Ознакомимся в общих чертах с тем, как устроен и как работает бензиновый мотор. Главную часть каждого такого двигателя составляет один или несколько цилиндров, каждый из которых представляет из себя как бы стакан от 3-х до 6-ти дюймов[ 9 ] в поперечнике и приблизительно в 2 раза больше в длину. Стакан этот делается обычно из чугуна или стали, и внутренняя стенка его точно обтачивается на токарном станке и должна быть совершенно гладкой, а поперечник цилиндра — совершенно одинаковым на всей его длине. Внутри цилиндра двигается п о р ш е н ь, т. е. металлический стакан несколько меньших размеров, обточенный с своей наружной стороны и пригнанный к цилиндру вплотную таким образом, что воздух не может проходить между стенками цилиндра и поршня. В дне цилиндра имеется обычно 3 отверстия; 2 из них закрываются особыми клапанами,а в третье наглухо завинчивается так называемая свечка. Клапаны сделаны для того, чтобы в нужное время открывать доступ газам во внутренность цилиндра, которые производят работу, и затем дать им возможность, после того как работа будет совершена, выйти наружу. Клапаны мотора имеют приблизительно такое же назначение, как водопроводный или самоварный кран. Цилиндры соединены вглухую с остовом двигателя, а поршни с помощью особой промежуточной части — шатуна, присоединены к изгибам коленчатого вала, т. е. главной оси мотора. Когда коленчатый вал вращается, то поршни двигаются попеременно то в одну, то в другую сторону внутри цилиндров. Таким образом, поршень то приближается к днищу цилиндра, то удаляется от него. Если бы мы пожелали заполнить жидкостью все пространство внутри цилиндра, то когда поршень находится ближе всего к днищу цилиндра, жидкости войдет около 1-го чайного стакана, когда же поршень находится дальше всего от дна цилиндра, то жидкости войдет около 5-ти стаканов[ 10 ]. Свечка представляет из себя небольшой приборчик, в который проводится электрический ток, обычно доставляемый маленькой электрической машиной — магнето, вращаемой самим мотором. Как было указано, свечка ввинчивается в цилиндр так, что конец ее оказывается во внутренней его части. В этой части свечки в необходимый момент проскакивает электрическая искра. В моторах, о которых идет речь, работающим веществом является смесь паров бензина с воздухом. Смесь эта приготовляется особым небольшим прибором, который называется карбюратором. Через широкое отверстие в этот прибор попадает снаружи воздух. Кроме того, по небольшой трубочке в него же течет бензин из резервуара. Количество подаваемого бензина и воздуха можно, по желанию, изменять, пользуясь особенными краниками и заслонками, т. к. в зависимости от погоды, качества бензина и т. д. приходится несколько иначе составлять рабочую смесь, чтобы получить наилучшее действие двигателя.
Большая часть бензиновых моторов вообще и все без исключения двигатели, которыми пользуются в воздухоплавании, делаются по типу, называемому «четырехтактным». Такое название дано этим двигателям, т. к. во время работы их в каждом цилиндре происходят одно за другим четыре различных действия или, как их называют, четыре такта. Действия эти происходят в следующем порядке:
1) Поршень удаляется от дна цилиндра. В это время открывается клапан, впускающий рабочую смесь из карбюратора, и освободившееся между дном цилиндра и поршнем пространство заполняется этой смесью воздуха с парами бензина.
2) Поршень приближается к дну цилиндра. В это время оба клапана остаются закрытыми[ 11 ]. Места внутри цилиндра становится меньше, но смеси выйти некуда, т. к. все отверстия закрыты. Поэтому смесь паров бензина и воздуха в это время сжимается, сдавливается.
3) Поршень удаляется от дна цилиндра. В самом начале этого действия[ 12 ] в свечке, о которой упоминалось выше, проскакивает электрическая искра, воспламеняющая смесь. Сгорание паров бензина, смешанных с воздухом, происходит страшно быстро, иначе говоря, происходит маленький взрыв. Стенки цилиндра делаются достаточно крепкими, чтобы выдержать этот взрыв, и все его давление уходит на то, чтобы с силою толкнуть поршень в направлении от дна цилиндра. В течение всего этого действия оба клапана продолжают оставаться закрытыми.
