталмейстера. Изучая медицину, он под влиянием гейдельбергского профессора медицины и химии Леопольда Гмелина увлекся химией. По рекомендации Гмелина Вёлер прошел двухлетнюю стажировку в лаборатории Берцелиуса, что в среде химиков считалось очень почетным. Вёлер не только стал одним из самых известных учеников Берцелиуса, но между ними завязались дружеские отношения (впоследствии Вёлер переводил на немецкий язык труды Берцелиуса). В 1824 г. Вёлер начал преподавательскую деятельность в ремесленной школе в Берлине; с 1831 г. он преподавал в Касселе, а в 1836 г. после смерти Штромейера стал профессором Университета в Геттингене.

Вёлер обладал спокойным уравновешенным характером; многолетняя дружба связывала его с Либихом и Берцелиусом, и, когда в результате научных разногласий отношения между этими учеными резко обострились, Вёлер приложил много стараний, чтобы сгладить их взаимную неприязнь.

Юстус Либих благодаря своим научным достижениям и преподавательской деятельности достиг международного признания. Свойственная ему способность ясно и увлеченно излагать полученные результаты всегда вызывала широкий интерес к его работам [33]. Кроме того, Либих активно участвовал в общественной жизни своей страны. Участие Либиха в революции 1848 г. и его острая критика направлений развития химии в Пруссии и Австрии сделали Либиха одним из самых популярных химиков во всех германоязычных странах [119]. Многие университеты в немецких городах и в других странах приглашали Либиха для преподавания.

Юстус фон Либих (1803-1873)

Юстус Либих родился в Дармштадте в 1803 г. Его родители владели небольшой аптекарской лавкой. Эксперименты, которые проводил отец, интересовали молодого Либиха гораздо больше, чем занятия в гимназии. Поэтому юноше пришлось покинуть ее стены, даже не окончив полного курса. Непродолжительным оказалось и обучение Либиха аптекарскому мастерству в аптеке Пирша на Бергштрассе в Геппенгейме. Занятия в университете (сначала в Бонне, а затем в Эрлангене) не могли дать Либиху систематических и глубоких знаний в практической и теоретической химии[47]. Как ни странно, но счастливым обстоятельством для Либиха оказалось то, что он как член запрещенного студенческого общества после бурных студенческих выступлений в Эрлангене вынужден был покинуть город. По распоряжению Великого герцога Либих был вначале посажен под домашний арест. Но вскоре ему была назначена небольшая стипендия для обучения в Париже[48]. Под руководством Гей-Люссака, Л. Тенара и Л. Воклена Либих действительно смог изучить химию. После появления его статьи "О солях гремучей кислоты" Либих по рекомендации Гумбольдта в мае 1824 г. получил приглашение занять должность профессора в Университете г. Гиссена, где он организовал свою ставшую вскоре всемирно признанной Гиссенскую лабораторию, в которой получили химическое образование многие молодые и талантливые ученые. Из школы Либиха вышло свыше 150 химиков, получивших широкую известность. Учитель не только передавал им свои знания, но и заботился об их дальнейшей работе. Рекомендация Либиха была гарантией для получения преподавательской должности в любом немецком университете. В 1852 г. Либих переехал в Мюнхен; здесь его творческая деятельность продолжалась в специально созданном для него институте. Вскоре Либих был избран президентом Баварской Академии наук. Своими выступлениями и статьями Либих оказывал большое влияние на развитие науки и использование ее достижений в практике. Получив титул барона и став "патриархом" среди химиков, Либих никогда не забывал своего родного города. В своих симпатиях и антипатиях ученый был бескомпромиссен. Так, в обстановке шовинистического угара во время франко-прусской войны 1870-1871 гг. Либих не испугался выступить в защиту своего парижского друга. После войны он призывал к взаимопониманию и дружбе с Францией, считая себя, и всех немцев многим обязанными ей. Либих умер в 1873 г.; он сам предсказал год своей смерти, перед которой он, занимаясь всю жизнь естествознанием, по его собственным словам, не испытывал никакого страха.

В 1832 г. в Гиссене Либих и Вёлер начали совместную работу по исследованию бензойной кислоты и масла горького миндаля (бензальдегида). Они установили, что ряд соединений — производных бензойной кислоты — всегда содержит постоянную группу атомов, которая была названа немецкими учеными бензоилом (С6Н5*СО). Эта группа ведет себя как элемент, входя как единое целое в состав бензойной кислоты, бензоилхлорида, бензоилбромида, бензамида и бензоил-сульфида.

Й. Я. Берцелиус, высший арбитр в химии того времени, увидел в этих данных блестящее подтверждение и укрепление теории радикалов[49] и использовал их для совершенствования дуалистической теории. Согласно взглядам Берцелиуса, органические вещества, подобно неорганическим, должны состоять из биполярных частиц, причем радикал представляет собой положительно, а оксид — отрицательно заряженную частицу.

Некоторое время органическая химия считалась (по определению Либиха) химией сложных радикалов. В работе "О конституции эфира и его соединений" (1834 г.) Либих обнаружил еще один сохраняющийся без изменения в различных соединениях радикал (с учетом современных атомных масс обозначаемый как С2Н5) и назвал его этилом.

Изучение Р. Бунзеном соединений группы какодила в 1839 г. вновь подтвердило, что в органической химии имеются специфические "элементы", которые ведут себя в реакциях как отдельные элементы в неорганических реакциях (либо как электроотрицательные, например хлор или кислород, либо как электроположительные, например металл).

Однако существовали уже другие данные, которые противоречили дуалистической теории Берцелиуса. Они способствовали совершенствованию теории радикалов.

Закон замещения и теория кислот

Жан Батист Дюма, принадлежащий к числу ведущих химиков первой половины XIX в., одним из первых получил данные, противоречащие дуалистической теории.

Жан батист Дюма (1800-1884)

Дюма родился в 1800 г. в городке Алэ (на юге Франции). В 1816 г. он переехал в Швейцарию и поступил в обучение к аптекарю в Женеве[50]. Одновременно юноша слушал интересующие его лекции известных ученых. Один из них — Александр Гумбольдт — настоятельно рекомендовал ему переехать в Париж. В Париже Дюма преподавал в Сорбонне, Политехнической школе и других высших учебных заведениях. Однако в его распоряжении, как и у многих других ученых в то время, не было лаборатории. Дюма, по существу, заново создал хорошо оборудованную лабораторию в Политехнической школе.

После февральской революции 1848 г. во времена второй республики Дюма занимался общественной деятельностью. В 1848 г. он был министром высшего образования. Дюма занимался также проблемой снабжения Парижа питьевой водой. Он пытался кроме того найти средство для борьбы с заболеваниями шелковичных червей, разведение которых играло большую роль в экономике Франции. В 1868 г. Дюма стал непременным секретарем Академии наук страны. Он умер в 1884 г. в Каннах. Дюма оставил заметный след в развитии как практической, так и теоретической химии. Его статьи печатались главным образом в "Анналах химии и физики".

В 1834 г. Дюма установил, что в некоторых соединениях водород может замещаться на хлор, бром или иод. Вскоре после этого он обнаружил, что водород может быть замещен также и на кислород в соотношении 2:1-явление, названное им законом замещения. Это открытие показало слабость дуалистической теории, поскольку оказалось, что электроположительный атом мог замещаться на электроотрицательный. Группы атомов, которые при замене водорода на другие элементы мало изменяют свой характер, Дюма назвал типами (например, к одному типу относятся уксусная и хлоруксусная кислоты).

Несмотря на то что Берцелиус пытался корректировать положения созданной им дуалистической теории, дополняя ее рядом гипотез, тем не менее после открытия еще нескольких случаев замещения на смену дуалистической пришла унитарная теория, согласно которой химическое соединение рассматривалось не как сумма частей, а как единое целое.

Примерно в то же время было установлено, что кислород не является элементом, который определяет кислотные свойства вещества. Это тоже подрывало позиции дуалистической теории. Берцелиус в соответствии с представлениями Лавуазье называл кислотами ангидриды кислот, а соли рассматривал как продукт взаимодействия "кислоты" и оксида металла. Установление элементарной природы хлора[51] и отсутствия кислорода в соляной кислоте ставили под сомнение представления Лавуазье и Берцелиуса о составе кислот. Старые взгляды были опровергнуты также открытием многоосновных кислот и работами Т. Грехема по исследованию фосфорных кислот: было установлено, что один и тот же оксид, соединяясь с различным количеством воды, дает различные кислоты.

Основываясь на этих данных, Либих сделал вывод, что кислоты представляют собой водородсодержащие соединения, в которых водород может быть замещен на металл. При этом образуются соли. Основность кислот Либих устанавливал путем определения числа замещенных атомов водорода. Он отличал одноосновные кислоты от двух- и трехосновных. Установленные таким образом формулы солей и кислот уже соответствовали положениям не дуалистической, а унитарной теории.

Теория ядер и теория типов

В 40-50-е годы XIX в. появилось множество гипотез, авторы которых пытались классифицировать все возрастающее количество органических соединений и объяснить реакции замещения. После открытия реакций замещения большинство химиков отказались от теории радикалов, в основе которой лежало положение о неизменности радикалов.

Группы атомов, свойства которых при замене водорода на другие элементы изменяются не очень значительно, Дюма назвал типами (см. выше). В 1836 г. французский химик Огюст Лоран сформулировал теорию ядер. Он различал "основные ядра" (состоящие из углерода и водорода), которые в какой-то мере соответствовали более раннему понятию "радикалов", и "производные ядра", которые можно получать из "основных" при замене водорода на другие атомы или группы атомов.

В 1853 г. Шарль Жерар, соотечественник Лорана, сформулировал свою (так называемую новую) теорию типов, согласно которой все органические соединения следует сопоставлять с одним из четырех основных типов молекул: Н2, НСI, Н2О и NH3. Эта теория вследствие ее формального характера была подвергнута критике со стороны Э. Франкленда и Г. Кольбе[52], которые тоже пытались найти реальные типы всех органических соединений путем доказательства истинного строения органических веществ.

Кольбе вновь обратился к теории радикалов Берцелиуса и пытался обосновать ее на основе новых открытий. Он хотел, чтобы теоретические представления отражали свойства реальных веществ. Кольбе трудился упорно, сопоставляя свои идеи с результатами новых исследований. Очень важными для него оказались работы Франкленда, посвященные исследованию состава и свойств органических соединений азота, фосфора, мышьяка и сурьмы, а также металлоорга-нических соединений[53]. В работе "Об естественной связи между органическими и неорганическими соединениями" (1860 г.) Кольбе писал: "Химические органические тела всегда являются продолжением неорганических соединений и возникают из последних непосредственно путем изумительно простого процесса замещения" [82]. Таким образом, Кольбе пытался рассматривать органические соединения как производные неорганических. При этом угольную кислоту ученый считал основным исходным веществом — "типом" органических кислот. Из нее путем замещения кислорода на водород или алкильный остаток получались спирты, карбоновые кислоты, альдегиды и углеводороды. Многоосновные кислоты, как и многоатомные спирты, Кольбе "получал" таким образом соответственно из двух или трех молекул угольной кислоты. Подобным же образом как производные неорганических веществ Кольбе рассматривал сульфокислоты, сульфоны, фосфорные и мышьяковые кислоты, амины, амиды и металлоорга-нические соединения. Пользуясь этой теорией, он пытался не только объяснить известные факты, но и предсказывать новые. Кольбе писал: "Нам кажется, что подобным же образом и в спиртах происходит замещение одного или двух атомов водорода на равное число метильных, этильных или других замещающих групп и в результате образуется новый ряд спиртов... И хотя до сих пор ни один из этих спиртов еще не получен, все равно я совершенно твердо убежден, что стоит только экспериментаторам начать работать в этом направлении, как очень быстро произойдет открытие таких спиртов".

В 1862 г., через три года после этого предсказания, которое в то время в органической химии представляло собой исключительный случай, Ш. Фридель (1832-1882) синтезировал пропиловый спирт, а в 1864 г. А. Бутлеров (1828-1886) получил бутиловый спирт[54]. Предсказания Кольбе подтвердились также при изучении химических свойств спиртов (главным образом при их окислении).

