Все меняется, но ничто не погибает.
Ничто не остается таким, как было,
И не сохраняет тех же форм,
Но остается, однако, тем же.
Мы давно знаем о том, что в глубинах земли находится огромный запас тепла, что, собственно, и определяет активную жизнь нашей планеты — те разнообразные перемещения и превращения вещества, а вместе с ними и изменения формы явлений, которые первыми бросаются нам в глаза и позволяют сразу отличать эти явления одно от другого. Одновременно наша Земля, как и другие планеты, «греется на солнце», получает от него лучистую энергию. Эти два источника энергии, внутренний и внешний, космический, в приповерхностных зонах Земли, в нашем «театре», и создают возможность той неустанной и нескончаемой работы, которую выполняют разнообразные силы, в том числе (что для нас особенно интересно) по преобразованию форм самой земной поверхности.
Тот факт, что с глубиной температура Земли повышается, означает, как известно из физики, перемещение тепла из ее недр, более нагретых, в относительно менее теплые верхние горизонты. Это и есть тот глубинный тепловой поток, который непосредственно свидетельствует о выносе, из Земли ее энергии (восходящая ветвь энерго-массопереноса). Он вездесущ и на материках, и в океанах, непрерывен, по непостоянен. Можно считать доказанным, что тепловой поток менялся от места к месту и от времени до времени в геологической истории Земли и что он сам всегда выражал собой основной ее двигатель. Среднее значение теплового потока на Земле составляет 1,2–1,5 микрокалорий на квадратный сантиметр в секунду. А вот от Солнца Земля получает энергии в несколько тысяч раз больше, но лишь малая ее доля достигает поверхности. Уже говорилось, что проникновение лучистой теплоты в глубь Земли ничтожно. Часть солнечной энергии путем отражения возвращается в космос, где и рассеивается. Другая часть путем нагрева суши, водной и воздушной оболочек, зависящего от места к месту от времен года, времени суток, широты и многих других причин, определяет всю энергетику внешних геоморфологических процессов. Внешняя картина этих последних заключается в перемещении масс воздуха, воды и суши под общим и постоянным контролем поля силы тяжести и при помощи очень разнообразных средств и механизмов. Оставляя пока в стороне все жизненные процессы, еще теснее и непосредственнее связанные с солнечной энергией, остановимся на том, что происходит здесь, на границах оболочек, в «мертвой» природе. Нет таких физико-географических процессов, которые не имели бы хоть какое-то геологическое значение. Равным образом пет и не может быть геологических процессов, которые в том же самом нашем «театре» не играли бы никакой геоморфологической роли.
Внешние динамические процессы, о которых идет речь в геологии и географии, называются экзогенными процессами. Вместе с космическими силами они действуют на земную кору снаружи, а работа, которую они выполняют за счет энергии Солнца, двоякая: создание (и разрушение) горных пород, слагающих в каждый данный момент земную поверхность на некоторую глубину, и создание (и разрушение) форм земной поверхности, а следовательно, изменение положения границы земной коры с ее подвижными, как легкая одежда, покровами — гидро- и атмосферой. Другими словами, экзогенные процессы выполняют две функции: породообразование и формообразование. Здесь и проходит некоторый формальный раздел между геологией (породообразование) и геоморфологией (формообразование). Если, впрочем, вдуматься, то станет совершенно ясно, что породообразование зависит всегда и везде от формообразования и наоборот, что дело лишь в акценте, в угле зрения, под которым рассматривается по существу двуединый экзогенный процесс. Ведь содержание — в данном случае вещественный состав разрушающейся или создающейся горной породы — требует облечения в соответствующую форму, так как нет содержания без формы. Подобным же образом явление в природе новой формы предусматривает в чем-то и новое содержание. Поэтому геоморфолог не может не думать о том, к какому геологическому результату ведет (или уже привел) наблюдаемый им геоморфологический процесс. Соответственно и геолог не должен упускать из вида геоморфологическую сторону любого экзогенного процесса. Если все это достаточно интересно в чисто познавательном отношении, то не менее важно и в практическом отношении, поскольку создает основу для предсказания событий, для деловой предусмотрительности и всех вытекающих отсюда искусственных (человеческих) мероприятий. Рассмотрим несколько примеров.
В понятие о том или ином экзогенном рельефо- и породообразующем процессе входит не только его физическая и (или) химическая сущность, но и общее направление, постоянство или эпизодичность, темп и соотношение с параллельно либо навстречу идущими процессами.
Представим себе теперь самую общую схему эрозионного процесса во времени и пространстве. Читателю известно, как универсальна, как распространена на всех материках работа текучих вод, временных и постоянных, малых ручьев и больших рек, быстрых горных потоков и медленно текущих равнинных рек. Все они в разной степени на том или ином отрезке своего пути размывают и углубляют свое ложе, подмывают и разрушают свой берега, перемещают массы обломочного материала — валу* нов, галек, песка — или, напротив, отлагают их. Эта элементарная картина наполняется, однако, глубоким содержанием, как только мы вспомним, что, кроме своей механической работы, эрозия непрерывно взаимодействует с другими рельефообразующими процессами. Движение в нашем «театре» совершается из-за разности потенциалов или градиентов: силы тяжести, температуры, давления, плотности, электричества, гипсометрии. Общий фон — трансформация энергии и перемещение вещества — работа в физическом смысле. Исходный момент в эрозионном процессе — наличие некоторого избытка воды в данном месте по сравнению с тем, что могло бы тут же испариться или просочиться в землю. Второе — наличие гипсометрического градиента, обеспечивающего наличие наклонной поверхности, т. е. склона, дающего возможность более или менее свободного и легкого перехода на уровень более низкого потенциала гравитационного поля.
Оба эти условия вполне заурядны: первое обеспечено наличием воды в атмосфере, ее осадками, второе — существованием рельефа, следовательно, и гипсометрических вариаций составляющих его поверхностей, линий, точек. Первое дано изначально с образованием земной атмосферы (неизвестного нам точно первоначального состава), т. е. с догеологических времен. Второе — рельеф — существовало, конечно на всех этапах жизни Земли, даже в принципе и до появления атмо- и гидросферы. Физическое (температурное) выветривание во времени также выходит за рамки так называемого геологического этапа в жизни Земли. Все это приводит к выводу, что рельефообразование на поверхности планетных тел, обладающих в рассматриваемом нами случае твердой корой, — явление, свойственное планетам изначально и начально же подчиненное немногим простейшим условиям. При этом какой-либо конкретный рельеф был всегда производен от другого, предшествующего ему рельефа. Отсутствие такового нельзя представить себе — то была бы идеальная геометрическая поверхность сфероида вращения, абсолютно защищенная и от вулканических сил снизу, и от Ударов метеоритов извне.
Если принять высказанные положения, а они очевидны, то общий геоморфологический процесс в истории Земли будет выглядеть таким же непрерывным и нескончаемым, как и процесс ее геологического развития. Даже образование единого Мирового океана, покрывающего всю поверхность Земли (без островов и континентов, что также невозможно себе представить), означало бы лишь торможение и, если можно так выразиться, подводную спецификацию геоморфологического процесса. Полностью остановиться он никогда не мог, как не остановится никогда в будущем и даже в том крайнем мыслимом случае, если бы Земля перешла подобно Луне в стадию «мертвой» планеты.
Но вернемся к нашему случаю — к первому ручейку вытекающему из какого-нибудь верхового болота, которые свойственны суровому сибирскому климату и образуются на высоких плоских уровнях потому, что земля под ними схвачена многолетней (раньше говорили «вечной») мерзлотой и водонепроницаема. Дальше на всем пути превращения ручья в речку, а речки в реку, т. е. увеличения водного стока, происходит непрерывный обмен влаги в реке с влагой в атмосфере (испарение и осадки), но также интеграция ручьев или рек. Это уже работает не одна гипсометрия. Ручьи или речки сливаются (при их неравенстве говорят, что меньшая впадает, вливается в большую) уже по геоморфологической причине: у них разные направления продольных уклонов или просто склонов (покатостей, или по-сибирски — покатей). Вместе с тем, размывая канал своего стока, т. е. углубляя его, каждый поток создает в геологическом субстрате два склона — правый и левый, направленные с двух сторон к нему самому. По этим склонам поверхностные воды сливаются в главное русло. Каждый такой приток или поток стремится создать свою собственную долину по своим силам, но по строгим и не имеющим исключения правилам, куда входит сила тяжести, кинетическая энергия движущейся воды, гидродинамика потока. И каждый новый образованный таким образом склон (будем называть его элементарным) при наличии избыточной влаги будет стимулировать создание новых потоков все более высоких порядков, как и соответствующих им новых склонов. Этот нехитрый, но безотказно действующий механизм при достаточном постоянстве географических условий с неизбежностью приводит к разделу той или иной территории между соседствующими и конкурирующими за «жизненное пространство» речными системами, «обслуживающими» соответствующую площадь, или бассейн. В плане получается тот или иной рисунок речной и соответственно долинной сети — ветвистый (дендритовый), радиальный, решетчатый, комбинированный, более или менее правильный геометрически, на что есть свои причины (мы коснемся их ниже). Итак, перед нами разветвленная долинно-речная сеть, завершившая раздел какой-либо территории как между своими внутренними частями, так и между бассейнами соседних речных систем. Что же дальше?
