(Окончание, начало в № 2)
По условиям прочности предельно допустимая расчетная величина вертикальной скорости приземления Ми-26 составляет менее 3,6 м/с для нормальной полетной массы и менее 3,2 м/с для полетной массы выше нормальной при максимальной скорости касания 70 км/ч.
До начала испытаний по посадкам на авторотации были проведены наземные испытания Ми-26 на специальном стенде повторной статики для подтверждения прочности конструкции до вертикальных скоростей приземления 2,5 м/с.
Результаты моделирования посадок на режиме авторотации вертолетов Ми-6 и Ми-26 показали, что на Ми-26 возможно выполнение посадки с вертикальными скоростями 2,5–3 м/с при поступательной скорости приземления 72 км/ч, посадочная скорость вертолета Ми-6 при той же вертикальной скорости приземления составляет 50 км/ч.
Однако из-за необходимости соблюдения сроков испытания было принято решение об ограничении вертикальной скорости приземления до 2,5 м/с. Это ограничение по вертикальной скорости потребовало поиска новой техники выполнения посадок на авторотации, обеспечивающей меньшие вертикальные скорости приземления с учетом некоторого запаса, обусловленного возможными отклонениями от оптимальной техники пилотирования.
При посадке на авторотации уменьшение вертикальной скорости приземления происходит за счет энергичного увеличения общего шага («подрыва»). За счет конструктивного совершенства удельная кинетическая энергия несущего винта у вертолета Ми-26 в 1,72 раза меньше, чем у Ми-6.
Увеличение посадочной скорости у Ми-26 по сравнению с Ми-6 объясняется большими значениями вертикальной скорости установившегося планирования и меньшей эффективностью торможения. Уменьшение эффективности торможения и «подрыва» для вертолета Ми-26 является следствием большего коэффициента заполнения s и меньшего значения g.
Кроме основных ограничений по максимально допустимым поступательным и вертикальным скоростям приземления, накладывались и ограничения по максимальному посадочному углу тангажа — 10°, поскольку его предельные величины составляют 9° и 12° соответственно при полностью обжатых и необжатых амортизационных стойках главных шасси и минимально допустимой величине частоты вращения несущего винта в момент приземления 66 %, из условий прочности втулки несущего винта и обеспечения безопасных зазоров между лопастями и хвостовой балкой.
Соотношение кинетической энергии вертолета и энергии несущего винта показывает, что кинетическая энергия вертолета должна быть минимальной, а энергия несущего винта — максимальной. Этого можно добиться лишь уменьшением вертикальной скорости снижения и увеличением частоты вращения несущего винта к моменту «подрыва».
Готовясь к выполнению программы испытаний, я просматривал лекции по аэродинамике вертолетов, которые в МАИ нам блестяще читал Владимир Сергеевич Вильдгрубе. И в одной из них нашел доказательство того, что авторотация устойчива до границы срыва. А это означало, что возможно планирование на режиме самовращения при значениях общего шага больше минимального и, следовательно, при меньших вертикальных скоростях. Поначалу это предложение было встречено осторожно. Высказывались сомнения в том, что летчик сможет координировать сложные движения на самом ответственном этапе посадки.
Рис. 1. Зависимость вертикальной скорости снижения на режиме авторотации от частоты вращения НБ
Моделирование посадок по предложенной технике показало, что безопасная посадка возможна при поступательной скорости приземления 73 км/ч и вертикальной 1,7 м/с с учетом всех накладываемых ограничений. Таким образом обеспечивался достаточно большой запас по вертикальной скорости приземления по сравнению с проверенной в испытаниях на прочность на наземном стенде повторной статики. Однако, хотя результаты моделирования и были обнадеживающими, предстояла проверка новой техники в летных экспериментах, естественно, сначала по отдельным составляющим, а в случае подтверждения — и при выполнении посадок на авторотации.
В первую очередь необходимо было проверить влияние частоты вращения несущего винта на вертикальную скорость снижения и определить сочетания общего шага и частоты вращения, обеспечивающие устойчивую авторотацию с меньшими значениями вертикальных скоростей.
Зависимость вертикальной скорости снижения на режиме авторотации от скорости вращения несущего винта представлена на рис. 1. Видно, что изменение скорости вращения с 92 % до 84 % дает уменьшение вертикальной скорости снижения более чем на 3 м/с при скорости планирования 130 км/ч, что уменьшает кинетическую энергию вертолета более чем на 25 %. На скорости 160 км/ч кинетическая энергия вертолета уменьшается примерно на 15 %.
Для определения величины раскрутки несущего винта и уменьшения вертикальной скорости при торможении на высоте 1000 м были выполнены режимы с уменьшением поступательной скорости со 130 км/ч (для полетной массы 37 т) и 150 км/ч (для полетной массы 49 т) до скорости 100 км/ч.
Как показали испытания, на режимах торможения увеличение оборотов несущего винта незначительно: при минимальном общем шаге и при изменении угла тангажа на кабрирование на 10° оно составляет только 1,2–3%. Вертикальная скорость уменьшается на 2,5-З м/с (меньшие значения относятся к полетной массе 37 т).
