3. Заключенные в клетках

Всем известно, что из резаной раны вытекает кровь. Если у вас есть под рукой стерильная игла и вы не боитесь уколоть подушечку своего большого пальца, чтобы внимательно рассмотреть каплю крови, можете так и сделать (разумеется, если у вас нет заболеваний, которые делают такой эксперимент опасным). Однако в этом нет большой необходимости. Если же вы все-таки решитесь, то боль от укола, возможно, вызовет у вас желание выругаться. Не стесняйтесь, в этом нет ничего страшного.

Ругательства как средство от боли

Исследования, проведенные в 2009 году, показали, что случайно поранившийся человек ругается не просто так, а имеет для этого веские причины. Сравнивая эффект от ругательств с нейтральными словами, ученые обнаружили, что нецензурные слова повышают способность терпеть боль, уменьшая болевые ощущения. Однако, по их данным, этот способ не влияет на мужчин, склонных из всего делать трагедию.

Исследователи полагают, что ругательства разрушают связь между страхом боли и ощущением боли и таким образом не дают сформироваться обратной психологической связи, только увеличивающей страдания. Не знаю, так это или нет, но не думаю, что вы будете испытывать такие уж сильные страдания из-за одной капли крови.

Живая жидкость

Кровь сильно отличается от безжизненного волоса. Ни у кого не возникает сомнений, что кровь ведет себя намного активнее, чем волосы. И все же бывает очень нелегко определить ту точку, где совершается переход от живого к неживому. На атомном уровне кровь ничем не отличается от волос или, скажем, от камней. Да, там мы наблюдаем другой состав атомов (в крови, в частности, больше железа), но и то и другое состоит из атомов, которые образуют молекулы. Тем не менее между живой кровью и мертвым волосом есть разница.

Отличить живое от неживого далеко не так просто, как может показаться на первый взгляд. Прежде чем продолжить чтение, попробуйте составить список как минимум из шести признаков жизни.

В свое время считалось, что живым существам присуща жизненная сила – некая особая форма энергии, которая отсутствует у неживых предметов. Однако ее так и не удалось обнаружить, поэтому данную концепцию уже никто не воспринимает всерьез, кроме псевдоученых. В лучшем случае о жизненной энергии говорят в переносном смысле («Она сегодня просто излучает энергию»).

Признаки жизни

Вместо этого биологи разработали семь признаков, свидетельствующих о протекании жизненных процессов, так как жизнь характеризуется в первую очередь именно процессами.

• Движение – даже растения время от времени совершают движения. В качестве примера можно привести цветы подсолнуха, поворачивающиеся к солнцу.

• Питание – потребление источников энергии в любой форме, будь то растения, животные или солнечный свет.

• Дыхание – процесс, обеспечивающий производство энергии из продуктов питания (как правило, с использованием кислорода, но не всегда).

• Выделение – удаление отходов жизнедеятельности.

• Размножение – создание новых копий самого себя (зачастую с вариациями) для продолжения рода.

• Реагирование – взаимодействие в какой-либо форме с окружающей средой, обычно с использованием органов чувств, регистрирующих различные формы энергии.

• Рост – все живые существа на каком-то этапе своего развития растут, хотя и необязательно на протяжении всей жизни.

На уровне целого организма – растения или животного – действует простое правило: если хотя бы один из указанных признаков отсутствует, объект не может считаться живым. Если все семь налицо, то, возможно, вы нашли то, что искали. Но и в этом случае вопрос «Живое или неживое?» не так прост. Взять хотя бы вирус, заставляющий вас чихать и кашлять во время простуды. В принципе его можно было бы рассматривать как одноклеточное живое существо. Многие одноклеточные, например бактерии, соответствуют всем признакам и, безусловно, являются живыми. А вот вирусы не выполняют одно из условий, касающихся размножения.

Нельзя сказать, что вирусы не размножаются. Именно их размножение создает для вас неприятные проблемы. Однако они делают это, используя механизмы клеток организма человека. В определенном смысле можно сказать, что это вы размножаете вирус, а не он сам. Многие, хотя и не все, биологи не считают вирусы живыми существами. Отчасти это объясняет, почему от них так трудно избавиться. Антибиотики против них бессильны. Прием таких лекарств при простуде и гриппе – пустая трата времени.

Есть ли жизнь в ваших клетках?

Еще труднее решать вопрос о живом и неживом, когда мы рассматриваем только часть организма. Если не принимать во внимание одноклеточные существа, то отдельно взятая клетка или орган, скорее всего, не смогут соответствовать всем критериям. Ваше сердце, к примеру, не способно размножаться.

Жизнь в понимании биолога – это холистическое понятие, которое имеет смысл только для всего организма в целом. В момент смерти животного мы не можем сразу же констатировать изменения во всех клетках, хотя со временем они, безусловно, наступят. Исходя из вышесказанного, мы не вправе говорить, что капля крови из пальца или отдельно взятая клетка тела живы. Между тем в них происходят самые разные биологические процессы, чего нельзя сказать о волосе. Правда, нельзя утверждать и то, что ваша плоть и кровь мертвы, как волос, так как они имеют многие признаки жизни.

Я спросил у одного биолога, специализирующегося на изучении клеток, считает ли он их живыми. Тот с уверенностью ответил, что да, и пояснил: «Это особенно заметно, когда у тебя в лаборатории целый день все валится из рук и ты по ошибке уничтожаешь какую-нибудь клеточную культуру. Клетки – живые. В них происходят метаболические процессы, они делятся и даже двигаются. Если вы посмотрите замедленную съемку, сделанную под микроскопом, то увидите, что клетки динамично вибрируют и пульсируют, «ощупывают» пространство вокруг себя крошечными пальчиками (филоподиями) и вытягивают ножки (ламеллиподии). Некоторые клетки даже ползают. И, разумеется, они размножаются, причем некоторые до бесконечности, как, например, бессмертные раковые клетки. Когда клетка умирает, она втягивает все свои выросты и принимает округлую форму. Затем распадается ее ядро и клетка как бы взрывается. Вернуть ее к жизни после этого уже не удается, что, на мой взгляд, совершенно ясно демонстрирует разницу между жизнью и смертью!»