4) Поршень приближается к дну цилиндра. В самом начале[ 13 ] этого действия открывается другой клапан, позволяющий сгоревшей смеси свободно выйти из цилиндра. При приближении поршня к дну цилиндра места в последнем остается очень немного, и т. к. имеется свободный выход через открытый клапан, то все, что осталось от взрыва, уходит прочь, оставляя цилиндр свободным и готовым для нового наполнения рабочей смесью.
С концом 4-го действия клапан выпуска закрывается, другой клапан — впускной — открывается, и все действия повторяются в прежнем порядке. Таким образом, источником работы мотора внутреннего сгорания является взрыв смеси воздуха с парами бензина, керосина или с газом. Взрыв, который в каменноугольных копях, в местах, где хранятся запасы бензина и др. горючих жидкостей, может причинить огромные бедствия — этот самый взрыв, производимый теми же веществами, но в маленьком виде внутри цилиндра двигателя, может быть послушным помощником человека. Он может в этом случае двигать автомобиль, моторную лодку, воздухоплавательный аппарат; может совершать и огромное число других мирных работ в промышленности и в сельском хозяйстве. Работающий двигатель можно также сравнить с ружьем, в котором пуля не может вылететь из ствола, а лишь способна, двигаясь внутри него, дать толчок, полученный от взрыва порохового заряда, некоторой ручке, вращающей колесо, — в данном случае — коленчатому валу. Выстрелы непрерывно следуют один за другим по 10-15 в секунду, и каждый раз дается небольшой толчок вращающемуся колесу. Сравнивая работающий двигатель с ружьем, мы должны были бы считать: первый такт, или первое действие — заряжанием; второе — забивкой, уплотнением заряда; третье действие — выстрелом и четвертое — очисткой ствола от дыма и копоти. Когда мотор действует, то в каждом его цилиндре одну четверть времени продолжается полезная работа, а три четверти состоит в подготовлении условий, нужных для работы. Чередование работы и промежутка идет очень быстро — в одну секунду каждый цилиндр дает 10-15 таких толчков. На главный вал мотора надевают обычно тяжелое стальное колесо, называемое маховиком[ 14 ].
Делается это по следующей причине: как было сказано, работа в цилиндрах происходит не равномерно, а в виде толчков. Поэтому во время вспышки — взрыва в цилиндре, мотор с силой дергал бы механизм, который он должен вращать, а все остальное время он не давал бы никакой силы и даже мог бы перестать вращаться. Быстро вращающееся маховое колесо как бы впитывает в себя эти толчки. Известно, что тяжелое колесо нельзя заставить сразу вращаться быстро. Его также нельзя сразу остановить, если оно быстро вертится. Поэтому такое колесо делает в двигателе толчки незаметными, а всю его работу — плавной. На моторных лодках и в промышленности очень часто пользуются двигателями с одним цилиндром и с тяжелым маховиком. В воздухоплавании, где все части делаются легкими и тонкими и где все вообще стараются делать возможно легче, моторы никогда не делаются одноцилиндровыми; их всегда делают с большим числом сравнительно малых цилиндров, получая, таким образом, еще более ровную работу и более легкий вес.
