Главнейший факт — это существование биосферы в течение всех геологических периодов с самых древних их проявлений.
Биосфера, в прямом переводе с греческого — сфера жизни, без сомнения, самое великое достояние планеты Земля. Это та оболочка, или геосфера, которая, как теперь установлено, развивалась вместе с другими наружными оболочками Земли с глубочайшей геологической древности и внесла в наш земной мир неповторимое в Солнечной системе качество. О том, что такое биосфера, теперь известно всем. Известно также, что исходным условием и местом образования биосферы было соприкосновение наружных геосфер, освещаемых и нагреваемых Солнцем. Известно, наконец, что крупнейший вклад в учение о биосфере принадлежит великому русскому ученому В. И. Вернадскому. В этой книге нас интересует совершенно определенный вопрос — как взаимодействуют биосфера и рельеф земной поверхности. Поэтому для начала обратимся еще раз к «тройственному союзу», обеспечившему создание современной биосферы, начавшееся миллиарды лет назад, — к контакту лито-, гидро- и атмосферы.
Обилие воды, причем в разных физических состояниях, ее способность ассимилировать и экономно расходовать солнечную энергию, что всегда отличало и продолжает отличать нашу планету от других планет Солнечной системы, считается одним из главнейших условий возникновения и развития жизни на Земле.
Общеизвестно, что на твердую земную поверхность опирается водная оболочка Земли, а на твердую и водную — атмосфера. Их соотношение очевидно, оно было известно, правда не в столь общей форме и по отношению не к круглой, а плоской земле, даже мыслителям глубокой древности. Вместе с тем давно бросалась в глаза прерывистость водной оболочки, ее фрагментарность, как и прерывистость открытой земной поверхности, определяемая положением берегов водоемов, границами моря и суши. Все это, по представлениям древних, покрывалось эфирной, или воздушной, оболочкой — атмосферой, в чем справедливо видели распределение «добрых мировых стихий» — земли, воды и воздуха. Эта общая простейшая картина при внимательном рассмотрении оказывается куда сложнее. При постоянном взаимодействии границы оболочек непрерывно меняют свое положение в пространстве, т. е. их рельеф чрезвычайно непостоянен и по отношению друг к другу, и по отношению, скажем, к центру нашей планеты. Здесь тоже все по Гераклиту — «все течет», неровно, но постоянно. Эта картина осложняется особенно тем, что резких границ между верхними оболочками Земли, ее геосферами, собственно говоря, не существует.
В самом деле, между каждыми соседними геосферами имеются переходные зоны, где они как бы смешиваются и где происходят явления, отличные от тех, что имеют место внутри самих сфер. Таков контакт земной коры с водной оболочкой. Различают собственно гидросферу и подземную гидросферу — царство подземных вод, где преобладают так называемые вадозные воды, инфильтрированные с открытой земной поверхности или со дна водоемов. Современная глубина проникновения вадозных, притом напорных вод в недра достигает 6–7 км, но, несомненно, они проникают сложными путями и глубже, возможно, до глубоких вулканических каналов, так как им приписывается участие в выделении вулканических паров на поверхность. Важно то, что подземная гидросфера имеется на всем земном шаре — и под «вечными» ледниками, и в самых сухих пустынях. Вместе с тем и наружная, открытая гидросфера, как бы ни была она спокойна, малоподвижна в данный момент, всегда содержит в себе растворенные, из земной коры заимствованные соли и механические взвеси. Со своей стороны, в зоне взаимного проникновения земной коры и подземной гидросферы происходит изменение их физического состояния и состава. Подземные воды, меняя свой минеральный и газовый состав, как говорят, метаморфизуются, а вещество земной коры обогащается окислами, механически разрушается, растворяется и т. д. Здесь образуются новые, более устойчивые в таких условиях минералы, что носит общее название гипергенезиса. Так образуются многие ценные месторождения каолинов, бокситов и т. д. Здесь главное царство коллоидов. В принципе подобным же образом «работает на себя» контакт открытой земной поверхности с омывающим ее воздухом. С одной стороны, воздух очень глубоко проникает в глубь земли по трещинам и порам, а с другой — аэродинамические силы вносят в нижние слои атмосферы немало мелкораспыленного твердого материала, как это особенно хорошо видно при ураганах и песчаных бурях в пустынях. Наконец, гидросфера, открытая и подземная, всегда находится во взаимопроникновении с воздушной оболочкой. Испарение, туманы, сублимация (испарение в определенных условиях) льда, его сухое вымораживание, так распространенное в Сибири и Арктике и на высоких горах, создают очень активный, всегда подвижный контакт этих оболочек. В силу особой физики двух сред зона их взаимодействия практически поднимается до самых высоких облаков. Каков же вывод из всего сказанного? Тот, что границы верхних оболочек Земли особенно «размыты», подвижны, непостоянны. Здесь вещество усиленно мигрирует, энергия переходит из одного вида в другой. Здесь мир, в котором мы живем. Именно с ним связано появление на Земле жизни, появление и развитие человекообразных (гоминид) вплоть до человека.