Но с клетками крови в этом отношении далеко не все так ясно. В отличие от большинства других клеток, у них нет ядра (подробнее об этом мы поговорим чуть ниже) и они перемещаются в потоке крови, никак не связанные между собой. Тем не менее они играют чрезвычайно важную и активную роль в поддержании жизнеспособности всего организма.

Путешествие по кровеносной системе

Если взглянуть на каплю крови, выступившую на месте укола, то можно увидеть только темно-красную однородную жидкость, но под микроскопом хорошо заметно, что она содержит множество мелких объектов. Одни из них – красные кровяные тельца – похожи на плоские лепешки или крошечные сушеные абрикосы. Их функция заключается в транспортировке кислорода от легких к тканям тела.

Эти клетки имеют красный цвет, потому что их главным компонентом является белок гемоглобин (белки – это главные действующие молекулы организма человека). Если удалить из красных кровяных телец всю воду, то 95 процентов сухого остатка будет составлять гемоглобин. Эта крупная молекула прекрасно присоединяет к себе кислород и разносит его по всему телу. Гемоглобин содержит железо, и многие полагают, будто именно это придает ему красноватый цвет, как ржавчине на железных деталях. Однако это просто совпадение. Атомы железа окружены кольцом порфиринов, и именно это органическое соединение придает цвет гемоглобину. Красные кровяные тельца производятся в костном мозге и обычно живут в кровеносной системе в течение примерно четырех месяцев вместе с триллионами других своих собратьев, а затем заменяются новыми.

В числе других обитателей крови можно назвать белые кровяные тельца. Они подразделяются на несколько разновидностей и выполняют функции защитных и очистительных механизмов. Один из видов белых кровяных телец уничтожает отмершие красные кровяные тельца, большинство других охотится за возбудителями инфекций и другими нежелательными объектами, попадающими в организм.

Хотя отдельные белые кровяные тельца нельзя увидеть невооруженным глазом, вы наверняка знаете, как выглядят скопления выполнивших свою работу и умерших белых кровяных телец. Это гной. Целая армия, состоящая из миллиардов белых кровяных телец, непрерывно выискивает и уничтожает пришельцев извне, а также клетки собственного организма, отработавшие свой срок и нуждающиеся в утилизации.

И это далеко не все защитные средства в арсенале крови. Существует такой тип клеток, как тромбоциты. Эти довольно бесформенные клетки, имеющие короткий жизненный срок, отвечают за свертываемость крови, чтобы при случайных царапинах она не вытекала до бесконечности.

Особая молекула

Основным компонентом крови является вода. Плазма крови (напоминаю, что сейчас мы ведем речь не о состоянии вещества), в которой плавают кровяные тельца, содержит в растворенном виде некоторые белки и другие химические вещества, но состоит главным образом из воды. В организме человека много воды – больше, чем какого-либо другого вещества. Вода представляет собой простую молекулу, обладающую удивительными свойствами. Один атом кислорода и два атома водорода составляют самую известную из всех химических формул – Н2О. Вода имеет колоссальное значение для биологии. В связи с этим все наши поиски жизни в Солнечной системе сводятся в основном к поискам воды. Бактерии могут жить при экстремально высоких и низких температурах, они могут обходиться даже без воздуха, но без воды ни одна из известных нам форм жизни существовать не может.

Важность воды для поддержания жизни объясняется рядом ее уникальных свойств. Это единственное вещество, которое встречается на Земле в твердом, жидком и газообразном состоянии. Среди удивительных качеств этой молекулы есть одно, без которого она закипала бы уже при ‑70 °С. В этом случае на Земле не было бы жидкой воды, а следовательно, и жизни. Однако благодаря этому качеству точка кипения воды находится на привычной для нас отметке – 100 °С.

Речь идет о так называемой водородной связи, которая возникает между электрическим зарядом атома водорода и другим атомом, например кислорода, азота или фтора. В случае с водой положительный заряд водорода обеспечивает связь с отрицательным зарядом кислорода в другой молекуле воды. В результате такой межмолекулярной связи молекулы воды становится труднее перевести в газообразное состояние. Это сдвигает точку кипения вверх и таким образом делает нашу планету обитаемой.

Наличие водородной связи придает воде еще одну особенность. Большинство веществ в твердом виде имеют меньший объем, чем в жидком. Однако твердая вода (лед) занимает больший объем, чем жидкая. Именно поэтому мы не рекомендуем замораживать воду в бутылках. Именно поэтому лед плавает по поверхности воды, давая возможность выжить тем, кто обитает подо льдом. Утверждение, что это свойство характерно только для воды, не совсем верно. Уксусная кислота и кремний, к примеру, тоже имеют в твердом состоянии меньшую плотность, чем в жидком, но это все же скорее исключение, чем правило.

Наполните небольшую пластиковую бутылку водой до самого верха, закройте крышкой и поставьте на ночь в морозильную камеру. При замерзании вода расширится и либо разорвет пластик, либо сорвет крышку, либо необратимо деформирует бутылку. Не вздумайте провести этот эксперимент со стеклянной бутылкой, иначе вам придется собирать ее осколки по всему холодильнику.

Причина расширения воды при замерзании заключается в том, что стандартная шестиугольная кристаллическая структура льда не соответствует направлению водородных связей, которые удерживают молекулы воды в жидком состоянии. Чтобы вписаться в кристаллическую структуру, молекулам воды приходится отдаляться друг от друга, что уменьшает ее плотность (кстати, наибольшую плотность вода в жидком виде имеет при температуре 4 °С).