Во-первых, продолжается углубление каналов стока пли русел, идущее при условии, что кинетической энергии. т. е. скорости и массы потока, хватает на то, чтобы бороздить русло влекомым обломочным материалом. Именно по этой причине углубление русел идет во всей системе неравномерно: речки разных порядков обладают разной водоносностью, часто зависящей просто от местных, как говорят локальных, географических условий, например от разной обращенности склонов долин по странам света и разного влияния солнечного нагрева, местных ветров и т. д. Поскольку параллельно происходит по понятной причине отступание верховьев долин вверх по течению, что особенно хорошо, почти непосредственно можно наблюдать при росте оврагов, между отдельными частями речной системы или разными соседними системами допустимо как бы соперничество и стремление к переделке уже осуществленного раздела территории. Так становится возможным и иногда действительно осуществляется в природе захват одних рек другими, обращение их долин в свою сторону, ведущее к тому, что отведенная в сторону своей агрессивной соседкой река уже не течет по своей старой долине ниже перехвата и этот отрезок долины отмирает, переходя в ранг «древней долины». Ниже по ее уклону жизнь последней обычно возобновляется за счет новых, хотя и меньших потоков.
Таким образом, в возникшей долинной системе всегда идет перестройка в плане, медленная или относительно быстрая. И все же мы нарисовали еще довольно искусственную картину, забыв о том, что разные реки и их притоки, врезаясь в земную поверхность и посильно создавая долинные углубления, имеют под собой не однородный по составу и строению, как говорят аморфный, грунт-субстрат, а геологическую основу всегда достаточно сложного строения, составленную разными по возрасту, происхождению, материалу, залеганию горными породами. Пока река не прорезала поверхностные покровные рыхлые отложения, углубление русла может идти относительно равномерно. А если нет? Тогда на своем нелегком пути река и растущая вместе с ней долина будут встречаться со все новыми условиями сопротивления, а иной раз (например, наличие крупных трещин) и содействия углублению и спрямлению русла. Твердость, хрупкость, растворимость, наличие в каждой горной породе или толще горных пород внутренних неоднородностей и разная способность делиться (дробиться) по разным направлениям — со всем этим река непрерывно встречается на своем пути. Все эти свойства горных пород могут быть и довольно однообразны, и очень изменчивы. Вот в чем еще причина разной глубины речных долин в одной и той же системе, разной скорости их развития, очень существенных различий в строении, местного изменения их направления и т. д. Вот одна из главных причин образования, например, таких мощных порогов, как днепровские или братские на Ангаре. Вот почему в плане многие долины имеют чётко видные контуры — расширения чередуются в них с сужениями, вот почему, наконец, участки быстрых течений (перекаты, шиверы сибирских рек) чередуются с отрезками замедленного течения.
Но и сказанного, оказывается, мало, чтобы понять хотя бы общую схему развития долинного, или эрозионного, рельефа. Не одни только текучие воды создают его, дао еще два (по крайней мере два) могучих, практически универсальных процесса — выветривание и денудация. Выветривание — превращение горных пород, ранее залегавших глубоко, а затем выведенных на земную поверхность, как правило твердых, монолитных, крепких, в рыхлые массы под влиянием действующих здесь сил — физических, химических и биологических. Эти силы сложно комбинируются и зависят прежде всего от климата. Физическое (температурное) выветривание идет интенсивнее в высоких широтах, химическое и биологическое — в низких. Их частный или совместный результат — изменение физических, химических и геологических свойств первоначальной породы, а прежде всего ее механическая дезинтеграция, дробление, измельчение, рыхлость, водопроницаемость, что обеспечивает вместе или порознь превращение материнских горных пород в удобоподвижную массу, способную или в сухом, или влажном, или, наконец, в водонасыщенном виде двигаться вниз по склону, подчиняясь силе тяжести и преодолевая внутреннее и внешнее трение. Но, сдвинувшись таким образом или же в процессе самого движения, выветрелые массы будут в прямом смысле слова обнажать лежащие глубже материнские породы, обеспечивая доступ к ним на все большую глубину тех же агентов выветривания — воды, воздуха, колебаний температуры, влияний организмов. Этот процесс — денудация (в прямом смысле — обнажение) — поистине универсален, причем имеет место на всех широтах и в наземных и в подводных условиях. Именно он работает на склонах долин, на стенках любого эрозионного вреза, работает тем быстрее, эффективнее, чем интенсивнее выветривание и круче склон. Но он же сам, этот процесс, снижая склон и делая его более пологим, постепенно тормозит самого себя. Разнообразие геологического строения местности, темп денудации, унос ее продуктов к подножиям склонов, скажем, во время паводков и наводнений, — ключ к объяснению той или иной формы, высоты и крутизны долинных склонов.
Казалось бы, на этом можно закончить описание схемы эрозионного процесса, создающего долинный рельеф. Да, нарисованная картина в общих чертах справедлива. Остаются, однако, нераскрытыми механизмы, создающие врезанные в коренные породы и свободно блуждающие излучины (меандры), причины преимущественной круп тизны в северном полушарии правых, а в южном — левых склонов долин, а также образование островов, кос, перемещение, всегда очень неравномерное, речных наносов вниз по течению, речные террасы, осложняющие формы склонов и многое, многое другое. Для подробного объяснения всех этих явлений и форм в долинном рельефе понадобилась бы отдельная книга для каждого. А общая их характеристика дана в любом учебнике геоморфологии, как, впрочем, и геологии. Поэтому добавим к нарисованной картине еще время, продолжительность действия тех или иных процессов, то, что называется историей рельефа и является вместе с тем историей речной сети.
И в долинах, и на междолинных пространствах во многих случаях мы можем столкнуться с формами рельефа, механизм образования которых не вписывается в приведенную картину, не имеет с ней ничего общего. Это, например, ледниковые валуны на водоразделах, эоловые формы на склонах и многое другое. Такие явления и формы в геоморфологическом ландшафте называются реликтовыми, и они на самом деле свидетельствуют о иных, непохожих на современные, климатических условиях, о силах, не имевших прямого отношения к образованию самих долин. Но они же служат верными показателями немалого возраста (т. е. продолжительности развития) рельефа.
Понятие об истории рельефа, о том, что им пережито немало изменений в геологическом прошлом, в наше время доступно каждому, ибо вся природа, все ее элементы, как и человечество, прошли долгий исторический путь, перед тем как приблизились к своему теперешнему состоянию. Такое представление в целом было не чуждо уже мыслителям древности. Но только в XIX в. идеи эволюции (вместо идеи внезапных превращений и катастроф) всего, что есть в природе, завоевали общее признание. Что касается рельефа земной поверхности со всем разнообразием его форм, то на смену представлений нептунистов (все неровности на земле созданы водами океана) или плутонистов (рельеф создан вулканическими силами) также явилась и заняла в науке свое прочное место идея историчности, эволюции рельефа. Ее носителями и создателями были Ч. Ляйелл, И. Д. Черский, В. В. Докучаев, В. Дэвис. И если первый, знаменитый английский геолог, видел в истории рельефа только медленные и в однообразном направлении накапливающиеся изменения, то остальные увидели в ней сложный, превратный путь, зависящий от многих переменных величин, путь качественных сдвигов и возможность выделения отдельных, глубоко отличных одна от другой стадий. Более того, оказалось вообще невозможным разобраться в происхождении и значении отдельных слагаемых долинной сети без знания ее истории.
История речных долин уходит в очень далекое прошлое, в доледниковое время, но как правило, образование их началось значительно раньше. На примерах Ангары или Лены мы можем говорить, что их долины были заложены несколько миллионов лет назад. При этом имеем в виду место и направление таких палеодолин. Глубина, местные изгибы, формы и крутизна склонов, количество и место притоков и т. д. — все это могло измениться самым существенным образом. Но вместе с тем в долинах рек, как правило, мы находим (и используем для городской застройки, что повелось с древнейших времен) речные террасы, то имеющие в своем основании коренной цоколь, сложенные древним иллювием. Каждая состоит из уступа и площадки. Первый сообщает нам о том, что в пору его образования река быстро углубляла свое ложе, что может быть объяснено увеличением размывающей силы потока — возрастанием массы воды, увеличением продольного наклона, зависящего от медленных и неравномерных, и по сейчас имеющих место почти повсюду, только с разным темпом движений земной коры и соответственных им деформаций земной поверхности. Таким образом, каждая терраса знаменует собой как бы некоторый цикл, пережитый долиной, а точнее, системой долин, входящих в единый речной бассейн. Изучая такие террасы, определяя их возраст по остаткам вымершей флоры и фауны, а для сравнительно молодых террас также и по стоянкам первобытного человека, зная последовательность всех этих образований, мы с большой надежностью можем восстановить историю каждого конкретного долинного рельефа.
Обратим внимание на то, что все долины как бы суживаются книзу. Является ли это законом их развития и не объясняется ли тем, что, углубляясь, речные русла и вмещающие их долины сталкиваются со все более крепкими, древними, не поддающимися легкому размыву породами? Нет, такое объяснение было бы наивно. На самом деле в рельефе долин сохраняются только те террасы, площадки которых оказались уже предыдущих, т. е, более старых. Если бы дело обстояло иначе, те старые, более узкие террасы были бы уничтожены. Но геолог или геоморфолог, изучающий террасы (например, с целью поисков на них россыпей ценных минералов — золота, алмазов и др.), не может ограничиться их наблюдением в каком-либо одном поперечнике долины. Он обязан сделать это вдоль всей долины или даже многих соседних долин. Тогда останется меньше пропусков и история данной речной сети будет выглядеть относительно полной. Конечно, и в этом случае в геоморфологической летописи могут остаться события неясные или не оставившие никаких следов в «биографии» долин. Но ведь и никакая другая летопись не бывает, пожалуй, абсолютно полной.