Теоретические воззрения Кольбе не раз оказывались чрезвычайно плодотворными, в частности при предсказании характера изомерии насыщенных (жирных) кислот. Например, в 1864 г. он предсказал существование изомасляной кислоты, которая была получена год спустя одновременно Э. Эрленмейером (1825-1909) и В. В. Марковниковым[55] (1838-1904).

Эти успехи утвердили Кольбе в правильности его теоретических представлений о составе органических соединений. Поэтому он резко выступал против взглядов Арчибальда Купера, Августа Кекуле, Александра Михайловича Бутлерова, Эмиля Эрленмейера и Иозефа Лошмидта, работы которых и привели в 60-е годы к созданию структурной химии[56].

Атом — молекула — валентность

В 40-50-е годы XIX в. вследствие быстро возрастающего количества новых данных все более настоятельным становилось выяснение понятий "атом" и "эквивалент", которые химики постоянно путали друг с другом.

Результаты проводившихся анализов веществ давали представление только о соединительных весах (эквивалентах) элементов, а для расчета их атомных весов не хватало точности существующих тогда методов. Поэтому многие химики, например Леопольд Гмелин, еще долгое время пользовались только понятием соединительных весов [34]. Например, на том основании, что в воде на одну весовую часть водорода приходится восемь весовых частей кислорода, считалось, что (эквивалентная) формула воды имеет вид НО2.

В 1842 г. Ш. Жерар установил, что количество вещества (воды, диоксида углерода и т. д.), выделяющегося в ходе органических реакций, не всегда соответствует одному эквиваленту, а является величиной, кратной этому значению. Под влиянием этих и аналогичных наблюдений О. Лоран вновь обратился к представлениям Авогадро и Ампера, которые различали понятия об атоме и молекуле и называли наименьшие частицы газа не атомом, а молекулой[57]. Лоран определял молекулы как наименьшие количества соединений, а атомы как наименьшие количества элементов, которые входят в состав соединения. Эквивалентом Лоран считал "равноценное количество аналогичной субстанции", т.е. вещества, которое в соединениях может замещать другое вещество. Отсюда Лоран делал вывод: если один элемент соединяется с другим в различных весовых соотношениях, то он имеет различные эквиваленты.

Между тем Франкленд, исследуя органические соединения, содержащие азот, фосфор, мышьяк или сурьму, нашел, что в них число атомов, приходящихся на один атом любого из этих элементов, равно трем или пяти. Поэтому он пришел к выводу, что атомы обладают некоей "соединительной силой", которая и определяет количественный состав соединений. В соответствии с этим каждый атом имеет определенную "емкость насыщения", или "атомность" [35]. Впоследствии К. Г. Вихельхаус заменил эти понятия термином "валентность"[58].

В 1858 г. шотландский химик А. С. Купер высказал идею о четырехатомности углерода; при этом он считал, что атомы углерода могут соединяться друг с другом (впервые эта идея была высказана в 1852 г. Фридрихом Рохледером). В том же 1858 г. А. Кекуле опубликовал статью "О строении и превращениях химических соединений и химической природе углерода", в которой изложил идеи, аналогичные взглядам Купера, т.е. что углерод четырехатомен и атомы углерода могут соединяться друг с другом [36][59]. Кекуле исходил из того, что в простейших углеродных соединениях атом углерода всегда связан с четырьмя атомами одноатомного элемента или двумя атомами двухатомного элемента; иными словами, сумма единиц сродства элементов, связанных с углеродом, тоже равна четырем.

Поскольку углерод является основой органических соединений, то учение о валентности (называвшейся тогда также и атомностью) можно было использовать для объяснения строения вообще всех органических веществ. Несомненно, что и Купер, и Франкленд, и Кольбе, и Кекуле внесли свой клад в развитие учения о валентности и четырехатомности углерода. В истории химии нередко бывали случаи, когда несколько химиков делали одинаковые открытия, но обычно труды одного из них имеют наибольшее значение. В данном случае таким химиком был Кекуле.

Станистао Канниццаро (1826-1910)

Хотя представления Лорана и Кекуле об атомах, молекулах и валентности были уже ими сформулированы, тем не менее для того, чтобы показать связь между этими понятиями и обобщить накопленные данные, научные выводы и опыт, не хватало решающего шага. Этот шаг был сделан в 1858 г. Станислао Канниццаро. В работе "Краткий очерк курса химической философии" [37] Канниццаро обратился к атомно-молекулярной гипотезе, предложенной Авогадро около 40 лет до того[60]. Вначале эта работа не вызвала должного интереса. Однако, когда Канниццаро ознакомил с ней участников Международного химического конгресса в Карлсруэ (1860г.), она обратила на себя внимание и вскоре нашла всеобщее признание. Химикам сразу стали понятнее определения атомного и эквивалентного весов. Это позволило решить основную проблему, стоящую перед химиками в течение 30 лет,- определить порядок расположения элементов в соединениях (см. следующий разд. "Стереохимия").

Канниццаро показал, как можно систематически применять закон Авогадро, согласно которому в одинаковых объемах всех газов при равных условиях содержится одно и то же число молекул. Как было отмечено выше (разд. "От системы Лавуазье к атомистике Дальтона"), Авогадро основывался на открытом Гей-Люссаком законе объемных отношений: объемы газов, реагирующих друг с другом или образующихся в результате реакции, соотносятся как небольшие целые числа. Вывод закона Авогадро, основанный на существовании молекул, вызвал отрицательное отношение со стороны Дальтона, а Берцелиус весьма своеобразно использовал его. Теперь Канниццаро применил положения Авогадро настолько четко, что, зная атомный или молекулярный вес вещества, который можно было установить по плотности пара или на основании закона удельных теплоемкостей Дюлонга и Пти, стало возможным объяснить многие его химические и физические свойства[61]. Для определения плотности пара Ж. Б. Дюма в 1827 г. предложил довольно простой метод; поэтому можно сказать, что экспериментальные предпосылки для использования закона Авогадро существовали в химии уже с конца 1820-х годов.

Метод определения атомного веса такого элемента, например, как водород, состоял в том, чтобы получить как можно больше его газообразных соединений и определить их вес (при постоянных объеме, давлении и температуре). При этом каждый раз нужно было определять весовую долю водорода[62]. Единицей сравнения при расчете атомного веса служил кислород, атомный вес которого был принят равным 16.

Структурная теория и формула бензола Кекуле

Представления о "соединительной силе", или валентности, атомов, объяснение понятий "атом", "молекула", "атомный вес" и "эквивалентный вес", а также идея о возможности образования связей между атомами углерода — вот те основные предпосылки, которые имелись к началу 1860-х годов для объяснения структуры одного из важнейших углеводородов — бензола.

Решению этой проблемы способствовали и другие исследования. Например, Э. Эрленмейер своими работами о связи атомов в молекулах содействовал развитию теории валентности. Начало этому было положено выходом в свет его Учебника органической химии (1864г.), основу которого составило учение о валентности и о связи атомов. Эрленмейер установил также структурную формулу глицерина.

Важный вклад в развитие структурной химии внесли работы А. М. Бутлерова[63] и Карла Шорлеммера[64].

Бутлеров (1828-1886) первым четко сформулировал определение понятия химического строения как способа связи атомов в молекуле. Он считал, что химический характер веществ зависит от природы и количества его элементарных составных частей и химического строения соединения [169]. Написанный Бутлеровым в 1864 г. учебник органической химии (переведен на немецкий язык в 1868 г.) в немалой степени способствовал распространению среди химиков представлений о строении соединений.[65]

Шорлеммер определял органическую химию как химию углеводородов и их производных.

Карл Шорлеммер (родился в 1834 г. в Дармштадте) в 1874 г. стал профессором органической химии в Манчестере. Там он сблизился с Фридрихом Энгельсом и Карлом Марксом и примкнул к рабочему движению. Его разнообразные экспериментальные работы были в значительной мере посвящены изучению свойств и строения углеводородов метанового ряда. В 1864 г. Шорлеммер экспериментально подтвердил высказанную ранее (см. разд. "Атом — молекула — валентность") идею о равноценности четырех валентностей углерода. Это оказалось очень важным для установления строения бензола. В 1874 г. вышла книга Шорлеммера "Краткий учебник химии углеродистых соединений"[66], составившая впоследствии первый том написанного им совместно с Г. Э. Роско учебника химии. (Учебник был опубликован в 1877 г. на немецком языке, а год спустя переведен на английский.)

По сравнению со всеми выдвигавшимися ранее в органической химии теориями структурная теория в значительно большей степени способствовала систематизации органических соединений. С ее помощью стало возможным объяснение изомерии и предсказание неизвестных еще соединений. Структурные формулы довольно наглядно отражали связь между формулой и свойствами вещества. Наибольшего успеха структурная теория достигла в установлении строения бензола С6Н6 — основного соединения ароматического ряда. В 1861 г. И. Лошмидт — физик из Вены — опубликовал статью "Химические исследования", в которой ввел понятие о двойной связи атома углерода и рассмотрел расположение атомов в пространстве. Для изображения бензола ученый использовал окружность, на которой пометил шесть точек для размещения атомов водорода (ср. [154]).

Через три года Рудольф Фиттиг и Бернхард Толленс опубликовали разработанный ими способ синтеза ароматических углеводородов (толуола, этилбензола) [38, с. 303 и сл.]. Это натолкнуло А. Кекуле на новые идеи, которые и привели его к установлению строения бензола. Чередуя одинарные и двойные связи, Кекуле соединил шесть атомов углерода в ячейки, подобные пчелиным сотам, при этом у атомов углерода оставалось еще по одной свободной валентности для каждого из шести атомов водорода. Брутто-формула С6Н6 превратилась в структурную формулу. Многие другие химики пытались ранее установить строение бензола, но не достигли в этом успеха.

Шутливое изображение бензольного кольца

"Бензольное кольцо", как назвали тогда и называют до сих пор структурную формулу Кекуле, наглядно отражает четырехвалентность атома углерода. Каждый атом углерода в нем связан тремя валентностями с двумя другими атомами углерода, а четвертая валентность используется для связи с водородом. Атом водорода может быть заменен при реакции и на какой-либо другой атом.

Принцип построения бензольного кольца сделал возможным объяснение структур многих соединений углерода и обусловил дальнейшие направления препаративных работ. Благодаря этому в химической промышленности был осуществлен синтез многих ценных продуктов, в том числе анилина (см. разд. "Промышленная химия").

Кекуле объяснял свой успех в установлении формулы бензола лишь "игрой воображения". Картина бензольного кольца возникла у него перед глазами во время размышлений перед камином. Однако из его записей об учебе у Либиха видно, что воображению Кекуле предшествовала серьезная работа [39][67].

Август Кекуле фон Страдониц (1829-1896)

Фридрих Август Кекуле фон Страдониц родился в 1829 г. в Дармштадте, умер в 1896 г.в Бонне. По мнению родителей, ему следовало "получить специальность", и поэтому он начал изучать архитектуру. Но еще раньше, познакомившись с Либихом, юноша заинтересовался химией. (Знакомство с Либихом произошло при не совсем обычных обстоятельствах в суде, куда Либих был приглашен как эксперт. Дело оказалось весьма непростым. После пожара в одном из особняков г. Дармштадта был обнаружен полуобгоревший труп. Суду предстояло выяснить: был ли поджог предумышленным. Юный Кекуле выступал свидетелем по делу. Он дал показания с поразительной точностью; эти показания убедили присяжных заседателей в правильности заключения эксперта, что пожар в доме не был случайностью. В свою очередь Либих убедился в способностях Кекуле, в его наблюдательности, которая позволяла ему стать хорошим химиком.) Кекуле обучался химии у Либиха в Гиссене, стажировался в Париже под руководством Дюма, Вюрца и Жерара. После этого Кекуле некоторое время работал в Англии. В 1856 г. он стал приват-доцентом в Университете г. Гейдельберга. Через два года занял должность профессора в Университете г. Гента, а в 1865 г.- в Боннском университете. Там он опубликовал работу о пространственном расположении атомов в молекуле: атомы располагаются в направлении "гексаэдрических осей" объема атома и лежат в вершинах тетраэдра [40, с. 218][68].