Вода прозрачная, хоть и имеет слегка голубоватый оттенок, что объясняется особенностями преломления в ней света (по этой же причине и небо имеет голубой цвет). Правда, чтобы это разглядеть, необходим большой объем воды, например в горных ледниках.

Важность воды для поддержания жизни объясняется еще и тем обстоятельством, что она является прекрасным растворителем. Благодаря наличию водородной связи она растворяет многие вещества и способна переносить их к живым клеткам. Но и это еще не все. Вода принимает участие во многих химических реакциях, необходимых для обмена веществ в организме. Без нее живая клетка существовать не может.

Крошечные камеры

Я уже неоднократно употреблял в этом тексте слово «клетка». Без него просто не обойтись, если разговор идет об организме. Данный термин ввел в оборот современник (и соперник)

Ньютона Роберт Гук. Он был выдающимся ученым. Его самым известным сочинением была «Микрография» – прекрасно иллюстрированный труд с изображениями, полученными с помощью увеличительных стекол и предшественников современных микроскопов.


Изображение блохи из книги Роберта Гука «Микрография»


Некоторые иллюстрации из этой книги произвели ошеломляющее впечатление на современников. Речь идет прежде всего об увеличенных изображениях блохи и вши. Люди той эпохи были слишком хорошо знакомы с этими насекомыми, но не испытывали никакого желания наблюдать их в таких ужасающих деталях. Гук также поразил публику детальным изображением фасеточного глаза мухи. Изучая тонкие срезы пробки, он обнаружил «скопление бесчисленного множества крошечных камер», которые он назвал клетками. Это название и прижилось в биологии.

Все известные живые существа состоят из клеток или, по крайней мере, из одной клетки. К примеру, простейшая форма жизни – бактерия – имеет только одну клетку, а в нашем организме их триллионы. Каждая клетка – это вместилище жизни. Клетки крови, о которых мы уже говорили, имеют довольно необычное строение, но их более стандартные формы, из которых состоит наше тело, располагают центральным ядром и разнообразными биологическими механизмами, плавающими в окружающей его жидкости.

Молекула-суперзвезда

В ядре клетки находится самое известное из существующих химических соединений – ДНК. Согласитесь, что это настоящая знаменитость в мире химии. Упоминания о каких других молекулах появляются в новостях столь же часто? Нам даже необязательно называть эту молекулу полным именем, так как вполне хватает инициалов (название «дезоксирибонуклеиновая кислота» не так-то легко произносить). Нам достаточно только взглянуть на изображение двойной спирали, чтобы понять, с чем мы имеем дело.

ДНК – это не простое вещество типа соли, например хлористого натрия, молекула которого состоит всего из двух атомов (NaCl). Это сложнейшая структура, предназначенная для хранения информации в химической форме. ДНК в ядре одной из клеток тела (скажем, в клетке кончика пальца) состоит из последовательности длинных молекул, обернутых вокруг белков, которые носят название гистонов. Гистоны играют роль своеобразного веретена, на которое накручиваются нити ДНК.

Возможно, вы видели увеличенные изображения человеческих хромосом. Каждая хромосома представляет собой отдельную молекулу ДНК с сопутствующими гистонами. В ядре каждой клетки находится 46 таких хромосом. Подробнее мы поговорим об этом в главе 7. Пока же достаточно знать, что ДНК в каждой хромосоме – это одна отдельная молекула. Она свернута в клубок и по размерам превосходит любую другую из известных молекул. ДНК в первой хромосоме человека состоит примерно из 10 миллиардов атомов.

Эксперимент по выделению ДНК

У вас есть возможность самостоятельно повторить то, что делают судебно-медицинские эксперты в телесериалах, когда выделяют ДНК из полученных образцов. В данном случае мы будем экстрагировать ДНК из банана. Это один из самых сложных экспериментов в книге, но даже если вы не решитесь его проводить, все же приятно сознавать, что вы сами можете добыть ДНК сравнительно простым способом.

Измельчите банан в блендере до состояния пюре (для этого достаточно всего несколько секунд, чтобы полученная смесь не была слишком жидкой). Смешайте в кружке одну часть жидкого средства для мытья посуды и девять частей теплой воды (скажем, 10 миллилитров средства для мытья посуды и 90 миллилитров воды). Добавьте в раствор щепотку соли. Перемешайте раствор с банановым пюре, чтобы у вас получилась однородная масса без комков, пузырей и пены.

Через кофейный фильтр отцедите из этой кашицы жидкость и поставьте ее в холодное место. Часть полученной жидкости налейте в узкую стеклянную емкость (желательно лабораторную пробирку). Уровень жидкости должен составлять пару сантиметров. Теперь аккуратно добавьте сильно охлажденный спирт, наливая его по стенке, чтобы он образовал слой поверх раствора. ДНК начнет переходить из раствора в спирт, и ее можно будет просто намотать на длинную палочку типа зубочистки.

В идеале следует использовать чистый 95‑градусный этиловый спирт. Если его не удастся добыть, подойдет и спирт для растирания. Алкогольные напитки не обладают должной чистотой. Эксперимент можно проводить не только с бананом, но и с любой другой живой субстанцией, однако банановое пюре получить проще всего. Конечно, в добытом образце будет содержаться примесь белков, но основную его массу составляет все же ДНК.

Молекула ДНК, имеющая вид двойной спирали, очень напоминает винтовую лестницу. Завитки образованы длинными нитями полимера дезоксирибозы – одного из видов сахаров, способных образовывать длинные цепи с повторяющейся последовательностью атомов. Но это лишь каркас молекулы. Самыми важными компонентами являются ступеньки этой лестницы. Каждая из них состоит из пары, образованной соединением четырех азотистых оснований – цитозина, гуанина, аденина и тимина.

