Приложение Немецкие реактивные двигатели

Турбореактивный двигатель Юнкерс Jumo-004b

Двигатель Jumo-004B был выпущен фирмой Юнкерс в 1941 году. В конце войны двигатель устанавливался на немецких реактивных самолетах Мессершмитт Ме- 262, Арадо Ar-234 и др.

Основными частями двигателя являются: осевой восьмиступенчатый компрессор, шесть прямоточных камер сгорания, осевая одноступенчатая прямоточная турбина и реактивное сопло с регулирующей иглой.

При работе двигателя воздух засасывается через входной патрубок (коллектор) в компрессор. Из компрессора сжатый воздух направляется в камеры сгорания, куда через форсунки впрыскивается топливо. Впрыск топлива производится навстречу потоку воздуха. Воздух, поступающий в камеру сгорания, делится на две части. Одна часть, составляющая примерно 1/3 всего количества воздуха, поступившего в камеру, проходит через завихритель во внутреннюю часть камеры — жаровую трубу и, перемешиваясь с топливом, образует рабочую смесь, воспламеняющуюся от пламени факела (при этом коэффициент избытка воздуха а=1,4–1,5). Воспламенение топлива при пуске осуществляется с помощью запальных свечей, установленных в трех камерах сгорания.

Другая часть воздуха, не входящая в жаровую трубу, обтекает ее стенки, охлаждая их, а затем добавляется к продуктам сгорания, смешивается с ними и образует газовоздушную смесь с температурой, безопасной для работы турбины (примерно 800 “С; коэфициент избытка воздуха этой смеси равен 4–4,5).

Газовоздушная смесь, пройдя кольцевой газосборник (ресиверсмеситель), поступает на лопатки соплового аппарата, а затем на лопатки турбинного диска, после чего через реактивное сопло выбрасывается с большой скоростью в атмосферу.

Регулирование двигателя осуществляется двумя автоматическими регуляторами — регулятором оборотов и регулятором иглы сопла.

Регулятор оборотов представляет собой всережимный центробежный регулятор с переменной настройкой, которая осуществляется летчиком при перемещении рычага дросселя. Регулятор поддерживает заданное летчиком число оборотов двигателя, изменяя подачу топлива в форсунки. Так как при изменении оборотов двигателя изменяется и тяга, то регулирование числа оборотов является одновременно и регулированием тяги. Регулятор иглы сопла изменяет положение игаы и, следовательно, величину проходного сечения реактивного сопла в зависимости от числа оборотов двигателя, скорости и высоты полета.

Изменение площади проходного сечения сопла непосредственно сказывается на температуре газа перед турбиной, и, таким образом, регулятор игаы сопла поддерживает эту температуру примерно постоянной, что чрезвычайно важно для надежной и экономичной работы двигателя.

В передней части двигателя во входном канале установлен заключенный в обтекатель пусковой бензиновый мотор для прокрутки вала двигателя при запуске. между входным патрубком и корпусом компрессора помещен отлитый из легкого сплава корпус передач.

Корпус компрессора состоит из двух половин и отлит из легкого сплава. На внутренней поверхности корпуса в кольцевые пазы вставлены восемь рядов направляющих лопаток. Лопатки трех передних рядов изготовлены из легкого сплава, остальные из стали.

Ротор компрессора состоит из восьми дисков с лопатками, скрепленных между собой болтами. Передняя цапфа компрессора прикреплена к переднему диску и опирается на передний тройной шариковой упорно-опорный подшипник. Задняя цапфа компрессора крепится к заднему диску и вращается в роликовом подшипнике. Передняя и задняя цапфы стянуты сквозным анкерным болтом.


Продольный разрез двигателя Jumo-004B

1 — входной канал; 2 — бензиновый бак; 3 — масляный бак-радиатор; 4 — корпус конической передачи; 5 — обтекатель; б — пусковой мотор; 7 — центральная коническая передача; 8 — валик привода к вспомогательным агрегатам; 10 — пакет передних подшипников компрессора; 11 — полусферический корпус передних подшипников; 12 — верхняя половина корпуса компрессора; 13 — нижняя половина корпуса компрессора; 14 — ротор компрессора; 15 — стяжной болт; 16 — стальные разрезные кольца; 17 — силовой корпус (суппорт); 18-задний подшипник компрессора; 19 — упорный подшипник турбины; 20 — задний роликовый подшипник турбины; 21- камера сгорания; 22 — кожух (корпус) блока камер сгорания; 23 — кольцевой газовый ресивер; 24 — сопловый направляющий аппарат турбины; 25 — ротор турбины; 26 — вал-рессора; 27 — распорная втулка; 28 — задние масляные откачивающие помпы; 29 — реактивное сопло; 30 — реечный механизм; 31 — регулировочный конус (игла) сопла; 32 — запальная свеча; 33 — каналы для воздуха, охлаждающего сопловый аппарат турбины; 34 — каналы для воздуха, охлаждающего переднюю сторону турбинного диска


Камеры сгорания двигателя, заключенные в блок, изготовлены из мягкой листовой стали и охлаждаются воздухом, выходящим из компрессора.

