Ваши глаза – это самое замечательное устройство для восприятия окружающего мира. А связь между вами и всей остальной Вселенной обеспечивается с помощью света. В этой главе мы попробуем понять, что и на каком расстоянии вы можете увидеть своими глазами. Выйдите ясной ночью из дома и взгляните на небо. Просто пять минут посмотрите на звезды. Если у вас есть время, возьмите стул и понаблюдайте за звездами немного дольше. На первый взгляд в них нет ничего необычного, но их созерцание – одно из самых ярких и захватывающих событий в жизни.
Давайте, к примеру, взглянем на созвездие Ориона (оно хорошо видно во всем мире с ноября по февраль, а во многих странах и круглый год).
Созвездия – это вотчина астрологов. Для науки они не имеют никакого значения, если не считать, что с их помощью легче находить на небе нужные звезды. Наш мозг приучен познавать мир в образах. Мы постоянно ищем знакомые образы и порой находим их даже там, где их нет. Такие созвездия, как Орион, Кассиопея и Южный Крест, буквально бросаются в глаза, так как их привычные очертания легко распознаются мозгом.
Лишь немногие люди способны разглядеть в созвездиях очертания классических персонажей, в честь которых они названы. Например, Орион – это мифологический охотник, держащий в руках дубинку. Однако общее очертание созвездия весьма узнаваемо, в частности, по трем близко расположенным звездам, образующим прямую линию. Это пояс Ориона.
Созвездие Ориона
Как уже было сказано, созвездия как таковые имеют значение для астрономов лишь с точки зрения ориентации на небе и присвоения звездам названий. Сами же их очертания – это в значительной мере иллюзия. Звезды, принадлежащие к одному созвездию, могут находиться на огромных расстояниях друг от друга. В частности, средняя звезда пояса Ориона находится от нас вдвое дальше, чем большинство других звезд созвездия, но мы этого не замечаем.
Звезды получают свои имена в соответствии с системой, которая впервые была представлена в 1603 году в звездном атласе немецкого астронома Иоганна Байера. Каждая звезда в созвездии имеет название, состоящее из двух частей. Первая часть представляет собой букву греческого алфавита, а вторая – название созвездия в родительном падеже. Теоретически алфавитный порядок звезд должен соответствовать их яркости, но Байер не всегда придерживался этого правила. Так, например, три звезды в поясе Ориона официально именуются дельта Ориона, эпсилон Ориона и дзета Ориона. Принцип яркости здесь нарушен. Звезды просто перечислены в алфавитном порядке с севера на юг.
Звезды, не входящие в состав созвездий, обычно получают скучные имена, состоящие из букв и цифр. Чтобы еще больше запутать ситуацию, самые известные звезды получают «клички», которые зачастую более известны, чем имена, приведенные в системе Байера. Так, например, самая яркая звезда Ориона (и шестая по яркости на всем звездном небе), находящаяся в правом нижнем углу созвездия, носит официальное название бета Ориона, но более известна как Ригель.
Точно так же вторая по яркости звезда, альфа Ориона (в верхнем левом углу), больше известна как Бетельгейзе. Она тоже входит в десятку самых ярких звезд и имеет выраженный красноватый оттенок. Бетельгейзе – громадная звезда. Если бы она занимала место Солнца, то доходила бы почти до орбиты Юпитера.
Но раз уж мы обратили внимание на Орион, я хочу, чтобы вы взглянули на среднюю звезду пояса – эпсилон Ориона, известную также как Альнилам. Настало время потренировать свои глаза.
Если вы никогда внимательно не смотрели на ночное небо, то, вероятно, не замечали, что некоторые звезды (и, по крайней мере, одна планета) отличаются по цвету. В следующий раз, когда небо будет ясным, найдите пару минут, чтобы внимательно рассмотреть звезды. Через некоторое время ваши глаза станут более чувствительными и вы заметите, что некоторые звезды имеют красноватый оттенок, а некоторые – голубой. Если вы увидите очень яркую звезду выраженного красного цвета, то это, скорее всего, не звезда, а планета Марс.