Вспомним теперь, что громадные пространства материков, за исключением тех, что заняты материковыми льдами или настоящими пустынями, — безраздельное царство долинного рельефа. В горах долины — это узкие, крутосклонные формы, местами с порогами и водопадами, на равнинах же это широчайшие, с низкими поло: ми склонами, плоские пространства с медленным течением извилистых рек, тех рек, из которых, по слов английского поэта Суинбэрна, самые усталые все: когда-нибудь достигают моря. Даже в самых сухих пустынях находится множество бывших деятельных дол) больших и малых, а под современными гигантскими ледяными покровами также погребены древние речные долины. В Финляндии, Канаде, у нас в Карелии таки долины существовали еще до ледникового периода, вате: были погребены льдами, а в современную эпоху поел таяния льдов снова живут и «работают», углубляя свои русла. Наконец, во многих частях океана на перегибе подводного континентального склона, спускающегося к подводным абиссальным равнинам, существуют и действуют, правда эпизодически, подводные каньоны, по которым время от времени, часто во время землетрясений устремляются и производят немалую эрозионную работу так называемые мутьевые потоки.
Так выглядят и сочетаются в своей бесконечной работе над преобразованием земной поверхности материков тесно связанные в одну великую неразрывную цепь три наиболее могущественные, Солнцем порожденные силы — выветривание, денудация и эрозия. Ими создана почти вся скульптура Земли, почти весь ее сложноприхотливый и вместе с тем вполне закономерно развивающийся рельефный орнамент.
До сих пор мы говорили о господствующем на суше непосредственно наблюдаемом долинном рельефе, имея в виду весь вертикальный интервал суши от уровня океана до высоких и высочайших гор, где главную роль играют движущиеся горные ледники, придающие особую суровость, но также и особое блистательное величие высокогорным пейзажам. Но и здесь, оказывается, снега и льды выполняют свою работу по разрушению и транспорту, а в области своего таяния — также и по отложению обломочного материала не где-нибудь, а в ранее, еще до оледенения гор, существовавших горных долинах. Эти, последние превратились затем в так называемые ледниковые долины, или троги, что произошло при радикальном изменении климатических условий, в частности и вероятно за счет сравнительно быстрых поднятий земной коры, которые являются главной причиной горообразования вообще. Так собственно долинный, эрозионный рельеф распространяется, хотя и в пассивном и, так сказать, ископаемом виде, и на область горных ледников.
Еще 20–30 лет тому назад почти все наши сведения 0 развитии рельефа Земли и отдельных, сколь угодно крупных его форм, об их происхождении относились преимущественно к суше. Но суша занимает, как отмечено выше, только 29,2 %, а Мировой океан — 70,8 % поверхности земного шара, и можно сказать, что почти вся Земля залита водой. Все реки так называемого внешнего стока прекращают свое существование, впадая в моря и океаны. Но та же судьба постигает и реки с внутренним стоком, каковы, например, Волга, Сырдарья и Амударья, Селенга, впадающие во внутриконтинентальные водоемы. Соответственно в устьях таких рек исчезают и вмещавшие их и порожденные ими долины. Недаром уровень океана для рек внешнего стока называют мировым базисом эрозии, т. е. таким уровнем, ниже которого наземная (субаэральная) эрозия идти не может. Аналогичным образом базис эрозии для Волги — уровень Каспийского моря, для Сырдарьи — уровень Аральского моря и т. д. Поэтому еще в конце прошлого — начале нынешнего века считалось, что дно Мирового океана имеет в общем спокойный равнинный рельеф, тем более ровный, чем удаленнее от берегов суши, а горы имеют там преимущественно вулканическое происхождение.
Научно-техническая революция буквально перевернула такие представления. Новые приемы исследования — непрерывное сейсмоакустическое профилирование, бурение, дистанционные снимки из космоса, подводное фотографирование, развернувшиеся особенно сейчас в больших масштабах, — показали, что рельеф дна океана если не сложнее, то и не проще материкового и что вместе с тем развитие донного рельефа идет иными путями, нежели на суше, и создает особые формы. Такие формы, разнообразные по очертаниям, размерам и происхождению, описаны во многих современных учебниках и специальных работах по морской геоморфологии и морской геологии, их продолжают изучать в натуре, делаются все новые открытия. Многое в этом отношении сделано советскими исследователями. Здесь мы только отметим, что на дне океанов и морей также идет неустанная, но более медленная работа по разрушению возвышенностей, с одной стороны, и накоплению осадков, их аккумуляции — с другой. Поскольку то и другое протекает в подводных, условиях, все зависит здесь от направления и скорости движения водных масс, а так как водонасыщение донных осадков предельно велико, то соответственно велика и их подвижность, осуществляемая даже при очень малых наклонах дна. При этом выяснилось, что весьма значительный объем осадков перемещается, как и на суше, по сравнительно узким линейным каналам — подводным долинам, или каньонам, либо составляющим подводное продолжение наземных долин, либо же вполне самостоятельным и не связанным с рельефом суши. Таким образом, и значительная часть акватории океанов оказывается оккупированной долинами или долинообразными формами рельефа и такие формы оказываются на земном шаре наиболее космополитными, не имеющими места, по-видимому, только на океанических абиссальных равнинах, хотя этот вопрос до конца неясен.
Обратимся еще раз к знакомой нам гипсографической кривой Земли, наглядно показывающей соотношение различных типичных частей ее поверхности по высоте и глубине. Как мало приходится, действительно, на долю суши! Как очевидна не только географическая, но и геоморфологическая и, как сейчас увидим, геологическая противоположность материков и океанов. В самом деле, ложе океана представляется чем-то вроде общей платформы, над которой возвышаются материки. В платформе есть щели — глубоководные желоба, занимающие мало места, по зато глубочайшие. Есть и обширные поднятия — срединно-океанические хребты. Материки же уходят своим основанием под уровень океана до глубины 4 км, образуя так называемый континентальный склон. Если принять во внимание всю выпуклость земной поверхности, опирающуюся на ложе океана с его глубинами до 3–4 тыс. м, то тогда соотношение их площадей будет примерно 1:1. Но можно ли считать принадлежащими материкам эти затопленные поверхности? Да, через посредство шельфа они геоморфологически прямо связаны с сушей, материковый же склон должен быть отнесен к материковым выпуклостям, а не к краям океанов на том основании, что здесь идут процессы, принципиально мало отличающиеся от тех, что протекают на суше (массовые движения пересыщенных водой осадков по уклонам рельефа, подводные оползни, осовы, мутьевые потоки движения масс по абиссальным долинам), но главным же образом потому, что материки вместе со своими шельфами и континентальными ступенями состоят из другого геологического материала, чем ложе океана. Они, как мы помним, представляют собой утолщения, раздувы земной коры и сложены сравнительно легкими горными породами, богатыми кремнекислотой, тогда как в океанах земная кора резко утонена и состоит из горных пород, более тяжелых, богатых железом и магнием, но относительно бедных кремнеземом. Различие в мощности, составе пород в земной коре материков и океанов настолько велико, оно играет в физике нашей планеты и во всех глубинных геологических процессах столь большую роль, что геологи, геофизики и геохимики принципиально выделяют земную кору двух типов — материкового и океанического. Считается, впрочем, что существует еще кора переходного типа, или субокеаническая. Считается также, что начавшийся на заре развития нашей планеты процесс превращения одного типа коры в другой продолжается и по сие время. Если же материковые массивы, как видно из гипсографической кривой, затоплены водами океана «по пояс», то это значит лишь, что объем вод в современном океане больше того, какой мог бы уместиться в собственно океанических впадинах на коре свойственного им типа. Кстати, здесь уместно остановиться на самом уровне Мирового океана.
Было ли в океане всегда, во все геологические времена, одно и то же количество воды? Определенно нет. В далеком архее или «доархее» пары воды, выделяясь из недр и охлаждаясь на поверхности планеты, положили только начало Мировому океану. С тех пор дегазация мантии, в том числе и «испарение» из нее воды, продолжается свыше 3,5 млрд, лет, и, кажется, можно считать, что количество воды во всех ее состояниях и соединениях постепенно возрастает.