Мы снова приблизились к подлинно волшебному, предельно живописному и неисчерпаемо сложному явлению, особому компоненту материальной основы нашей планеты, по новейшим данным не имеющему места (или же, возможно, крайне подавленному) на других планетах Солнечной системы, — к биосфере.
Биосфера как особая, совершенно своеобразная оболочка нашей планеты, как сфера жизни была выделена из других наружных шаровых поясов или оболочек Земли еще во второй половине прошлого века знаменитым австрийским геологом Э. Зюссом. Под биосферой этот ученый (ему, кстати сказать, принадлежит первый в истории науки обзор и создание общей тектонической и геоморфологической картины мира в его сочинении «Лик Земли») понимал совокупность всего живого, все живые организмы на Земле. Впоследствии другие ученые, преимущественно зарубежные, придавали слову «биосфера» несколько различный смысл. В нашей стране, да теперь и во всем мире понятие о биосфере как об оболочке жизни, явлениях, следствиях, веществе, с ней связанных, после классических трудов одного из величайших естествоиспытателей и мыслителей XX века, Владимира Ивановича Вернадского, прочно вошло в естествознание. Здесь нет нужды рассматривать понятие о биосфере во всех деталях. Напомним, что верхняя граница биосферы, по современным данным, совпадает с границей тропосферы (12–16 км над уровнем океана), хотя в наш космический век, когда космонавты подолгу трудятся, а растения хорошо растут в космических кораблях, должна быть пересмотрена. Нижняя же граница как предел распространения в глубь Земли анаэробных бактерий определяется опять-таки без учета антропогенных воздействий (например, в виде глубоких шахт и еще более глубоких буровых скважин) от десятков метров до двух-трех километров. Основная масса живого вещества на суше сосредоточена в тонком приземном слое, но зато захватывает всю толщу гидросферы. И здесь мы должны ненадолго остановиться и вспомнить, о чем говорилось в начале этого раздела.
Биосфера, естественно, пронизывает и наполняет собой, скупо или щедро — смотря по обстоятельствам астрономического и климатического порядка, тонкую верхнюю часть земной коры, всю гидросферу, вероятно и подземную также, и нижнюю часть омывающей их атмосферы. Но при этом ясно, что в вертикальном разрезе, секущем соответственные части этих оболочек, биосфера имеет различную «плотность», что она неодинаково насыщена жизнью и всеми производными от нее явлениями. Оказывается, что особо высокое насыщение приурочено как раз-к границам, точнее, к переходным зонам соседних геосфер. Выходит, что именно активность, неустойчивость, интенсивность превращений материи и энергии в таких зонах обеспечивают, причем в масштабе всего земного шара, наиболее благоприятные экологические условия для концентрации и функционирования живого вещества. Это обстоятельство чрезвычайно важно и само по себе как для понимания современной структуры биосферы в вертикальном разрезе, так и для понимания ее длительной истории, обнимающей весь «геологический возраст» Земли, т. е. около 3–4 млрд. лет.
Если пока отвлечься от гидросферы, то мы увидим, что биосфера как бы обволакивает сушу, то редея, то уплотняясь, изгибаясь соответственно неровностям рельефа и примерно повторяя их очертания. Тесного примыкания, как бы придавленности биосферы к рельефу земной коры (поверхности довольно консервативной относительно других поверхностей наружных геосфер, но, конечно, также изменчивой во времени), когда мы переходим в пределы водоемов, как будто нет. Все водные глубины, даже в высоких широтах, несут в себе жизнь. И все же это не меняет сути дела. Разнообразными формами жизни насыщен главным образом верхний слой гидросферы, он же слой взаимодействия ее с атмосферой, так сказать «световой ярус», в пределах которого протекает фотосинтез растений — одно из начал всякой жизни. Этот слой не превосходит 200–250 м, составляющих предел и для ветрового перемешивания воды и внесения при этом особенно большого количества кислорода в толщу вод. Это и есть планктонная пленка жизни, по В. И. Вернадскому, по своей роли главнейшая граница в вертикальном разрезе биосферы. Большая часть последнего в глубоких водоемах населена, как известно, свободно плавающими организмами нектоном и по плотности населения во много раз уступает планктонной пленке. Наконец, в придонных слоях водоемов и иловых водах, пропитывающих донные осадки, мы находим еще одну пленку сгущенной биосферы — бентальную, где, кроме функционирования разнообразной жизни, еще накапливается конечная биопродукция гидросферы, неассимилированная живым веществом, и где идет накопление органогенных осадков. Громадное значение этой нижней границы биосферы, связанной с глубокими водоемами, очевидно. Но очевидно также, что нижняя пленка жизни в гидросфере развивается на рельефе дна. Опираясь, так сказать, на этот рельеф, донная пленка жизни активно его преобразует как за счет жизнедеятельности организмов, так и за счет настилания органических остатков.