Ваш личный код

Эти основания играют ту же роль, что единицы и нули в двоичном коде компьютера (разумеется, аналогия с двоичным кодом условна, потому что оснований не два, а четыре). ДНК в каждой из клеток состоит из шести миллиардов таких пар оснований. Этот код используется для хранения информации, необходимой в производстве различных белков, играющих главную роль в биологическом мире, а также других молекул, которые определяют последовательность формирования и развития организма. Вся эта система работает эффективно, потому что в образовании ступенек всегда участвуют строго определенные пары оснований. Аденин соединяется только с тимином, а цитозин – с гуанином.

Именно это попарное соединение является ключом к копированию информации. Новые клетки образуются в процессе деления старых. Каждая новая клетка должна получить свою копию ДНК. Для этого две цепи одной двойной спирали разделяются по линии соединения оснований. Хотя обе половинки не идентичны, они легко воссоздадут недостающую часть ДНК, так как основания всегда соединяются одинаково. В результате в каждой новой клетке, появившейся в процессе деления, окажется полная версия ДНК.

ДНК часто сравнивают с чертежом живого организма. У этой молекулы много дел. Посудите сами: организм начинается с одной-единственной клетки. Она делится на две части, потом на четыре и так далее, пока не достигнет окончательной цифры – 50–70 триллионов. Разумеется, это не просто механическое увеличение количества одинаковых клеток. В противном случае вы превратились бы просто в большой однородный сгусток. Что-то должно давать указания клеткам, чтобы они специализировались и образовывали различные органы и структуры тела. В этом и заключается задача ДНК.

И все же сравнивать ДНК с чертежом неправильно. Чертеж дает точные инструкции по строительству того или иного объекта, а ДНК не содержит всех данных, которые позволили бы в точности определить, что и как должно происходить в организме. Не существует никакой связи между количеством генов (базовых информационных кодов ДНК) и уровнем сложности живого существа. Например, рис имеет вдвое больше генов, чем человек. Конечно, это излишне упрощенный подход, в чем мы еще сможем убедиться, более детально изучая гены.

И все же лучше рассматривать ДНК как контрольную компьютерную программу на полностью автоматизированной фабрике, каковой является живой организм. ДНК не содержит всех деталей. Просто различные внешние факторы взаимодействуют с ней, в определенное время активизируя одни ее части и замедляя другие. Тем не менее, как мы увидим в главе 7, ДНК играет колоссальную роль в формировании организма.

Сорок шесть молекул ДНК в ядре клетки не единственные ДНК в организме. На самом деле есть и другие, которые можно считать своего рода пришельцами. Они родились не в человеческом организме.

Пришельцы в ваших клетках

Во внутриклеточной жидкости вокруг ядра вы можете обнаружить структуры, называемые митохондриями. Эти крошечные образования часто называют электростанциями клеток, так как их функция заключается в усвоении кислорода, получаемого в ходе дыхания (его доставляют красные кровяные клетки), и соединении его с химическими веществами пищи. В результате образуется аденозинтрифосфат (АТФ) – молекула, в которой запасается необходимая для организма энергия. Митохондрии представляют собой биохимические зарядные устройства для электрических батарей. Самое удивительное то, что раньше они, по всей видимости, были бактериями, которые впоследствии, в процессе взаимовыгодного симбиоза, стали частью клеток.

Эта теория происхождения митохондрий возникла уже довольно давно, но ее доказательство появилось лишь в 2011 году, когда в море была открыта бактерия с довольно скучным названием – SAR11, имевшая с нашей митохондрией общего предка. Сравнение генов митохондрии и SAR11 показало, что их общим предком была древняя бактерия.

Это сравнение стало возможным лишь потому, что у митохондрий есть собственная ДНК, содержащая всего 13 генов и не имеющая ничего общего с хромосомами, содержащимися в ядре клетки. В отличие от главной ДНК, которая представляет собой комбинацию генов обоих родителей, ДНК в митохондриях передается только по материнской линии. В бывшей бактерии было около тысячи генов, и раньше все они находились в ее ядре. Но со временем, когда бактерия стала митохондрией, большая часть генов, за исключением тринадцати, перешла в хромосомы.

Количество митохондрий зависит от типа клеток. Наибольшее количество (свыше тысячи) содержится в клетках печени. Хотя у митохондрий есть и другие функции, ее главная задача – накопление энергии в молекулах АТФ, которые представляют собой химический эквивалент заведенной пружины в часовом механизме.

В сжатой до предела пружине содержится большой потенциал энергии, которая при высвобождении способна приводить механизм в движение. Точно так же и митохондрия запасает энергию в АТФ. Это химическое соединение с труднопроизносимым названием содержит пару внутриатомных связей, которые соединяют атомы фосфора с единственным атомом кислорода. Эти связи относительно слабы и легко разрываются, в результате чего высвобождается энергия, приводящая в движение мышцы.

Чужие гены

Митохондрии – это не единственные пришельцы в организме человека. Ваша ДНК содержит гены по меньшей мере восьми ретровирусов. Это разновидность вирусов, использующих клеточные механизмы для кодирования ДНК и за счет этого берущие клетку под свой контроль (один из подобных вирусов, в частности, вызывает СПИД). Гены этих вирусов в ваших хромосомах в настоящее время выполняют важные функции размножения, но они абсолютно чужды человеческой ДНК.

Если когда-то митохондрии были бактериями, то теперь они стали частью клеток организма человека. Хотя они не встречаются в простейших одноклеточных существах, но присутствуют практически во всех организмах, клетки которых имеют ядра.

Похоже, что вторжение митохондрий в чужие организмы состоялось на очень ранних стадиях развития сложных форм жизни на Земле. Однако это не единственные бактерии, живущие в вашем теле.

Триллионы нелегальных мигрантов

Глядя на себя в зеркало, задумайтесь о том, что с чисто математической точки зрения в вас больше бактериальной жизни, чем человеческой. В теле человека в 10 раз больше бактерий, чем собственных клеток.