Исключительно жадным потребителем воды является биосфера. В ходе геологического времени существенно менялся рельеф Земли, следовательно, менялись очертания и размеры емкостей — впадин, вмещавших в себя воды океана. Значит, должен был меняться и уровень океана, хотя мы и не можем ясно себе представить, относительно какого репера тогда, как и сейчас, можно было бы исчислять этот уровень. Ясно одно, что по отношению к суше этот уровень менялся. А единственно надежные данные на этот счет может дать только новейшее геологическое время, называемое четвертичным периодом, в течение которого то неоднократно происходило оледенение в высоких широтах и высоких уровней гор, то наступало потепление, или, как говорят, межледниковая эпоха. Сейчас мы точно внаем, что во время максимального оледенения из общего круговорота воды было изъято и законсервировано в виде материковых льдов столько влаги, что уровень Мирового океана должен был находиться примерно на 100 м ниже современного. Таяние материковых льдов по окончании последнего оледенения закончилось лишь 6–8 тыс. лет назад, остались только ледяные щиты Гренландии и Антарктиды. Значит, современный уровень Мирового океана возник еще при рождении первых великих цивилизаций. А десятки и тем более сотни тысячелетий назад, во время древних оледенений, географическая карта мира, т. е. очертания границ суши и моря, весьма существенно отличалась от современной. И только 6–8 тысячелетий на морских побережьях, там, где они сейчас находятся, идут разнообразные береговые процессы, связанные с разрушительным прибоем (абразией), волновыми и вдольбереговыми течениями, ростом коралловых рифов, приливами и отливами, формируются, разрушаясь и создаваясь на новой основе, современные морские берега. На них сталкиваются, отступая и наступая, и непрерывно взаимодействуют суша и вода, земная кора и гидросфера. В этом взаимодействии как посредники и постоянные «возмутители спокойствия» выступают ветры, особая роль которых в управлении береговыми процессами была известна и использовалась еще первыми мореплавателями, в частности финикийцами, 3–4 тыс. лет назад, а судя по новым археологическим открытиям в Сахаре и Азербайджане, даже 5–6 тыс. лет до нашей эры.
Мы уже противопоставили во многих отношениях материковые массивы, включая их залитые океаном окраины, ложу Мирового океана, но все же главная их противоположность заключается в том, что материки — область разрушения и сноса, а следовательно, их рельеф изменчивее, динамичнее. Напротив, область океанов характеризуется преимущественной аккумуляцией вещества и более консервативным, в общем случае очень медленно меняющимся рельефом. При этом материал, сносимый с материков и именуемый терригенным (от латинского «терра» — земля), осаждается преимущественно в подножиях материкового склона, тогда как на абиссальных равнинах идет лишь крайне медленное (оцениваемое менее чем 1 мм в тысячу лет) накопление так называемой красной глубоководной глины.
Дополнительные сложности в осадкообразование, как и в рельефообразование, морского дна вносит биосфера, о которой речь пойдет в конце книги. Но и ее разнообразные продукты, постройки и отбросы сосредоточены преимущественно по окраинам материков (коралловые и другие рифы, карбонатные и кремнистые органические осадки и пр.).
Ну, а кто же остальные скульпторы — творцы разнообразных форм земной поверхности рассматриваемого нами класса и как они взаимодействуют друг с другом? Кратко об этом уже говорилось. Все они — порождения легких сред — воды и воздуха, омывающих земную поверхность сверху и действующих в первую очередь за счет лучистой солнечной энергии. Все они так или иначе связаны с климатом, и некоторые ученые называют экзогенные рельефообразующие факторы просто климатическими. Так, материковые, горные и плавучие льды связаны либо с высокими широтами, либо с очень большими высотами, с их холодным климатом. Морские течения зависят от преобладающих ветров устойчивого направления и от вращения Земли, а также от приливов — отливов. Разнообразные мерзлотные процессы и связанные с ними деформации грунтов также находятся в связи с суровым климатом высоких широт и больших высот. Эоловые, ветровые процессы господствуют только в полупустынях и пустынях, которые сами по себе явления также климатические.
Но ведь то же самое мы говорили, рассматривая «скульптурные» возможности массового, сплошного выветривания и массовой площадной денудации, как и денудации частных форм рельефа — отдельных склонов и, наконец, эрозии, требующей в качестве необходимого условия избытка поверхностной влаги, его стока. Правда, особое место занимает в «сообществе» «скульпторов» рельефа карст, т. е. растворение поверхностными водами податливых в этом отношении горных пород — известняков, доломитов, гипсов и т. д. Но и карст тоже требует более или менее равномерного поступления воды на поверхность и в глубь легко растворимых толщ горных пород, значит, прямо зависит от определенных климатических условий. Здесь надо сказать и о другом. Климат определяет лишь выбор и господство того или иного «скульптора». С трудом, медленно, но все-таки верно некоторые экзогенные процессы протекают и в неблагоприятствующих им климатических условиях. Так, карстовые явления могут встретиться и «работать на рельеф» в пустынях, в области многолетнемерзлых грунтов и горных пород. Эоловые процессы — выдувание и надувание — имеют место, правда, в ограниченном объеме, всюду там, где дуют сильные устойчивые ветры, а в их распоряжении имеются достаточные массы сухого песка или ныли. Но может случиться, что, находя типичные формы рельефа, в происхождении которых за счет того или иного «скульптора» нельзя сомневаться, мы вместе с тем видим, что современная климатическая обстановка просто исключает активность такого «скульптора». Так, мы иногда находим типичные формы рельефа, созданные ледниками, на горах, где сейчас нет и не может быть горного оледенения. Тогда они — реликты прошлого, создание иных климатических условий. Чтобы доказать это совершенно бесспорно, нужно, впрочем, знать точно, как образуются формы горного оледенения, сопоставить их с теми, что найдены, так сказать, в иных, не подходящих им климатических условиях, сравнить скульптуру тех и других и тогда уже сделать определенный вывод.
Кто же из «скульпторов» экзогенного класса самый могущественный? На такой вопрос трудно ответить. Как изменчив от места к месту климат Земли, изменчивы и наборы климатических рельефообразующих факторов. И все же самый мощный из них — выветривание, разрушение сплошности, разрыхление горных пород и минералов, параллельное или последующее изменение их химического состава. «Триада», включающая в себя физическое, химическое и биологическое выветривание, действует в разных климатических зонах Земли, применяя разные сочетания. Эта картина крайне сложна и изменчива и во времени, и в пространстве. То же самое следует сказать о денудации, которая как бы отталкивается от выветривания и транспортирует его продукты с высоких уровней на более низкие. Выветривание и денудация идут по-разному и разными темпами в полярных условиях, на высокогорьях, в умеренном и тропическом климате, в пустынях и богатых влагой странах, на берегах морей и на их дне. идут повсюду — всегда завершая на дальнем конце своего конвейера доставку очередной порции материала выветривания в динамически относительно спокойную зону их накопления и тем самым нового, так сказать вторичного, породообразования.
Рельефообразующая роль эрозии зависит от денудации самым прямым образом. Она создает долинный рельеф. И мы находим его в любых широтах и высотах. Даже мощный карст не может вполне воспрепятствовать на значительной площади вездесущему долинообразованию, даже в пустынях, самых сухих и жарких, таких, как Сахара в Африке, Атакама в Южной Америке, мы находим и следы действия временных потоков, и следы прежде деятельных, теперь ставших реликтовыми речных долин. Как уже говорилось, в морях и океанах на материковом склоне нередки подводные каньоны, созданные мутьевыми потоками (в материковых водоемах эти замечательные образования, если не считать просто затопленных устьев долин, известны пока только в глубочайшем пресном водоеме — в Байкале).
Если суша в целом — арена размыва и свойственного этому широко понимаемому процессу рельефа, то 2/3 поверхности всей Земли — площадь Мирового океана с присущими ему формами рельефа — арена накопления осадков. На суше накопление осадков идет хотя и очень быстро, но сами накопления не столь долговечны (в масштабе геологического времени), как в океане.
Из самых мощных рельефообразующих процессов можно, наконец, назвать береговые (вспомним о грандиозности суммарной длины береговых линий водоемов Земли!), где в разных сочетаниях, но всегда имеют место работа волн, течений, накопление и размыв осадков.
Мы нарисовали очень общую и потому поневоле схематическую картину воздействия современных внешних геоморфологических процессов на земную поверхность. Совсем вскользь мы коснулись таких мощных факторов, как движущиеся льды в высоких горах, как многолетняя мерзлота, создающая вполне специфические формы рельефа, как эоловые (ветровые) процессы, как растворение поверхностными и подземными водами горных пород, т. е. явления карста и создаваемого им карстового рельефа, склоновых процессов, многообразных, также лишь попутно упомянутых процессов разрушения и созидания, связанных с биосферой, и ничего не сказали о многом другом, что входит в работу экзогенных процессов и в результаты этой работы. Впрочем, многое из этого известно читателю. Лучше, на наш взгляд, еще раз подчеркнуть, что все великое разнообразие воздействий этих процессов на земную кору, вся возможность производимой ими гигантской работы по породо- и формообразованию, обусловленная энергией Солнца, и создает тот полный прекраснейших форм, красок и звуков окружающий нас мир, наш собственный, единственный и ничем другим не» заменимый дом человека в космосе.
Нам предстоит теперь кратко рассмотреть сущность другой группы «скульпторов» рельефа — эндогенных процессов, иначе эта глава не соответствовала бы своему названию. Обычно такие процессы описываются раньше экзогенных, что, видимо, удобнее для восприятия студентами. Есть в том и известная логика: эндогенные, внутренние процессы отражают собственно земную жизнь, это глубоко «личные», свои, не навязанные извне явления. Но для принятого в этой книге представления о двух полноправных путях потока массы — энергии, восходящего и нисходящего, и главным образом об их влиянии на формы земной поверхности порядок рассмотрения тех или других процессов не имеет большого значения.