Биосфера по классическому определению — сфера живого вещества на Земле. Общее количество этого вещества В. И. Вернадский считал даже постоянным, что в настоящее время оспаривается. Исключительность обладания сферой жизни одной нашей планетой почти доказана. Но геологически понятие о биосфере должно быть расширено. Имеется в виду роль биосферы, следствия ее существования во всём обозримом геологическом времени. Если на других, более или менее нам известных планетах биосферы не было, то и развитие, скажем, марсианской или венерианской коры, так же как и их рельефа, шло отличным путем. Ведь в составе так называемой осадочной оболочки, целиком входящей в земную кору, огромную роль играют органогенные породы, образованные хотя и неживым веществом, но при изначальном непременном и во многих случаях исключительном участии живого вещества. Такие породы слагают мощные толщи преимущественно морского происхождения, но также озерного и континентального, причем в последнем случае в них по ряду бесспорных признаков можно выделить отложения глубоководные, мелководные, прибрежные, а также отложения древних, давно исчезнувших озер, болот, рек. Древнейшие из них (архейские) изменены до почти полной неузнаваемости; среди молодых — мезозойских и кайнозойских — есть и такие, обстановка первоначального накопления которых и роль совершенно определенных элементов биосферы очевидны. Геология научилась детально их дифференцировать. Структурные и вещественные признаки осадочных пород рассказывают нам и о былых, палеогеографических условиях их образования, об общих чертах рельефа того времени и даже об общих, особенностях современной им биосферы. Количественная роль первоначально органических горных пород в земной коре огромна. Они образованы мертвым веществом, но связаны с деятельностью биосферы, существуя за счет когда-то живого вещества. С такой точки зрения мы должны признать, что точного «дна» геобиосферы, ее количественного итога за всю историю Земли и вместе с тем и рельефа этого дна мы пока не знаем.
К ископаемым продуктам деятельности биосферы, образованным на ранних этапах ее развития, относятся шунгиты, графитовые гнейсы, углерод которых имеет, по мнению большинства ученых, органическое происхождение, мраморы, т. е. перекристаллизованные известняки, многие (если не подавляющая часть) обычные известняки, горючие сланцы, антрациты, каменные и бурые угли, настоящие яшмы, многие кремнистые сланцы и т. д. Все эти породы порождены биосферой, порождаются и сейчас, и мы можем наблюдать все детали, всю физику и химию ранней перестройки их материала или материала отделения от них в результате сложных реакций первоначально живого вещества.
Известно, что современная атмосфера, ее кислородная часть, образована биосферой, вероятно, в середине или конце палеозойской эры. Подобную же роль биосферу сыграла и в современном составе земной коры, обогащавшейся органикой в течение 3–4 млрд. лет. Поскольку начало жизни лежит, по-видимому, в возникновении бактерий, а также в образовании и размножении примитивных зеленых водорослей и связано с прозрачной воздушной и полупрозрачной водной оболочками, становится совершенно ясной и абсолютно верной мысль В. И. Вернадского о том, что солнечная энергия в ходе времени проникает все дальше в глубь планеты. Это и есть нисходящая ветвь земного потока энергии — массы, о чем шла речь в этой книге. Поскольку теперь доказано, что Земля обладала биосферой уже в раннем докембрии, то и взаимодействие биосферы со всем своим материальным основанием — земной корой и ее рельефом — имело место уже тогда.
