Экономить топливо можно!

Раньше при разработке инструкций, которыми экипаж вертолета должен руководствоваться в полете, не обращалось должного внимания на экономию топлива. Сегодня эта проблема стоит очень остро и требует своего решения. Добиться экономии топлива в полете, причем значительной — от 5 % до 20 %, можно. Для этого экипаж вертолета должен уметь определять оптимальный крейсерский режим полета, при котором такая экономия возможна. На МВЗ им. М.Л. Миля создана и прошла испытание в институте ВВС методика определения оптимальных крейсерских режимов вертолета Ми-26. По результатам испытаний отмечено, что эта методика может быть применена в полетах на Ми-26, дана рекомендация разработать аналогичную методику и для Ми-8, поскольку на этих вертолетах, имеющих очень большой налет, можно получить и существенно большую экономию топлива.


Таблица 1. Приборная скорость Vnp
Vпр 0 1 2 3 4 5
0,5 195 205 215 225 235 245
1 190 195 205 215 225 235
2 175 185 195 200 210 220
3 165 175 185 195 195 205
4 165 165 170 175 185 190
5 145 150 155 165 175 180
6 140 140 150 160 - -

Метод определения оптимальных крейсерских режимов полета, позволяющий найти оптимальную частоту вращения несущего винта ηопт и оптимальную приборную скорость Vпр. опт при меняющихся массе вертолета m, высоте полета H, температуре воздуха t, скорости ветра U1 и его направлении Ψв, прост. Для этого нужно использовать графики, показанные на рис. 1. В правой части рисунка — прямые, каждая из которых относится к определенной высоте: H = 0; 0,5; 1–6 км, слева — три семейства кривых ηопт, (qG)0, (Cv)опт, значения которых зависят от температуры наружного воздуха (от +40 до -40 °C).

Эксплуатационный диапазон частот вращения несущего винта для Ми-26 при использовании описываемого метода разрешен 88–91 % при положительных и 85–91 % при нулевой и отрицательных температурах наружного воздуха. Ограничение ηmin при положительных температурах (88 % вместо 85 %) связано с возрастанием переменных нагрузок во втулке несущего винта с увеличением температуры и уменьшением η. Кривые (qG)0 построены при разных частотах вращения несущего винта: верхние ветви — при ηmin, средние — при ηоптmin<= ηопт<= ηmax), нижние — при ηmax (из-за ограничений частот ηmin и ηmax также являются ηопт). Кривые при ηопт для разных значений температур совпадают, что подтверждает график на рис. 3: минимальный относительный километровый расход топлива одинаков при температуре наружного воздуха от -11 до +22 °C.

Опишем метод использования графиков в случае, когда задана высота полета и требуется определить ηопт и (Vпр)опт. Описание дадим на примере, когда m = 50 т, Н = 2,1 км, t=0, U = 60 км/ч. Из точки m = 50 т проводится вертикаль до высоты Н = 2,1 км, от получившейся точки проводится горизонталь. На горизонтали по кривым ηопт при t = 0 прочитывается ηопт = 86,5 % (шкала ηопт показана над кривыми). При малых m и Н график ηопт не показан: в этой области ηопт = ηmin.

Определять километровый расход топлива при заданной высоте полета не требуется, так как в процессе испытаний вертолета Ми-26 в ВВС было принято решение определять количество топлива и загрузку вертолета без учета оптимизации, по действующим нормам, определенным РДП-26. Экономия топлива приведет к тому, что в баках вертолета после посадки топлива останется больше, чем предусматривалось.

Третье семейство кривых на рис. 1 определяет параметр (Cv)опт, характеризующий оптимальную крейсерскую скорость. Приборная (Vпр)опт и воздушная (V)опт скорости определяются по табл. 1 и 2: Vпр = ƒ(H,Cv) и V = f (t,Cv). В нашем примере на упомянутой горизонтали при t = 0°(Cv)опт = 3 (число на кривой, расположенной над получившейся точкой). Из таблиц следует: Vпр = 200 км/ч и V = 220 км/ч.

Скорость и направление ветра влияют на оптимальную скорость полета. При встречном ветре скорость нужно увеличивать, при попутном — уменьшать. Величину изменения скорости для вертолета Ми-26 можно принять равной ±U/3. Символом U обозначена путевая составляющая скорости ветра. Для ее определения служит табл. 3, по которой U и ее направление (попутное, встречное) находятся в зависимости от U1 и разности курсов ветра и полета. В примере при U1 = 60 км/ч и Ψв — Ψ = 140°, так что из таблицы следует: ветер встречный, U = 48 км/ч (интерполяция между числами 54 и 37). В нашем примере Vпр = 200 + 48/3 = 216 км/ч.