Многие из бактерий, которые называют тело человека своим домом, настроены дружелюбно, то есть не причиняют никакого вреда. Некоторые даже полезны. Они не являются неотъемлемой составной частью нашего организма, как митохондрии, поэтому можно обойтись и без них, но тогда жизнь существенно осложнится. В конце 1920‑х годов американский инженер Джеймс Рейнерс решил выяснить, могут ли животные жить вообще без бактерий. Он надеялся создать мир без бактерий, в котором будет царить здоровье. Рейнерс посвятил всю жизнь созданию безбактериальной среды, в которой можно было бы с момента рождения выращивать морских свинок и других животных.

Оказалось, что это возможно. После уничтожения всех бактерий животные не умирали. Поскольку мир без бактерий сулил избавление от многих болезней, результаты работ Рейнерса стали толчком для широкого распространения всевозможных антибактериальных средств и антибиотиков.

Никто не сомневается в том, что некоторые бактерии чрезвычайно вредны. Однако исследования Рейнерса зашли в тупик. Да, некоторые морские свинки могли обходиться без бактерий, но многие в таких условиях умирали. А тех, кто оставался в живых, приходилось кормить специальной едой. Дело в том, что бактерии, обитающие в кишечнике, способствуют пищеварению. Это имеет особое значение для животных и насекомых, поедающих растения с богатым содержанием целлюлозы. Такая пища расщепляется только с помощью бактерий.

Вы тоже могли бы жить без бактерий, но в отсутствие ферментов, которые производят кишечные бактерии, вам пришлось бы употреблять в пищу только те продукты, которые богаты питательными веществами. Особенно это касается вегетарианцев, так как волокна растительного происхождения не перевариваются исключительно с помощью собственных ферментов. С ними могут справиться только химические вещества, вырабатываемые бактериями.

Это необходимо учитывать при лечении антибиотиками. Хотя каждый отдельный антибиотик убивает лишь определенные микроорганизмы, он не делает различий между «хорошими» и «плохими» бактериями. Ему это безразлично. С таким же успехом он уничтожит и полезные кишечные бактерии. Это значит, что некоторое время после этого вам придется делать упор на продукты, богатые питательными веществами, и, кроме того, избегать инфекций, так как бороться с ними помогают именно кишечные бактерии. Если антибиотик уменьшит численность этих бактерий, их место с легкостью займут другие, возможно, вредные микроорганизмы.

Как ни прискорбно, но я должен огорчить любителей напитков и других продуктов, содержащих пробиотики и другие якобы полезные бактерии. Нет никаких свидетельств того, что они приносят хоть какую-то пользу. Такие бактерии, попадающие в организм вместе с пищей, не вносят заметного вклада в состав микрофлоры. Возможно, употребляющий их человек получает какие-то психологические преимущества типа эффекта плацебо, но реальной биологической помощи они не оказывают.

Значение аппендикса

Бактерии тесно связаны еще с одним органом тела, в отношении которого царит самое большое непонимание. Это аппендикс. Если он у вас до сих пор есть, вы, возможно, задумывались, зачем он нужен. В конце концов, пользы от аппендикса не видно, а если в нем возникают какие-то сбои, то это может привести к такому угрожающему жизни состоянию, как аппендицит. В этом нет никакого эволюционного смысла. Если человек уже длительное время живет с абсолютно бесполезным придатком, то почему он не исчезает?

Лишь относительно недавно было обнаружено, что аппендикс чрезвычайно важен для бактерий, обитающих в пищеварительной системе. Они используют его как своего рода дом отдыха, где можно немного расслабиться после активной работы в кишечнике и пополнить свое количество за счет размножения. Таким образом, аппендикс не так уж бесполезен, как традиционно было принято считать.

Тем не менее странно, что живущие в нашем организме бактерии, в том числе и обитающие в аппендиксе, почему-то неуязвимы для иммунной системы. Клетки крови непрерывно производят антитела (белки, предназначенные для нападения на чужаков и их уничтожения). Именно из-за них операции по пересадке органов сталкиваются с такими трудностями. Наш организм борется даже с абсолютно безобидными клетками чужого человеческого тела, однако в силу каких-то обстоятельств, которых мы еще не понимаем, бактерии почему-то неуязвимы для антител.

Удивляют и результаты недавних исследований, в ходе которых было установлено, что в аппендиксе содержится колоссальное количество антител. Некоторые из них присоединяются к кишечным бактериям, но не уничтожают их, а, наоборот, оказывают помощь. Самым известным из антител в кишечнике и, в частности, в аппендиксе является иммуноглобулин А. Он присоединяется к бактериям, но вместо того, чтобы их убивать, формирует некую защитную структуру, не только позволяющую им спокойно жить и процветать, но и препятствующую их выведению из организма с отходами пищи. Оказывается, антитела протягивают руку помощи полезным кишечным бактериям.

Бактериям неизвестно правило пяти секунд

Бактерии (и вирусы), разумеется, далеко не всегда идут нам на пользу. Хотя некоторые заболевания обусловлены генетическими причинами или сбоями в каких-то процессах жизнедеятельности, причиной большинства из них являются все-таки эти крошечные агрессоры. Существует одно убеждение, о котором, вам, возможно, приходилось слышать еще от бабушки с дедушкой и которое нуждается в проверке с научной точки зрения. Речь идет о так называемом правиле пяти секунд. Оно гласит, что если вы уронили еду на пол, но подняли ее в течение пяти секунд, то есть ее безопасно для здоровья.

Вероятно, это правило зародилось еще при Чингисхане, хотя в те времена люди были не столь привередливы в вопросах еды и речь тогда шла не о 5 секундах, а скорее о 12 часах. Американская школьница Джиллиан Кларк, проходя летнюю научную практику в университете, решила подойти к этому вопросу с научных позиций и пришла к интересным выводам.