И на "Празднике бензола" в 1890 г., еще при жизни Кекуле, и на торжествах 1929 г., посвященных столетию со дня рождения Кекуле, отмечалось не только важное научное, но и промышленное значение установления строения бензола. Без этого невозможно было бы понять строение сложных углеводородов (нафталина, антрацена, фенантрена), гетероциклических соединений (пиридина, хинолина, тиофена и т. д.) и их производных. Получение синтетических красителей, а также синтез многочисленных лекарственных и взрывчатых веществ были бы невозможны без точного установления их строения (см. разд. "Промышленная химия").

Стереохимия

Оптическая активность

Заслуга А. Кекуле в развитии представлений о пространственном расположении атомов в молекуле была велика, но предложенные им структурные формулы были двухмерными и не могли объяснить различные виды изомерии.

В последней трети XIX в. идеи пространственного расположения атомов в молекуле были развиты в работах нескольких химиков, которые и заложили основы стереохимии. Этому предшествовал длившийся десятилетиями период накопления открытий и гипотез, начало которым положил в 1848 г. Луи Пастер работой, посвященной изучению свойств винной и виноградной кислот. Он обнаружил гемиэдрические плоскости у тартратов (виннокислых солей). Кристаллы двойных солей виноградной кислоты обладали одинаковой величиной вращения, но часть из них вращала плоскость поляризованного света влево, а другая — вправо. На этом основании Пастер сделал вывод об асимметрическом строении кристаллов, а также о различном пространственном строении образующих их молекул[69]. На это наблюдение обратили внимание лишь после открытия валентности, создания структурной теории и установления строения бензола. К тому времени выяснилось, что использование непространственных формул приводит к некоторым противоречиям. Например, метиленхлорид CH2CI2 на плоскости может быть изображен двумя способами:

В соответствии с этим должны были бы существовать два различных соединения одного и того же состава, но известно было только одно.

Когда Иоганн Вислиценус обнаружил существование двух форм молочной кислоты СН3СН(ОН)СООН — оптически активной и оптически неактивной, он пытался объяснить это явление на основе представлений о геометрической изомерии. В 1875 г. в работе, посвященной изучению свойств молочных кислот, он писал, что различие в них, вероятно, обусловлено неодинаковым пространственным расположением атомов[70].

Расположение атомов в пространстве

Теоретические основы стереохимии независимо друг от друга заложили Якоб Гендрик (Хендрик) Вант-Гофф и Ж. А. Ле Бель, а И. Вислиценус многое сделал для распространения их идей[71]. В 1874 г. Вант-Гофф опубликовал брошюру и статью о пространственном расположении атомов, в которых изложил представления об асимметрическом атоме углерода. Однако его ожидания, что по этому поводу сможет возникнуть дискуссия, вначале не оправдались. Положение изменилось только спустя два года, когда известный химик И. Вислиценус попросил у Вант-Гоффа разрешение перевести его работы на немецкий язык. Вислиценус удачно использовал стереохимические представления Вант-Гоффа для объяснения непонятных до того момента фактов пространственной изомерии соединений и оценил эту теорию как выдающееся событие в развитии естествознания.

Познакомившись с опубликованной на немецком языке работой Вант-Гоффа "О расположении атомов в пространстве", другой известный немецкий химик Герман Кольбе писал в издаваемом им "Журнале прикладной химии", что наблюдаемый упадок химических исследований в Германии отражает кризис химического образования. Обрушиваясь на взгляды Вант-Гоффа, Кольбе писал, что натурфилософия, которую он сам презирал с такой же страстью, как ранее Либих, вновь возрождается. Ни одной строки не посвятил бы он работе Вант-Гоффа, если бы ее не рекомендовал такой крупнейший химик, как Вислиценус, ибо "эту работу невозможно критиковать за какие-то отдельные положения, потому что вся она — плод фантазии, совершенно не опирающейся на факты, и абсолютно непонятна здравомыслящему исследователю". Далее Кольбе продолжал: "Стало уже приметой времени, что современные химики считают себя в состоянии всему дать объяснение, и если для этого недостаточно имеющихся опытных данных, то они хватаются за сверхъестественные объяснения. Вислиценус тоже считает допустимым такой подход к научным вопросам, который недалек от веры в ведьм и духов". По мнению Кольбе, таких ученых "следовало бы исключить из рядов настоящих ученых и причислить к лагерю натурфилософов, совсем немногим отличающихся от спиритов" [143, с. 268 и сл.].

Но несмотря на возражения Кольбе и некоторых других химиков, новые идеи были подхвачены учеными и в начале XX в. подтверждены экспериментальным доказательством атомного строения веществ.

В опубликованной в 1874 г. работе "О расположении атомов в пространстве" Вант-Гофф говорил о том, что четыре валентности атома углерода можно расположить в направлении вершин тетраэдра, представив при этом, что атом углерода находится в центре этого тетраэдра. Если четыре заместителя при углероде представляют собой четыре различные одновалентные группы, то образуются два разных тетраэдра, один из которых является зеркальным отображением другого.

Оптическая активность соединения объяснялась наличием в нем асимметрического атома углерода. Оптические изомеры [в современной терминологии — D (dextro — правый) и L (laevo — левый] различают по их способности вращать плоскость поляризованного света соответственно вправо или влево.

Дальнейшее развитие стереохимии связано с именами Адольфа Байера, Виктора Мейера, Артура Ганча, Альфреда Вернера и др. В 1885 г. Байер, основываясь на результатах своих работ по гидрированным производным бензола, предложил "теорию напряжения"[72]. В 1888 г. Мейер назвал строение молекул с учетом их геометрического расположения "стереохимическим строением" и дал тем самым название новой области химии. В 1890 г. Ганч и Вернер распространили стереохимические представления на азот. Они предположили, что атом азота находится в одной из вершин тетраэдра, а его валентные связи направлены к трем другим вершинам тетраэдра.

В 1893 г. Вернер выдвинул идею пространственного строения комплексных соединений металлов. Его гипотеза о координационных соединениях, создавшая основы классификации и номенклатуры комплексных соединений, в начале XX в. была подтверждена результатами рентгеноструктурного анализа[73].

В 1896 г. Пауль Вальден открыл явление, названное им "обращением" знака оптической активности. Оказалось, что в случае замены одного из атомов или радикалов при тетраэдрическом асимметрическом углеродном атоме на другой атом или радикал может либо сохраниться такая же по знаку оптическая активность, либо знак вращения меняется на противоположный; таким образом левовращающее соединение превращается в правовращающее и наоборот.

Спустя четыре десятилетия было обнаружено, что все живые организмы усваивают только L-формы аминокислот. Поэтому все белки состоят только из L-аминокислот, хотя различие между D- и L-формами одного и того же вещества состоит в том, что они соотносятся друг с другом, как предмет и его зеркальное отображение.

Благодаря развитию стереохимии структурная химия перешла от изображения формул веществ на плоскости к их изображению в трехмерном пространстве. Экспериментальное подтверждение и дальнейшее успешное развитие стереохимических представлений стали возможными лишь благодаря открытию электрона и созданию теории строения атомного ядра.

В конце XIX в. и особенно в XX в. количество полученных органических соединений росло в геометрической прогрессии. Ф. Бейлынтейн[74] был одним из первых, кто осознал, какие трудности могут возникнуть у ученых в результате столь быстрого накопления данных. Все известные в то время соединения он систематизировал в "Справочнике по органической химии", который впервые вышел из печати в 1880-1882 гг. вначале в двух томах. Это издание разрасталось в том же стремительном темпе, в котором развивалась органическая химия. Оно продолжалось и после смерти Бейльштейна (1906 г.) под эгидой Немецкого химического общества. После второй мировой войны "Справочник" издается Институтом Бейльштейна (Франкфурт-на-Майне, ФРГ).

От триад Дёберейнера до периодической системы элементов Менделеева[75]

История наук и логика научных исследований показывают, что развитие наших знаний возможно только на основе представлений, которые, проявляясь как лейтмотив, направляют все наше мышление.

Вальтер Герц [41]

Первые исследования

Хотя с 30-х годов прошлого столетия работы большинства химиков были посвящены успехам органической химии, тем не менее в области неорганической химии исследования не прекращались. К концу XVIII в. было известно 28 элементов869 г. (к моменту создания периодической системы) — уже свыше 60 элементов и изучено громадное количество их соединений[76].

Однако к этому времени еще не было получено надежных доказательств реального существования элементов. Обычно пользовались определением Лавуазье и вещество считали элементом, если оно не могло быть подвергнуто дальнейшему разложению.

С современных позиций такая формулировка кажется в высшей )тепени неоднозначной. С одной стороны, если вещество разлагалось на несколько составных частей (элементов), то это уже считалось достаточным, чтобы доказать, что данное вещество не является элементом. С другой стороны, невозможность разложения вещества на составные части вообще нельзя считать доказательством того, что этотво является элементом; развитие экспериментальной химии может сделать впоследствии возможным дальнейшее химическое разделение этого вещества. Точное определение понятия "элемент" впервые стало возможным только благодаря рентгеноспектральному методу исследования.

Еще сложнее было с определением атома, представления о котором были лишены конкретности. Хотя понятие "атом" в литературе уже встречалось, но споры об атомной или эквивалентной массе, называемой тогда атомным весом, свидетельствовали о неопределенности этих понятий. Положение несколько улучшилось лишь после появления в 1860 г. работы Канниццаро[77].

Атомистическая гипотеза Дальтона прояснила очень немногое относительно свойств атомов, и до 1913 г. все предположения о строении атома не имели точных доказательств. Ситуация изменилась только с открытием электрона и строения атомного ядра.

Тем не менее, несмотря на недостаточность существующих представлений, еще с конца XVIII в. делались попытки обнаружить какие-либо зависимости между элементами. Эти вопросы рассмотрены голландским ученым Иоганом Виллемом ван Спронсеном, который в 1969 г. опубликовал обширный труд, посвященный истории периодической системы элементов — "Периодическая система химических элементов — история первого столетия". Г. Кассебаум в работе о вкладе Ж. Б. Дюма и Адольфа Штрекера в создание периодической системы показал, что Д. И. Менделеев неоднократно ссылался на труды этих химиков [155].

В этой главе невозможно перечислить все попытки систематизации элементов и назвать имена всех ученых, которые внесли свой вклад в развитие учения о периодичности. В истории этого вопроса следует выделить три этапа: 1) накопление фактического материала (с конца XVIII в. до 60-х годов XIX в.), 2) кульминационный (1869 г.) и 3) последовавший за этим этап, в течение которого были сделаны многие открытия, подтвердившие периодическую систему и расширившие наши представления о причинах, лежащих в ее основе. Последний этап длился до тех пор, пока не было установлено, что каждый элемент характеризуется определенным зарядом ядра. Лишь после этого наступила качественно новая фаза.

Сначала ученые предполагали, что только между элементами с аналогичными свойствами существует какая-то взаимосвязь. Уже в попытке И. В. Рихтера расположить щелочные и щелочноземельные металлы в ряд по изменению их атомной массы П. Вальден [42] увидел зарождение такой идеи. Однако Рихтер [43] опирался лишь на понятие "эквивалентная масса". Он хотел определить количественные соотношения, в которых химические элементы могут соединяться друг с другом. Но Рихтер не знал атомных масс, которые оказались совершенно необходимыми для создания периодической системы.

Атомистическая теория Дальтона и определение атомных масс некоторых элементов привели английского врача У. Прау-та к возрождению аристотелевой идеи о существовании некой первичной материи. В основу этого представления, опубликованного в 1815 г., Праут положил уже установленные "атомные веса", многие из которых представляли целочисленные кратные атомной массы водорода. Водород представлялся ему первичным элементом, из которого образовались все другие элементы. Двумя годами позднее подобные же идеи выдвинул Иоганн Л. Г. Майнеке, профессор технологии из Галле. Среди открытых к тому времени элементов были известны атомные массы двадцати двух, и их можно было рассматривать как кратные атомной массы водорода. Хотя гипотеза Праута соответствовала натурфилософским идеям о единстве материи, тем не менее Ж. Б. Дюма подверг ее тщательной экспериментальной проверке. Определение атомных масс, проведенное Дюма и особенно Берцелиусом, который достиг в этом высокой степени совершенства, опровергло гипотезу Праута.

И все-таки представление о некой внутренней взаимосвязи между элементами продолжало существовать. В 1817 г. профессор Йенского университета Иоганн Вольфганг Дёберейнер предложил идею объединения элементов в группы, основываясь на их аналогии[78].