Альнилам – самая удаленная от нас звезда Ориона, поэтому мы не замечаем, что это чрезвычайно яркий голубой гигант. Альнилам очень молод по звездным меркам. Его возраст всего около четырех миллионов лет (для сравнения: нашему Солнцу уже 4,5 миллиарда лет). Он расположен в 1340 световых годах от Земли.
Как уже было сказано, световой год – это дистанция, которую свет проходит за год. С учетом того, что скорость света составляет 300 тысяч километров в секунду, это очень большое расстояние. Альнилам находится от нас примерно в 12 686 155 200 000 000 километрах. Сравните это с максимальным расстоянием, на которое человек отдалялся от Земли в ходе полета на Луну (каких-то 385 тысяч километров), и поймете, что на Альнилам мы полетим еще очень не скоро. Однако вы можете просто открыть глаза и без всяких вспомогательных средств увидеть объект, удаленный от вас на 12 686 155 200 000 000 километров. Ваши глаза – поистине чудесный инструмент исследований.
При взгляде на созвездие Ориона на ум приходит еще одно необычное обстоятельство. Поскольку свету требуется время, чтобы добраться до нас, мы видим звезды такими, какими они были, когда испускали этот свет, а не такими, какие они сейчас. Поскольку главные звезды Ориона находятся на разном расстоянии от нас, мы наблюдаем их в разное время прошлого. Альнилам, например, мы видим таким, каким он был 1340 лет назад, то есть в VII веке. Подумать только, как многое изменилось на Земле, пока до нас шел свет от Альнилама!
Давайте проследим за светом Альнилама со времени его зарождения до того момента, когда его обнаружил наш глаз. Свет состоит из крошечных нематериальных частиц энергии, называемых фотонами. Вероятно, в школе вам рассказывали, что свет имеет волновую природу. Его удобно рассматривать в виде волны, потому что фотоны в ряде случаев ведут себя так, словно действительно являются частью волны. И все же луч света от Альнилама – это поток фотонов.
Когда мы говорим о длине волны или частоте света, то имеем в виду только уровень энергии фотонов. Данная характеристика воспринимается глазом как цвет и говорит о том, к какой части электромагнитного спектра принадлежат фотоны. Этот спектр простирается от радиоволн, микроволн и видимого света до излучений высоких энергий типа рентгеновских и гамма-лучей.
Причина, по которой фотоны ведут себя как волны, заключается в том, что им присуща такая характеристика, как фаза, которая циклически меняется. Представьте себе, что к каждому фотону прикреплены крошечные часы, стрелка которых очень быстро совершает оборот на 360 градусов. В любой данный момент времени эта стрелка (фаза) указывает в определенном направлении, которое соответствует положению фотона на воображаемой волне.
Фотоны, которые достигают ваших глаз, промчавшись сквозь пространство космоса, зарождаются в сердце звезды в процессе реакции термоядерного синтеза. В такой звезде, как Солнце, ядра двух атомов водорода сливаются и образуют ядро следующего по тяжести элемента – гелия. При этом теряется небольшая часть массы, которая превращается в энергию в соответствии с самой знаменитой физической формулой Е = mc².
Приведенная формула демонстрирует нам, насколько велика эта энергия. Символ «с» в этом уравнении, возведенный в квадрат, соответствует скорости света. Таким образом, из крошечной массы мы получаем огромное количество энергии, которая излучается в виде фотонов (и других частиц) в центре звезды. Практически мгновенно фотоны сталкиваются с другими частицами и поглощаются ими, в результате чего излучаются другие фотоны. Этот процесс повторяется вновь и вновь по мере того, как свет постепенно пробивается к поверхности звезды. Могут пройти миллионы лет, прежде чем фотон в конце концов покинет Солнце.
