Я хотел, чтобы мы вступили в новую эру биологии, создав новую форму жизни только из информации ДНК, полученной в лаборатории.
Философы древности верили, что материя, а значит, и Земля, состоит из четырех элементов: земли, воздуха, огня и воды. Кроме того, они считали, что звезды в небе сделаны из удивительного и загадочного пятого элемента, который определял власть небес над жизнью. Эти метафизические элементы имеют мало общего с современной концепцией химических элементов, в которой строительными блоками материи считаются молекулы, но в целом их можно сравнивать, так как в восприятии древних людей четыре элемента были «кирпичиками» при создании Вселенной. Мы можем продолжить сравнение, соотнеся понятие пятого, метафизического элемента, с молекулами ДНК и РНК, которые сделали возможными эволюцию, наследование и развитие жизни. Мысль о том, что квазичудесный пятый элемент теперь попал в тесные объятия амбициозного человечества, пугает. К добру ли?
Люди с давних времен пытались управлять жизненными процессами. Еще в каменном веке земледельцы научились выбирать семена пшеницы и других злаков таким образом, чтобы в следующем поколении зерна становились более крупными и питательными. Сейчас почти все семена, которыми пользуются фермеры, являются результатом гибридизации — того самого эволюционного механизма полового скрещивания между разными видами. Человечество много тысячелетий постигает секреты природы и даже вмешивается в них, но лишь совсем недавно мы смогли сказать, что добавили еще один элемент к существующим четырем природным механизмам геномного творчества — к механизмам, на которые опирается естественный отбор, лежащий в основе эволюции. Этот пятый механизм — заранее рассчитанная генная инженерия живых геномов.
Если раньше все генные модификации, созданные руками человека, были следствием случайного совпадения свойств подвергаемых скрещиванию животных или растений, то сейчас — спасибо золотому веку генетики — мы взяли в свои руки преднамеренный генетический и эпигенетический контроль. Это не что-то пугающее или чудесное, что ждет нас в будущем. Уже в течение целого поколения мы живем в мире генной инженерии, во всяком случае если говорить о животных и растениях. Пока вмешательства в человеческий геном не происходило, однако, боюсь, это всего лишь вопрос времени.
Первоначальная реакция СМИ на публикации о черновой расшифровке человеческого генома показала, что мы нашли новый взгляд на самих себя. На протяжении повествования мы учились смотреть на себя с разных сторон, порой совершенно новых. Сложно рассматривать такие возможности беспристрастно. Хотя, возможно, сейчас самое время реагировать именно так. Ученые, в том числе занимающиеся молекулярной генетикой, соблюдают моральные и этические принципы. Применение инструментов наступающего золотого века «креативной генетики» (или, учитывая возрастающую важность эпигенетической регуляции, стоит использовать термин «креативная геномика»?) потенциально несет человечеству благо, в частности, в сфере медицины, а также за счет улучшения качества и количества пищи и, что менее очевидно, за счет дальнейшего изучения чудес природы.
Что может быть более важным, чем понимание генетической основы болезни, которое может быть использовано для лечения больных и предотвращения появления заболевания в будущем? Развитие в этой сфере уже началось и стремительно ускоряется, например, в виде предымплантационной генетической диагностики и отбора здоровых эмбрионов. У некоторых людей могут появиться этические или религиозные препятствия к такого рода вмешательствам. Пионеры молекулярной генетики и рекомбинантной ДНК, такие как Джеймс Котсон, Сидни Бреннер и Пол Берг, указывают, что здравый способ успокоить опасающихся — донести до неспециалистов суть научных исследований и то, что безопасность, а также моральная и этическая составляющие являются обязательной и привычной частью таких исследований и всегда принимаются во внимание.
Развитие современной генетики и геномики практически не касается генной инженерии, которая многих волнует. Большая часть фармацевтических исследований эпигенетики, включая изучение некодирующей РНК, направлена на улучшение медицинской терапии. Такой подход уже стал доминирующим при лечении рака. Я уверен, что он станет и основой для исследования различных аутоимунных заболеваний.