Дёберейнер (1780-1849) был сыном придворного кучера. В 1794 г. он поступил в обучение к аптекарю, потом работал помощником аптекаря в Дилленбурге, Карлсруэ и Страсбурге. Затем Дёберейнер стал владельцем фабрики по изготовлению химико-фармацевтических препаратов, но, однако, быстро разорился, и фабрика была продана. Позже на принадлежащей ему уже другой фабрике Дёберейнер занимался отбеливанием тканей хлором. После того как в результате континентальной блокады[79] предприятие в 1808 г. обанкротилось, Дёберейнер получил приглашение от И. Гёте[80] занять должность профессора химии, фармации и технологии в Йенском университете. Он неоднократно встречался с Гёте и обсуждал с ним различные химические проблемы. В 1823 г. Дёберейнер обнаружил каталитическое влияние платиновой черни на возгорание водорода и создал на этой основе "зажигательную машину, или химическое огниво".

Дёберейнера интересовала взаимосвязь между элементами. Расположив элементы в ряд по атомным массам, он обнаружил, что атомная масса среднего из трех химически похожих друг на друга элементов равна примерно среднему арифметическому из суммы атомных масс двух других элементов. В соответствии с этим Дёберейнер составил следующие триады элементов:

В широко известном "Справочнике по неорганической химии" Леопольд Гмелин, рассмотрев гипотезу Праута и триады Дёберейнера, высказал собственные соображения о расположении элементов по триадам (но они, правда, не содержали оригинальной идеи) [34].

Другие химики тоже делали попытки осуществить классификацию элементов на различной основе. Так, в 1850 г. Макс Петтенкофер, профессор химии и гигиены из Мюнхена, расширил эти ряды, сопоставив и другие похожие друг на друга элементы, например азот, фосфор, мышьяк, сурьму. В 1851-1852 гг. Ж. Б. Дюма тоже предложил несколько групп элементов. Он особенно подчеркивал, что свойства каждого из входящих в группу элементов типичны для всей данной группы; например, свойства фтора характерны для хлора, брома и иода или свойства кислорода характерны для серы, селена и теллура.

Джон Глэдстон в 1853 г. и Джосайа П. Кук в 1854 г. также предприняли попытки систематизации элементов. Однако наиболее значительный шаг вперед смог сделать лишь Александр де Шанкуртуа в 1862 г. После выступления Канниццаро на Международном конгрессе химиков в Карлсруэ (1860 г.) Шанкуртуа выдвинул идею спирального расположения элементов в зависимости от их атомной массы. Однако эти идеи не привлекли к себе внимания ученых[81].

В 1865 г. Уильям Одлинг опубликовал таблицу, в которой элементы были сгруппированы по некоторой "родственной" взаимосвязи, например азот, фосфор, мышьяк и висмут или кислород, сера, селен и теллур.

В 1863-1865 гг. аналогичные попытки были предприняты Джоном Ньюлендсом, который предложил так называемое правило октав. Ученый расположил элементы от водорода до тория в соответствии с увеличением их атомной массы и дал им номера от 1 до 56. Разделив их на восемь групп по семь элементов в каждой, Ньюлендс показал, что после каждого седьмого элемента их свойства повторяются, но в несколько измененном виде.

Л. Мейер и Д. И. Менделеев

По-видимому, критическое отношение ко всем упомянутым выше попыткам классификации элементов сдерживало Лотара Мейера. В 1864 г. в книге "Современные теории химии" он предложил расположить элементы по группам [44]. В 1868 г. Мейер составил общую систему элементов, но опубликовал ее только в 1870 г.[82], уже после появления работы Д. И. Менделеева "Опыт системы элементов, основанной на их атомном весе и химическом сходстве" [45][83].

Д. И. Менделеев и Л. Мейер присутствовали на Международном химическом конгрессе в Карлсруэ (1860 г.), и оба отмечали впоследствии, что доклад Канниццаро "Об атомных и молекулярных весах" сыграл большую роль в их работе над периодической системой.

Лотар Мейер (1830-1895)

Лотар Мейер (1830-1895) родился близ Ольденбурга в семье врача. Химическое образование он получил в лаборатории Бунзена, где двумя годами позднее работал и Д. И. Менделеев. В последующие годы Л. Мейер был профессором в университетах Эберсвальда, Карлсруэ и Тюбингена. Впервые Мейер обратил на себя внимание химиков в 1859 г., когда он, работая в Университете г. Бреслау, опубликовал историко-критический анализ химических воззрений от Бертолле до Берцелиуса.

Много внимания Л. Мейер уделял изучению различных химических теорий и возможности их применения для объяснения экспериментальных наблюдений. Он написал несколько книг, в которых проводил анализ и сопоставление многих теоретических представлений своего времени [44, 46].

Дмитрий Иванович Менделеев (1834-1907)

Дмитрий Иванович Менделеев[84] (1834-1907) родился в Сибири, в Тобольске в семье директора гимназии. Вскоре после рождения Дмитрия отец ослеп, а в 1847 г. умер. Хотя в семье было 17 детей, мать не ограничивалась только заботами о материальном положении семьи. Она уделяла много внимания духовному развитию детей и участвовала в общественной жизни города.

Когда жизненные пути старших детей определились, а Дмитрий сдал экзамены на аттестат зрелости, мать поехала с ним в Москву, чтобы дать возможность сыну продолжить образование. Однако по существующему тогда законодательству Менделеев как окончивший гимназический курс в Сибири имел право поступать только в Казанский университет. Поэтому в Москве ему было отказано в приеме в высшее учебное заведение. В Петербурге Менделееву вначале тоже не повезло, потому что прием студентов был прекращен из-за студенческих беспорядков. Но его мать, заручившись поддержкой друзей, добилась разрешения министра о зачислении сына в Главный педагогический институт. Об учебе в этом институте Менделеев впоследствии вспоминал с большой признательностью, хотя в целом к системе преподавания в царской России он относился критически.

В 1855 г. состояние здоровья Дмитрия Ивановича ухудшилось. По рекомендации врача, считавшего даже, что молодому человеку оставалось жить всего восемь-девять месяцев, Д. И. Менделеев поехал после окончания института в Крым, в Симферополь. Вопреки прогнозам врача через год Менделеев вернулся в Петербург, представив к тому же в качестве магистерской диссертации работу на 220 страницах "Удельные объемы".

После назначения на должность приват-доцента в Петербургский университет Менделеев занимался изучением строения соединений кремния и исследованием связи между физическими свойствами веществ и их реакционной способностью.

В 1859 г. Менделееву была предоставлена двухлетняя научная командировка за границу[85]. Он поехал в Гейдельберг, где работал в лабораториях Р. Бунзена и Г. Р. Кирхгофа. Создание в это время Бунзеном и Кирхгофом основ спектрального анализа оказало большое влияние на Менделеева. Экспериментальные работы, выполненные Менделеевым за границей, были посвящены изучению молекулярного сцепления жидкостей, расширения "гомологичных" жидкостей и расширения жидкостей при нагревании их до высоких температур. Окончание заграничной учебы Менделеева совпало с Международным химическим конгрессом в Карлсруэ. Сообщение Канниццаро произвело на Менделеева, так же как и на Мейера, большое впечатление и показалось весьма убедительным.

По возвращении в Петербург Менделеев с осени 1861 г. начал читать лекции по органической химии и приступил к написанию учебника по этому предмету. Он пришел к убеждению, что химические реакции зависят от физических и механических свойств молекул, а все физические свойства веществ находятся во взаимосвязи и зависят как от массы молекул, так и от их состава.

В 1865 г. Менделеев стал профессором Петербургского университета. Тремя годами позднее он начал писать учебник "Основы химии", где попытался выявить в химии систему, положив в ее основу величины атомных весов элементов. Менделеев предположил существование функциональной зависимости между индивидуальными свойствами элементов и их атомными весами. Это предположение послужило отправной точкой в его поисках. Все элементы, их атомные веса и основные свойства Менделеев выписал на отдельные карточки и пытался расположить эти карточки, исходя из аналогий в свойствах элементов и близости их атомных весов. Казалось, что предположение о том, что свойства элементов находятся в периодической зависимости от их атомных весов, подтверждается. Эти карточки Менделеев перекладывал столь часто, что приведенные на них данные четко запечатлелись в его памяти и даже снились ему по ночам. Именно во сне, рассказывал впоследствии Дмитрий Иванович, увидел он периодическую систему и, проснувшись, сразу ее записал[86].

В 1869 г. Н. А. Меншуткин представил членам Русского химического общества небольшую работу Менделеева "Соотношение свойств с атомным весом элементов". Сам Д. И. Менделеев на заседании не присутствовал[87], поэтому не был свидетелем того, как равнодушно его коллеги восприняли это сообщение. "Большие события слишком часто встречают незначительный отклик, и тот день, который должен был стать знаменательным днем для молодого Русского химического общества, в действительности оказался обычным будничным днем",- писал впоследствии Пауль Вальден [42, с. 271].

Периодическая система элементов

Периодическая система элементов Д. И. Менделеева (1869 г.)

Д. И. Менделеев любил дерзкие идеи. Обнаруженная им закономерность гласила: химические и физические свойства элементов и их соединений находятся в периодической зависимости от атомных весов элементов. Подобно своим предшественникам, Менделеев выделил наиболее типичные элементы. Однако он предположил наличие пустот в таблице и осмелился утверждать, что они должны быть заполнены не открытыми еще элементами.

(Основные положения системы Менделеева [47]

"

1. Элементы, расположенные по величине их атомного веса, представляют явственную периодичность свойств.

2. Сходственные по химическим отправлениям элементы представляют или близкие атомные веса (подобно Pt, Ir, Os) или последовательно и однообразно увеличивающиеся (подобно К, Rb, Cs)...

3. Сопоставление элементов или их групп по увеличению атомного веса соответствует так называемой атомности их и до некоторой степени различию химического характера, что видно ясно в ряду: Li, Be, В, С, N, О, F и повторяется в других рядах.

4. Распространенные в природе простые тела имеют малый атомный вес, а все элементы с малым атомным весом характеризуются резкостью свойств. Они поэтому суть типические элементы. Водород как легчайший элемент по справедливости избирается как самый "типический".

5. Величина атомного веса определяет характер элемента, как величина частицы определяет свойства сложного тела, а потому при изучении соединений должно обращать внимание не только на свойства и количество элементов, не только на их взаимодействие, но и на вес их атома. Оттого, например, соединения S и Те, СI и J и т.п. при сходстве представляют и различия весьма ясные.

6. Должно ожидать открытия еще многих неизвестных простых тел, например сходных с алюминием и кремнием элементов с паем 65-75.

7. Величина атомного веса элемента иногда может быть исправлена, зная его аналогии. Так, пай Те должен быть не 128, а 123-126?

8. Некоторые аналогии элементов открываются по величине веса их атома. Так уран оказывается аналогом бора и алюминия, что и оправдывается сличением их соединений."

)

Работа Менделеева побудила Мейера в 1870 г. опубликовать статью "Природа химических элементов как функция их атомного веса". Мейер ссылался на периодическую систему Менделеева, но сделал в ней некоторые перестановки. В 1870 г. и Менделеев внес в таблицу несколько поправок: как любая закономерность, в основе которой лежит верная идея, новая система оказалась жизнеспособной, поскольку в ней предусматривалась возможность уточнений. Подробности этих уточнений можно здесь не излагать, так как они обстоятельно описаны Вальденом [42; 48, с. 4719].

Окончательно идеи Менделеева нашли выражение в названии его статьи, вышедшей в 1871 г.: "Естественная система элементов и применение ее к указанию свойств неоткрытых элементов" [49]. Прежде всего Менделеев определил новые положения в системе для индия, церия, тория и урана и предсказал свойства неизвестных еще элементов, которые он включил в систему.

Прогнозы и открытия

Менделеев обратил внимание на упомянутые уже аналоги бора и алюминия — элементы III группы. По его мнению, после цинка должен был стоять еще один элемент, названный им экаалюминием Еl. Он предсказал атомный вес этого элемента — 68, атомный объем — 11,5, удельный вес — 6,0 и некоторые спектральные характеристики. В 1875 г. в Париже П. Э. Лекок де Буабодран открыл предсказанный Менделеевым экаалюминий и назвал его галлием. Так было впервые подтверждено предсказание Менделеева. Точно так же сбылся его прогноз о существовании аналога бора, который он назвал экабором Еb. Этот элемент был открыт в Швеции в 1879 г. Л. Ф. Нильсоном и назван скандием.