Основатели научного почвоведения, русские ученые, с самою начала указали на теснейшую связь и параллельное развитие земной поверхности и почв Почвы-наглядное и, так сказать, наиболее устойчивое в глазах человека воплощение взаимодействия биосферы и земной коры. Нередко рельеф выступает как определяющее условие для образования и сохранения почв. Конечно, почвообразование — процесс сам по себе очень сложный, зависящий, как показал, в частности, Б. Б. Полынов, от множества условий и этими условиями определяемый. И все же роль рельефа всегда очень велика. Неплохим примером, впрочем отрицательным, служит рельеф типа бедленд, в котором эрозионная сеть развивается столь густо и стремительно, что ни растительности, ни почве в таких условиях буквально негде зацепиться.
Человек вначале наблюдал современную ему природу, приспосабливаясь к ней. Только по мере накопления научных знаний он смог не только наблюдать окружающий мир, но и понимать природу прошлого и делать предположения относительно будущего природы, в том числе живой, т. е. дальнейшей судьбы биосферы. Тем не менее картины природы и жизнь современной нам биосферы при их осмысливании в историческом процессе развития природы по-прежнему дают богатейший материал для размышлений.
Первое, что бросается в глаза при таком подходе, — зависимость биосферы от многих слагаемых «мертвой» природной среды. Структура, состав оболочки жизни зависят прежде всего от планетарных факторов, не говоря уже о космических. Географическая, широтная и вертикальная зональность климатов на Земле, определяя режим среды, в которой развивается биосфера, играет первостепенную роль. Но если широтная зональность связана с формой и движением Земли как целого, то вертикальная зональность, наблюдаемая нами в горах, обусловлена геоморфологическим режимом Земли (хотя в подоснове своей ведущую роль здесь играет, как мы видели выше, тектоника земной коры). При современном распределении материков и океанов в эту простую схему вносятся и другие очень важные дополнения, и вся эта совокупность создает ту экологическую среду, которая от места к месту упрощает, усложняет, сгущает, разрежает, качественно изменяет биосферу. А ведь при современном распределении воды и суши на Земле, знакомом нам с детства по обычной географической карте, наравне с очертаниями береговой линии материков громадное значение для местных особенностей биосферы имеет еще рельеф) океанического дна, в каждой отдельной точке определяющий «мощность гидросферы» — глубину океанов и морей. Таким образом, геоморфологический фактор выступает и-здесь как одно из главнейших условий, влияющих на структуру и состав биосферы.
Если теперь перейти от крупнейших форм рельефанашей планеты к ее частностям, локальным ландшафтам и местностям, то здесь тесное взаимоотношение рельефа и биосферы будет не менее очевидным. Сравнивать друг с другом в этом отношении, например, Альпы и Ломбардскую низменность или соседние пустыню Гоби и Монголо-Сибирскую горную систему даже излишне, настолько очевидны различия органического мира этих областей, т. е. не только состава биосферы, но и ее структуры, ее мощности, ее биоэнергетических показателей и возможностей. Достаточно представить себе среднегорную местность с ее не Слишком высокими водоразделами и достаточно широкими, развитыми долинами, чтобы убедиться и здесь в сохранении той же закономерности. Дно долины, ее склоны и перевалы в соседние долины, экспозиция склонов по странам света, их крутизна, грунты — все это входит в понятие экологических ниш, определяемых прежде всего местными геоморфологическими условиями, т. е. рельефом. При этом в общем случае биосфера стремится закрепить или сгладить рельеф под собой. Вспомним, действительно, о посадках деревьев на склонах, о закреплении растительностью дюн и барханов и о противоположных явлениях — деформации склонов при вырубке на них леса, при неумеренном выпасе скота, при недостаточно продуманном сооружении дорог. При этом напрашивается некоторая аналогия в поведении целых сообществ организмов, ведущих прикрепленный (бентальцый); и подвижный (нектонный), образ жизни. В накоплении) биомассы в обоих случаях, т. е. в гидросфере и на суше, первое место принадлежит, если не учитывать вмешательство человека, первому, прикрепленному и теснейшим образом связанному с рельефом своего ложа бентальному комплексу.