Как вы увидели, наше физическое и ментальное здоровье тесно связано с генетикой и влиянием окружающей среды. Генетические и эпигенетические различия между индивидуумами могут определять предрасположенность к развитию наркотической и алкогольной зависимости. Схожие индивидуальные вариации могут быть важны для определения предрасположенности ко многим болезням. Это открывает новые возможности и новые сферы исследования заболеваний, такие как персональная геномика и предсказательная медицина. Персональная геномика (которую часто называют интегрированным персональным профилированием омик) — это амбициозная программа исследований, направленная на динамическую оценку психологического состояния и здоровья человека на протяжении определенного времени. Одно из подобных исследований проводит профессор генетики Стэнфордского университета Майкл Снайдер. В ходе этого исследования используются генетические, транскриптомные и протеомические данные волонтеров, которые также проходят регулярные обследования метаболического состояния и изменений профилей аутоантител. Идея заключается в том, чтобы определить ключевые изменения в геноме, эпигеноме и внутренней психологии, а также во взаимодействии между ними при нормальном состоянии здоровья и во время подготовки к началу болезни.
Аналогичные проекты есть и в других странах. В Великобритании с 2006 по 2010 год при содействии благотворительной организации UK Biobank 500 тысяч человек в возрасте от 40 до 69 лет прошли медицинское обследование и сдали кровь для анализа ДНК, а также образцы слюны и мочи для проведения дальнейшего анализа. Цель этого проекта — создать банк данных, который улучшит наше умение предотвращать, диагностировать и лечить множество болезней, в том числе серьезных и смертельных, таких как рак, сердечно-сосудистые заболевания, инсульт, диабет, артрит, остеопороз, глазные болезни, депрессия и некоторые формы деменции. В 2005 году в США доктор Джордж М. Черч объявил о запуске проекта Personal Genome («Персональный геном»), в рамках которого геном 100 тысяч добровольцев из Канады, США и Великобритании должен был подвергнуться секвенированию (данные предполагается хранить в течение долгого времени). Собранная коллекция генотипов, или полных последовательностей ДНК всех 46 хромосом, будет опубликована вместе с дополнительной информацией о медицинских записях и физических измерениях, данными МРТ и другими, что позволит исследователям изучить связь между генотипом, окружающей средой и так называемым фенотипом — физическими характеристиками и развитием волонтеров. Это даст возможность не только выявить генетические связи конкретных параметров с определенными болезнями, но и узнать реакцию общества (в частности, страховщиков и работодателей) на подобные экстраполяции от генотипа к прогнозированию здоровья человека. Несмотря на то что проект потенциально может привести к дискриминации некоторых людей, он считается весьма успешным. Похоже, что подобные генетические и эпигенетические скрининговые программы, охватывающие большое количество людей, будут проведены еще во множестве других стран.
Со временем проекты по расшифровке личного генома могут стать основой для предсказательной медицины, позволяющей предвидеть серьезные заболевания и принимать активные меры для снижения риска их развития в будущем. Такие эксперименты могут быть полезны и для предупреждения развития ятрогенных заболеваний, возникающих как побочные эффекты лечения. Недавнее исследование нежелательных лекарственных реакций, проведенное с участием 5118 детей, получавших лечение (в том числе хирургическое) в британской больнице, показало, что у 17,7 % из них проявился хотя бы один побочный эффект. Авторы полагают, что фактический процент мог быть даже выше, так как они исключили из статистики возможные, но неподтвержденные случаи. Более 50 % побочных эффектов пришлось на опиаты и анестетики, а в 0,9 % случаев препараты нанесли непоправимый вред или привели к тому, что пациенту пришлось назначить более интенсивное лечение. Важно понимать, что многие из этих побочных эффектов (например, рвота после общего наркоза) не представляли опасности для жизни, но тем не менее были неприятными для детей и запоминались надолго, в связи с чем предпочтительнее было бы исключить их. Опасные и даже летальные побочные эффекты могут развиваться при длительном лечении как в больнице, так и дома под наблюдением врача. Некоторые из них станет возможным предсказать и соответственно предотвратить путем правильного подбора лекарств, когда в медицине начнут использоваться результаты исследований в области омик.
Геном может интересовать людей и по личным причинам. Все больше людей платят за секвенирование генома — кто-то из интереса к собственному генетическому прошлому, а кто-то для того, чтобы узнать о предрасположенности к заболеваниям. Например, женщина, которая из-за своей семейной истории волнуется, что может заболеть раком груди или яичника, может выяснить, является ли она носительницей определенных генов, повышающих риск заболевания, например BRCA1 или BRCA2. Это позволит ей вместе с лечащим врачом разработать план действий, чтобы снизить риски.
Все подобные исследования, а также разрабатываемые на их основе варианты лечения могут вызывать этические, моральные или религиозные вопросы. Мы живем в стремительно меняющемся мире, где сложные личностные и социальные проблемы рассматриваются под такими углами, о которых никогда бы даже не подумали наши родители и деды. В обществе растет потребность в генетическом консультировании, геномном прогнозировании и, возможно, в будущем — генной инженерии.