Открытие Клеменсом Винклером в 1886 г. германия окончательно убедило большинство химиков в правильности построенной Менделеевым периодической системы. Еще до того, как был открыт германий, Менделеев предсказал существование этого элемента IV группы, назвав его экасилицием Es, и описал некоторые его свойства (см. табл. 1) [42, с. 282].

Таблица 1

Ученых, открывших новые элементы, Менделеев назвал людьми, "действительно укрепляющими" периодическую систему, без которых она не была бы полностью признана. Менделеев имел счастье дожить до открытия еще и других элементов, существование которых он предсказал[88].

До последних своих дней Менделеев внимательно следил за развитием периодической системы. Кроме этого он активно занимался и другими проблемами, например исследованием расширения газов, о результатах которого сообщил в 1875 г. Менделеева интересовало происхождение и промышленное использование нефти. Он изучал также месторождения каменного угля, придавая важное значение донецкому углю. Несмотря на научные заслуги и активное участие в развитии промышленности, в 1890 г. царские власти отстранили Менделеева от преподавательской деятельности, когда он, придерживаясь либеральных взглядов, решился во время студенческих волнений вручить министру просвещения петицию студентов.

В 1893 г. Менделеев был назначен управляющим Палаты мер и весов. Помимо этого он занимался вопросами образования и обучения молодежи, а также научными и социальными проблемами России. Он был убежден, что народу России принадлежит великое будущее.

Периодическая система элементов (1902 г.)

Периодическая система элементов, структурная химия установление строения бензола — все эти открытия подняли к 1870-м годам теоретическую химию на новый уровень благодаря которому стало возможным более быстрое развитие химии, понимание строения сложных органических веществ и открытие строения атома. Одновременно в качестве самостоятельного раздела химии начала развиваться физическая химия.

Физическая химия[89]

Физическая химия... является достижением не только последнего времени; скорее она так же стара, как и сама научная химия. И в развитии химии можно различить те же стадии, через которые должна проходить любая наука: ознакомление, систематизация и постижение ее глубин.

Вильгельм Оствальд

М. Фарадей и электролиты[90]

Использование отдельных физических методов для исследования и объяснения химических процессов началось еще в конце XVIII в., но лишь в XIX в., сто лет спустя после появления новой химической номенклатуры Лавуазье (1787 г.), физическая химия выделилась в самостоятельное научное направление[91]. В 1887 г. В. Оствальд, С. Аррениус и Я. Г. Вант-Гофф начали издавать "Журнал физической химии".

Столь длительный период накопления знаний объясняется прежде всего различным уровнем возможности математической обработки экспериментальных данных в физике и химии. Кроме того, мир веществ очень многообразен, и в центре научных интересов химиков находилось исследование свойств, строения и превращений веществ. В течение десятилетий закон простых кратных отношений удовлетворительно объяснял превращения веществ. Поэтому Бертолле, пытавшийся найти зависимость между массой и химическими свойствами веществ, оставался непонятым современными ему химиками.

До середины XIX в. физикам и химикам, изучавшим вещества разными методами, трудно было найти общий взгляд на их природу. Дальтон отрицал открытые Гей-Люссаком газовые законы, а молекулярная гипотеза Авогадро в течение полувека не получала признания. Закону удельных теплоемкостей, открытому в 1819 г. П. Дюлонгом и А. Пти, повезло больше: он использовался для определения атомных масс, главным образом металлов. Этой же цели служил установленный в том же году Мичерлихом закон изоморфизма, согласно которому изоморфные соединения имеют аналогичный состав.

Г. Дэви и Й. Я. Берцелиус первыми использовали в химии электричество. М. Фарадей продолжил их работы и заложил основы электрохимии.

Майкл Фарадей (1791-1867)

Майкл Фарадей родился в 1791 г. в семье кузнеца. В тринадцатилетнем возрасте он поступил в обучение к переплетчику в Лондоне. В свободное время юноша посещал вечерние лекции по физике и астрономии, однако большую часть своих научных знаний он почерпнул из книг. Кроме того Фарадей слушал и тщательно записывал лекции Дэви в Королевском институте. Проиллюстрировав записи рисунками тех приборов, которые Дэви использовал на лекциях, Фарадей переплел их и послал почитаемому им профессору. Когда последний предложил юноше место лаборанта, Фарадей счел, что осуществились его самые смелые мечты.

В 1825 г. Фарадей обнаружил в светильном газе бутилен и бензол. Вскоре после этого он сконцентрировал свое внимание на изучении электрических явлений и установил, что электричество, возникающее при трении веществ, и гальваническое электричество идентичны. В 1831 г. Фарадей обнаружил электрические и электромагнитные индукционные токи. В 1834 г. он установил основные количественные законы электролиза.

Открытия Фарадея находили такое же широкое признание у ученых, как и его очень четкие и содержательные лекции — у многочисленных слушателей. Он был избран членом Королевского общества. Статьи Фарадея печатались в основном в "Философских трудах Королевского общества". В последние годы жизни память Фарадея значительно ослабла, так что он вынужден был уменьшить объем работы. Фарадей умер в 1867 г. в возрасте 76 лет.

В 1834 г. Фарадей сформулировал открытый им закон: масса вещества, разложившегося на электродах во время электролиза, прямо пропорциональна количеству электричества, протекшего через электролит. Этот закон вскоре стал использоваться для измерения силы тока.

В том же 1834 г. Фарадей установил, что при пропускании одного и того же количества электричества через растворы различных химических соединений количества разлагаемых веществ пропорциональны их эквивалентным массам. Этот закон оказался чрезвычайно важным для проверки эквивалентных масс веществ.

Фарадей предложил ряд определений важнейших понятий, которые используются и в наши дни. Он ввел понятия "электролиз", "электролит", "электрод", "анод", "катод". Частицы, образующиеся при электролизе, Фарадей называл ионами, которые в зависимости от направления их движения в электролите разделял на анионы и катионы. Среди исследований по электричеству работы Фарадея явились вершиной научных достижений. В химии же они стали эффективными только в сочетании с работами С. Аррениуса и Я. Г. Вант-Гоффа. Помимо одной из самых его известных книг "История свечи" в 1827 г. он опубликовал тоже ставшую очень популярной книгу "Способы работы в химической лаборатории".

В 1836 г., через два года после открытия Фарадеем законов электролиза, его земляк Дж. Даниель создал медно-цинковый элемент, который можно было использовать для измерения электродвижущих сил. Даниель установил, что электрический ток разлагает соли на металл и элементы кислотного остатка, который не всегда содержал кислород. Это послужило аргументом против теории кислот Лавуазье и Берцелиуса.

В 50-е годы XIX в. В. Гитторф и Ф. Кольрауш продолжили работы Даниеля. Проводя анализ растворов вблизи электродов, Гитторф определил скорости движения ионов. Используя эти данные, Кольрауш в 1867 г. предложил точные методы измерения электропроводности электролитов. Он пришел к выводу, что скорость перемещения любого иона в растворе не зависит от скорости перемещения ионов, входящих в состав данной соли. Этот закон независимого движения ионов вызвал удивление и даже отрицательное отношение многих ученых, так как противоречил их представлениям о химическом сродстве. Гитторф сам заметил несоответствие в том, что, например, калийные соли по сравнению с ртутными значительно лучше проводили электрический ток, что противоречило соотношениям величин химического сродства этих соединений.

Особенно удивительным казалось то, что электролит проводит достаточно слабые токи, а считалось, что под действием тока молекулы электролита должны разлагаться и что для этого необходима затрата энергии.

Пытаясь найти объяснение этим наблюдениям, Клаузиус предположил, что, вероятно, не ток разлагает молекулу, а что при пропускании тока усиливается движение молекул. Последние чаще сталкиваются и распадаются на ионы, которые и проводят электрический ток. Этот вывод противоречил наблюдениям, согласно которым при разбавлении растворов электропроводность не уменьшалась. Однако по сравнению с концентрированными в разбавленных растворах содержалось меньше молекул. Следовательно, должны были уменьшаться возможность столкновений молекул и соответственно связанный с ней распад на ионы. Поэтому, казалось бы, электропроводность должна была уменьшаться, а на самом деле она даже увеличивалась.

Это противоречие смог объяснить в 1887 г. замечательный шведский химик С. Аррениус[92]. Переосмыслив накопленные его предшественниками наблюдения за поведением молекул электролитов в растворах, Аррениус в 1884-1889 гг. окончательно сформулировал основные положения теории электролитической диссоциации молекул растворенных веществ[93]. При этом он использовал открытый в 1864-1867 гг. норвежскими учеными К. М. Гульдбергом и П. Вааге закон действия масс. Закон гласил, что химическое действие веществ пропорционально их массам или числу молекул в определенном объеме[94].

Закон действия масс

Еще К. Венцель и К. Л. Бертолле располагали данными о действии масс. В опубликованной в 1777 г. работе "Учение о химическом сродстве тел" Венцель писал, что при действии кислоты на металл скорость реакции оказывается пропорциональной силе кислоты. Дискутируя с Прустом о составе химических соединений, Бертолле утверждал, что весовой состав химических соединений не постоянен, а зависит от количеств реагирующих друг с другом веществ.

Казалось, что это представление опровергало закон постоянства состава соединений Пруста и подтверждало закон простых кратных отношений Дальтона. В течение полувека взгляды Бертолле не получили подтверждения, поскольку все это время исследовались относительно простые химические соединения, которые вполне удовлетворительно можно было объяснить в рамках закона Пруста.

Бертолле заблуждался, считая, что чистые химические вещества не существуют. Гульдберг и Вааге в 1860-х годах избежали этой ошибки и обосновали свои выводы на таких примерах, когда действие масс особенно отчетливо проявлялось. Кроме того, они пользовались понятием не "химической массы", а "активной массы", которая определялась как величина, пропорциональная химическому действию веществ. Гульдберг и Вааге представили закон действия масс в математической форме и развили теорию скоростей химических реакций. Они рассматривали химическое равновесие не как статический, а как динамический процесс.

На основании закона действия масс и введенного Клаузиусом представления о распаде в растворе молекул веществ Аррениус сделал следующие основные выводы: 1) в растворе вещества могут существовать в виде ионов; 2) сильные соли, кислоты и основания в растворах всегда диссоциированы; 3) с увеличением разбавления растворов происходит увеличение диссоциации электролита, чем и объясняется большая электропроводность разбавленных растворов. Аррениус утверждал, что продукты диссоциации солей представляют собой электрически заряженные частицы, и показал, как можно рассчитать количество образующихся при диссоциации ионов.

Сванте Аррениус (1859-1927)

Сванте Аррениус (1859-1927) родился в усадьбе Вик близ Упсалы в семье управляющего имением. Уже в школе он отличался самостоятельностью мышления. Сильной стороной подхода Аррениуса к анализу научных проблем была способность теоретически осмысливать и математически обрабатывать экспериментальные данные. Уже в докторской диссертации (1883 г.) Аррениус начал развивать теорию диссоциации. Его гипотеза, согласно которой соли, кислоты и основания распадаются в водных растворах на ионы, вызвала поначалу в основном отрицательные отзывы.

Благодаря стипендии Шведской Академии наук Аррениус получил возможность работать в Париже и других крупных европейских научных центрах: у В. Оствальда в Риге, у Ф. Кольрауша и В. Нернста в Вюрцберге. Вместе с В. Нернстом в 1887 г. Аррениус побывал в Граце у Л. Больцмана. На следующий год Аррениус поехал в Киль к М. Планку и в Амстердам к Я. Г. Вант-Гоффу. Такая возможность устанавливать личные контакты на международном уровне во все времена приносила науке большую пользу. Для каждого из всех названных здесь ученых такие встречи и совместная работа оказывались очень благотворными.

С. Аррениус, Я. Г. Вант-Гофф и В. Оствальд — три "звезды" науки стояли у колыбели физической химии, самостоятельность которой была утверждена основанием этими учеными в 1887 г. "Журнала физической химии". В первом номере этого журнала под общим заголовком "О диссоциации растворенных в воде веществ" были помещены статья Вант-Гоффа "Осмотическая теория растворов" и работа Аррениуса "Попытка расчета констант диссоциации (коэффициентов активности) растворенных в воде веществ".