Давайте представим себе для начала, к чему бы пришла наша Земля, если бы эндогенные процессы не работали столь же непрерывно, как экзогенные, если бы по' какой-то вполне, впрочем, немыслимой причине они полностью затухли? Такая воображаемая ситуация парализовала бы все взаимодействие глубоких геосфер и обрекла бы земную кору на полную зависимость от Солнца. Земная поверхность продолжала бы изменяться, подчиняясь единственной силе земного тяготения. Выветривание, денудация, эрозия, абразия и все прочие экзогенные процессы приобрели бы одно общее направление — выравнивание суши, повсеместное снижение высот, образование предельной равнины (пенеплена), но при этом сами эти процессы автоматически бы замедлялись, так как их работа, как мы уже видели, связана в очень большой мере с геоморфологическими контрастами. Выравнивание распространилось бы и на окраины материков, на спрямление береговых линий, обмеление заливов и бухт. Поскольку циркуляция атмосферы продолжалась, продолжался бы и влагообмен в океанах и на суше, но в целом из-за выравнивания материков и обмеления внутренних морей, разрушения вулканических островов, выдвижения речных дельт и т. д., главное же — из-за уничтожения гор и высоких плато климат и отдельных географических поясов, и Земли в целом изменился бы, стал бы менее контрастным, причем наступило бы общее похолодание из-за понижения парникового эффекта. При отсутствии запыления атмосферы вулканической пылью, что делало бы атмосферу, казалось бы, более прозрачной, стало бы быстро уменьшаться содержание в ней углекислого газа, который, напротив, свободно пропуская, подобно обыкновенному стеклу, тепловые излучения, препятствует их потере. Сказалось бы в какой-то мере и охлаждение Земли из-за исчезновения глубинного теплового потока. Все последствия такой воображаемой ситуации невозможно предвидеть, но несомненно, что и в самой биосфере, обители жизни на Земле, должны были бы наступить глубокие и очень быстрые необратимые изменения.
Перейдем к рассмотрению эндогенных процессов, источник которых — внутренняя энергия Земли. Преимущественно ими и занимается геология наших дней, стремящаяся понять явления, протекающие в недрах земной коры и в более глубоких геосферах. Геоморфология также уделяет им много внимания, но, как говорилось выше, под другим углом зрения — их влиянию на создание и развитие форм земной поверхности.
Эндогенные процессы — это движения земной коры и соответственно ее деформации, перемещение вверх, в область меньших давлений, разогретого корового и подкорового вещества. В своих крайних, достигающих земной поверхности проявлениях движения земной коры приводят к поднятиям, опусканиям или горизонтальным перемещениям, как правило, крупных частей земной коры. Обычно эти движения очень медленные, измеряемые миллиметрами, реже сантиметрами в год и, естественно, улавливаемые только при помощи специальной аппаратуры. Но есть и такие движения, знакомые людям с незапамятных времен, которые очень резки, кратковременны, приводят к практически мгновенным деформациям земной поверхности. Это землетрясения. Их очаги обычно находятся в земной коре, т. е. в пределах глубин до 60–70 км. Изучением землетрясений занимаются геологи и физики специального профиля — сейсмологи. К сожалению, механизм очагов землетрясений до сих пор неясен, несмотря на многие остроумные модели, придуманные для этой цели. Из всех стихийных бедствий в течение обозримой истории землетрясения причиняли наибольший ущерб и, уносили наибольшее число человеческих жизней.
Особую роль в создании рельефа Земли играют магматические процессы, связанные с перемещением в земной коре жидких и полужидких продуктов расплава, что непосредственно связано с выносом глубинного тепла и представляет собой наиболее конкретное проявление восходящего потока массы — энергии. При извержениях вулканов эти процессы достигают земной поверхности, тогда на ней разыгрываются не менее, чем при землетрясениях, драматические события. Иногда извержения протекают сравнительно спокойно, длительно, что дает возможность их всестороннего изучения даже в непосредственной близости от выходов горячих вулканических продуктов ид поверхность.
Остановимся вначале на землетрясениях, с которыми имеет дело большее число людей нашей планеты, которые происходят гораздо чаще, чем, например, вулканические извержения, происходят и там, где нет действующих или недавно потухших вулканов, и которые, наконец, составляют самый грозный стихийный бич человечества, особенно в некоторых странах.
Подсчитано, что землетрясения, ощущаемые человеком, происходят на Земле многие тысячи раз в течение года. Сильные землетрясения случаются ежегодно. Катастрофические или, как их еще называют, мировые землетрясения, как показывает опыт человеческой истории, бывают на Земле несколько раз в столетие. Образно говоря, наша планета, по существу, непрерывно трепещет, и на фоне хронической лихорадки иногда случаются: припадки сильнейших судорог. Пожалуй, никакие другие эндогенные явления не свидетельствуют с такой убедительностью и наглядностью о том, что геологическая жизнь Земли идет в современную эпоху полным ходом, что растрачивание внутренней энергии нашей планеты еще безмерно далеко от полного истощения или от такого состояния, в каком находится наша соседка Луна. Это первое очень важное замечание, и оно показывает, что землетрясения, участвующие, как мы увидим ниже, и в самом горообразовании, являются — и будут — постоянно действующим фактором рельефообразования в масштабах всей планеты.
Вторая установленная закономерность — наличие на Земле сейсмичных и асейсмичных областей, т. е. таких, в которых землетрясения происходят относительно часто и достигают большой силы, и таких, где они вообще не имели места по историческим сведениям или случались очень редко и были слабыми.
Третья закономерность: места землетрясений (их называют эпицентрами, или эпицентральными зонами) расположены на земном шаре не беспорядочно, а образуют целые пояса огромного протяжения — многие тысячи километров. Такие пояса более или менее точно совпадают с поясами современного, или геологически новейшего, горообразования, с цепями действующих или недавно потухших вулканов. Многие подобные пояса тянутся по периферии океанов, т. е. в зонах перехода океанов в сушу, что указывает со всей очевидностью на то, что на таких явно неустойчивых границах стыкуются геологически действительно разнородные части земной коры. Существуют мощные сейсмические пояса и на континентах. К ним относится Трансазиатский сейсмический пояс с его ветвями на территории СССР — Средне-Азиатской и Байкальской.
Что же такое землетрясение? Вопрос этот может показаться странным. Ведь мы иногда ощущаем, обычно с чувством тревоги, подземные толчки, бываем свидетелями производимых ими разрушений, существуют чувствительнейшие приборы — сейсмографы, записывающие сложную картину движения упругих сейсмических волн, возбуждаемых в Земле очагами землетрясений. Мы знаем, что эти волны имеют разную физическую природу, разные скорости, причем меняющиеся по мере того, как они проходят через глубочайшие недра планеты. Именно они несут энергию землетрясений, превращаемую на земной поверхности в разрушительную работу. Записи сейсмографов, расположенных по всему земному шару, позволяют как бы контролировать, определять положение их очагов. Эти записи — исходный, исключительно ценный материал для анализа землетрясений физиками-сейсмологами. Существуют международный обмен информациями о землетрясениях, Международный сейсмический бюллетень, отдельные сейсмические службы в отдельных странах и сети станций даже в отдельных сейсмических областях одной страны. Путем статистики выявлены наиболее опасные зоны, а в странах, где не было такой статистики за длительный исторический срок, для этой цели привлекаются геологические, геоморфологические и другие методы. Прогноз места, силы и времени сильных землетрясений объявлен одной из главных задач современной науки в Советском Союзе и во многих других странах. И все же…
Если можно с большой вероятностью судить о место будущего сильного землетрясения и о его интенсивности (балльности), то время наступления сильного землетрясения все еще хранится Землей как одна из ее самых сокровенных тайн. Мы узнаём, на каких глубинах находятся очаги землетрясений (большинство их расположено в земной коре в интервале глубин от 12–15 до 50–60 км), но есть, особенно по краям континентов, так называемые глубокофокусные землетрясения, очаги которых лежат на глубинах в сотни километров. Что же представляет собой сам очаг, мы пока не знаем. В общем физически — это некоторый объем быстрой деформации в земной коре, где разряжается энергия предварительно накопившихся механических напряжений. Предложены различные физико-геологические модели таких деформаций — возбудителей упругих сейсмических волн. По существу это и все. Причин длительности, места накопления и разрядки в земной коре сейсмических напряжений наука пока не знает. Предположения, конечно, имеются, но они все еще далеки от хотя бы относительно точного знания.
Существует разделение (классификация) землетрясений по их магнитудам, т. е. по энергии, выделенной очагом и измеряемой в логарифмической шкале, по энергетическим классам, по интенсивности (балльности). В СССР действует для этой цели международная шкала MSK-64 —от 1 до 12 баллов. Сейсмические упругие волны разделяются на три крупных класса: продольные, самые быстрые (свыше 7 км/с в земной коре), в которых волновые колебания происходят вдоль луча их распространения, как, например, у звуковых волн; поперечные со скоростями в верхах коры до 4 км/с; поверхностные волны, расходящиеся от эпицентра землетрясения в стороны по земной поверхности подобно волнам, расходящимся по воде от места падения камня (весьма разрушительные). На различии в их скоростях как между собой, так и на различных глубинах Земли, вплоть до ее ядра, на их способности, как всяких других волн, преломляться и отражаться основана вся та громадная информация о глубочайшем строении недр, которую несет каждое землетрясение. Геофизики с помощью взрывных устройств вызывают искусственные землетрясения. На них основана разведка глубоко залегающих месторождений полезных ископаемых.