В Альниламе этот процесс выглядит немного иначе, поскольку протекает с такой интенсивностью, что весь водород там, вероятно, уже выгорел, и звезда производит другие элементы, но конечный эффект остается тем же. После серии реакций в глубинах звезды, в ходе которых фотоны непрерывно излучаются и поглощаются, один из фотонов в конце концов достигает поверхности и покидает ее. После миллиардов столкновений его энергия в этот момент намного ниже, чем изначальная. Если в момент зарождения энергия фотона была в диапазоне гамма-лучей, то теперь она снижается до видимого спектра света. Именно в таком виде он и улетает в пространство.
Как только фотон покидает поверхность звезды, его уже ничто не может остановить, если только он не будет чем-то уничтожен. Свет должен двигаться с определенной скоростью, в противном случае он просто не может существовать. Итак, он летит в пространстве со скоростью 300 тысяч километров в секунду. Подавляющее большинство фотонов, излучаемых звездой Альнилам, никогда не достигнет Земли. Однако очень незначительная часть, включая и фотон, за которым мы пристально следим, движется строго в нашем направлении.
На протяжении 1340 лет этот фотон пересекал пространство и вот, наконец, вошел в атмосферу Земли. Если ему повезет, его не поглотит ни одна из молекул воздуха. А такая печальная судьба грозит многим фотонам. Именно поэтому космический телескоп «Хаббл», установленный на спутнике, может делать куда более качественные фотографии, чем наземные телескопы. Воздух в земной атмосфере поглощает некоторую часть света. Хотя молекула воздуха в конечном счете все равно испустит поглощенный фотон, она необязательно направит его в том же направлении. Поэтому свет в воздухе рассеивается, а те фотоны, которые продолжают движение в нашем направлении, немного сбиваются с пути, из-за чего возникает впечатление, будто звезда слегка колеблется и мерцает.
Наконец фотон достигает вашего глаза. Возможно, это тот же самый фотон, который покинул Альнилам 1340 лет назад. Все это время он летел в космосе только для того, чтобы исчезнуть, попав в ваш глаз. Если вы носите очки, он прекратит свое существование чуть раньше. Когда фотон проходит через такое вещество, как стекло, он может неоднократно поглощаться и излучаться повторно. Но даже если вы не носите очков, то это будет уже не тот же самый фотон, так как процесс поглощения и повторного излучения будет совершаться уже в вашем глазу. И все же процесс будет запущен именно тем фотоном, который 1340 лет летел до вас от Альнилама.
В конце концов фотон попадает на сетчатку, находящуюся на задней стенке глаза. Вместе с многими другими фотонами он будет сфокусирован на маленьком пространстве сетчатки с помощью линзы, которая находится в глазу. Как и во всех оптических устройствах, работа этой линзы основана на отклонении луча света при переходе из одной среды в другую. Это явление называется преломлением света.
Наполните прозрачный стакан водой на две трети (лучше, если у стакана будут вертикальные стенки) и поместите туда карандаш так, чтобы он стоял в стакане под наклоном. Посмотрите на то место, где он входит в воду. Создается впечатление, что в этой точке карандаш слегка изогнут и в месте входа в воду его положение становится почти вертикальным. Искажение не слишком велико, но вполне заметно. Это результат преломления света при переходе из воздуха в воду. То же самое происходит при его переходе из воздуха в стекло, например в линзу.
Традиционно этот феномен объясняют тем, что свет замедляется, переходя в более плотную среду, например в стекло линзы (или, в данном случае, в воду). Согласно закону сохранения энергии, при этом переходе возрастает частота, то есть волны следуют друг за другом чаще. Если вы представите себе широкий пучок света, попадающий на стекло под углом, то часть пучка, проникающая в стекло, должна увеличить частоту, а та часть, что еще находится в воздухе, сохранит прежнюю частоту. За счет этого происходит искривление волн.