Для самых ранних форм жизни на заре биосферы не-, обходимо предположить существование гидросферы, в которой возникли простейшие формы жизни — бактерии, а позже фотосинтез водных зеленых и синезеленых растений, следовательно, наличие емкостей для водных бассейнов. Состав воды океанов был иной, как и состав воздушной, почти бескислородной оболочки. Однако наличие в ней и азота и углекислоты кажется бесспорным. Эти самые ранние этапы геологической жизни Земли мы не можем себе представить без очень мощного восходящего потока массы — энергии, превосходящего поток нисходящий, при этом допуская и продолжавшийся в то время разогрев недр и, напротив, начавшееся общее охлаждение поверхности планеты. Следовательно, на Земле и в то время существовал сложный выразительный рельеф, осложняемый, с одной стороны, бомбардировкой Земли метеоритами, а с другой — мощным вулканизмом. Можно утверждать, что дальнейшее развитие биосферы как в смысле все возрастающего ее разнообразия, так и количественного роста биомассы характеризовалось не только приспособлением к формам земной поверхности (вероятно, только дна водоемов), но и активным' взаимодействием с ее формами, начиная, по-видимому, с самых малых. Можно думать, что первыми биотопами были первые морфологически сходные с современными элементы вулканического рельефа. Больше мы пока ничего об этом не знаем.
Если жизнь на Земле, создавая удачную, т. е. приспособленную и устойчивую к существующим экологическим условиям модель, новый тип и форму организмов, обеспечивала таким образом на какое-то время «серийный» выпуск ее образцов, т. е. многих и многих поколений одинаковых живых существ, представляющих отдельный вид или род, а вместе с тем не прекращала в течение 3 млрд, лет создание все новых живых моделей и, таким образом, эволюция биосферы продолжалась все это время, то несколько иную картину мы видим (а точнее, с большой уверенностью предполагаем) в геологической истории неорганической природы. Формы земной поверхности, ее морфологические «модели» также, конечно, изменялись с течением времени, но во всяком случае сохраняли во всем существенном и генетическое, и грубо геометрическое подобие самих себя. Это положение имеет силу особенно для фанерозоя, т. е. для последних трех геологических эр, охватывающих около полумиллиарда лет. Мы имеем здесь в виду не разнообразные комбинации и совокупности форм рельефа, возникавшие в разном пространстве и времени, но сами эти формы. Какие же достаточно убедительные доказательства можно привести в пользу этого положения? Да ведь хотя и все менялось на Земле и продолжает меняться, основные общие законы существования материи оставались постоянными. Такие свойства материи и ее предметов, как вес, плотность, вязкость, теплоемкость, электропроводность и другие физические «параметры», несомненно, количественно меняясь в тех или иных пределах, оставались качественно все теми же свойствами.
Поле силы тяжести Земли со временем изменялось и под влиянием притока новых порций метеоритного вещества, т. е. увеличения его массы, а также при внутренних перестройках недр и перераспределении плотностей, но сама сила тяжести продолжала существовать. Таким же, наверное, и даже более постоянным был распад радиоактивных элементов, генерирующий тепло. Уже отсюда ясно, что относительная простота, а главное, относительное постоянство основных физико- и химико-геологических закономерностей, прежде всего наличие гравитационного поля, с необходимостью вели к созданию ограниченного числа также и геоморфологических «моделей». Горы, холмы, долины, созданные текучими водами, равнины далекого прошлого чем-то, конечно, всегда отличались друг от друга, как и от подобных им современных гор, долин и т. д., а все же общие их свойства и морфологический облик менялись гораздо меньше. Другой пример. Иным было в далеком прошлом выветривание, иным был состав текучих вод, состав воздуха, но все эти и им подобные геологические условия и процессы (они же, собственно говоря, и геоморфологические процессы) действовали в том же направлении, в каком действуют сейчас. Все эти процессы в течение огромных промежутков времени (верно сказано, что природа никогда не испытывала недостатка времени) вели и к морфологическому однообразию или, лучше сказать, единообразию генетически сходных однородных геоморфологических ландшафтов. Интуитивно или сознательно это положение, между прочим, уже давно принималось почти за аксиому всеми (в числе последних К. К. Флеровым, З. Бурканом и др.), кто занимался живописными реконструкциями давно минувших геологических эпох, т. е. изображением их ландшафтов. Не упрекать же их в недостатке фантазии за то, что у всех авторов-художников при изображении природы «ископаемых» ландшафтов формы рельефа принципиально ничем не отличаются от современных.