В связи с тем, что планирование на режиме авторотации для полетных масс более 48 т происходит при значениях общего шага больше минимального, изменение угла тангажа на кабрирование на 10° с одновременным уменьшением общего шага несущего винта до минимального дает больший прирост частоты вращения несущего винта (2,5–5,5 %), что увеличивает его кинетическую энергию почти на 15 %. Значительный темп уменьшения частоты вращения несущего винта в процессе «подрыва» общего шага несущего винта при малых полетных массах вертолета приводит, как это отмечалось ранее, к заметному изменению эффективности управления.
Поэтому для Ми-26 стандартная техника пилотирования при «подрыве» не могла быть рекомендована: летчик привычными, но недостаточными по величине и темпу отклонениями продольного управления (что вполне вероятно) мог выполнить посадку с вращением на кабрирование и, следовательно, с большим, чем допускается для посадки, тангажом.
В этом случае за счет вращения происходит дополнительное нагружение элементов конструкции шасси и хвостовой балки. Исходя из этих соображений посадочный угол тангажа вертолета должен быть зафиксирован перед увеличением общего шага, когда еще сохраняется обычная эффективность управления, а в процессе «подрыва» необходимо только удерживать вертолет в заданном положении, что не требует больших отклонений продольного управления.
При определенных значениях полетных масс частота вращения несущего винта приближается к 66 %, то есть к ограничению по этому параметру, а в процессе «подрыва» происходит ее уменьшение ниже допустимой величины. Эту особенность необходимо учесть при выполнении посадок на авторотации.
Рис. 2. Зависимость вертикальной скорости приземления при выполнении посадки на авторотации вертолета Ми-26 от полетной массы
Для следования требованиям норм прочности и создания безопасных зазоров между лопастями и хвостовой балкой уменьшение общего шага НВ после посадки должно быть таким, чтобы обеспечить его минимальное значение (1°) только при частотах вращения несущего винта, заведомо меньших 50 %. Минимальное значение общего шага несущего винта должно быть достигнуто только после срабатывания центробежных ограничителей свеса, когда угол взмаха лопасти вниз ограничивается величиной -2° (минимальный угол взмаха лопастей вниз до срабатывания центробежных ограничителей свеса составляет -6°).
Выполнению посадок с выключенными двигателями на вертолете Ми-26 предшествовала серия полетов на вертолетах Ми-8 и Ми-6 для проверки выбранной методики посадки. Сравнение результатов математического моделирования посадок на режиме авторотации этих вертолетов показало, что наиболее близким аналогом вертолета Ми-26 по динамике посадки является вертолет Ми-8 с максимальной полетной массой 12 т, но при меньших скоростях планирования, обеспечивающих равенство вертикальных скоростей захода на посадку и приземления.
Целесообразность отработки новой техники посадок на Ми-6 полетной массой 40,5 т обосновывалась его близкими к Ми-26 характеристиками массы и габаритами, а также возможностью проведения подобия по удельной энергии, что было важно для начального периода испытаний, предусматривавшего посадки с полетными массами 36 и 40 т.
Однако выяснилось, что Ми-6 по динамике посадки, темпу увеличения общего шага при «подрыве» и другим параметрам в качестве аналога для вертолета Ми-26 не подходит. Поэтому на Ми-6 было выполнено только две посадки вместо шести запланированных. Процесс выполнения посадки, то есть время от начала маневра до приземления, у этого вертолета занимает около 17,5 секунд.
Таким образом, результаты моделирования и летных испытаний с учетом особенностей Ми-26 позволили выработать следующие рекомендации выполнения посадок:
— планирование при малых полетных массах и минимальном общем шаге на режиме установившейся авторотации выполняется на скорости 130–150 км/ч, при полетных массах 48 т и более при значениях общего шага 2–3°, обеспечивающих поддержание частоты вращения несущего винта 86–88 %;
— увеличение угла тангажа для гашения поступательной скорости начинать на высоте 50–40 м. При планировании и значениях общего шага больше 1° одновременно с увеличением угла тангажа общий шаг уменьшается до минимального;
— угол тангажа увеличивается не более чем на 10–12° от балансировочного значения на предпосадочном планировании;
— посадочный угол тангажа 10° необходимо создавать перед «подрывом» общего шага;
— «подрыв» общего шага несущего винта выполнять на высоте 18–15 метров с темпом 6-10 °/с;
— после приземления общий шаг уменьшать с таким расчетом, чтобы он достигал минимального значения при частоте вращения 50 % и менее.
После выполнения предусмотренных программой испытаний посадок на вертолетах Ми-6 и Ми-8 на режиме авторотации были выполнены посадки по-самолетному на вертолете Ми-26 с вертикальной скоростью приземления около 1,5 м/с и нормальной полетной массой (вертикальная скорость на предпосадочном планировании около 7–8 м/с).
Для выполнения первой посадки с полетной массой 36 т регулировка несущего винта была выполнена так, чтобы при минимальном общем шаге несущего винта обеспечить его обороты 86 % от номинальных на режиме установившейся авторотации.