Даже сегодня некоторых продолжает волновать, что более глубокие познания в генетике и развитие технологий генетического манипулирования могут создать почву для евгеники. Ряд активистов заявляет, что предымплантационная генетическая диагностика и выбраковка генетически поврежденных эмбрионов представляют собой неприемлемую форму евгеники, даже несмотря на то, что большинство семей, оказавшихся в подобных тяжелых обстоятельствах, посчитают такой образ действий совершенно правильным. Уже сейчас коммерческая клиника в Калифорнии предлагает будущим родителям самим выбрать пол малыша. Что еще ждет нас в будущем? Сможем ли мы генетически манипулировать эмбрионами, чтобы изменять их внешний вид, фигуру, спортивные или умственные способности? Смогут ли родители или чиновники в будущем приказать ученым создать детей с заданными генетическими и эпигенетическими характеристиками?
Я начал писать эту книгу в надежде, что она даст читателю, далекому от науки, представление о том, как функционирует человеческий геном. Хочется верить, что я справился с этой задачей. То, что мы можем понять эволюцию, структурный состав и функционирование генома, кодирующего жизнь, имеет эпохальное значение не только для ученых, но и для всего человечества. Это важно потому, что не ученые, а все общество должно принимать решение о том, куда мы будем двигаться дальше. Естественный отбор, мощная сила природы, которая выбирает, какое генетическое нововведение останется в популяции и изменит ее генофонд, не стремится к совершенству. Как объяснял Дарвин, естественный отбор определяется лишь выживанием (или вымиранием) отдельных особей, в зависимости от которого они либо не оставляют потомства, либо вносят свой вклад в генофонд. Естественный отбор не имеет высокой цели в моральном, философском или религиозном смысле. Он не планирует и не подстраивается под достижения человеческого разума и настойчивости. Но наша способность изменять геном по своему усмотрению меняет ситуацию. Генная инженерия, примененная к человеческому геному, обеспечивает такое продуманное планирование. Однако у нее есть и свои последствия. Возможность лечить и предотвращать серьезные заболевания, несомненно, принесет пользу обществу, но некоторые другие функции генной инженерии могут оказаться опасными в неумелых руках, поэтому моральные и этические факторы также важны. Думаю, не будет преувеличением, если я скажу, что сегодня превращается в научный факт то, что раньше считалось лишь фантастикой.
Генную инженерию начали применять к растениям и домашним животным еще в 1970-х годах. Изначально этот процесс сопровождался сопротивлением общества, причем часть протестов была основана скорее на эмоциях, чем на рациональных рассуждениях. Однако и ученые, и государственные чиновники верили в потенциальную пользу этой технологии, например в ее способность накормить голодающих в тех регионах планеты, которые страдают от неблагоприятного климата или экологических катастроф. Критики опасались, что модифицированные гены могут «утечь» с полей в окружающие экосистемы. Перемещение генов от одного вида к другому называется горизонтальным переносом генов. Мы с вами знаем несколько ярких примеров такого перехода эволюционных границ в природе, например генетический симбиоз, включая бактерии и вирусы, и гибридизацию.
В 1976 году Национальный институт здравоохранения США создал консультационную комиссию для анализа потенциальной опасности, исходящей от рекомбинантной ДНК. За этим последовал выпуск ряда «сложных, но не жестких» нормативов от Департамента сельского хозяйства США, Агентства по защите окружающей среды и Управления по контролю за продуктами и лекарствами. Это привело к созданию комитета под эгидой Управления науки и технологий, который занимается утверждением генетически модифицированных растений под постоянным наблюдением и контролем других регулирующих органов. В 2000 году был принят Картахенский протокол по биобезопасности — международное соглашение, регулирующее передачу, использование и обращение с ГМО. Участниками протокола, который де-факто представляет собой торговый договор, являются 157 стран. Генетически модифицированные растения обычно имеют встроенные изменения, препятствующие скрещиванию с растениями, не являющимися ГМО. Кроме того, в их геномах имеются своего рода «датчики слежения», которые позволят генетикам выявить источник утечки модифицированных генов в окружающую среду, если она случится. В 2010 году исследование, проведенное американскими учеными, показало, что 83 % дикой канолы, произрастающей рядом с полем генетически модифицированных злаков, содержит модифицированные гены устойчивости к болезням. Несмотря на то что ученые, занятые в исследованиях ГМО и сельского хозяйства, не видят в таких «утечках» существенного риска для окружающей среды или человека, противников генной инженерии это не убеждает.