Несомненно, что прошлая история Земли в течение последних трех эр или даже всего позднего докембрия (протерозоя) протекала при иных Пространственных комбинациях, иных планах размещения, других границах и размерах климатических зон, нежели современные Перемещались и сами географические полюса. А ведь именно такие зоны контролируют распределение на Земле зоогеографических и фитогеографических зон или поясов, определяя тем самым «горизонтальную» структуру биосферы. Поэтому бесспорно и другое. Во-первых, общий порядок распределения климатических зон прошлого относительно земных полюсов и экватора (также подвижных!) не мог отличаться от современного. На Марсе с его полярными шапками твердой углекислоты этот порядок в принципе не отличается от земного. Во-вторых, по основным своим показателям климатические зоны прошлого также не могли существенно отличаться от современных. Изучение отложений фанерозоя по крайней мере, в особенности изучение содержащихся в них окаменевших остатков флоры и фауны, не позволяет нам вообразить себе существование в то время таких климатических условий, какие бы ни встречались в том или ином полушарии в настоящее время. Нигде на Земле в течение этого времени, времени неуклонного поступательного развития биосферы, нельзя представить себе лунный, марсианский или венерианский климат. А отсюда следует, что сходные с современными климатические обстановки прошлого приводили к возникновению, развитию, отмиранию и смене вполне или весьма сходных с современными, климатом обусловленных (морфоскульптурных) форм земной поверхности и соответственно сходных с современными «ископаемых» морфологических ландшафтов. Особенна если иметь в виду их глобальное распространение. Можно лишь думать, что в такие глобальные ландшафтные закономерности вносили своеобразие, да и то главным образом с количественной стороны, такие могучие силы, как массовый поверхностный вулканизм или покровное оледенение, подобное современному оледенению Гренландии и особенно Антарктиды.
Итак, хотя развитие биосферы и рельефа земной поверхности всегда шло и — идет параллельно и взаимосвязанно, рельеф находится под воздействием относительно однообразно действующих абиотических, т. е. прямо с жизнью не связанных, факторов, способность к комбинациям которых ограничена. Например, суровые полярные условия делают почти невозможным химическое выветривание горных пород. Напротив, развитие биосферы, ив посредственно связанное с лучистой энергией Солнца j подчиненное особым, очень сложным законам постоянной-трансформации органического вещества, вело к создании» все новых форм жизни и соответственно все новых форм и механизмов их влияния на рельеф земной поверхности Таким образом, не только движения земной коры и климатические сдвиги сами по себе были повинны в смене географических и геоморфологических ландшафтов прошлого, но и биосфера, ее разрастание вверх, в тропосферу, вниз до подошвы осадочной оболочки и вширь — от морских побережий в глубь древних палеозойских материков. Развитие жизни во все расширяющейся биосфере вело также к увеличению объемов остатков организмов, переходящих в ископаемое состояние, к расширению, усложнению и в конечном счете к усилению их воздействия на формы твердой земной поверхности.
Одним из самых ярких примеров воздействия рельефа на биосферу в материковых — условиях является прославленное сибирское пресное море Байкал. Находясь в глубине Азиатского континента, в огромном удалении от морей, в царстве резко континентального климата, Байкал обладает многими удивительными свойствами, определяемыми в первую очередь геоморфологией его впадины: ев молодым (5–6 млн. лет) горным окружением, глубиной (1620 м ниже уровня моря), общей емкостью — около 23 тыс. км3, сложной и своеобразной формой. Высокие горы, резкие перепады в рельефе дна создают здесь громадные геоморфологические контрасты, строго контролирующие распределение элементов биосферы. В прибрежных мелководьях здесь обитает фауна, общая для озер сибирской зоны, на глубинах же — совершенно своеобразная, нигде более не известная — эндемичная фауна Байкала. Поэтому вполне понятно, что В. И. Вернадский — в своей знаменитой работе «Биосфера» дважды сослался на пример Байкала.