Оптимальную высоту полета сложно определить аналитически, поэтому ее находят методом перебора: определяют минимальный земной относительный километровый расход топлива (qG) на нескольких высотах — и высота, на которой наименьший qG будет оптимальной. Сначала напомним, как вычисляется qG:

qG = (qG)KV/(V±U), где (qG)0 — относительный воздушный километровый расход топлива;

(qG)0 = 100 Q/Vm.

Коэффициент К учитывает увеличение расхода топлива при включении летчиком систем вертолета, влияющих на расход топлива, Q — часовой расход топлива. Число 100 введено в формулу, чтобы шкала qG состояла из целых чисел. Величины коэффициента К у вертолета Ми-26 равны: К = 1,045 при включении СКВ + ПЗУ + + ПОСдв, а при включении всех потребителей, то есть с ПОСпзу, К = 1,09. При выключенных потребителях К = 1. В приведенной формуле знак «+» означает попутный ветер.


Таблица 2. Воздушная скорость V
t\Cv 0 1 2 3 4 5
40 210 220 230 240 250 260
20 200 210 220 230 240 250
0 195 205 215 220 230 240
— 20 185 195 205 210 220 230
— 40 180 190 195 205 215 220
Табл. 3. Путевая составляющая скорости ветра U (км/ч)
Ψв — Ψ Направление ветра Фактическая скорость ветра U1
Справа Слева 20 40 60 80
Путевая составляющая U
0 360 Попутный 20 40 60 80
30 330 17 34 49 64
60 300 9 17 22 26
90 270 Встречный 1 4 10 18
120 240 11 23 37 54
150 210 17 36 54 74
180 20 40 60 80

Рис. 1. Зависимость оптимальных числа Cv, относительного километрового расхода топлива, частоты вращения несущего винта от массы вертолета, высоты полета и температуры наружного воздуха


Величина qG может быть определена экипажем вертолета не по приведенной формуле, а с помощью графика на рис. 2: нанеся на верхнюю горизонтальную ось точку (qG)0 = 22,7 1/км, перемещаемся параллельно прямым, соответствующим влиянию коэффициента К (в нашем примере летчик включил СКВ + ПЗУ + ПОСдв). Затем перемещаемся эквидистантно семейству кривых U до фактической величины U (в примере ветер встречный, U = 48 км/ч). В этой точке прочитывается qG = 29,7 1/км. Таким же методом определяют qG на других высотах (например, Н = 1, 3, 4 км) и, сравнив полученные величины, находят Нопт Затем на Нопт определяют, как описано выше, ηопт и (Vпр)опт.

Для вычисления параметров крейсерского режима экипаж может воспользоваться «устройством» в виде тетради с вынимающимися страницами. На ее страницах даны графики (рис. 1), а информация, не зависящая от условий полета (табл. 1–3), размещается на внутренней стороне обложки тетради. Там же приведен пример определения оптимального режима полета. После определения параметров крейсерского режима использованная страница вынимается. На следующей странице по графику (рис. 1) в соответствии с меняющимися условиями полета определяются η, (qG)0, Cv для новых величин m, Н, t.

Другой вариант использования описанных графиков и таблиц — размещение их на планшете, который состоит из корпуса (кармана) и выдвигающегося вкладыша. График, показанный на рис. 1 (без шкал (qG)0 и m), размещается на вкладыше, а показанный на рис. 2 — на корпусе. На корпусе также расположены шкала m, таблицы и пример определения оптимального режима полета. Экипажу не нужно проводить вертикали и горизонталь, как на рис. 1, так как у планшета их заменяют подвижный вкладыш и кромка корпуса. Нужно только выдвинуть вкладыш так, чтобы совпали рассматриваемые величины m и Н. По кромке корпуса прочитываются величины ηопт, (Cv)опт.При определении Нопт находят qG: из точки, равной величине (qG)0, перемещаются по графикам корпуса так, как показано на рис. 2.

Тетрадь или планшет могут быть заменены калькулятором. Однако операции по определению оптимального крейсерского режима с помощью тетради или планшета настолько просты, что в калькуляторе нет необходимости.


Таблица 4. Сравнение (qG)0 и q0 при полетах по РДП-26 и на оптимальных режимах
t 20 0 — 20 — 40
η=91 %, (qG)0 22,7 23,4 25,8 29,3
q0, m=35/55 8/12,5 8,2/13 9/14,2 10,3/16,1
ηопт (%) 90,5 86,5 85 85
(qG)0 min.min 22,7 22,7 22,8 24,4
q0 min.min, m=35/55 8/12,5 8/12,5 8/12,5 8,5/13,4
экономия, % 0 3 13 20
экономия, кг/км 0 0,2/0,5 1/1,7 1,8/2,7

Рис. 2. Определение qG в зависимости от (qG)0, использования систем вертолета и скорости ветра


Рис. 3. Зависимость минимального километрового расхода топлива от температуры наружного воздуха и частоты вращения несущего винта


После выхода вертолета на заданный эшелон, то есть в начале полета по маршруту, штурман или другой член экипажа определяет параметры оптимального крейсерского режима для первого участка маршрута и докладывает их командиру экипажа. На этом режиме командир выполняет полет по маршруту.