Принятое в ЕС в июне 2014 года постановление разрешает странам-участницам выращивать у себя генетически модифицированные растения по решению местных властей. Решение поддержали все члены ЕС, кроме Бельгии и Люксембурга. Страны, противящиеся введению ГМО, например Франция, будут иметь право запретить их. В то же время Англия может разрешить их использование, даже если другие части Великобритании, например Шотландия и Уэльс, будут против. Но пока еще слишком рано говорить, кто окажется прав.
Возможности генетической модификации человеческого генома, скорее всего, вызовут еще больше противоречий и дебатов.
Большинство врачей, вероятно, будут выступать за внесение изменений в геномы людей, которые подвержены риску развития серьезных и потенциально смертельных заболеваний, если такие изменения будут возможны, а процедура их внесения окажется безопасной. Разве можно не хотеть спасти множество молодых женщин от рака груди или яичников, а детей — от муковисцидоза, гемофилии или болезни Хантингтона? Но как только у нас появится технология, позволяющая изменять человеческий геном, насколько широким окажется ее применение? Мы начали свое путешествие, стремясь раскрыть тайны человеческого генома, но в конце пути нас ждет ящик Пандоры, открывать который придется ученым и обществу будущего.
Кстати говоря, что насчет природы? У нее как раз нет никаких предубеждений против изменения генома, поэтому ученые задаются вопросом: продолжается ли сегодня естественная эволюция человека?
Современная история человечества связана с существенными изменениями окружающей среды и стиля жизни. Со всех сторон на нас то и дело нападали смертельно опасные инфекционные заболевания, такие как малярия, туберкулез, желтая лихорадка, пневмококковая пневмония, менингококковый менингит, коклюш, корь, полиомиелит и дифтерия. Многие из этих болезней возникали волнами из поколения в поколение. Не следует забывать и о повседневных болезнях, вызываемых стафилококками и стрептококками, например нарывах, ревматизме, скарлатине и абсцессах в костях и полости рта. Я успел повидать и вылечить пациентов, страдающих от многих из этих заболеваний. Восприимчивость к болезням — один из самых мощных внешних факторов, влияющих на адаптивные геномные изменения и, в частности, затрагивающих эволюцию комплекса тканевой совместимости и эпигенетических участков генома. Кроме того, постоянное присутствие резидентных ретровирусов и геномных интрогрессий, возникших в результате гибридизации наших предков с неандертальцами и денисовцами, продолжает действовать на уровне генофонда вида.
В 2006 году группа Войта из департамента генетики человека в Университете Чикаго разработала новый аналитический метод поиска снипов в геномных исследованиях, направленный на выявление последствий влияния современных эволюционных факторов. Изучив три масштабные географические популяции (жителей Восточной Азии, население Северной и Западной Европы и народность йоруба из Ибадана, Нигерия), Войт и его команда обнаружили множество указаний на недавние эволюционные изменения, в том числе гены, связанные с восприимчивостью к малярии, чувствительностью к лактозе и соли с учетом климата, а также с развитием головного мозга. Кроме того, они выявили несколько так называемых генетических бутылочных горлышек, которые все еще развивались и, судя по всему, были связаны с подверженностью определенным заболеваниям. Поэтому я даже на секунду не могу предположить, что мы когда-нибудь прекратим эволюционировать.
Эволюция — основа жизни. Сегодня человечеству угрожают новые вирусные враги — ВИЧ-инфекция, гепатиты А, В и С. Опасность несут и природные катаклизмы, в том числе вызванные самим человеком. Напомню, что наша эпигенетическая система развивается именно за счет реакций на окружающую среду. Эпигенетическую систему можно сравнить с очень чуткой и постоянно изменяющейся программой, которая управляет нашим генетическим аппаратом. Менее заметным фактором может быть существенное увеличение объема знаний и продление срока образования молодежи в сочетании с радикальными переменами в современном обществе, которые мы наблюдаем в последние два десятка лет: это и повсеместная компьютеризация, и появление социальных сетей, и формирование «глобальной деревни». Все это оказывает огромное влияние на молодежь, которая находится на том жизненном этапе, когда физиология и эпигеном еще развиваются. Можно ли сомневаться, что такие огромные изменения участвуют в эволюции человека? Какова вероятность, что перемены в поведении и системе обучения, возникшие в результате ИТ-революции, повлияют на будущее развитие мозга?