Во время работы цилиндры от ряда непрерывно происходящих внутри них взрывов сильно нагреваются. Это могло бы даже разрушить их материал и, во всяком случае, сделало бы невозможной работу двигателя, т. к. на раскаленных металлических стенках не удержалось бы никакое смазочное масло, если бы цилиндры не были охлаждены снаружи специальными приспособлениями. В большинстве двигателей цилиндры охлаждаются следующим образом: на цилиндр снаружи надевается металлический колпак, так, чтобы между ним и стенками цилиндра оставалось свободное пространство, приблизительно в палец толщиной[ 15 ]. К этому колпаку или, как его называют, водяной рубашке, приделываются с противоположных сторон две трубы. В одну из них все время с помощью небольшого насоса подается холодная вода, через другую вода выходит из рубашки цилиндра. Холодная вода, касаясь стенок цилиндров, все время охлаждает их, но зато нагревается сама. В моторной лодке это не страшно, так как холодная вода накачивается все время из-за борта. На автомобиле или на воздухоплавательном аппарате, где запас воды приходится брать с собою, вся вода в несколько минут закипела бы и очень скоро испарилась бы, если бы пустить ее из мотора прямо в тот сосуд или резервуар, в котором она взята с собою. Поэтому воду, которая охлаждает работающей двигатель, приходится в свою очередь тоже охлаждать. Для этой цели обычно пользуются так называемым радиатором. Делается этот прибор следующим образом: два металлических резервуара соединяются между собой большим числом тонких трубочек. Весь радиатор располагается таким образом, чтобы на трубочки возможно сильнее дул ветер. Иногда для этого делают небольшой вентилятор, который создает искусственный ветер между трубочками. Горячая вода из мотора идет по трубе в верхнюю часть радиатора и затем по тонким трубочкам медленно течет в нижнюю его часть. Проходя медленно по тонким трубочкам, обдуваемым снаружи ветром, вода, значительно охладившись, поступает в нижнюю часть радиатора, а оттуда насосом накачивается опять в двигатель, охлаждая его, нагревается сама, т. е. уносит из него избыток теплоты в радиатор. Это продолжается во все время работы, и сравнительно небольшого количества воды достаточно, чтобы обеспечить надолго исправное действие мотора. Так, например, в аэропланный двигатель в 100 лош. сил надо было вливать около 2 ведер воды, чтобы заполнить рубашки цилиндров, радиатор и все трубы. Летом, часов через 10 полета, требовалось подлить около одной четверти ведра.
Так устроен двигатель, который сделал практически возможным воздухоплавание во всех его видах. Главным преимуществом бензинового мотора перед паровым или электрическим двигателем была большая легкость его самого, а также и вещества, которое служит источником его работы. Когда мы говорим, что бензиновый двигатель легче парового или электрического, то, понятно, мы сравниваем машины, дающие одну и ту же мощность, т. е. развивающие одинаковое число лошадиных сил. Сравним, для примера, веса трех разных типов двигателей, дающих по 25 лош. сил.
I. ПАРОВАЯ МАШИНА такого типа, какой стоял на аэростате Жиффара, весила бы для 25 лош. сил около 3000 фунт. (75 пудов).
II. ЭЛЕКТРИЧЕСКИЙ ДВИГАТЕЛЬ с батареей элементов — около 3100 фунт. (77 пудов).
III. БЕНЗИНОВЫЙ МОТОР со всеми принадлежностями — около 200 фунт. (5 пудов).
Кроме того, бензиновый двигатель такой силы израсходует в час работы не более 18 фунтов бензина и от 1-го до 3-х фунтов смазочного масла, тогда как два других типа двигателей потребуют, по крайней мере, в 3 раза больше разных веществ.
Это имеет тоже очень большое значение. За последнее время некоторым строителям удалось построить очень легкие паровые машины, но большой вес топлива и воды, необходимых для их работы, оставлял их далеко позади бензинового двигателя. Когда строились управляемые аэростаты, о которых упоминалось выше, приходилось всегда соблюдать громадную экономию в весе всех частей и материалов, которые шли в дело, так как данного размера аэростат может поднять только определенный груз, и если он со всеми своими частями будет слишком тяжел, то он не отделится от земли.
Таким образом, двигатель, со всеми его частями, должен был тоже весить не больше определенного количества фунтов; пока строители пользовались паровыми и электрическими двигателями[ 16 ], сила двигателей всегда была слишком малой.
Понятно, что если сделать аэростат большим, то и подъемная сила его окажется большей и можно будет поставить более сильный двигатель. Но, чтобы двигать по воздуху громадную оболочку такого аэростата, потребуется также значительно большая сила, и значит, двигатель всегда останется слишком слаб, если только он не дает много силы на каждый фунт своего веса.