После изменения полетной массы вертолета из-за выработки 2–3 т топлива (примерно через час полета) или после резкого изменения условий полета (направления и скорости ветра, температуры воздуха) штурман определяет для предстоящего участка маршрута новые параметры оптимального крейсерского режима, в соответствии с которыми командир изменяет режим полета.

Рассмотрим некоторые результаты расчетов минимального относительного километрового расхода топлива (qG)0. На рис. 3 показан график (qG)0 = ƒ(t) для всех сочетаний m и Н, лежащих на одной горизонтали: m = 55 т, Н = 1,5 км; m = 50 т, Н = 2,1 км; m = 45 т, Н = 3 км; m = 35 т, Н = 5 км и др. Видно, что наименьшая величина (qG)0 = 22,7 1/км может быть реализована при оптимальной частоте вращения несущего винта, которая изменяется от ηопт = ηmin = 85 % при t = -11° до ηопт = ηmax = 91 % при t = 22°. Если t < -11° и t > 22°, то (qG)0 увеличивается.

Определим экономию топлива. Сейчас на указанных высотах летчик должен устанавливать η = 91 %. На этой частоте вертолет имеет (qG)0, указанные в табл. 4. Видно, что с предписанной РДП-26 частотой при отрицательных температурах наружного воздуха расход топлива на 10–20 % больше.

В таблице также приведены физические величины километрового расхода топлива для m = 35 т и m = 55 т: q0 = (qG)0 m/100.

Экономия топлива при отрицательных температурах равна 1–1,8 кг/км с m = 35 т и 1,7–2,7 кг/км с m = 55 т. Подразделение, эксплуатирующее несколько вертолетов зимой, в высоких широтах или в горах, сэкономит около 200–300 т топлива в год.

Представление о том, что уменьшение частоты вращения винта всегда приводит к уменьшению расхода топлива, неверно. В нашем примере оно справедливо только при t < -11°.

На малых высотах полета, когда по РДП-26 летчику предписано держать η = 88 %, и при t > 0 ηопт = ηmin = 88 % экономия топлива невозможна. При t < 0, когда ηопт = ηmin = 85 %, экономия равна 5–8% при t = 0 и 8-10 % при t = -40°.

На рис. 4 показана зависимость (qG)0 от высоты полета при m = 45 т для нескольких сочетаний t и η. Очевидно, что для этой массы вертолета при средних (стандартных) температурах Hопт = 2–2,5 км. При уменьшении температуры Hопт увеличивается. При уменьшении массы вертолета Hопт также увеличивается (для m = 35 т Hопт больше, чем для m = 45 т, на 2 км), а при увеличении массы — уменьшается (для m = 55 т Hопт меньше на 1,5 км).

Следовательно, при уменьшении массы вертолета из-за выгорания топлива выгодно увеличивать высоту полета. Однако надо иметь в виду, что приведенные величины Hопт относятся к условиям, когда скорость ветра по высоте постоянна. Но из-за ее изменения, а также нестандартного изменения температуры по высоте Hопт может существенно отличаться от данных на рис. 4, так что ее нужно определять так, как описано выше.

Изменяя частоту вращения несущего винта на экономической скорости и при полете по вертикали, можно (построив графики, как на рис. 1) минимизировать потребную мощность вертолета, что приведет к увеличению максимальной продолжительности и потолков полета. Оптимальная частота вращения НВ в зависимости от условий полета определяется по аналогичной методике.

В заключение подведем краткие итоги. Предлагаемая нами система графиков позволяет найти минимальную величину километрового расхода топлива, оптимальные частоту вращения несущего винта и скорость полета при любых массах вертолета, температуре наружного воздуха, высоте полета, скорости и направлении ветра. Использование аналогичной системы графиков для вычисления минимальной потребной мощности на экономической скорости и при полете по вертикали приведет к увеличению максимальной продолжительности и потолков полета вертолета. Использование нашего метода на вертолетах, система управления которых дает возможность изменять в полете частоту вращения несущего винта, показывает, как именно нужно изменять частоту вращения. Таким образом, метод определения крейсерских режимов полета позволит обеспечить экономию топлива и оптимально использовать возможности вертолета.


Рис. 4. Зависимость относительного километрового расхода топлива от высоты полета и температуры наружного воздуха (определение оптимальной высоты), m=45 т


Э К С П Л У А Т А Ц И Я
Загрузка...