Якоб Генрих Вант-Гофф и Вильгельм Оствальд (около 1890 г.)

В 1884 г. Вант-Гофф опубликовал книгу "Очерки по химической динамике"[95], в которой обосновал важнейшие положения теории химической кинетики. Он опирался на выведенное Гульдбергом и Вааге кинетическое выражение закона действия масс. Вант-Гофф определял химическое равновесие как результат двух обратимых процессов. Ему удалось разработать аналитическое (математическое) выражение для скоростей моно- и бимолекулярных реакций.

Осмотическая теория растворов

В 1887 г. в первом номере только что созданного "Журнала физической химии" Вант-Гофф опубликовал статью "Осмотическая теория растворов", в которой показал, что газовые законы применимы к растворам. Эта теория явилась завершением периода накопления экспериментальных данных о свойствах растворов. Созданию теории Вант-Гоффа предшествовали работы Морица Траубе и Вильгельма Пфеффера.

В 1867 г. Траубе открыл существование полупроницаемых мембран, через которые могут проходить только молекулы растворителя, например воды, но не молекулы растворенного вещества. Пфеффер обнаружил природные мембраны такого же типа. Он заметил, что если опустить эти мембраны в раствор, они испытывают значительные давления. Для измерения этих давлений Пфеффер изготовил искусственные полупроницаемые мембраны — ячейки из неглазурованной глины, поры которой заполнял веществом, образующим тончайшую пленку, например гексацианоферратом(П) меди. Эти ячейки выдерживали давление свыше 200 атм. При добавлении в воду, в которую была погружена ячейка, раствора сахара повышалось давление на перегородку. Однако постепенно вода проникала сквозь перегородку, до тех пор пока давление по обе стороны перегородки не выравнивалось и не наступало равновесие. Пфеффер также наблюдал, что в растворах солей давление было значительно больше, чем в растворах коллоидов, например клея. В 1877 г. результаты наблюдений Пфеффер сообщил Вант-Гоффу.

Вант-Гофф предположил, что это так называемое осмотическое давление по природе и свойствам подобно давлению газов. Поэтому он попытался использовать кинетическую теорию газов для объяснения осмотического давления. При этом весьма полезными оказались результаты, полученные французским ученым Ф. Раулем. Рауль провел многочисленные измерения понижения температур замерзания и повышения температур кипения водных и неводных растворов и в 1884 г. пришел к выводу: количества различных веществ, которые вызывают одинаковое (по сравнению с чистым растворителем) понижение температуры замерзания или повышение температуры кипения, зависят от их молекулярных масс. Таким образом, стало возможным, сравнивая давление пара над раствором и над чистым растворителем, рассчитывать молекулярные массы растворенных веществ.

Вант-Гофф по теплотам плавления и испарения, а также по результатам измерения осмотического давления смог математически обосновать, что в разбавленных растворах молекулы растворенных веществ, сталкиваясь при движении с полупроницаемой мембраной, вызывают появление осмотического давления подобно тому, как в газах давление обусловлено столкновением молекул газообразного вещества.

Благодаря созданию осмотической теории растворов газовые законы Бойля — Мариотта и Гей-Люссака стало возможным применять к изучению свойств растворов, и в частности рассчитывать молекулярные массы нелетучих, но растворимых веществ. Решением этой задачи особенно много занимался Э. Бекман. Ученым был создан термометр (названный вскоре в его честь термометром Бекмана), при помощи которого измерялись изменения температур кипения и замерзания растворов. По этим результатам можно было определять молекулярные массы веществ. Однако в некоторых водных растворах обнаружилось значительное отклонение от теоретических значений. Объяснение этому стало возможным благодаря созданной С. Аррениусом теории электролитической диссоциации. Так работы Вант-Гоффа и Аррениуса способствовали построению единой теории растворов.

Тем не менее "ионистам", как называли сторонников ионной теории, первое время пришлось испытать весьма недоброжелательное отношение со стороны своих коллег. Однако вскоре в значительной мере благодаря результатам работ В. Оствальда это отношение изменилось.

Вильгельм Оствальд (1853-1932)

Вильгельм Фридрих Оствальд родился в 1853 г. в Риге в семье владельца бондарной мастерской[96]. Он был на год моложе Вант-Гоффа и на шесть лет старше Аррениуса. Учился Оствальд в Дерптском (ныне Тартуском) университете. В 1878 г. Оствальд написал докторскую диссертацию "Объемно-химические и оптико-химические исследования". В 1882 г. стал профессором химии в Рижском политехническом институте[97], в 1887 г.- профессором физической химии Лейпцигского университета. В 1906 г. из-за нежелания вести преподавательскую работу Оствальд оставил кафедру. Живя на своей даче "Энергия" недалеко от Лейпцига, Оствальд до самой смерти (1932 г.) продолжал научную, техническую и литературно-популяризаторскую деятельность.

В конце XIX в. Оствальд на основе первых двух начал термодинамики и положений естественнонаучного позитивизма разработал философскую систему, получившую название "энергетизм", в котором он видел основу современной натурфилософии. Именно в понятии об энергии Оствальд видел высочайший принцип мировоззрения[98]. Оствальд использовал это понятие при решении всех научных и культурных проблем. Даже такое понятие, как "счастье", он пытался рассматривать как энергетическую функцию. Неким "энергетическим приказом" звучат его слова: "Не расточай энергию, используй ее".

Оствальд — человек многогранного ума — считал идеи "энергетизма" основополагающими в представлениях о Вселенной. Он оспаривал существование атомов до тех пор, пока в 1909-1911 гг. экспериментально не была доказана их реальность.

Для пропаганды "энергетических" воззрений Оствальд трудился над созданием международного языка, поддерживал движение эсперантистов и идоистов[99]. Он участвовал также в пацифистском движении. В 1911г. Оствальд стал председателем немецкого союза монистов[100] и до 1916 г. сам составлял "монистические воскресные проповеди".

Вильгельм Оствальд, лауреат Нобелевской премии (1909 г.), выступал за рациональные формы организации науки, в том числе за создание "Организации организаторов науки". С 1919 г. Оствальд выдвинул идею стандартизации размеров разнообразных вещей. Последние два десятилетия своей жизни Оствальд большое внимание уделил разработке учения о цвете. Он пытался найти гармонию цвета и формы. В 1926-1927 гг. вышла в свет трехтомная биография Оствальда "Линии жизни".

В 1888 г. Оствальд открыл, названный затем его именем, закон разбавления — частный случай общего закона действия масс, который он использовал для объяснения электролитической диссоциации. Оствальд исследовал ряд органических кислот и выразил аналитически связь между степенью диссоциации и разбавлением раствора. Однако в случае сильных электролитов наблюдалось отклонение от этой закономерности. Через 20 лет причину этого явления выяснили немецкие физико-химики Петер Дебай и Эрих Хюккель.

Способности Оствальда как организатора и популяризатора науки проявились в создании различных журналов и обществ и руководстве ими. Среди них "Журнал физической химии", "Общество электрохимии" (основанное в 1894 г., получившее в 1899 г. название "Бунзеновское общество"). В 1911г. при активном участии В.Оствальда был образован "Международный союз химиков".

Оствальд был прекраснейшим педагогом; под его руководством Лейпцигский институт физической химии стал международным научным и учебным центром.

Катализ[101]

Своим быстрым развитием физическая химия обязана не только научным, педагогическим и организаторским способностям Оствальда, но и его работам, посвященным катализу.

Каталитические процессы и каталитическое действие некоторых веществ наблюдались и даже использовались уже давно. В конце XVIII в., например, было обнаружено каталитическое действие селитры при получении серной кислоты. Однако смысл этого явления тогда не был понят.

Оствальд, по собственному его признанию, прочитал много "старинных трудов по химии и физике, чтобы почерпнуть знания во всех областях физической химии из первоисточников". Он был знаком с определением каталитической силы, которое дал Берцелиус, и знал о дискуссии, развернувшейся по этому поводу между Берцелиусом и Либихом. Либих выступал против определения Берцелиуса, считая его умозрительным. Оствальду были известны также работы Р. Майера и Г. Гельмгольца о превращениях энергии, и именно в этом аспекте он рассматривал каталитические явления.

Оствальд определял катализатор как вещество, "которое изменяет скорость реакции, но не входит в состав конечного продукта реакции". Сущность катализа ученый видел не в том, что катализатор вызывает реакцию, а в том, что он ускоряет ее. Катализатор представляет собой вещество, которое побуждает к большей активности молекулы реагентов и тем самым способствует увеличению выхода продуктов превращения в течение данного периода времени. Таким образом, Оствальд обращал внимание на скорости химических процессов и их измерение.

К концу XIX — началу XX вв. важное значение катализаторов для неорганических и органических процессов становилось все яснее. К этому времени были открыты катализаторы нового типа — органические ферменты[102]. Кроме того, уже в XIX в. промышленность начала ориентироваться на использование катализаторов, например при контактном способе производства серной кислоты или при синтезе аммиака. Так, ученик Оствальда Г. Бредиг изучил действие металлов в коллоидном состоянии, назвав их неорганическими ферментами (1899 г.). Годом раньше Поль Сабатье и Жан Батист Сандеран установили, что никель и другие металлы могут быть использованы как катализаторы при гидрировании органических веществ. В начале XX в. изучением хода каталитических реакций начал заниматься русский химик В. Н. Ипатьев. Он исследовал каталитическое действие оксидов металлов при высоких давлениях и температурах и в 1910 г. установил, что при использовании смеси катализаторов их действие усиливается.

Долгое время развитие работ в области катализа происходило, в сущности, чисто эмпирическим путем, так как оставался неизвестным механизм действия катализатора. Поэтому химикам необходимо было испытывать большое количество соединений, чтобы выбрать из них те, которые могли бы служить катализаторами. Таким способом было открыто и использовано много веществ, обладающих каталитическими свойствами. В первом десятилетии XX в. немецкий химик Ф. Габер открыл каталитический способ синтеза аммиака (под давлением) из атмосферного азота и водорода. Во втором десятилетии XX в. немецкие химики К. Бош и А. Митташ предложили промышленный метод синтеза аммиака, используя смесь катализаторов — железо, глинозем (оксид алюминия), едкое кали (гидроксид калия) — при очень высоких давлениях и повышенных температурах. Почти в то же время (1913 г.) немецкий химик Ф. Бергиус приступил к каталитическому гидрированию угля под давлением. Его соотечественники Ф. Фишер и Г. Тропш создали в 1925 г. названный впоследствии их именами способ каталитического гидрирования монооксида углерода с получением смеси углеводородов. С 1934 г. этот способ стал использоваться в промышленном масштабе для получения топлива[103].

В 20-е годы учеными были обнаружены также каталитические процессы в животном и растительном мире: открыто каталитическое действие витаминов и гормонов и понят характер некоторых биологических процессов.

Термохимия

Начало другому направлению физической химии — термохимии[104] — было положено работами Г. Гесса[105]. В 1840 г. он установил, что количество тепла, выделяющегося в химическом процессе, не зависит от пути протекания процесса, и сформулировал "закон постоянства количества теплоты реакции". Вначале его работа привлекла столь же мало внимания, как и работа Р. Майера, который несколько ранее Дж. Джоуля сформулировал закон сохранения и превращения энергии.

В 1852 г. в Копенгагене Юлиус Томсен начал работы по термодинамике и в 1866 г. обнаружил, что различные химические реакции (образование солей или процессы восстановления) сопровождаются тепловыми эффектами. В 1867 г. М. Бертло установил, что химические превращения всегда протекают в том направлении, которое сопровождается выделением тепла. Однако вскоре было замечено, что это не относится к процессам, протекающим при повышенных температурах.

В 70-е годы XIX в. Дж. Гиббс сформулировал правило фаз. Фазой он назвал гомогенную часть системы, отделенную от других частей системы границами раздела (фазовыми границами). Замкнутое пространство, в котором, к примеру, находятся лед, вода и водяной пар, представляет собой систему одного вещества (одного компонента), в данном случае воды, состоящую из трех фаз. Правило фаз Гиббса применимо ко всем системам. Это правило определяет число степеней свободы. Число степеней свободы указывает количество характеристик системы, которые могут быть изменены независимо друг от друга, например давление, температура или состав газообразного, жидкого или твердого раствора. Согласно правилу фаз Гиббса, в каждой находящейся в состоянии равновесия системе сумма числа фаз и степеней свободы всегда на две единицы больше, чем число компонентов.