Внутри каждой камеры установлена жаровая труба, в передней части которой расположен завихритель воздуха. Лопатки завихрителя закручены, угол закрутки равен 70°. В конце жаровой трубы установлен конический стабилизатор факела с полыми охлаждаемыми стойками, поддерживающими круглое донышко. Это донышко, с одной стороны, притормаживает поток, улучшая условия для сгорания топлива, с другой — создает значительное вихреобразование на выходе из жаровой трубы, обеспечивая устойчивость горения и однородность газовоздушной смеси на входе в турбину.

Стабилизатор факела заключен в цилиндрический кожух, являющийся продолжением жаровой трубы. Между кожухом и трубой имеется кольцевая щель, через которую к газам добавляется вторичный (не проходящий через завихритель) воздух.

Задней стороной камеры сгорания стыкуются с газосборником, создающим кольцевой подвод воздуха к сопловому аппарату турбины. В газосборнике обычно происходит догорание топлива, не закончившееся в камерах сгорания.

Турбина двигателя состоит из соплового аппарата с одним рядом неподвижных лопаток, образующих сопла суживающегося сечения, и турбинного диска с лопатками. Лопатки турбинного диска из специальной стали в первых двигателях изготовлялись массивными, неохлаждаемыми, а в последних модификациях — полыми, охлаждаемыми изнутри воздухом. Лопатки соплового аппарата во всех модификациях изготовлялись охлаждаемыми.

Вал турбины и задняя цапфа компрессора соединяются мужду собой польм тонкостенным промежуточным валом (рессорой), посаженным с обоих концов на шлицах.

Вал турбины установлен на двух подшипниках: переднем — роликовым, заднем — шариковым. Эти два подшипника, так же как и подшипник задней цапфы компрессора, запрессованы в силовом суппорте, являющемся основным силовым элементом двигателя. Мощность, развиваемая турбиной на максимальном числе оборотов, равна 3800 л.с. число лопаток соплового аппарата 35; число лопаток турбинного диска 61.

Система воздушного охлаждения двигателя служит для понижения температуры соплового аппарата турбины, турбинного диска с лопатками, реактивного сопла и регулирующей иглы.


Изменение тяги двигателя в зависимости от температуры и давления атмосферного воздуха


Высотная характеристика двигателя


Воздух для охлаждения соплового аппарата (в последних модификациях и лопаток турбинного диска) отбирается за компрессором и, следуя по каналам в силовом суппорте, поступает в полость внутреннего опорного кольца соплового аппарата. Из этой полости воздух проходит внутрь лопаток соплового аппарата, через отверстия в их задней кромке выходит наружу и, смешиваясь с газами, идущими из камеры сгорания, поступает в турбину.

Для охлаждения передней стены турбинного диска воздух отводится из последней ступени компрессора через лабиринтное уплотнение между ротором компрессора и силовым суппортом. Охладив турбинный диск, этот воздух вытекает в зазор между сопловым аппаратом и турбиной и смешивается с основным газовым потоком.

Задняя сторона турбинного диска, стенки реактивного сопла и игла охлаждаются воздухом, отбираемым после четвертой ступени компрессора и подводимым через обтекаемые стойки в средней части реактивного сопла. Выходная часть сопла охлаждается наружным воздухом с помощью специального экрана.


Основные данные двигателя
Тяга 900 кг
Число оборотов 8700 об/мин
Удельный расход топлива 1,4 кг/кг час
Расход воздуха 23 кг/сек
Степень повышения давления в компрессоре 3,0–3,2
Температура газов в сопле 630-690 °C
Основное топливо керосин +15 % солярного масла
Пусковое топливо авиационный бензин
Вес двигателя 720 кг
Максимальный диаметр 810 мм
Максимальная длина 3940 мм

Турбореактивный двигатель BMW-003

Двигатель BMW-003 был выпущен в 1940–1941 гг.

К концу войны, в 1944 г., этот двигатель уже производился серийно и устанавливался на самолетах Хейнкель Не-162, Арадо Ar-234С.