Бензиновый двигатель и оказался тем достаточно легким мотором, который сделал возможным осуществление управляемых аэростатов, действительно летающих даже и против сильного ветра, согласно воле того, кто им управляет. Этот же мотор сделал, наконец, возможным и постройку наиболее важных современных летательных машин — аэропланов, о которых подробно будет рассказано далее.
Первое удачное применение бензиномотора на аэростате представляли из себя работы САНТОС-ДЮМОНА — одного из наиболее замечательных изобретателей, работавших в области воздухоплавания.
Первые работы этого молодого талантливого строителя относятся к 1897 году. Он сделал для себя небольшой круглый аэростат и производил на нем полеты вблизи Парижа. Получив таким образом некоторый опыт в воздухоплавании, он построил свой первый управляемый аэростат, бывший, вероятно, самым маленьким из всех когда-либо строившихся. Аэростат должен был поднять на воздух лишь вес изобретателя и маленького бензиномотора в 3½ лош. силы, снятого с мотоциклетки.
Аэростат оказался сравнительно удачным, довольно хорошо слушался рулей и позволил своему строителю получить много ценных сведений для дальнейших работ. Первый же полет окончился гибелью аэростата, причем его изобретатель не пострадал лишь случайно. Это нисколько не смутило Сантос-Дюмона, и он немедля принялся за осуществление второго аэростата, давшего лучшие результаты, а затем и целого ряда других. В это время к воздухоплаванию уже относились с большим интересом, и во Франции одним человеком[ 17 ] был обещан крупный приз тому воздухоплавателю, который вылетит из указанного места вблизи Парижа, облетит вокруг Эйфелевой башни[ 18 ] и вернется к месту, откуда он начал свой полет.
Выше указывалось, что уже инженеру Жиффару, а также полковнику Ренару удавалось возвращаться к месту вылета на своих управляемых аэростатах. В данном же случае требование было более серьезным. Надо было совершить заданный полет в определенное время — не больше, чем в полчаса. Чтобы выполнить это условие, требовалось создать аэростат, идущий с значительно большей скоростью, чем та, которая достигалась до этого времени.
В июле 1901 года Сантос-Дюмон решился попробовать выполнить условия упомянутого приза. В присутствии свидетелей и большого числа зрителей он поднялся на воздух на своем аэростате № 5 из указанного предместья Парижа и полетел к Эйфелевой башне. Через 10 минут он уже поворачивал свой аэростат, огибая башню, но на обратном пути встретил довольно сильный ветер, значительно замедливший скорость хода. Аэростат успешно двигался против ветра, но скорость его настолько уменьшилась, что он достиг места вылета лишь на сороковой минуте. Приз, таким образом, взят не был. Вдобавок к этому, вскоре после возвращения, когда аэростат еще находился в воздухе, на нем остановился двигатель. Аэростат перестал быть управляемым, его понесло ветром на большое дерево и он был сильно поврежден.
Неутомимый изобретатель вновь принялся за работу и быстро построил аэростат № 6, на этот раз несколько больших размеров, превосходивший все остальные своей надежностью и скоростью. Он был приведен в движение бензиновым двигателем в 12 лош. сил. 19-го октября 1901 года Сантос-Дюмон вновь сделал попытку взять приз Дейч де ла Мера. Он вылетел с указанного места на своем аэростате, ровно через 9½ минут уже долетел до Эйфелевой башни, обогнул ее и через 29½ минут от начала полета вернулся к месту вылета. Таким образом, требования приза были выполнены, и он получил обещанную сумму в 125000 франков[ 19 ].
Эти работы Сантос-Дюмона можно считать действительным разрешением вопроса о создании управляемого аэростата. В дальнейшем эти аппараты совершенствовались, их стали строить во всех странах, на них стали ставить двигатели, дававшие огромную силу, и, таким образом, оказалось возможным получить значительно большую скорость, а вместе с тем все меньше и меньше зависеть от ветра.
В развитии воздухоплавания большое значение имели работы еще одного выдающегося изобретателя — графа ЦЕППЕЛИНА, начавшего осуществление своих аэростатов приблизительно в то же время, когда и Сантос-Дюмон.