Этих сведений нам достаточно, чтобы представить себе землетрясения как «соучастников» в создании форм земной поверхности. Напомним здесь, что речь идет о естественном формообразовании, о том, что создает «равнодушная природа» безотносительно к нуждам и тревогам человека. Поэтому в разрушительную работу землетрясений на земной поверхности всегда входит и созидательная: ими создаются новые формы рельефа или же видоизменяются старые, которые в этом смысле также становятся новыми.
Истории известны землетрясения колоссальной силы (11- и 12-балльные), и немало их произошло в нашем столетии. Но память человечества сохранила в преданиях и легендах явления еще более ужасные. Например, полагают, что гибель Атлантиды была результатом одного или многих сильнейших землетрясений. Подобная же участь постигла, как «божья кара», библейские города Содом и Гоморру в Палестине, когда образовалось будто бы и Мертвое море. Почти у всех народов сохранилась легенда о великом и даже всемирном потопе, и очень вероятно, что это воспоминание не просто о громадных наводнениях, но и опусканиях крупных площадей суши, тем более что первые цивилизации возникали на приморских низменностях, как, например, государство шумеров в Двуречье. Но не стоит и уходить так далеко в глубь времен: некоторые приморские города или их части гибли, смываясь морскими водами, при подводных «моретрясениях» и образовании гигантских волн цунами совсем недавно. Такова была судьба Лиссабона в 1755 г., Северо-Курильска в 1952 г.
История городов, погибших прямо или косвенно от землетрясений, могла бы составить много томов. Нас же сейчас интересует то, что происходит при землетрясениях с самой земной поверхностью. Прежде всего, это образование трещин, одиночных или многочисленных, возникающих уже при толчках в 7–8 баллов. Их длина, возможность смещения по ним целых блоков грунта или даже блоков коренных пород зависят от силы землетрясений, а их направление, если трещина разрыва очень велика, — и от геологического строения местности. Так, при Калифорнийском землетрясении 1906 г. трещина со сдвигом вдоль побережья Тихого океана достигла длины 600 км, при Хангайском землетрясении 1805 г. в Монголии — 350 км, при Гоби-Алтайском землетрясении 1957 г., тоже в Монголии, — 270 км. Цифры, что говорить, внушительные. Во всех этих и во множестве других случаев гигантские трещины не что иное, как обновление старых, еще не совсем «залеченных» и остающихся «расслабленными» разломов в земной коре. Кроме простых зияющих трещин, или раздвигов, при этом нередко образуются сдвиги или сбросы оказавшихся на их пути частей рельефа. Другая деформация, возникающая при очень сильных землетрясениях, — образование целых крупных провалов и буквально «идущие» в момент землетрясения волны земной поверхности, часть которых может потом и «застыть», сохраниться в виде остаточных деформаций. При сильнейших землетрясениях также происходят относительно плавные опускания или поднятия земной поверхности. При повторных, производимых после сильных землетрясений геодезических измерениях нередко оказывается, что и высота отдельных пунктов местности, и их расположение одного относительно другого существенно изменились. В 1869 г. на Байкале при 10-балльном землетрясении в течение одной ночи опустилась на глубину в несколько метров площадь до 200 км2 в устье р. Селенги. В 1923 г. во время печально знаменитого, унесшего массу жертв Иокогамского (Токийского) землетрясения в Японии глубины залива Сагами во многих местах увеличились на 50 м.
Известны расколы и даже срывы со своего основания небольших одиночных вершин, практически мгновенное образование естественных плотин и многие другие подобные явления, масштаб которых зависит от силы землетрясения, геологического строения уже существовавшего рельефа местности. Но все это лишь те деформации, создаваемые землетрясениями, которые прямо связаны с мгновенными ускорениями точек земной поверхности. Не менее, а порой даже более важно другое: движение поверхностных масс, бывших и до землетрясения не очень устойчивыми (например, скалы, нависшие над дном долин, рыхлые породы Склонов, отягощенные дождевыми или подземными водами, подрезанные рекой, прибоем или какой-либо другой силой склоны, легко образующие оползни и т. Д-), но испытавших в момент толчка сильное встряхивание. Так образуются горные обвалы, сбросо-обвалы, оползни, сплывы, могущие подпрудить реки, образовать озера. Замечено образование фонтанов воды, песка, грязи прямо из-под земли, исчезновение прежних и образование новых выходов подземных вод. Английский исследователь Р. Вуд недавно сообщил, что дамба, образовавшаяся при падении в р. Инд западной части горы Нангапарбат при землетрясении конца 1840 — начала 1841 г., достигала 300-метровой высоты. Вскоре она была прорвана, и стеной воды на 200 км ниже по течению была смыта почти стотысячная сикхская армия.
Особое явление — волны цунами, возникающие в случае, когда эпицентр землетрясения оказывается на дне морском и это дно испытывает сильнейшие деформации. Скорость морских волн этого типа огромна, высота не очень велика, но, накатываясь на побережье, цунами Создает словно движущуюся водяную стену и обрушивается на берег с ужасающей силой. Высота заплеска таких волн может достигать десятков и даже сотен метров, а разрушения самих берегов при этом трудно себе даже представить.
Землетрясения, как уже говорилось, составляют бич одних стран или местностей и почти не проявляются в ощутимых размерах в других. Как эндогенный геологический и геоморфологический фактор, они связаны с особенно «активными» частями нашей планеты. Чаще всего на такую активность указывает сам рельеф, например, области перехода уступов молодых гор в окаймляющие их низины или впадины. Или же землетрясения составляют нередкое явление внутри горных стран, но обычно там, где рельеф особенно контрастен. Случаются сильные землетрясения порой в местностях слабо или совсем негористых, например толчки 1920 г. на Лёссовой равнине Китая или толчок 1895 г. в районе Красноводска. Можно думать, что в подобных случаях это предвестники будущих перестроек земной коры и, следовательно, также и горообразования.
Человек воспринимает сильное землетрясение, естественно, как одно из величайших бедствий. Для природы и, в частности, для развития рельефа Земли все это лишь частные случаи, еле заметные эпизоды. Только их сумма, только их результаты, накопившиеся в течение тысячелетий, сотен тысячелетий, миллионов лет, да при том еще при однообразно направленном действии (например, множество отдельных эпизодов подъема местности за огромный промежуток времени), существенно влияют на развитие рельефа Земля. Нельзя забывать, что изменения, внесенные в формы земной поверхности даже очень сильными подземными толчками, со временем могут быть сглажены и даже полностью уничтожены экзогенными процессами. А в этом отношении в природе царит полное полноправие. Любой процесс, эндо- или экзогенный, как и результат его действия, может быть преодолен, стерт другим или другими процессами, действующими, так сказать, навстречу. В этом смысле только интегрирование, как, впрочем, и дифференцирование всевозможных воздействий на земную поверхность, как снизу, так и сверху, их осреднение поясняют нам современную ее картину.
Мгновенное изменение рельефа при сильном землетрясении
А — до 11-балльного землетрясения 4 декабря 1957 г. в Гобийском Алтае; Б — после землетрясения.
Зарисовка Б. Хаптагова (А — по данным точной топографической основы, Б — по фотографии)
Землетрясения, столь часто происходящий на Земле, ощущаемые людьми или непосредственно, когда интенсивность толчков равна или превосходит 3 балла, или регистрируемые с помощью высокочувствительных самописцев — сейсмографов, современные нам или бывшие в истории человечества и сохранившиеся в его памяти, — все это явления, стоящие близко к тектонике земной коры, более того, выражающие ее наиболее эффектные поверхностные импульсы.
Самым могущественным, хотя и подспудно, в большинстве случаев неуловимо для человеческого глаза действующим рельефообразующим фактором является, безусловно, тектоника земной коры, о которой уже немало говорилось в предыдущих главах. Напомним, что этот раздел геологии, иногда выделяемый в самостоятельную научную дисциплину, рассматривает движения земной коры, возникающие в связи с этими движениями деформации и образуемые последними структуры земной коры, от крупнейших до малых и самых малых. Занимаясь динамикой Земли, тектоника изучает и силы, создающие такие движения и такие деформации. Силы эти имеют планетарный масштаб, но их действие проявляется неравномерно в геологическом времени и неравномерно на земном шаре. Имея дело с динамикой и энергетикой Земли, тектоника, естественно, тесно связана с геофизикой, достижения которой приобретают в наше время все большее значение и растущее влияние также и на геологию в целом.
Диапазон геологических явлений, изучаемых тектоникой, очень велик. В ее компетенцию входят остаточные, так сказать застывшие, деформации геологических тел, происходившие во все времена геологической истории — от древнейших до совсем недавних и даже современных. Предметом внимания тектоники служат также структуры земной коры любого масштаба — от тех, что соизмеримы с площадями и поперечниками материков, до мелких складок земных слоев и их разрывов, нередко наблюдаемых даже в небольших выходах горных пород на дневную поверхность.