Квантовая теория подходит к проблеме света и материи совершенно иначе. В соответствии с ней фотон может избрать любой из возможных путей, но с разной вероятностью. При прохождении по избранному пути он сохраняет уже упомянутое нами свойство изменения фазы с течением времени. Поскольку пути у каждого фотона разные, то и фаза при входе в стекло у каждого из них будет разной.
Чтобы понять, что происходит в действительности, необходимо произвести сложение всех фаз. Какие-то из них окажутся противоположно направленными и взаимно компенсируют друг друга. Останутся те фазы, которые ориентированы примерно в одном направлении – на путь, который потребует от фотонов минимального времени на прохождение. Хотя в принципе каждый фотон может избрать любой из потенциальных путей, на практике он ленив и пойдет по самому быстрому. Возможно, вы подумали, что это будет кратчайшая дистанция, то есть прямая линия, но ваш навигатор в автомобиле частенько доказывает, что лучше иногда сделать крюк по пустым дорогам, чем избрать прямой маршрут и потом торчать в пробках в центре города.
Переходя из воздуха в воду или стекло, свет ведет себя так же, как спасатели на пляже. Представьте себе такого спасателя в красном жилете, который замечает, что кто-то тонет. Первое побуждение, которое возникает в таких случаях, – бежать к утопающему по прямой линии. Но это не самый быстрый путь. Лучше пробежать некоторое расстояние вдоль берега до того места, откуда плыть будет короче. Ведь бежать по земле всегда быстрее, чем плыть по воде. Общая дистанция при этом несколько увеличивается, но человек, терпящий бедствие, получит помощь быстрее.
То же самое происходит, когда свет переходит из менее плотной среды в более плотную (например, стекло или воду). Поскольку свет в стекле движется медленнее, он сможет попасть к месту назначения быстрее, если сначала проделает лишнюю часть пути по воздуху, а затем пройдет более короткую дистанцию в стекле. Это и есть «принцип спасателя», который экономит время на дорогу.
Во всех этих рассуждениях мы исходим из предположения, что скорость света в стекле замедляется. Но замедлить ее не так-то просто. На самом деле свет в любой среде должен двигаться с одинаковой скоростью. В противном случае он просто прекратит существование. Квантовая теория объясняет, почему такое замедление все же происходит. Фотоны постоянно взаимодействуют с материей, особенно с электронами, находящимися на периферии атомов. При слишком сильном сближении электрон поглощает энергию фотона и тем самым повышает уровень своей энергии.
Правда, в этом случае электрон обычно становится менее стабильным. Он с легкостью перескакивает в прежнее энергетическое состояние и излучает новый фотон. Возможно, этот фотон полетит в том же направлении, а может, совершенно в другом. В большинстве случаев в прозрачной среде реэмиссия фотона осуществляется в прежнем направлении, и прямолинейность движения света сохраняется. Но на поглощение и реэмиссию тратится определенное время. В связи с этим скорость света замедляется.
В непрозрачном веществе вторичные фотоны испускаются не в том направлении, в котором двигались прежде. Именно эти фотоны попадают в наши глаза, и в результате мы видим объект. Мы привыкли считать, что свет отражается от предметов, словно мяч от стенки, и попадает к нам в глаза. На самом деле он поглощается предметом и излучается повторно. Большинство объектов лучше поглощают свет определенной части спектра (превращая его в тепло). В зависимости от того, какую часть спектра объект поглощает и какую испускает, мы можем видеть его цвет. Например, если объект поглощает все цвета радуги, кроме красного, мы видим его красным.
Поскольку линза, в том числе и та, что имеется в нашем глазу, по форме напоминает зерно чечевицы (само слово «линза», кстати, происходит от латинского lет – чечевица), пучок света, преломившийся в месте входа, проходит сквозь нее и повторно преломляется в точке выхода. Изогнутая поверхность линзы приводит к тому, что фотоны, летевшие первоначально в разных направлениях, собираются в одну точку. Если говорить о линзе, находящейся в передней части нашего глаза, то она фокусирует изображение отдаленных предметов на сетчатке, благодаря чему мы можем их видеть.