Управляемые аэростаты этого строителя значительно отличались от всего того, что делалось до тех пор. Во всех аэростатах, строившихся до этого времени, вся оболочка, в которой находился газ, была мягкой и сохраняла свою удлиненную форму только благодаря заполнявшему ее газу. При таких условиях трудно было сохранить точно ту форму, которая давала бы самые лучшие результаты. Граф Цеппелин задумал сделать аэростат совершенно иначе. Он изготовил из легких материалов остов — каркас, состоявший из шестнадцати легких продолговатых балок, скрепленных между собой особыми обручами. Вся эта огромная труба снаружи была обтянута материей. Передний и задний концы делались заостренными, для чего указанные шестнадцать балок как бы изгибались и сводились в одну точку. Таким образом, получался огромный, довольно легкий остов, пустой внутри, способный совершенно точно сохранять свою форму. Внутри его помещалось большое число обыкновенных воздушных шаров. Когда их наполняли газом, они совершенно заполняли внутренность остова. Таким образом, получалась двойная выгода. Весь аэростат отлично сохранял свою форму, что было очень важно для его устойчивости и для скорости полета; кроме того, в случае повреждения не весь газ уходил из оболочки, а лишь небольшая часть его, заполняющая тот внутренний шар, который окажется неисправным[ 20 ].
Граф Цеппелин истратил очень много времени и все деньги, какие у него были, на свои опыты, но в конце концов ему удалось достигнуть очень хороших результатов. В 1908 году Цеппелин закончил свой аэростат огромных размеров в 460000 куб. фут. вместительностью, с двумя моторами по 110 лош. сил каждый. Полный вес его достигал 16 тонн (около 1000 пудов), причем он мог свободно нести 18 пассажиров.
В 1908 году этот огромный воздушный корабль совершил удачный длинный полет, продолжавшийся около 12-ти часов, причем было покрыто около 400 верст. Аэростат летел со скоростью в среднем около 35 верст в час. Временами достигалась еще большая скорость.
В это время «создание» управляемых аэростатов, можно считать, уже закончилось, и в дальнейшем шло лишь улучшение и совершенствование их — как совершенствуются и в настоящее время пароход и железные дороги, которыми мы пользуемся.
Теперь управляемые аэростаты уже действительно могли двигаться туда, куда этого желали их капитаны; они могли нести на себе значительные грузы и передвигаться с большой скоростью (40-50 верст в час).
Аэростаты эти смогли, наконец, летать, если и не во всякую погоду, то, по крайней мере, при обычных условиях, тогда как раньше всегда приходилось выбирать исключительно тихие и спокойные дни. В 1908 — 1910 годах постройкой управляемых аэростатов стали заниматься во всех культурных государствах.
В России также было построено несколько таких воздушных кораблей; по большей части их строили наши военные инженеры: капитан ШАБСКИЙ, полковники НЕМЧЕНКО, УТЕШЕВ и многие другие. Из среды наших офицеров вышло также немало прекрасных капитанов этих аэростатов, справлявшихся со своим трудным, иногда опасным делом так же хорошо, как это делали лучшие воздухоплаватели других стран. В России постройкой аэростатов занимался, главным образом, Ижорский завод[ 21 ]. Кроме того, несколько управляемых аэростатов было приобретено во Франции. На этих кораблях, как русской, так и иностранной постройки, несколькими русскими офицерами было совершено до войны и в начале ее много интересных полетов. Весьма удачными были полеты капитана НИЖЕВСКОГО.
Из заграничных аэростатов наиболее успешными по своим качествам продолжали оставаться немецкие — типа Цеппелина; французские — типа Лебоди и некоторые другие — несколько уступали Цеппелинам в скорости и в некоторых других качествах, но зато были проще в пользовании и дешевле.
Другие страны большей частью старались подражать либо немцам, либо французам и, вообще, были слабее их, причем все смотрели на управляемый аэростат лишь как на военное средство, служащее главным образом для разведки. Впрочем, немцы, тайно от других, производили опыты бросания бомб с этих воздушных кораблей.