Она взяла мазки с пола во многих университетских помещениях, включая спортивный зал, и обнаружила, что пробы содержат на удивление мало бактерий. Помогавшие ей студенты сумели даже сосчитать их точное количество.

Как и ожидалось, в ходе опросов было установлено, что люди охотнее поднимают с земли и отправляют в рот сладости и кондитерские изделия, чем брокколи и цветную капусту.

Но самым важным результатом работы оказалось то, что если на полу обнаруживались бактерии Е. coli, то для того, чтобы заразить еду, им требовалось значительно меньше, чем пять секунд. Таким образом, это правило в данном случае не срабатывает.

«Ползучее» вторжение

Бактерии, безусловно, представляют собой самую распространенную форму чужеродной жизни как снаружи, так и внутри организма, но они не одиноки. У людей бывают и другие незваные гости – вши, блохи и, конечно, глисты. Мы привыкли думать о глистах как о нежелательных паразитах, но в последнее время получены данные, что некоторые из них иногда могут быть полезны.

Возможно, эта мысль покажется вам странной, но, хотя глисты стали нашими компаньонами значительно позже бактерий, мы живем с ними так долго, что организм уже привык к ним. Хотя экспериментов в этом плане было не так уж много (вероятно, потому, что эти существа многим внушают отвращение), есть достаточные основания полагать, что некоторые глисты оказывают на организм положительное воздействие, так как многие системы нашего организма рассчитывают на их присутствие и чувствуют себя без них неуютно. Высказывается мнение, что с тех пор, как мы объявили глистам войну, некоторые болезни стали возникать чаще и что наличие глистов в разумных пределах было бы полезно для здоровья.

Благородные пиявки

Еще одним паразитом, который проявляет положительные качества, является пиявка. Пиявки используются в медицинских целях на протяжении сотен лет, но первоначально их применение основывалось на ложных предпосылках. Медицина лишь сравнительно недавно стала наукой. На протяжении долгого времени она исходила из идеи, которая напоминает древнегреческую концепцию четырех элементов. В соответствии с ней человеческое тело содержит четыре жидкости – кровь, флегму, черную и желтую желчь.

Эти жидкости должны находиться в определенной пропорции. Если, к примеру, у вас в теле слишком много крови (что характерно для сангвиников), то ее излишек необходимо удалить при помощи кровопускания. Такая процедура была широко распространена, но после нее организм пациента нередко ослабевал и справлялся с инфекциями хуже, чем обычно. В связи с этим кровопускание посредством надрезов на коже часто заменяли более щадящим способом – прикладыванием пиявок.

Хотя современная медицина, к счастью, доказала неэффективность кровопускания, пиявки по-прежнему остались в ее арсенале для оказания помощи при возникновении некоторых послеоперационных проблем. Это кровососущее существо нуждается в том, чтобы кровь текла свободно и не свертывалась, для чего, присасываясь к телу жертвы, использует естественные антикоагулянты. В ходе хирургических операций порой возникают состояния, когда образуются сгустки крови, затрудняющие поступление свежей крови в некоторые части тела. Разумное использование пиявок помогает избежать свертывания крови и улучшает кровоток.

Пришельцы на ресницах

В зависимости от вашего возраста можно с достаточной долей уверенности утверждать, что у вас имеются и другие пришельцы. Оказывается, на отмерших клетках у волосяных фолликулов живут крохотные существа – ресничные клещи (демодексы). В отличие от вшей, они питаются только поверхностными выделениями сальных желез и не причиняют человеку вреда, хотя в редких случаях могут вызывать аллергическую реакцию. Они очень малы (длина взрослой особи составляет около 1/3 миллиметра) и почти прозрачны, поэтому разглядеть их невооруженным глазом крайне трудно.

Однако если вы положите ресницу или волос из брови под микроскоп, то обнаружите это крошечное существо, которое большую часть времени проводит на коже непосредственно у корней волос. Они имеются примерно у половины населения (у детей меньше, у взрослых больше). Ресничные клещи не обладают никакими полезными свойствами, как, например, некоторые бактерии, но и беспокоиться по поводу их присутствия не стоит. Они совершенно безобидны.

Увидеть малое

Упомянутые выше миниатюрные пришельцы по-настоящему стали частью нашего сознательного восприятия собственного тела, когда появились микроскопы. Развитие этой технологии привело нас к пониманию процессов, происходящих в клетках. Первые наблюдения объектов под увеличением, проведенные Гуком, осуществлялись с помощью сильной одиночной линзы на массивной подставке, которая уменьшала вибрации. Примерно такой же техникой пользовался и Антони ван Левенгук, первым сообщивший о существовании бактерий (1674). Но подлинный прогресс начался лишь с появлением составного микроскопа.

Оказалось, достаточно вставить в круглый корпус две линзы, чтобы кардинально расширить наши познания о микроскопической жизни. Одна линза (объектив) размещалась близко к изучаемому объекту и создавала с обратной стороны его увеличенное изображение. Эта «виртуальная» картинка, которую нельзя было увидеть, находилась как бы в пространстве. Другая линза (окуляр), в свою очередь, еще больше увеличивала это изображение.

Данным изобретением мы обязаны отцу и сыну Хансу и Захарию Янсенам из Голландии. Они были мастерами по изготовлению очков и в 1590 году создали первый составной микроскоп. В то время Ханс был еще мальчиком. Впоследствии он приобрел даже большую известность, чем отец, так как всю свою карьеру посвятил изготовлению оптических инструментов, однако основная заслуга в создании микроскопа принадлежит все же Захарию.

Современные знания о строении тела стали еще шире с появлением других технологий, которые позволили увидеть невидимое. Первым настоящим прорывом в данной области стала в свое время аутопсия (вскрытие трупа), которая в течение долгого времени была запрещена. Эта процедура позволила понять многое из того, что происходит внутри организма, но она имела свои ограничения, так как не могла проводиться на теле живого человека. Современная техника предлагает для этого несколько возможностей.