Двигатель BMW-003 состоит из следующих основных частей: семиступенчатого осевого компрессора, камеры сгорания кольцевого типа, одноступенчатой газовой турбины и реактивного сопла с регулирующей иглой.

Во входном патрубке расположен двухтактный двухцилиндровый пусковой бензиновый мотор, прикрытый обтекателем. Вал пускового мотора соединен с валом компрессора кулачковой муфтой.

Ротор компрессора состоит из отдельных дисков, насаженных на общий вал. Диски первых трех ступеней изготовлены из магниевого сплава, остальных четырех — из дуралюмина. Корпус компрессора отлит целиком из магниевого сплава, и внутрь него вставлены семь рядов неподвижных направляющих лопаток. Профили лопаток ротора и статора подобраны таким образом, что 70 % перепада давления каждой ступени создается в лопатках диска ротора, а 30 %- в направляющих лопатках статора (в двигателе Jumo- 004 направляющие лопатки напора не создают).


Турбореактивный двигатель BMW-003

1 — маслобак, 2 — маспорадиатор, 3 — бензобачок пускового мотора, 4 — пусковой двухтактный бензиновый мотор, 5 — валик привода коробки передач, 6 — откачивающая маслопомпа, 7 — подвод смазки к передним подшипникам вала компрессора, 8 — труба подвода воздуха для охлаждения диска 9 — возвратная масломагистраль (к маслорадиатору), 10 — узлы подвески двигателя, 11 — лабиринтное уплотнение, 12 — жиклеры подачи масла для смазки подшипников компрессора и турбины, 13 — задняя откачивающая маслопомпа, 14 — муфта соединения валов компрессора и турбины, 15 — пусковая топливная форсунка, 16 — запальная свеча, 17 — основная топливная форсунка, 18 — дренаж масляного воздухоотделителя, 19 — подвод охлаждающего воздуха к лопаткам соплового аппарата, 20 — валик управления иглой сопла, 21 — карманы входа воздуха для охлаждения стенок сопла, 22 — термопара, 23 — игла реактивного сопла, 24 — выход воздуха, охлаждающего иглу


Камера сгорания изготовлена из листовой жароупорной стали. В передней части камеры в кольцевой отливке из легкого сплава установлены 16 основных и 6 пусковых форсунок с запальными свечами. Впрыск топлива производится по потоку под давлением 60 кг/см2. За отливкой расположена кольцевая жаровая труба, в средней части которой имеются патрубки подвода в камеру вторичного воздуха.

В задней части камеры* стыкуется с корпусом соплового аппарата турбины. Лопатки соплового аппарата в количестве 31 шт. — полые, охлаждаемые изнутри воздухом.

Турбинный диск имеет 66 лопаток, также охлаждаемых воздухом. Воздух для охлаждения лопаток отбирается после четвертой ступени компрессора.

Реактивное сопло изготовлено из листовой жароупорной стали и имеет двойные стенки, между которыми продувается наружный воздух, поступающий через карман, сделанный на наружной поверхности передней части стенок сопла.

Игла, регулирующая выходное сечение сопла, может быть установлена в одном из четырех фиксированных положений. Эта установка иглы осуществляется летчиком поворотом переключателя реверсивного электромотора, вал которого связан с зубчатой передачей с механизмом перемещения иглы.

Регулирование двигателя осуществляется автоматически специальным регулятором оборотов, поддерживающим заданное число оборотов двигателя путем дозировки топлива, впрыскиваемого в камеру сгорания.


Основные данные двигателя
Тяга 800 кг
Число оборотов 9500 об/мин
Удельный расход топлива 1,5 кг/кг час
Расход воздуха 9 кг/сек
Степень повышения давления в компрессоре 3,0–3,2
Температура газов в сопле 620 °C
Основное топливо керосин+5 % солярного масла
Пусковое топливо авиационный бензин
Вес 750 кг
Максимальный диаметр 680 мм
Максимальная длина 3300 мм

Комбинированный двигатель BMW-109-003R

Одним из методов увеличения тяги ТРД (что особенно важно на режимах малой скорости полета, например, при наборе высоты) является установка на ТРД жидкостно-реактивных ускорителей. Так, на некоторых истребителях Ме-262 для увеличения скороподъемности были установлены комбинированные двигатели BMW-109-003R, представлявшие собой обычные серийные турбореаи гивные двигатели BMW-003A, С или D, с укрепленными на них ускорителями — жидкостно-реактивными двигателями той же фирмы.