Дальнейшее развитие термодинамика химических равновесий получила в работах А. Ле Шателье[106], который установил принцип, носящий теперь его имя: в системе, находящейся в состоянии равновесия, изменение условий (давления или температуры) приводит к изменению равновесия (под действием внешних сил) в направлении, при котором восстанавливаются начальные условия.

Очень большое значение для развития термодинамики имели работы Сади Карно, Рудольфа Клаузиуса и Вальтера Нернста. В 1824 г. Карно опубликовал работу о наивысшем теоретически достижимом коэффициенте полезного действия паровой машины и установил, что тепловая энергия может превращаться в работу только при переходе тепла от более горячего тела к более холодному.

В 1850 г. Клаузиус сформулировал второй закон термодинамики, показывающий направление изменения энергии в замкнутой системе, а в 1865 г. ввел понятие энтропии: энтропия замкнутой системы при необратимом процессе всегда возрастает, а при обратимом процессе остается постоянной.

В 1906 г. Нернст сформулировал третье начало термодинамики; он обнаружил, что по мере приближения к температуре абсолютного нуля тепловой эффект и движущая сила (максимальная работа) химических реакций все более приближаются друг к другу, а при температуре абсолютного нуля совпадают (в формулировке, данной в 1911г. М. Планком, тепловой закон гласит: при неограниченном понижении температуры энтропия любой конденсированной химической системы неограниченно стремится к нулевому значению). Благодаря тепловому закону стал впервые возможным точный расчет химических равновесий. Кроме того получили объяснение данные, которые, казалось, ставили под сомнение закон Дюлонга — Пти, а именно то, что атомные теплоемкости элементов уменьшаются при понижении температуры и, таким образом, не могут быть постоянными величинами.

Вальтер Нернст (1864-1941)

Вальтер Нернст, ученик Оствальда, в 1920 г. стал лауреатом Нобелевской премии по химии. Его имя приобрело широкую известность после выхода в свет в 1893 г. монографии "Теоретическая химия с точки зрения закона Авогадро и термодинамики"[107] [239]. Главная заслуга Нернста заключается в создании теоретических построений и математического аппарата физической химии. Исходя из данного им определения удельного давления раствора и растворимости металлов, Нернст создал теорию электродвижущих сил.

Развитие кинетической теории газов

Еще в XVIII в. Д. Бернулли объяснял свойства газов на основе теплового движения молекул. Согласно положениям кинетической теории газов, молекулы газа находятся в хаотическом движении. Поэтому в любой данный момент времени все молекулы имеют неодинаковую скорость и различную кинетическую энергию. Средняя кинетическая энергия оказывается при одних и тех же температурах для всех газов одинаковой. С повышением температуры она увеличивается пропорционально абсолютной температуре.

Кинетическая теория газов объясняла, почему наблюдается закономерность, установленная Р. Бойлем и Э. Мариоттом (закон Бойля-Мариотта): при столкновении молекулы газа оказывают давление на стенки сосуда. Если объем газа уменьшается, например, наполовину, то число молекул в единице объема удваивается, при этом вдвое возрастает и число соударений молекул и соответственно давление (при постоянной температуре).

В свете кинетической теории газов нашел объяснение и закон Авогадро, так как при одной и той же температуре средняя кинетическая энергия молекул всех газов одинакова. Благодаря работам Рудольфа Клаузиуса (1850 г.) кинетическая теория газов получила всеобщее признание. Для развития этой теории большое значение имели работы Дж. Джоуля, А. Крёнига, Дж. Максвелла и Л. Больцмана.

Коллоидная химия

Зарождение коллоидной химии произошло в 60-е годы XIX в., когда Томас Грехэм, использовав метод диализа, произвел разделение веществ на коллоиды и кристаллоиды. Его исследования продолжили Альфред Лоттермозер и Рафаэль Лизеганг и особенно Ричард Зигмонди, Вольфганг Оствальд и Генрих Бехольд.

Герман Штаудингер, открывший в 1905 г. кетены, в 1921 г. доказал, что каучук и другие коллоидные вещества состоят из тысяч атомов, соединенных друг с другом ковалентными связями. Его работы (1926 г.) заложили основы макромолекулярной химии[108]. Штаудингер показал, что макромолекулы, подобно радикалам, могут переходить без изменения из одного соединения в другое. Макромолекулы представляют собой коллоидные частицы, которые ранее считались состоящими только из мицелл. Макромолекулярная химия с 30-х годов превратилась в самостоятельное научное направление. На основе положений макромолекулярной химии Удается объяснять природу органических соединений и разрабатывать методы получения синтетических веществ. Для развития макромолекулярной химии большое значение имели публикации статей в этой области знания в специально созданных научных журналах.

Модель строения атома Бора-Резерфорда[109]

Электрон и протон

Атомистическая теория Дальтона получила в начале XX в. такие важные подтверждения, которые привели к коренному изменению представлений о строении атомов. В XIX в. были сделаны два важнейших открытия, которые, как тогда казалось, поставили под сомнение правомерность атомистических представлений. Одно из этих открытий было следствием электрохимических работ Фарадея, а второе — результатом исследований необычного излучения, испускаемого некоторыми веществами. Это излучение, как показали Анри Беккерель, а также супруги Пьер и Мария Кюри, оказалось радиоактивностью. (Дальнейшую судьбу электрохимических воззрений Фарадея рассмотрим ниже.)

Фарадей пытался выяснить, является ли вакуум проводником электрического тока. Однако он не смог это установить, поскольку не добился достаточно хорошего вакуумирования. Это удалось Юлиусу Плюккеру, у которого было соответствующее оборудование — стеклянные сосуды, изобретенные в 1855 г. Генрихом Гейслером. Плюккер впаял в сосуд два электрода и создал между ними разность потенциалов. Ему удалось зарегистрировать прохождение тока между электродами. К тому же Плюккер наблюдал возникающее при этом свечение, яркость которого зависела от величины вакуума. При очень хорошем вакууме, например, наблюдалось очень яркое свечение, а вблизи анода стекло приобретало зеленоватый оттенок.

В 1875 г. Уильям Крукс изготовил трубки (названные затем его именем) с еще более глубоким вакуумом. Используя их, он смог обнаружить, что электрический ток направлен от катода к аноду. Вблизи анода ток попадал на стекло и вызывал его свечение. Чтобы показать это отчетливее, Крукс впаял в трубку металлическую пластину, которая отбрасывала тень на стекло в противоположном от катода конце трубки. Однако в то время трудно было понять, что представляет собой этот ток от катода к аноду, и лишь Эуген Гольдштейн первым произнес термин "катодные лучи". Он высказал предположение, что речь идет о каком-то виде света, так как катодные лучи распространялись, подобно свету, прямолинейно, не испытывая влияния силы тяжести. Одни физики присоединились к этому предположению, другие хотели видеть в катодных лучах частицы, которые могут так легко и быстро перемещаться потому, что они или вообще не испытывают действия силы тяжести, или же это действие не проявляется в сколько-нибудь заметной степени. Плюккер и Крукс обнаружили отклонение катодных лучей в магнитном поле. Это доказывало, что лучи представляют собой поток частиц, ибо волны должны были в значительно меньшей степени подвергаться влиянию магнитного поля.

Джозеф Джон Томсон (1856-1940)

Решительным защитником корпускулярной гипотезы был Джордж Джонстон Стони[110]. В 1891 г. он дал дискретной частице название "электрон", рассматривая ее как элементарную единицу электрического заряда.

В 1895 г. Жан Перрен показал, что катодные лучи состоят из отрицательно заряженных частичек; на пути катодных лучей он ставил экран со щелью и всю установку помещал в магнитное поле, при этом катодные лучи отклонялись к положительному полюсу.

Джозеф Джон Томсон в 1897 г. определил скорость катодных лучей, а из величины их отклонения в магнитном поле нашел отношение заряда к массе частиц. Значение массы оказалось примерно в 1000 раз меньше массы самого легкого атома — водорода[111]. На основе такой огромной разницы Томсон сделал вывод, что речь идет о неизвестной ранее элементарной частице[112]. Точную массу электрона, равную 1/1837 массы атома водорода, установил в 1909-1913 гг. Роберт Эндрус Милликен.

Открытие электрона предшествовало открытию протона- положительно заряженной частицы. Еще в 1886 г. Гольдштейн наблюдал, что при испускании катодных лучей на сам катод попадают лучи иной природы, которым ученый приписал поэтому противоположный электронам[113] положительный заряд. В 1907 г. Дж. Дж. Томсон назвал их положительно заряженными лучами. Дальнейшее исследование показало, что частицы, составляющие эти лучи, отличаются от электронов не только знаком заряда, но также и значительно большей массой. Масса "протонов", как назвал их в 1920 г. Э. Резерфорд, была примерно равна массе атома водорода, т. е. в 1837 раз больше массы электрона.

Роберт Эндрус Милликен (1868-1953)

В конце XIX — начале XX вв. были сделаны и другие открытия, которые заставили многих физиков сомневаться в правильности атомистических представлений. Среди них следует назвать, например, открытие Генрихом Рудольфом Герцем в 1888 г. фотоэлектрического эффекта (фотоэффекта): при облучении катода ультрафиолетовым светом наблюдается (даже при слабом напряжении) довольно сильный электрический разряд между двумя электродами. В 1898 г. Дж. Дж. Томсон обнаружил, что металлические пластины, облученные ультрафиолетовым светом, испускают отрицательные заряды. Спустя четыре года Филипп Эдуард А. Ленард[114] показал, что фотоэлектрический эффект заключается в "выбивании" электронов из металла, при этом нет необходимости в наложении внешнего электрического поля. Ленард представлял атом в виде облака, состоящего из положительных и отрицательных частиц. Дальнейшие исследования показали, что каждое вещество обладает определенным фотоэлектрическим порогом, который, например, у натрия лежит около 6500 А. Выбиваемые электроны, названные фотоэлектронами, приобретают кинетическую энергию, величина которой зависит от длины волны падающего света.

В 1905 г. Альберт Эйнштейн дал объяснение фотоэлектрического эффекта: кванты света, или фотоны, попадают на металл и их энергия вызывает испускание фотоэлектронов. При поглощении металлами света энергия фотонов превращается в энергию фотоэлектронов. Фотоэлектрон использует часть энергии, чтобы оторваться от металла, а остальная энергия остается у фотоэлектрона в виде кинетической.

Фредерик Содди (1877-1956)

Открытие рентгеновских лучей и особенно радиоактивности дало дальнейший толчок для критического переосмысления существующей атомистической теории. Превращение радиоактивных элементов в другие элементы показало, что существуют атомы, которые можно разделить, что противоречило всему накопленному к тому времени опыту, а также самому определению понятия "атом".

В 1902 г. Э. Резерфорд и Ф. Содди смогли доказать, что в результате. излучения атомом урана α-частиц возникает новый атом с иными радиоактивными признаками. Последний атом в результате радиоактивного распада превращается в другой атом и т.д. Вскоре после этого (в 1904 г.) Резерфорд установил период полураспада радиоактивных веществ; оказалось, что для разных элементов он очень различен: некоторые радиоактивные элементы распадаются уже в течение секунд, другие "живут" миллион лет.

Теоретическое объяснение нового явления было сделано главным образом в работах Резерфорда.

Эрнест Резерфорд (1871-1937)

Эрнест Резерфорд родился в 1871 г. в г. Нелсоне (Новая Зеландия). В 1898 г. он стал профессором Монреальского университета (Канада), а в 1919 г.- директором Кавендишской лаборатории в Кембридже[115].