Однако у линз есть одна проблема: они по-разному реагируют на разные цвета. Степень преломления света зависит от его цвета. Именно по этой причине луч белого света, прошедший через призму, дает на выходе радужный спектр. В двояковыпуклой линзе синий цвет отклоняется чуть сильнее остальных, а красный, наоборот, чуть слабее. В результате изображение, полученное с помощью такой линзы, будет искажено за счет размытого радужного обрамления по краям.
Обычно эту проблему решают, добавляя к двояковыпуклой линзе корректирующую двояковогнутую или используя вместо линзы зеркало. Изогнутые зеркала тоже фокусируют лучи света, идущие с различных направлений, но при этом не проявляют избирательности по отношению к цветам.
Отчасти именно поэтому почти во всех астрономических телескопах используются не линзы, а зеркала. Такие телескопы (рефлекторы), кроме того, значительно короче, чем рефракторы, построенные на основе линз и имеющие такую же степень увеличения.
Как и в случае с непрозрачными объектами, отражение света от зеркала совершенно не похоже на отскок мяча от стенки, если взглянуть на этот процесс с точки зрения квантовой теории. Попадая на поверхность зеркала, фотон может отразиться от него под любым случайным углом. (Слово «отразиться» я использую здесь только для краткости. Не забывайте, что фотоны не отражаются. Каждый фотон сначала поглощается зеркалом, а потом испускается вновь, но конечный эффект выглядит так, словно происходит отражение.)
Представьте себе луч света, попадающий на зеркало, и отражающийся от него в ваши глаза. В соответствии с квантовой теорией он не попадает в центр зеркала и не отражается затем под тем же углом в ваши глаза, как рисуют на картинках в школьных учебниках. Фотоны имеют возможность с разной вероятностью избрать любой возможный путь и попасть на любой участок зеркала, а затем под самыми разными углами отразиться от него и, возможно, попасть в ваш глаз. При этом каждый фотон обладает фазой, меняющейся с течением времени. Если сложить вместе все вероятности путей, которые могут избрать фотоны, и фазы, которые они имеют на протяжении пути, то большинство из них окажутся взаимоисключающими. В конечном итоге останется только путь, по которому свет может пройти за наименьшее время. Обычно при этом угол падения света на зеркало равен углу отражения.
Отражение света от зеркала с нанесенными темными полосами
Но если все остальные вероятности взаимно компенсируют друг друга, то это еще не означает, что их не существует. И вы можете в этом убедиться. Если вы чем-нибудь закроете зеркало, оставив открытым только небольшой участок в середине, то, естественно, не сможете получить отражение от закрытой поверхности. Но нанесите на открытый участок тонкие темные полосы, и вы увидите то, чего не должны были бы видеть, если бы свет отражался под «правильным» углом. Дело в том, что эти полосы помогают увидеть и другие пути фотонов, чьи фазы ориентированы в одном направлении.
Но даже если вам не охота самим возиться с нанесением полос на зеркало, вы все же сможете увидеть отражение под необычным углом, вызванное квантовым эффектом. Видимый белый свет представляет собой смесь различных цветов, каждый из которых при попадании на полосатое зеркало должен отражаться под разным углом. И такое зеркало есть практически у каждого из вас. Это компакт-диск. Поверните его к себе зеркальной стороной и слегка наклоните по отношению к источнику света. Радужный узор, который вы увидите, объясняется рядами бороздок на поверхности, которые позволяют выборочно отражаться только фотонам, пути которых имеют определенную вероятность. В результате различные участки спектра отражаются по-разному и под неожиданным углом.
Зеркала прекрасно фокусируют свет, не разлагая его на составляющие цвета, но ваш глаз не смог бы работать, если бы в нем вместо линзы было зеркало. Устройство глаза таково, что зеркало не сможет направить лучи света от Альнилама (или любого другого объекта) на воспринимающую поверхность. Поэтому глаз вынужден использовать линзу, а это значит, что неизбежна хроматическая аберрация (цветовое искажение). Если бы вы могли видеть подлинное изображение, которое создается линзой в глазу, то оно имело бы окантовку из радужных полос по краям. Однако, как мы увидим ниже, мозг старается создать из поступающих сигналов наилучшее из возможных изображений, поэтому «исправляет» его, устраняя попутно и аберрационный эффект.