Ускоритель состоит из камеры сгорания, имеющей цилиндрический наружный кожух, двух насосов (топливного и окислительного) и питающих трубопроводов. Насосы ускорителя имеют шестеренчатый привод от вала ротора ТРД и потребляют мощность до 200 л. с. Камера сгорания ускорителя охлаждается топливом.


Барограмма взлета самолета Ме-262 с двигателем BMW-003, снабженным жидкостным ускорителем


Турбореактивный двигатель BMW-003 с жидкостным ускорителем

1 — двигатель; 2 — ускоритель


Суммарная тяга двигателя с ускорителем равна 2350 кг, из которых 1250 кг приходится на долю ускорителя. Основного запаса горючего для турбореактивного двигателя хватало на 20 минут полета у земли или на один час на высоте 9000 м. Ускоритель мог бьггь включен летчиком в любой момент полета и мог работать в продолжение двух минут.

При наборе высоты с включенным ускорителем самолет в течение двух минут набирал 9000 м, после чего при работающем ТРД и за счет инерции увеличивал высоту до 11000 м и продолжал полет на этой высоте. Если ускоритель включался не при взлете, а на высоте около 6000 м, то самолет мог набрать высоту 15000 м (показано на графике пунктирной линией, исходящей из точки 3).

Турбореактивный двигатель Хейнкель-Хирт HeS-011

Опытный образец двигателя Хейнкель-Хирт HeS-011 был изготовлен в начале 1944 г. имеются сведения, что перед концом войны этот двигатель был запущен в серийное производство и устанавливался на опытных самолетах.

Двигатель HeS-011 имеет четырехступенчатый компрессор (диагональная ступень и три осевых), кольцевую камеру сгорания, двухступенчатую газовую турбину и регулируемое реактивное сопло.

Стремление использовать преимущества как осевого, так и центробежного компрессоров привело к установке на двигателе HeS-011 в качестве первой ступени диагонального компрессора, в котором воздух движется как бы по диагонали между осевым и радиальным направлениями.

Для того, чтобы получить максимальную разность между диаметрами входной и выходной частей диагонального колеса компрессора, пусковой мотор вынесен на корпус двигателя, а обтекатель носка вала компрессора сделан настолько малым, насколько это позволяют механизм привода коробки передач и передний подшипник вала компрессора.

В начале входного патрубка установлен индуктор (воздухозаборный вентилятор), представляющий собой, по существу, вращающийся направляющий аппарат.

Индуктор создает предварительную закрутку струи на входе в диагональный компрессор. За индуктором установлены под углом обтекатели масляных трубок и валиков привода коробки передач и пускового мотора.

Диагональное колесо компрессора состоит из двух дисков, изготовленных из стальной поковки со вставленными в них лопатками, откованными из алюминиевого сплава и крепящимися к диску шаровыми замками.

Лопатки диагонального колеса сделаны не плоскими радиальными, а изогнутыми по винтовой линии.

Осевой трехступенчатый компрессор — обычной конструкции, представляет собой набор дисков, насаженных на общий вал. Лопатки вставлены в пазы дисков фасонными хвостовиками и зафиксированы каждая заклепкой.

Неподвижные направляющие лопатки осевого компрессора, так же как и лопатки, установленные между диагональным колесом и первой ступенью осевого компрессора, изготовлены из листового материала и приклепаны к корпусу.

Камера сгорания кольцевого типа изготовлена из листового материала, наружный кожух камеры изготовлен из алюминиевого сплава.


Турбореактивный двигатель HeS-011

1-индуктор (воздухозаборный вентилятор), 2- валик привода коробки передан, 3- диагональный компрессор, 4- осевой компрессор, 5- копьцевые воздушные каналы форсунки, 6- топливная форсунка, 7-копьцевая полость для воздуха, охлаждающего стенки камеры сгорания, 8- камеры сгорания, 9- патрубки подвода вторичного воздуха в камеру сгорания, 10- патрубок подвода воздуха, охлаждающего лопатки соплового аппарата турбины, 11- турбина, 12- реактивное сопло, 13- профилированная игла сопла


Топливо впрыскивается в камеру шестнадцатью форсунками и смешивается с первичным воздухом, поступающим в камеру через завихритель и кольцевые щели.

Вторичный воздух, поступающий в камеру по специальным патрубкам, понижает температуру газов на входе в сопловой аппарат турбины.

Турбина осевая, двухдисковая, двухступенчатая. Конструктивной особенностью ее является то, что она не консольная, как турбина двигателей Jumo-004 и BMW- 003, а двухопорная. Лопатки турбины — полые, охлаждаемые, по своей конструкции похожи на лопатки турбины двигателя BMW-003. Каждая лопатка фиксирована в турбинном диске с помощью одной заклепки.