В 1906 г. Резерфорд выполнил исследование, которое привело к созданию нового представления об атоме. Еще ранее (в 1903 г.) Томсон предложил одну из первых атомных моделей: атом — положительно заряженная сфера с вкрапленными в нее электронами. Сумма отрицательных зарядов этих электронов определяет равный по величине положительный заряд атомной сферы[116]. В соответствии с этим присоединение или отдача электронов приводит к появлению отрицательного или положительного заряда на атоме. Резерфорд провел бомбардировку золотой фольги α-частицами, чтобы выяснить, будут ли частицы, проходя через фольгу, менять траекторию движения. Если бы атомы золота имели шарообразную форму и заметные размеры, то α-частицы должны были бы отскакивать от них и изменять свое направление (по аналогии со столкновением бильярдных шаров). Толщина золотой фольги была такова, что α-частицы должны были пройти через слой в ~1000 атомов. Однако выяснилось, что из сотен тысяч α-частиц только отдельные изменяют траекторию. Поэтому Резерфорд сделал вывод, что атом имеет ядро, диаметр которого должен быть в 100 000 000 раз меньше диаметра всего атома[117]. Если попытаться представить себе это соотношение и предположить, что по величине атом равен небольшому мячу, то почти вся масса атома должна быть сосредоточена в его ядре размером в песчинку диаметром 1/20 мм. В этом масштабе а-частица тоже имела бы размеры такой песчинки, и поэтому вероятность ее столкновения с атомным ядром очень незначительна.

Следует еще добавить, что в опыте, проведенном Резерфорд ом в 1906 г., электроны вряд ли могли играть какую-либо роль, так как они намного легче α-частиц. После работ Резерфорда ученые стали представлять атом состоящим из положительно заряженного ядра и отрицательно заряженных электронов.

Макс фон Лауэ (1879-1960)

Следующий шаг в изучении структуры атома был сделан Максом Лауэ в 1912 г. Он облучал кристаллические вещества рентгеновскими лучами и установил, что кристаллы состоят из атомов, расположенных в определенном геометрическом порядке (структуре). Они рассеивают (дифрагируют) рентгеновские лучи, и по получающейся при этом дифракционной картине можно было рассчитать длину волны рентгеновского излучения. По сути, рентгеновские лучи похожи на световые лучи, но с очень малой длиной волны.

Заряд ядра и порядковый номер

В 1906 г. Чарлз Гловер Баркла установил, что различные элементы испускают определенные серии характеристических рентгеновских лучей. Уильям Генри Брэгг и его сын Уильям Лоренс Брэгг смогли объяснить это в 1912 г. дифракцией рентгеновских лучей кристаллическими веществами. В 1913 г. Генри Мозли, используя в качестве антикатодов в рентгеновских трубках различные элементы, получил по методу Брэггов эмиссионные спектры этих элементов. При этом он обнаружил, что длины волны таких рентгеновских лучей уменьшаются с увеличением атомной массы излучающего элемента. Связь между увеличением атомной массы элементов и уменьшением длины волны зависела от величины положительного заряда ядра атома. Мозли составил диаграмму и показал, что, зная длину волны рентгеновских лучей, можно рассчитать электрический заряд ядра элемента. Например, заряд ядра равен для водорода +1, гелия +2, лития +3, урана +92. Величина заряда ядра соответствует порядковому номеру, понятие о котором ввел Иоганнес Роберт Ридберг, чтобы исправить выявленное нарушение закономерности в расположении элементов в периодической системе. Некоторые элементы с большей атомной массой размещены в соответствии с зарядом их ядра в системе перед элементами с меньшей массой (Аr — перед К, Со — перед Ni, Те — перед I). Именно в этом заключается физический смысл порядкового номера элемента.

Эти новые данные привели в XX в. к изменению представлений об элементе: элементом стали называть вещество, все атомы которого имеют один и тот же порядковый номер. Однако это определение по-прежнему включало в себя представление о том, что элемент состоит из атомов одного вида и что он не подвергается дальнейшему разложению при химическом воздействии. Уже к 1913-1914 гг., за исключением шести порядковых номеров -43, 61, 72, 75, 85, 87,- все места в периодической системе были заняты открытыми элементами. К 1945 г. эти пустоты в периодической системе тоже были заполнены.

Кульминационным моментом в исследовании электронов и атомного ядра явилось создание в 1913 г. модели атома Бора и Резерфорда.

Нильс Бор (1885-1962)

Нильс Бор (родился в Копенгагене в 1885 г.) был учеником Резерфорда и в своих работах широко использовал предложенную Резерфордом модель атома, а также разработанную Максом Планком в 1900 г. квантовую теорию испускания света и развитые Эйнштейном теории квантовой структуры светового излучения и фотоэффекта.

Планк и Эйнштейн пришли к выводу, что вещество может испускать или поглощать свет (т.е. энергию) не в любых количествах, а только порциями — квантами (энергия которых пропорциональна частоте излучения hv). Когда, например, электрон атома водорода, находящийся на большой орбите, испускает квант света, то в результате этого он переходит на орбиту с меньшим радиусом, которая соответствует состоянию атома с меньшим запасом энергии.

Отсюда Бор сделал вывод, что атом водорода может существовать только в совершенно определенных "стационарных" состояниях. Основное, или нормальное, состояние атома датский физик определял как состояние, обладающее минимальным запасом энергии и соответствующее наиболее стабильному состоянию атома. Состояние с более высокой энергией Бор называл возбужденным. При переходе атома из более высокого (с энергией Е") в более низкое (E') энергетическое состояние энергия испускаемого излучения (кванта света) отвечает разности Е"-Е'. Следовательно, частота излучения определяется уравнением hv = Е"-Е'. Это уравнение относится и к поглощению света атомом, а также к поглощению или испусканию света молекулой.

Электронные оболочки

В начале XX в. представления о строении электронных оболочек основывались на результатах исследования свойств света, излучаемого атомом при его возбуждении (электрическом или за счет повышения температуры). Излучаемый атомом свет состоит из узких линий определенной частоты, совокупность которых составляет линейчатый спектр атома.

После создания Бором модели атома понадобилось еще 12 лет, чтобы объяснить электронное строение атома (1925 г.). Получить представление о свойствах электронов было совершенно необходимо для понимания характера связи атомов и строения молекулы в целом.

После открытия электронов немецкий физико-химик Рихард Абегг в 1904 г. предположил, что, поскольку инертные газы не образуют химических соединений, то они должны иметь устойчивую электронную конфигурацию. Ученый утверждал, что химическая реакция представляет собой взаимодействие между электронами, а ядра атомов при этом остаются без изменения. Равным образом электронное строение должно определять валентность элементов в зависимости от того, сколько электронов может отдать или принять атом. Таким образом, речь шла об электронных оболочках, которые должны содержать определенное количество электронов.

Однако для точного установления электронных конфигураций не хватало данных о числе электронов в атоме и представлений о строении атома. Положение изменилось после того, как Г. Мозли определил порядковые номера элементов, а Н. Бор создал модель строения атома.

Порядковый номер элемента соответствовал общему числу электронов, которые Бор располагал на определенных орбитах, обозначив их буквами К, L, M, N, О, Р (последовательно от первой внутренней орбиты к последней внешней). Сообразно с этим на каждой орбите может находиться определенное число электронов. Наиболее стабильными при этом являются конфигурации с 2, 8, 18 и 32 электронами на орбите (соответствующие конфигурациям инертных газов).

Например такой атом, как гелий, имеет 2 протона и 2 электрона; поскольку при этом К-орбита насыщена, у гелия не наблюдается тенденции к приобретению или отдаче электронов. У атома натрия положение иное. Он содержит 11 электронов, располагающихся на К-, L- и М-орбитах: соответственно 2, 8, 1. Электронная конфигурация М-оболочки очень "нестабильна", так что натрий имеет склонность к отдаче одного электрона взаимодействующему с ним веществу и поэтому является сильно реакционноспособным элементом. В атоме хлора имеется 17 электронов, расположенных на трех орбитах: соответственно 2, 8, 7. На М-орбите не хватает одного электрона до устойчивой 8-электронной конфигурации, поэтому хлор легко образует соединение с натрием.

Модель атома аргона (1916 г.): а — по Косселю, б — по Бору

Такими электронными конфигурациями объяснялся и ионный тип химической связи. Атом натрия отдал электрон и приобрел положительный заряд, так как на 11 протонов в нем теперь приходилось 10 электронов. Так атом натрия становился ионом натрия. Аналогично атом хлора превращался в ион, поскольку после приобретения им одного электрона он становился отрицательно заряженным.

Противоположные заряды Na+ и Сl- вызывают взаимное притяжение между обоими ионами и тем самым обусловливают стабильность образовавшегося соединения NaCl.

Изложенный выше способ образования связи между двумя различными элементами является результатом стремления атомов приобрести стабильную конфигурацию, аналогичную "конфигурации инертных газов" при объединении электронов атомов разных элементов. В приведенном выше примере атом натрия, превращаясь в ион Na+, приобретает электронную конфигурацию неона, а атом хлора, став ионом Cl-,- электронную конфигурацию аргона.

Электронная связь, изотопы, ядерные реакции

Оставался еще не выясненным вопрос, как осуществляется связь, например, в двухатомных молекулах одинаковых элементов. Ответ на это независимо друг от друга дали Вальтер Коссель в 1915г., а спустя год Гилберт Н.Льюис и Ирвинг Ленгмюр. Исходя из представлений Бора и Мозли о распределении электронов вокруг ядра атома, Коссель, Льюис, Ленгмюр объясняли связь между атомами в таких молекулах тем, что электроны атомов участвуют в образовании одной или более электронных пар. Таким образом, в молекуле становится возможным образование стабильной электронной конфигурации инертного газа. Например, при образовании молекулы хлора Сl2 происходит связывание электронов УИ-орбитали с образованием одной общей электронной пары двух атомов

Объяснение физической природы химической связи на основе образования общих электронных пар ("атомная", гомеополярная ковалентная связь) имело особенное значение для органической химии при трактовке образования связей между двумя или несколькими атомами углерода или между атомами углерода и водорода. Впоследствии (после 1920 г.) Нэвил В. Сиджвик распространил представление о ковалентной связи и на неорганические соединения.

Ирвинг Ленгмюр (1881-1957)

После этого химические реакции стали интерпретироваться как результат смещения электронов, протоны при этом не играли никакой роли. В отличие от всех элементов только атом водорода, превращаясь в ион, может полностью освободиться от электронов (поскольку электрон у него единственный).

В 1913 г. английский радиохимик Фредерик Содди решил еще одну проблему. Исследование продуктов распада радиоактивных элементов приводило к противоречию с периодической системой. Например, свинец, образующийся при распаде урана, имел атомную массу, отличающуюся от массы обычного свинца. Ф. Содди предложил в 1913 г. название "изотоп" для любого элемента, который отличается от известного ранее элемента атомной массой, но занимает то же место в периодической системе[118]. Причина такого отклонения была обнаружена только в 1932 г. благодаря открытию нейтронов английским физиком Джеймсом Чэдвиком. Изотопами стали называть элементы, обладающие одинаковыми химическими свойствами и одним и тем же порядковым номером, но отличающиеся атомными массами. Порядковый номер определяется зарядом ядра атома (числом протонов), а атомная масса — числом протонов и нейтронов в атомном ядре. Благодаря использованию масс-спектрометрии после 1920 г. было обнаружено также, что многие элементы, образующиеся не в результате радиоактивного распада, являются смесью изотопов.

Как до 1900 г. считалось, что атом в соответствии с его определением является неделимым, так и до 1919 г. атомное ядро тоже считалось неделимым. Открытие ядерного распада при исследовании радиоактивности поставило перед учеными новую задачу: нельзя ли искусственным путем разделить протоны в ядрах. Сомнения, существовавшие по этому поводу, были обусловлены тем, что силы, связывающие протоны, были чрезвычайно велики. Но в 1919 г. Э. Резерфорду удалось осуществить первую ядерную реакцию. Резерфорд бомбардировал газообразный азот быстрыми а-частицами (ядрами гелия), в результате чего ему удалось превратить атомы азота в атомы кислорода.

После открытия ядерных реакций физику и химию стали рассматривать как две взаимно дополняющие друг друга науки, занимающиеся исследованием явлений природы. Позже к ним присоединилась биохимия. Проникая таким образом в сокровенные тайны природы, люди получили сегодня мощное средство влияния на саму природу. Это средство в руках человека обладает не только созидательной, но и огромной разрушительной силой! И хотя уже 500 лет назад человечество осознало, что Земля не является центром Вселенной, следует помнить, что наша планета — пока единственное наше жизненное пространство и ее страдания — это наше горе, а ее радости — это наше счастье.

Загрузка...