Понятно, что деформации земной коры так или иначе, во многих случаях непосредственно проявляются в деформациях ее поверхности. Это они поднимают сушу над морем, горные плато — над равнинами, горные сооружения — над окружающими пространствами с относительно низким и «спокойным» рельефом. Все основные черты рельефа Земли, имеющие планетарный масштаб, созданы, таким образом, тектоникой. Академик И. П. Герасимов предложил называть эти черты геотектурами, а составляющие их тектонические формы рельефа Земли меньшего размера — морфоструктурами. Эти термины и понятия, особенно вторые, широко применяются в научном языке советских географов, геологов и геоморфологов.
Тектоника действительно главный фактор в происхождении рельефа Земли: горные системы и страны в своей основе образованы интенсивно, часто многократно деформированными (дислоцированными) телами горных пород, слои собраны в складки, разбиты на крупные и мелкие блоки, тогда как страны с плоским, равнинным или платообразным рельефом сложены, во всяком случае снаружи, слоями, лежащими горизонтально или с небольшими наклонами. Конкретное изучение деформаций, или дислокаций, горных пород — область так называемой структурной геологии, которая может считаться также частью тектоники. Но вот вторая часть тектоники, называемая обычно геотектоникой, занимается наиболее общими вопросами: энергетикой Земли, происхождением действующих в земной коре сил, их направлением и распределением, историей их действия на протяжении всей геологической истории, их режимами, их связями с глубинными геосферами и т. д.
Как говорилось выше, в настоящее время широкое распространение среди геологов имеет теория литосферных плит, в которой главная роль отводится горизонтальным (тангенциальным) силам и соответственно движениям земной коры. Считается, что движения литосферных плит, захватывающих не только земную кору, но и верхние слои мантии, как определяют собой распределение материков и океанов, так и объясняют происхождение тех и других. Касаясь этих вопросов выше, пришлось особо отметить, что в происхождении рельефа Земли, отдельных материков и отдельных стран необходимо прежде всего иметь в виду вертикальную составляющую тектонических движений, какова бы ни была их природа. Такие движения, если исключить землетрясения как особый тип импульсивных тектонических движений, протекают обычно медленно (миллиметры, редко первые сантиметры в год), ритмичны и иногда имеют колебательный характер, т. е. неоднократно меняют свой знак.
Итак, среди «скульпторов» земной поверхности тектонические движения играют в современную эпоху, как играли и в геологическом прошлом, ведущую роль. Выяснено, что в создании современного рельефа Земли первостепенное значение имели тектонические движения, протекавшие с конца палеогена или начала неогена, т. е. 25–30 млн. лет назад, и доныне; Их принято обозначать как новейшие движения, или как новейшую тектонику. Знаменитый русский геолог В. А. Обручев первый обосновал выделение таких явлений, назвав их неотектоникой. Мы еще вернемся к этим вопросам в разделе «Жизнь гор». Ну, а что представляет собой с той же точки зрения вулканизм, о котором выше было сказано, как едва ли не о самом могущественном эндогенном процессе?
В обычном смысле вулканизм — это перемещение горячих, расплавленных масс, жидких или вязких, а также огромных количеств газов из нижних частей земной коры или из верхов мантии к поверхности Земли. При вулканических извержениях мы непосредственно наблюдаем такое перемещение, спокойное или бурное — вплоть до катастрофических взрывов. Само движение горячих масс вверх обусловлено разницей давлений в недрах и близ земной поверхности. Потоки перегретого вещества поднимаются, естественно, вверх. Но пути этих движений не так просты. Глубинные тепловые «неоднородности» могут создавать и, несомненно, на самом деле создают и близгоризонтальные течения, горячие потоки не только всплывают, но и разливаются. И трудно сомневаться в том, что если различные тепловые режимы в недрах непостоянны, то непостоянны и вызванные ими напряжения в земной коре — относительно тонкой, твердой и хрупкой оболочки нашей Земли. Таким образом, получается, что все явления тектоники вплоть до предполагаемых горизонтальных перемещений литосферных плит — порождение вулканизма (магматизма) в самом широком смысле слова. Иными словами, тектонические движения и деформации земной коры как бы подчинены вулканизму (магматизму), представляя его следствия. Землетрясения, в свою очередь, подчинены невидимым, на глубине идущим тектоническим процессам. Но нас интересует здесь i не весь магматизм, играющий определяющую роль в «физиологии» Земли, а вулканизм в прямом смысле слова как рельефообразующий фактор, как вынос энергии — массы Земли прямо на ее поверхность.
Вулканизму посильно, что называется, решение любых геоморфологических задач: создание гор, в том числе высоких и высочайших; создание равнин особого класса и различного масштаба; разрушение ранее созданного рельефа самого разнообразного происхождения; внесение специфических черт в денудационный рельеф с сохранением в нем «мертвых», но непохожих на другие неровностей рельефа, например некков — выделенных экзогенной препарировкой (т. е. выветриванием) жерловых частей, этих своеобразных «мумий» прежних величественных вулканов. Как видим, в геоморфологическом отношении вулканизм может делать все. Но в преобразовании земной поверхности за счет вулканических извержений надо указать еще одну черту — способность вносить такие преобразования и постепенно, путем спокойного излияния лав отдельными порциями, и катастрофически, практически мгновенно. Наконец, вулканизму принадлежит среди всех геоморфологических процессов первенство и в историческом плане, так как для самых ранних этапов истории Земли мы можем вообразить себе создание на первичной земной коре только двух типов рельефа — вулканического и метеоритных кратеров.
Как ни универсален, как ни могуществен вулканизм как «скульптор» земной поверхности, он работает то крайне интенсивно, то с перерывами, когда вулканические извержения в истории Земли как бы замирают или ограничиваются небольшими участками. Такова современная эпоха, начало которой совпадает с концом ледникового периода (около 10 тысячелетий назад). Возьмем для примера Советский Союз. При громадной его территории действующие вулканы имеются только на Курило-Камчатской гряде, где их насчитывается 68. На остальной территории СССР имеются потухшие вулканы на Кавказе в Средней Азии, в Восточной Сибири, но все они играют в современном рельефе очень скромную роль.
Уже говорилось, что вулканы во всей своей массе (на Земле насчитывается до 600 действующих вулканов на суше, на дне океана их, конечно, больше) имеют капризный нрав и в течение своей, в общем-то недолгой активной жизни, исчисляемой, как правило, тысячелетиями или немногими десятками тысячелетий, ведут себя очень неровно. Достигнув предельного «роста», когда колонна лавы уже не может подниматься выше (здесь действует ее собственный вес и прочность тела вулкана), вулкан начинает извергаться по боковым, ниже расположенным каналам. Такова Ключевская сопка — величайший действующий вулкан в СССР. Со временем может измениться и характер извержений, и состав извергаемых продуктов — лав, бомб, лапилли (камешки — итал.), пеплов, газов, термальных вод.
Каково же прямое воздействие вулканических извержений на рельеф? Прежде всего оно заключается в том, что, поднимаясь из недр, вулканический материал образует свои собственные нагромождения, строится «из самого себя». При одноактном извержении образуется сравнительно простая форма рельефа. При многоактных — более крупная и сложная, но всегда приближающаяся к конусу, если вулканический материал достаточно жидкий и не распылен при газовых взрывах в тонкий пепел. Самое же главное, что позволяет отличать друг от друга свежеобразованные формы вулканического рельефа, — химический и физический состав извергаемого материала, обилие или бедность вулканических газов. Именно это определяет поведение вулканов, умеренность или буйство их темперамента.
С чисто морфологической стороны среди вулканических построек выделяются: одиночные и групповые шлаковые конусы обычно небольших размеров; отдельные или «наслоенные» друг на друга потоки или покровы лав, связанные с излияниями из одного или многих вулканических центров и своей формой зависящие от неровностей рельефа, предшествовавшего излияниям; так называемые экструзивные купола (результат выжимания и затвердевания очень вязкой лавы), образующие резкоочерченные и крутосклонные формы, напоминающие пики, обелиски, купола; пологие лавовые вулканы, часто грандиозных размеров, вроде тех, что составляют и подводные и надводные части Гавайских островов; стратовулканы (или слоистые вулканы), состоящие из переслаивания лав, пемз, шлаков многократных излияний. Это крупнейшие и красивейшие вулканы суши, такие, как Ключевская сопка, Фудзияма и многие другие; лавовые равнины и лавовые плато, часто с очень ровной поверхностью; холмистые равнины исключительно мощных направленных вулканических взрывов. Эти последние сложены толщей в десятки метров взрывных отложений, состоящих из обломков старой постройки, а также свежего глубинного материала, который, обрушиваясь на существовавший перед этим рельеф, погребает его под собой. Другая разновидность подобных равнин, образующихся практически мгновенно, сложена пирокластическими потоками.
На территории СССР советские вулканологи впервые наблюдали такие явления при гигантских извержениях — взрывах камчатских вулканов Безымянного и Шивелуча соответственно в 1956 и 1964 гг. При этом и сами вулканы были преобразованы в считанные секунды. На вулкане Безымянном образовался открытый на юго-восток грандиозный кратер шириной около 2,5 км и глубиной 500–600 м. При уничтожении вершинной части вулкана высота его уменьшилась на 300 м, а общее понижение местности составило 800 м. Что касается Шивелуча, то двумя последовательными взрывами также был образован огромный кратер, а местность опустилась на 400–500 м.