Всепроникающие лучи

Настоящая революция произошла в 1895 году, когда немецкий ученый Вильгельм Рентген, экспериментируя с трубкой Крукса, случайно совершил открытие. Это был прообраз катодной трубки, которая впоследствии широко использовалась в телевизорах и мониторах компьютеров до изобретения жидкокристаллических и плазменных экранов. Испускавшиеся этим устройством «катодные лучи» представляли собой поток электронов, которыми можно было управлять с помощью электрического и магнитного полей. Попадая на фосфоресцирующий экран, электроны вызывали свечение.

В телевизорах такие экраны устанавливались в передней части, но у Рентгена он случайно оказался слева от прибора. Включив трубку, ученый с удивлением заметил, что экран засветился, хотя по бокам трубка была обмотана картоном. Было похоже, что электроны, попадая в металлическую мишень, генерировали какой-то новый вид излучения, которое распространялось во все стороны и было настолько мощным, что проходило сквозь картон.

Рентген назвал этот новый вид излучения икс-лучами. «Икс» в названии символизировал нечто неизвестное и загадочное. Однако научной общественности это не понравилось, и впоследствии они стали называть новое явление рентгеновскими лучами.

В то время, как, впрочем, и сейчас, публикации в научной периодике иногда попадали в поле зрения прессы, и статья Рентгена об открытии икс-лучей произвела фурор среди широкой общественности благодаря одной фотографии. Она изображала руку его жены, сфотографированную в рентгеновских лучах. Лучи прошли сквозь мягкие ткани, но не через кости. Впервые на фотографии можно было увидеть часть человеческого скелета внутри тела. Интересным было и то, что жена не сняла обручальное кольцо (хотя, очевидно, пыталась сделать это, так как оно сдвинуто к суставу фаланги пальца), которое отобразилось на фотографии в виде густого черного пятна.

Возможности медицинского применения нового изобретения были настолько очевидны, что первый в мире рентгеновский аппарат был установлен в больнице города Глазго уже в 1896 году, то есть спустя всего год после открытия. Врачи, работавшие с рентгеновскими лучами, не соблюдали никакой осторожности. Более того, возможность видеть сквозь тело очень увлекала широкую публику. Даже в начале XX века в научно-популярных журналах публиковались инструкции по сооружению собственного рентгеновского аппарата в домашних условиях. В детстве с помощью такого устройства я мог сам наблюдать кости своих стоп, обутых в ботинки.

Лишь намного позже стало понятно, что использование замечательных свойств рентгеновских лучей сопряжено с риском. Рентген с самого начала догадывался, что эти лучи представляют собой разновидность световых. Так оно и оказалось. Рентгеновские лучи – это, по сути, тот же видимый свет, но обладающий куда большей энергией. Мы знаем, что электроны могут перескакивать на более высокий уровень при поглощении фотона – кванта световой энергии. Однако рентгеновские лучи обладали такой энергией, что могли выбивать электроны из атома. Это явление называется ионизирующей радиацией.

Сама по себе ионизация представляет собой довольно обычный процесс. Она происходит, например, при растворении соли в воде. Таким образом, все жидкости в организме человека содержат массу ионов. Однако ионизирующая радиация, проникая в клетки тела, создает свободные радикалы – очень активные молекулы, значительно повышающие риск возникновения рака. Естественной защитой организма от свободных радикалов являются антиоксиданты. В связи с этим в последнее время усиленно рекламируются продукты с антиоксидантами, которые якобы полезны для здоровья. Однако все исследования говорят о том, что антиоксиданты, принимаемые с пищей, не идут ни в какое сравнение с анти-оксидантами, вырабатываемыми самим организмом, поэтому практически бесполезны.

Опасность ионизации, вызванной фотонами высоких энергий, означает, что чрезмерного воздействия рентгеновских лучей на организм следует избегать. Именно поэтому рентгенологи работают за защитными экранами. Однако для пациентов риск весьма невелик, особенно если учесть, что мы непрерывно подвергаемся воздействию естественной радиации. Радиация, исходящая из природных источников, присутствует вокруг нас постоянно. Рентгеноскопия грудной клетки, к примеру, создает такой же уровень облучения, как полет на самолете в течение 10 часов.

Томография и ядерный резонанс

Для того чтобы без вскрытия выяснить, что происходит внутри тела человека, врачи сегодня располагают самыми разными средствами. Компьютерная томография – это те же самые рентгеновские лучи, но они способны на такое, о чем до появления компьютера и подумать было невозможно. Томография представляет собой последовательное фотографирование одного слоя исследуемого участка тела за другим.

С помощью сложной компьютерной обработки из этих снимков составляется объемное изображение внутренних тканей тела, которое можно рассматривать под любым углом.

Еще один хорошо известный метод называется МРТ – магнитно-резонансная томография. Сначала он носил название ЯМР (ядерный магнитный резонанс), но поскольку слово «ядерный» вызывало у людей ассоциации с ядерной радиацией, от него пришлось отказаться, хотя страхи были совершенно напрасными, так как имелись в виду ядра атомов в теле. Никакого облучения пациентов не происходило.


Снимок головы автора, сделанный с помощью компьютерной томографии. Вертикальные полоски отмечают отдельные слои, зафиксированные в томограмме


Протоны в ядре атома могут вести себя как маленькие магниты. МРТ использует сильное магнитное поле, которое ориентирует магнитные поля протонов в молекулах воды в определенном направлении. Затем сканер посылает пучок радиоволн определенной частоты (радиоволны представляют собой разновидность световых волн относительно низкой энергии), который на короткое время отклоняет магнитный момент (спин) протонов. После этого протоны быстро возвращаются в исходное состояние, излучая фотоны, которые могут быть зафиксированы. Поскольку разные виды тканей и жидкостей в теле реагируют на этот процесс по-разному, создается возможность различать их по количеству испускаемых фотонов и выводить полученное изображение на сканер.