Воздействие биосферы на рельеф, как и обратное воздействие рельефа на биосферу, можно рассматривать^ по-видимому, двояко — учитывая и не учитывая роль человека. Первое можно отнести к появлению человека на Земле в эоплейстоцене, 2–3 млн. лет назад. Второе касается всего огромного времени существования биосферы оставившего нам в качестве самых информативных исторических документов органогенные отложения остатки фауны и флоры, ископаемые почвы и целиком саму биосферу на современной стадии ее эволюции. Все это бесценно для решения задач исторической геологии и исторической геоморфологии, которую часто называют еще «палеогеоморфологией». Всяческие подробности, относящиеся к этим задачам, мы оставим здесь в стороне. Для нас важно главное, заключающееся в том, что в ходе геологического времени влияние биосферы на рельеф необратимо расширялось и усложнялось и что, напротив, воздействие рельефа на биосферу, т. е. обратная связь из-за возрастания сложности, внутреннего богатства и, наконец, из-за мощи порожденного биосферой человеческого разума, столь же необратимо ослабевало. С такой точки зрения допустимо деление истории Земли и ее биосферы на фактически все ее «дочеловеческое» время и геологически совсем недавно наступивший человеческий — антропогенный — этап с его искусственным, техногенным влиянием на естественный рельеф при неуклонном возрастании такого влияния. В наши дни оно сказывается прежде всего в проникновении человека на все уровни гипсографической кривой, где находится как бы сердце-вина биосферы — вверх до высочайшей в мире вершины Джомолунгма в Гималаях и вниз до дна Марианской пучины в Тихом океане, и в массовом создании искусственного, техногенного рельефа. Земная биосфера, ее «человеческие изделия» в виде космических аппаратов уже достигли поверхности Луны, Марса, Венеры и пролетели недавно близ Юпитера и Сатурна. Нет слов, чтобы выразить восхищение столь возросшей мощью человека. Но диалектика явлений остается диалектикой. С самого начала, еще задолго до наступления эры технического прогресса, в каменном веке человек начал вмешиваться в естественный ход геоморфологических процессов. Много позже он стал создавать насыпи, плотины, курганы, терриконы, колодцы, шахты, карьеры, каналы. Сейчас в Советском Союзе и во многих других странах предпринимаются и противоположные рельефообразующие меры — рекультивация отработанных горными предприятиями площадей, их выравнивание с помощью современной техники. Техногенные воздействия на рельеф усиливаются во всем мире и по морским побережьям, вторгаясь в рельеф прибрежных мелководий, проникают в вершинные части высоких нагорий — все это для нужд транспорта, градостроительства и энергетики. Вмешательство человека в естественный рельеф, в целом вполне оправданное, требует, однако, знания законов, которые управляют развитием, как и консервацией, земной поверхности в естественных условиях. При неучете этих условий и закономерностей возникают нежелательные, а порой и трагические явления.
Города — долговременные капитальные человеческие поселения — явление общее для всех цивилизаций. Сооружение городов и других крупных архитектурных комплексов, уходящее в глубокую древность, было цепью усилий по созданию основ искусственного, антропогенного рельефа. Для Двуречья, например, подобными сооружениями, не многим уступающими по сложности своих форм современным зданиям, были зиккураты Ура, Шумера, Вавилона. Современные города с их высотными зданиями и многоэтажными улицами, пожалуй, уже обогнали по своей морфологической сложности и вычурности скульптурные произведения природы, например в среднегорном ландшафте. Усиленная всемирная урбанизация наших дней есть, следовательно, расширение сферы антропогенного рельефа за счет естественного, идущее одновременно с большой скоростью из множества отдельных центров. Для поддержания, сохранения искусственного рельефа требуются также искусственные очень сложные и дорогие меры. Хотя в этом деле очень важно качество строительных работ и материалов, а все же примерю древней Трои, Ниневии, Вавилона, Египта, Рима и множество других показывают, насколько эфемерно существование искусственных геоморфологических «объектов» преданных воле природных стихий. Вспомнить уместно, что развалины великих древних городов со временем превратились в холмы столь естественного вида, что были опознаны археологами по грудам мусора или только пс историко-географическим свидетельствам (Ниневия, Троя) В современную эпоху сопротивление антропогенной рельефа антропогенным же разрушительным силам, вроде тех, какие участвовали в гибели древних городов, доводя их до полного уничтожения, пожалуй, уменьшается но зато в разрушительную работу включились новые антропогенные влияния — прямое загрязнение окружающей среды. Достаточно указать здесь на существующие серьезные опасения по поводу дальнейшей судьбы афинского Акрополя.
В рельефе Земли, как мы видели выше широко распространены поверхности выравнивания, охватывающие в хорошо или плохо сохранившемся виде очень большие площади. Они свидетельствуют об одновременных их образованию и создавших их интервалах «спокойной жизни» земной поверхности в прошлом. Это четкие рубежи настоящие вехи в истории рельефа. Это эпохи подавления результатов действия на земную поверхность нисходящего потока массы — энергии, увлекающего ту и другую вниз, на возможно более глубокие уровни земных недр. Эпохи образования поверхностей выравнивания имеют в истории Земли огромное значение — настолько они длительны, сложны, существенны. Чем же отличается в этом смысле современная эпоха — выравниванием или же расчленением суши? Какие тенденции преобладают в этом отношении в биосфере?