Возникшие за счет взрывного материала вулканические равнины имеют очень своеобразные рельеф и микрорельеф. Тот и другой хорошо изучены. Могут подумать, что подобные преобразования земной поверхности хотя и грандиозны, но редки и их общая доля в процессе рельефообразования не столь велика. Это не так. Немногим более чем за последние сто лет (с геологической точки зрения, ничтожный промежуток времени) подобные камчатским гигантские вулканические взрывы произошли в Японии (вулкан Бандайсан, 1888 г.), в Зондском проливе (вулкан Кракатау, 1883 г.), на Антильских островах (вулкан Мон-Пеле, 1902 г.), на Аляске (вулкан Катмаи, 1912 г.), в США (вулкан Лассен-Пик, 1914 г.).
Ряд Камчатских вулканов (слева направо): Корякская, Авачинская и Козельская сопки
Рисунок Г. Ф. Уфимцева по фотографии
Вулканы, в деятельности которых разрушительные взрывы (хотя и созидающие в стороне новые формы рельефа путем накопления извергнутого материала) играют меньшую роль, растут быстро и также меняют рельеф местности на глазах человека. Так, вулкан Парикутин в Мексике, возникший в 1945 г., к концу первой недели достиг высоты 140 м, а к концу первого года — 325 м. Объем лав и пирокластики уже в первые годы жизни этого вулкана составил почти 1,5 км3. Другой мексиканский вулкан — Хорульо, достигший полукилометровой высоты, «строился» во второй половине XVIII в. менее тридцати лет.
Другими типичными крупными формами вулканического рельефа являются кальдеры — округлые в плане чашеобразные формы, окруженные кольцевым валом. Особой известностью пользуется кальдера обрушения вулкана Кракатау, сформированная в основных чертах за три дня, когда гигантскими взрывами было выброшено около 18 км3 пирокластического материала. Извержение сопровождалось быстрым опусканием земной поверхности на площади свыше 20 км2, достигавшим сотен метров. Такие движения, т. е. опускания во время извержения или ему предшествующие, принято называть вулкано-тектоническими. В их механизме главную роль играет, по-видимому, опустошение вулканических камер в земной коре под вулканами. Об этом говорят объемы выброшенных вулканических продуктов. Например, при катастрофическом извержении в 1815 г. вулкана Тамборо на Яве было выброшено по разным оценкам от 50 до 80 км3 этого материала, при образовании кальдеры Санторин в Средиземном море около 3500 лет назад, т. е. задолго до Троянской войны, — 70 км3. Трещинное, происходившее через Множество отдельных центров, лежащих на одной линий, извержение вулкана Лаки в Исландии в 1783 г. вывело на земную поверхность около 15 км3 вулканических продуктов. Перечень можно было бы продолжать, но и без этого ясно, что земная поверхность не может не испытывать деформации, если из-под нее происходит такая утечка материала. Впрочем, далеко не везде объяснение опусканий больших площадей в вулканических районах может быть столь простым. Сейчас установлено, что вулканы и вулканический рельеф вообще создаются главным образом в областях молодого тектонического опускания, но такое «главным образом» не является законом. Так, многие, причем огромные и активные вулканы Анд находятся на высоко поднятых не вулканических, а сложенных древними породами пьедесталах.
Формообразование земной поверхности, обязанное вулканическим извержениям, зависит от того, каков сам механизм вывода вулканического материала на поверхность и каков сам материал: химически более кислый или более основной, а также от того, какова в извержении роль вулканических газов. В зависимости от этих и некоторых других условий протекает само извержение. Различается сравнительно небольшое число типов извержений, носящих названия «в честь» представляющих их вулканов, например гавайский, пелейский, стромболийский и др. Все они хорошо изучены. С самими этими названиями вулканологи ассоциируют и «поведение» данного вулкана и в принципе те формы рельефа, которые могут возникнуть при его извержении. Опыт длительных наблюдений за отдельными вулканами, например Этной, Везувием, Ключевской сопкой, показал, что это именно так. Но, с другой стороны, сами извержения, особенно эксплозивные (взрывные), пока остаются непредсказуемыми, хотя в этом направлении ведется большая работа.
Итак, по характеру выноса из недр Земли вулканического материала можно говорить о его выжимании, жидком растекании и рассеянии в атмосфере или по земле за счет взрывов, в том числе направленных. Естественно, что новые вулканические формы рельефа в первом случае будут находиться вблизи места выноса, во втором — на большем, иногда значительном расстоянии (высокоподвижные основные лавы), наконец, в третьем — на очень большом расстоянии, в сторону господствующих ветров. В последнем случае выпадающий вулканический пепел может покрыть своим слоем весьма значительную поверхность. Во всех трех приведенных случаях вулканические формы рельефа как бы вытесняют элементы ранее бывшего рельефа, что достигается либо их разрушением (при вулканических взрывах), либо погребением под толщей свежих продуктов извержения (вулканитов).
Во время извержений, особенно сильных, вулканизм как рельефообразующая сила господствует над другими силами, парализуя их или меняя их направления. Так, потоки лавы способны создать в долине естественную плотину и надолго преградить реке путь в прежнем направлении, затопить озерную котловину, но, пожалуй, самые грандиозные схватки вулканов происходят с их собственными ледниками. Многие вулканы даже в тропиках поднимаются выше снеговой линии, и на них в пору «спячки» развиваются ледники. Это явление приобретает тем больший масштаб, чем в более высоких широтах находятся вулканы, чем больше атмосферных осадков. Примеры — вулканы Антарктиды, Аляски, Исландии, Камчатки, несущие мощные ледники. При извержениях происходит бурное таяние льдов в огромных масштабах, талые воды устремляются по уклону и производят опустошения. Любопытно, что, несмотря на катастрофическое таяние вскоре после прекращения извержений, ледники довольно быстро восстанавливаются и продолжают свою, им присущую геологическую работу, как это известно из наблюдений в Исландии и на Аляске.
Вулканическая деятельность протекает не бесконечно. С течением времени либо наступает более или менее продолжительный период покоя, либо же вулканизм в данной области полностью угасает. Иногда оказывается, что «умиротворение» вулкана обманчиво. История знает случаи, когда вулкан, казавшийся вполне потухшим, после тысячелетнего покоя вновь просыпался. Но во всех случаях, когда извержения прекращаются, вступают в действие другие, доселе подавленные силы экзогенного рельефообразования, и прежде всего эрозия и денудация. Имея дело, с одной стороны, со свежим вулканическим материалом, а с другой — со столь же свежими вулканическими формами, поверхностные силы тотчас же начинают их преобразование. Из эрозионных форм на склонах вулканических конусов возникают прежде всего желоба стока — барранкосы — в виде продольных насечек, покрывающих поверхность вулкана и придающих ему особый вид. Барранкосы образуются не только атмосферными водами, но и сухими лавинами незатвердевшего, неспекшегося материала (обломками туфов, пемз, шлаков, сухого пепла), а также грязекаменными потоками, особенно деятельными и грозными у подножий вулканов. Большую долю в разрушение угасших вулканов вносят, как мы видели, также и ледники, для развития которых, впрочем, нужно более продолжительное время.
Мы говорим о посмертной, все больше меркнущей «славе» отдельного вулкана. А что будет происходить С: рельефом целого утратившего активность вулканического района, целого ландшафта? В принципе то же самое — по- степенное исчезновение специфических для вулканизма форм рельефа. Если при этом данный участок еще и поднимается, эрозионные процессы усиливаются, соответственно усиливается денудация как первично-вулканических, так и новообразующихся долинных склонов. Дальнейший путь преобразования рельефа будет во многом определяться «литоморфным отношением» вулканических материалов, накопленных на поверхности в стадии активного вулканизма, к геологическому материалу местности, составлявшему «довулканические» формы рельефа. Рыхлые неспекшиеся вулканические массы будут, очевидно, быстро разрушаться и уноситься на более низкие уровни, тогда как стойкие лавы могут очень долго сохраняться, образуя в рельефе оригинальные столовые формы, покрышки, брони, предохраняющие подстилающие их породы от дальнейшего разрушения. Для полного или почти полного уничтожения вулканического рельефа потребуются миллионы и миллионы лет.
Такова в общих чертах совершенно своеобразная и, как видим, весьма важная роль вулканизма как рельефообразующего процесса. К этому надо добавить, что в истории Земли, даже самой отдаленной (миллиарды лет), он играл едва ли не ведущую роль, особенно в некоторые периоды, когда распространялся на гораздо большие площади, нежели в современную эпоху сравнительно умеренного вулканизма.
В наши дни многие ученые видят в вулканизме еще причину «запыления» атмосферы и тем самым сдерживания солнечной радиации (возможная причина оледенений) или, напротив, усиления «парникового эффекта» за счет поступления в атмосферу больших количеств углекислого газа. Некоторые ученые думают, что массовый вулканизм в конце палеозойской — начале мезозойской эры с его мощными подкоровыми очагами мог ослабить связь литосферы с подстилающей мантией и явиться первопричиной в движении отдельных литосферных плит. Имеются, наконец, серьезные данные и соображения о том, что именно вулканические, главным образом газообразные, вещества вместе с парами воды дали начало тем простейшим органическим соединениям, из которых в ходе эволюции Земли могло возникнуть живое вещество и начаться по крайней мере трехмиллиардолетний путь развития жизни на Земле. Последнее — только к слову. Это особая, большая, сложная тема, над которой трудятся многие ученые во многих странах.