Но есть и еще одно недавнее явление, самое невероятное изменение из всех: способность генетических инженеров в будущем создавать искусственные формы жизни.
Крейг Вентер, ученый и основатель компании Celera Genomics, представил в 2001 году первый коммерческий проект расшифровки человеческого генома. Во время работы над проектом его команда изобрела несколько важных инноваций и разработала концепцию EST и метод «выстрела из дробовика», применяемый при секвенировании. В своей увлекательной биографии Вентер заявляет, что наука всегда стремилась к тому, чтобы стать хозяйкой жизни: «В течение многих веков главной целью науки было, во-первых, понять жизнь на самом глубинном уровне, а во-вторых, научиться ее контролировать». Вентер мечтает о будущем, в котором ученые научатся создавать новые формы жизни и вносить изменения в человеческий геном для удовлетворения личных и социальных потребностей. И он уже сделал несколько первых шагов в этом направлении.
Крейга Вентера никак нельзя назвать скучным человеком. Он учился в школе в Солт-Лейк-Сити, но в детстве предпочитал урокам серфинг и греблю. Впоследствии Вентер списывал это на синдром дефицита внимания, с которым ему пришлось долго бороться. Несмотря на то что он не поддерживал войну во Вьетнаме, Вентер был призван на службу во флот и работал медбратом в полевом госпитале. Во Вьетнаме он попытался совершить самоубийство, заплыв далеко в океан, но более чем в миле от берега передумал и вернулся назад. Опираясь на свой военный опыт, он решил построить карьеру в медицине, но позже сменил ее на биомедицинские исследования. Будучи напористым и амбициозным по натуре, Вентер оказался не только проницательным ученым, но и прирожденным бизнесменом. В 2007 и 2008 годах журнал Time включал его в список 100 самых влиятельных людей в мире, а 2 года спустя он оказался на 14-м месте в списке «50 самых влиятельных людей планеты» от New Statesman.
В 2002 году, через год после публикации расшифровки человеческого генома, Вентера выгнали из Celera Genomics из-за расхождений во взглядах с основным инвестором. В настоящее время он является президентом Института Дж. Крейга Вентера, который действует в двух областях. Первую сам Вентер называет синтетической биологией. В рамках этой дисциплины он и его коллеги хотят научиться создавать искусственные организмы, действующие на благо отдельных людей и всего общества. Над этой задачей Вентер начал работать вместе с компанией Synthetic Genomics, которую он основал еще в начале 2000-х. Он изучил минимальные геномные требования для одноклеточной жизни, а затем синтезировал основу генома мельчайшей из живущих на Земле бактерий, Mycoplasma genitalium, вызывающей инфекции мочевых путей у человека. По сути, он реконструировал минимальный геном в несколько этапов — сначала на компьютере, а затем в лаборатории. До этого крупнейшими из искусственно собранных подобным образом геномов были куда более короткие геномы вирусов (первым из них был геном вируса полиомиелита, созданный Экардом Уиммером и его коллегами). Геном Mycoplasma был длиннее в 20 раз. Преодолев множество препятствий, группа Вентера смогла заменить природный геном живой бактерии синтезированным эквивалентом и создать живую бактериальную клетку. Отчет об этом научном прорыве был опубликован в 2010 году. Теперь ученые могут специально создавать различные формы клеточной жизни по заказу.
Но загадка еще не разгадана до конца. Невероятная история изучения таинственного человеческого генома как всегда ставит перед нами множество новых вопросов.
Прав ли Вентер, говоря, что наука всегда стремилась не только к тому, чтобы понять жизнь на самом глубинном уровне, но и к контролю над ней? Над этим нужно как следует подумать. Я немного сомневаюсь в ответе, а вот Вентер, кажется, уверен в своей правоте. Но почему это так? Неужели из-за того, что люди слишком высокомерны? Или у нас есть какие-то причины пытаться управлять жизнью? Если Вентер прав, то мы уже сделали шаг вперед от простого размышления над этим вопросом. Гораздо проще изменить с помощью генетической инженерии половую клетку или внести поправки в геном оплодотворенного эмбриона, чем в развитого человека. Мы уже можем делать это с растениями и животными. В апреле 2015 года в ходе генетического эксперимента был впервые получен искусственный эмбрион человека. Я считаю это таким же огромным прорывом, как и открытие гравитации Ньютоном, формулирование теории относительности Эйнштейном и экстраполяция эйнштейновских открытий для создания атомной бомбы. Как и эти эпохальные открытия, подобный прорыв может обернуться как добром, так и злом.