Первая тенденция — преимущественная концентрация, быстрое развитие и расцвет элементов биосферы на долинном и равнинном рельефе. «Очеловеченная», антропогенная часть биосферы также выбирает для своего обитания и умножения по возможности выровненный рельеф. История плотного заселения человеком великих аллювиальных и приморских равнин говорит сама за себя. С незапамятных времен долины и дельты Нила, Двуречья, Инда, Янцзы и других великих рек заселялись, естественно, особенно густо. Но и «дикая» часть биосферы утверждается и процветает особенно пышно в условиях равнинного рельефа, и причину этого нужно видеть, кажется, в том, что, представляя большие неудобства для обитания и расселения живых существ, особенно растений, горный рельеф как бы содействует всякого рода стихийным бедствиям и в какой-то мере и в какие-то промежутки времени препятствует равномерному поступлению в Средних и высоких широтах солнечной энергии. Лучшие тому примеры — сельвы Амазонки с их огромной естественной концентрацией и богатством дикой биосферы, или прерии Северной Америки до истребления бизонов и урбанизации, или даже равнины и котловины засушливой степной Азии по сравнению с тамошними полупустынными горами и холмогорьями.
Предварительное искусственное выравнивание строительных площадок — явление общеизвестное, но, пожалуй, в строительной практике не менее часто применяется террасирование склонов. Внося осложнение в морфологию склонов и в то же время являясь частной, ограничен^ > операцией выравнивания, в целом это искусственное во; действие на земную поверхность имеет целью закрепит, склоновый, т. е. расчлененный, рельеф. Вторая тенденция — сдерживание развития элементов биосферы в слои; ном, особенно горном, рельефе — ясна Из сказанной выше. Но и влияние самой биосферы на изменения гор него рельефа при этом соответственно ослаблено.
В интересах человечества поддерживать в разных случаях обе тенденции воздействия биосферы на рельеф Что же касается «равнодействующей» таких тенденций то и ее нужно оценивать отдельно дли «дикой» и, та; сказать, «культурной» биосферы. В целом в разрезе геологической истории первая «работает» преимуществен» на выравнивание, вторая же — и на то и на другое. Для собственного своего благополучия человек должен, казалось бы, поддерживать равновесие в обеих тенденциях Пока все же силы цивилизации рассматривают облает; горного рельефа либо с эстетико-оздоровительной, либо технико-экономической точки зрения. Они во многом противоположны. Найдут ли они общий язык, как человечество решит для себя вопрос: что делать дальше с горами? — ответить сейчас невозможно.
Все же нельзя не обратить сейчас внимание на то, что при возрастании мощи воздействия человека на рельеф Постепенно, стимулируясь технико-экономическими и демографическими причинами, формируется на Земле новая» антропогенная поверхность выравнивания, поверхность активной разносторонней деятельности людей. Ее внутренний рельеф сложен, запутан, но весь он сосредоточен повсюду в небольшом интервале относительных высот? Эта отнюдь не гипотетическая поверхность антропогенного выравнивания имеет глобальный охват. В зачаточном состоянии она существует на всех материках и полого, начиная с уровня моря, воздымается в глубь суши.
Итак, мы можем констатировать, что характер взаимен отношений рельефа Земли и ее биосферы в течение геологического времени существенно менялся, глубокие изменения имели место еще в палеозойскую эру. С появлением наземной растительности они привели развитие земной поверхности к коренным сдвигам. Лишь спустя несколько сот миллионов лет произошло выделение и отряда приматов человека, но его влияние на природу: течение Последующих 2–3 млн. лет оставалось на уровне влияний других слагаемых биосферы. Обезьянолюди мало отличались по этому признаку от простых обезьян Зато современная эпоха, и не тысячелетия или века а последние десятилетия, когда началась научно-техническая революция, стала подлинной революцией и в развитии рельефа Земли.
И рельеф Земли, и ее биосфера, как и все на нашей планете, имеют глубокие генетические и исторические корни. Условия, сделавшие возможным возникновение и развитие биосферы, — общие с условиями возникновения и развития самобытного рельефа Земли. И рельеф ц биосфера возникли, существуют и развиваются на той замечательной физической границе сред или геосфер, где восходящая с начала геологических времен, создавшая и воздушную и водную оболочки планеты ветвь потока массы — энергии рассеивается и сменяется противоположной ей ветвью нисходящего потока.
Возникнув совсем недавно, так называемая ноосфера, или сфера человеческого разума и труда, вероятно, будет стремиться все шире и глубже видоизменять рельеф Земли. Рациональное в ноосфере должно преобладать. И человеку, родившемуся в лоне «дикой» биосферы, необходимо сохранить заповедные места столь же «дикого», возможно, лишь «обезоруженного» в своих стихийных капризах доантропогенного рельефа.