Вторая посадка выполнялась с той же полетной массой 36 т, но при эксплуатационной регулировке несущего винта. Во время ее выполнения выяснилось, что на установившейся авторотации обороты винта ниже, а эффективность управления меньше.
Последующие посадки выполнялись с эксплуатационными регулировками несущего винта с последовательным увеличением полетной массы в каждом полете на 4 т. Посадочные массы вертолета при этом последовательно составляли 40, 44 и 48 т. В заключение были выполнены посадки на режиме авторотации с нормальной полетной массой. Все посадки выполнялись на грунтовую полосу с травяным покровом.
В результате испытаний были определены следующие параметры:
— время посадки от начала выполнения маневра для гашения поступательной скорости до момента приземления составляет 8,25-8,5 с;
— поступательная скорость приземления в первой посадке с полетной массой 36,1 т составила 68,5 км/ч, а в последующих посадках последовательно уменьшилась до 49,5 км/ч. При посадках с нормальной полетной массой скорость касания составила 53,5 и 54 км/ч;
— вертикальные скорости приземления большей части посадок с полетными массами, близкими к нормальной, составляли 1,6–1,8 м/с (рис. 2);
— вертикальные перегрузки вблизи центра тяжести вертолета при полетных массах, близких к нормальной, в среднем составили 1,7–1,9 (рис. 3);
— общий шаг несущего винта при «подрыве» увеличивался до 8,3-13,5°. При полетных массах, близких к нормальной, общий шаг увеличивался до максимума (13°30′);
— частота вращения несущего винта при минимальном общем шаге менялась в соответствии с изменением полетной массы. На авторотации при значениях общего шага больше минимального частота вращения выдерживалась в пределах 86–88 %;
— при создании угла тангажа на кабрирование 11° частота вращения несущего винта увеличивалась на 1,2–3%, а со сбросом общего шага до минимального увеличивалась на 2,5–5,5 %;
— в момент приземления минимальная частота вращения несущего винта составляла 62,5 % при полетной массе 36,1 т и 67–70 % при полетных массах, близких к нормальной;
— путевая балансировка на всех этапах от установившейся авторотации и до момента приземления практически не менялась (-0,5–1,5);
— расстояние от концов лопастей до хвостовой балки в процессе посадки, вплоть до момента остановки вертолета после пробега при минимальном значении общего шага, составляло более 2,6 м.
Использование вертолета Ми-8 в качестве аналога позволило сократить запланированное количество посадок на авторотации на вертолете Ми-26 почти вдвое. Испытания помогли выявить следующую закономерность: посадочные скорости вертолетов Ми-8 и Ми-26 при одинаковых вертикальных скоростях приземления практически пропорциональны нагрузкам на их ометаемую площадь.
Программа испытаний по посадкам на авторотации вертолета Ми-26 выполнялась экипажем МВЗ им. М.Л. Миля в следующем составе: командир Г.Р. Карапетян, второй летчик Ю.Ф. Чапаев, штурман-испытатель Б.И. Мешков, бортинженер А.Д. Денисов, ведущий инженер по летным испытаниям В.А. Изаксон-Елизаров.
После выполнения государственной программы по посадкам (всего 7 посадок) экипаж МВЗ в очень короткие сроки подготовил к работе на Ми-8 экипаж заказчика. Затем были выполнены три посадки на Ми-26 смешанным составом и две самостоятельные экипажем заказчика (командир экипажа полковник А.П. Холупов).
Вся программа летных испытаний, включая полеты на вертолетах, была закончена менее чем за полтора месяца. Во время проведения программы было выполнено 33 посадки на авторотации с выключенными двигателями на вертолетах Ми-6, Ми-8 и Ми-26, из них: 12 посадок на Ми-26, 2 посадки на Ми-6, 19 посадок на Ми-8.
Рис. 3. Зависимость вертикальной перегрузки при посадке на режиме авторотации вертолета Ми-26 от полетной массы
Позже, в 1985 году, перед поставкой вертолетов Ми-26 ВВС Индии по требованию заказчика были выполнены посадки на авторотации вертолета с нормальной полетной массой. В 1997 году по программе сертификационных испытаний вертолета Ми-26 летчик-испытатель С.А. Сучушкин выполнил посадки вертолета полетной массой 56 т.
Ми-26 — уникальный вертолет и по своей конструкции и по летно-техническим характеристикам. Летчику за ограниченный период времени необходимо выполнить большое количество точных, строго дозированных и безошибочных действий, поскольку, в отличие от других машин, у Ми-26 более узкие диапазоны допустимых отклонений по различным параметрам посадки (высотам начала торможения, «подрыва» общего шага и др.). Проведенные испытания доказали возможность безопасного выполнения на вертолете Ми-26 посадок на авторотации с различными полетными массами, включая нормальную, подтвердили правильность выбранной техники их выполнения и показали достаточную сходимость с результатами математического моделирования.
Гурген КАРАПЕТЯН, заместитель генерального директора ОАО «МВЗ им. М.Л. Миля» Герой Советского Союза, заслуженный летчик-испытатель СССР