Стенки реактивного сопла сделаны двойными из листового материала и охлаждаются наружным воздухом. Выходное сечение сопла регулируется профилированной иглой, которая может быть установлена в одном из двух положений с помощью сервомеханизма.

Раскрутка двигателя при запуске производится двухтактным двухцилиндровым бензиновым мотором, установленным на корпусе двигателя.

Первоначальный запал топлива осуществляется четырьмя свечами, расположенными около форсунок.


Основные данные двигателя
Тяга 1300 кг
Число оборотов 11000 об/мин
Удельный расход топлива 1,3 кг/кг час
Расход воздуха 30 кг/сек
Степень повышения давления в компрессоре 4,5
Топливо керосин+5 % солярового масла
Вес 840 кг
Высота 1080 мм
Ширина 875 мм
Максимальная длина (с выдвинутой иглой сопла) 3050 мм

Жидкостный ракетный двигатель HWK-109-509

Немецкий ракетный двигатель HWK-109-509 (конструкции Вальтера), действующий на жидком топливе, выполнен в виде отдельного агрегата, который может быть установлен на самолете в качестве основного источника тяги.

Этот двигатель применялся немцами на истребителе- перехватчике Ме-163.

Известны две модификации двигателя HWK-109-509: А-0 и А-1. На основании фирменной инструкции по эксплуатации можно заключить, что в конструктивном отношении оба варианта в основном подобны. Вариант А-1 двигателя дает большую максимальную тягу.

Применяемое в двигателе топливо состоит из окислителя и горючего. В качестве окислителя используется водный раствор перекиси водорода (компонент “Т”- штофф), содержащий стабилизаторы. Горючее представляет собой раствор гидрат-гидразина в метиловом спирте (компонент “С”-штофф).


Общий вид двигателя HWK-109-509

1 — камера сгорания, 2 — парогазогенератор, 3 — регулятор давления топлива, 4 — блок топливных кранов, 5 — редуктор со стартером, 6 — фильтр компонента «С», 7 — сливной кран, 8 — каркас, 9 — опорная плита, 10 — колонка, 11 — вилка крепления двигателя к самолету;

Прим.: на рисунке представлен вид двигателя сбоку.


Разложение перекиси водорода производится в специальном парогазогенераторе путем соприкосновения ее с катализатором (кубики из пористой керамической массы, пропитанной перманганатом бария и хлористыми солями кобальта и никеля). При этом перекись водорода разлагается на пары воды и газообразный кислород с выделением большого количества тепла по формуле:

2H2O2 =› 2H2O + O2 + 46900 кал.

Температура гозопаровой смеси на выходе из парогазогенератора достигает примерно 180 °C. Скорость вращения турбины при максимальном режиме — составляет примерно 17000 об/мин.

Величина давления компонентов топлива в нагнетающей магистрали двигателя зависит от чмсла оборотов турбины, т. е. от расхода поступающего в парогазогенератор компонента “Т”. Регулировка давления подачи топлива осуществляется автоматически с помощью регулятора давления.

Основные части двигателя: камера сгорания с двенадцатью форсунками; турбонасосный агрегат, состоящий из двух центробежных одноступенчатых насосов и активной двухступенчатой турбины; парогазогенератор; регулятор давоения топлива; блок топливных кранов; редуктор со стартером; фильтр компонента “С”; сливной кран.

Агрегаты двигателя кроме камеры сгорания и сливного клапана, скомпонованы на металлическом каркасе, соединенном с опорной плитой. К последней прикреплена колонка, в которой проложены топливные трубопроводы.

Крепление двигателя к конструкции самолета осуществляется при помощи двух вилок и трубчатого подкоса.

Ниже приведены характеристики двигателя, построенные на основании данных фирменных инструкций по эксплуатации.


Основные данные двигателя
Модификации двигателя HWK-109-509 А-0 А-1
Максимальная тяга на земле, кг 1500+50 1700+50
Максимальная тяга на Н=20000 м, кг 1704+50 1904+50
Удельная максимальная тяга на земле, кг/кг/сек 200,0 200,0
Удельная максимальная тяга на Н=20000 м, кг/кг/сек 227,2 224,0
Давление газа в камере сгорания при режиме максимальной тяги, атм 19+0.6 21+0.6
Давление подачи топлива при режиме максимальной тяги, атм 35-38 40-43
Диапазон изменения тяги на земле, кг 100-1500+50 100-1700+50
Объем камеры сгорания, л 14 14
Сухой вес двигателя, кг - 165
Загрузка...