Охота за неуловимыми нейтрино

Фотоны электромагнитного излучения определенной частоты – это не единственные частицы, способные проникать сквозь твердые тела. Каждую секунду сквозь наше тело проходит около 50 триллионов частиц, которые носят название нейтрино. Эти частицы испускаются Солнцем и другими космическими источниками. Нейтрино поистине неуловимы. Их так трудно обнаружить, что, хотя существование этих частиц было предсказано еще в 1930‑е годы, их впервые удалось зафиксировать лишь спустя двадцать лет. По результатам эксперимента, проведенного в 2011 году в ЦЕРНе (Женева), было высказано предположение, что нейтрино могут двигаться быстрее скорости света, а кое-кто даже заявил, что это означает крах теории относительности Эйнштейна.

Поскольку нейтрино с такой легкостью проникают сквозь тело человека, может показаться, что они прекрасно подходят для медицинского сканирования. Но дело в том, что ни одна структура не представляет для них ни малейшего препятствия. Они проходят через тело человека так же легко, как через вакуум. Более того, они могут пролететь сквозь всю нашу планету, как будто ее и нет. Обнаружить их можно лишь в том случае, когда один из нейтрино случайно столкнется с атомом, что вызовет образование и разлет вторичных частиц. А вот увидеть нейтрино мы не сможем.

Нейтринные телескопы обычно устанавливают в шахтах глубиной в несколько километров, поскольку на такую глубину не долетит ни одна другая частица, которая могла бы вызвать реакцию в ванне с жидкостью или другим материалом, используемым в качестве детектора. Подобные устройства предназначены для того, чтобы создать с их помощью нейтринную картину Солнца. Картина получается не слишком подробной – всего несколько точек – и то при условии, что Земля в этот момент обращена к Солнцу противоположной стороной.

Самым мощным детектором нейтрино является обсерватория «IceCube» на Южном полюсе. В этом удивительном сооружении, построенном в апреле 2011 года, в качестве вещества для детектора используется квадратный километр льда, а обнаруживающая аппаратура находится на глубине 2,5 километра и фиксирует крошечные вспышки, когда какой-нибудь из нейтрино сталкивается с атомом находящегося наверху льда. Лед выполняет функции не только детектора, но и препятствия для других частиц, которые могли бы давать ложные вспышки. Есть что-то завораживающее в мысли о том, что крошечные искорки в толще антарктического льда – это следы нейтрино, родившихся в ходе ядерных реакций в далеком космосе.

Нейтрино, за которыми не может угнаться даже свет

Уже упомянутое открытие, сделанное в ЦЕРНе, вероятнее всего, окажется бурей в стакане воды. В эксперименте (который не имеет ничего общего с работой на Большом адронном коллайдере) нейтрино посылались на расстояние 732 километра. В конце данной дистанции было зафиксировано несколько нейтрино. При этом оказалось, что они прибыли к точке назначения на 0,00000006 секунды раньше, чем должны были. Самой вероятной причиной данного феномена является неправильное измерение расстояния. К моменту написания этой книги указанный результат не был повторен ни в одной другой лаборатории.

Но даже если измерения были проведены верно, то следующим по степени вероятности объяснением могло бы быть то, что нейтрино просто нарушают установленные правила. Неправильно утверждать, как это делали авторы многих статей в то время, что современная физика исходит из постулата, будто ничто не может двигаться быстрее скорости света. Специальная теория относительности говорит, что такого, скорее всего, не может произойти, но возможность преодоления этого барьера все-таки существует. Более того, уже было проведено несколько успешных экспериментов, в которых частицы двигались быстрее скорости света.

Этот феномен является следствием известного в квантовой механике туннельного эффекта. Один из необычных аспектов квантовой физики заключается в том, что нельзя абсолютно точно сказать, где именно находится данная частица. Существует лишь вероятность ее местонахождения в той или иной точке. Это значит, что частицы при определенных условиях могут «перепрыгивать» через препятствие, не пересекая пространство, которое оно занимает.

Это звучит странно и непривычно, но именно таков принцип существования нашего Солнца (и любой другой звезды). Для того чтобы началась реакция термоядерного синтеза, необходимо максимально близко подвести друг к другу положительно заряженные протоны. Но даже колоссальной температуры и давления внутри Солнца не хватит, чтобы запустить такую реакцию. Тем не менее она происходит, но только благодаря тому, что каждую секунду миллиарды частиц туннелируются через барьер взаимного отталкивания и сливаются.


Схема, демонстрирующая действие туннельного эффекта


Тот же самый туннельный эффект используется и для того, чтобы заставить частицу двигаться быстрее света. Все дело в том, что, преодолевая барьер, частица не пересекает занимаемое им пространство. Вместо этого она исчезает по одну сторону барьера и в то же мгновение появляется по другую сторону. Представьте себе, что фотон проходит 1 сантиметр со скоростью света, затем туннелируется через барьер протяженностью 1 сантиметр и после этого проходит еще 1 сантиметр со скоростью света. В результате он проходит общую дистанцию со скоростью 1,5с (с – скорость света).

Я не утверждаю, что это произошло в эксперименте с нейтрино, но могу себе представить, что причиной могло быть нечто похожее. И это не означает краха специальной теории относительности даже в том случае, если эксперимент был проведен корректно и в его результаты не закралась ошибка (что наиболее вероятно). Теория относительности подвергалась проверке не один раз, и каждый раз доказывала свою состоятельность.

Как бы то ни было, нейтрино в обозримом будущем не войдет в арсенал медиков для исследования нашего тела, хотя такие обсерватории, как «IceCube», представляют большой интерес для астрономов. И все же в исследованиях Вселенной, как и в изучении нашего тела, главную роль играет свет – основной инструмент изучения ближнего и дальнего пространства. Наше тело прекрасно владеет этим инструментом.

Загрузка...