Это значит, что, используя различные цветовые сочетания на картине, мы можем создать иллюзию трехмерности изображения или, скажем, эффект, который будет создавать дискомфорт для зрения. Например, красные буквы на синем фоне вызывают неприятные ощущения при чтении. Такой ярко выраженный цветовой контраст вызывает сильную хроматическую аберрацию, и мозг с трудом справляется с устранением этого эффекта.
Отличный пример того, как мозг оказывается неспособным справиться с сильной хроматической аберрацией, вы можете увидеть на сайте www.universeinsideyou.com. Выберите на странице раздел Experiments и в нем тему The lenses of your eyes. Там вы увидите два варианта написания слова «Illusion». Даже трудно понять, почему эти изображения вызывают у вас неприятное чувство, но все дело в том, что мозг изо всех сил старается справиться с чрезвычайно сильной цветовой аберрацией.
В связи с этим, кстати, интересно упомянуть, что вы не способны видеть свет как таковой. Подобное утверждение может показаться противоречащим всякой логике, но я имею в виду, что увидеть свет так, как, например, дерево или собаку, невозможно. Свет, попадающий на сетчатку глаза, со здает зрительный образ. Да, вы видите предметы, когда они излучают или отражают свет и его фотоны взаимодействуют с вашими зрительными рецепторами. Но вы не способны видеть свет, проходящий мимо вас.
И это хорошо. Пространство вокруг вас заполнено светом и другими невидимыми формами электромагнитного излучения. Солнечный и искусственный свет, радиоволны, сигналы мобильных телефонов и других беспроводных средств связи – все это, по сути, одна и та же разновидность энергии. Если бы все эти потоки были видимыми, то мы вообще ничего не смогли бы разглядеть в этой мешанине. Если вы направите луч света в черную трубу и посмотрите внутрь через окошко, вырезанное в ее стенке, то ничего не увидите. Луч, проходящий внутри трубы, невидим. Его можно увидеть лишь в том случае, если что-то внутри трубы будет его рассеивать (например, дым, который используется во всевозможных лазерных шоу).
На задней стенке глазного яблока располагается сетчатка – своеобразный экран для восприятия света. Именно на нее проецируется изображение Альнилама, когда вы смотрите на ночное звездное небо. Этот экран покрыт сетью, состоящей примерно из 130 миллионов крошечных сенсоров, имеющих две формы – палочек и колбочек. Палочки воспринимают только черно-белое изображение. Их насчитывается порядка 120 миллионов, и они значительно чувствительнее, чем три вида колбочек, которые воспринимают цвет. При слабой освещенности колбочки вообще не работают. В этих условиях мы видим окружающую действительность черно-белой. Не только дети, но и многие взрослые отказываются верить в это, пока не убедятся на собственном опыте.
Если вы тоже сомневаетесь в неспособности глаза различать цвета при слабой освещенности, плотно зашторьте окна или дождитесь ночи. Посидите пару минут, чтобы глаза привыкли к темноте. Если вы вообще ничего не видите, включите ночник и накройте его покрывалом.
А теперь осмотритесь вокруг. Взгляните на свою одежду, кожу, окружающие предметы. Конечно, все выглядит немного не так, как в черно-белом кино, но цвета вы различить не сможете. Если цвет вам все-таки виден, значит, света еще слишком много. Уменьшите освещенность до такого уровня, чтобы очертания предметов были едва различимы, и попробуйте еще раз.
При цветном зрении используются комбинации трех первичных цветов – красного, синего и зеленого, из которых можно скомпоновать все остальные цвета. Возможно, вам приходилось слышать, что основными цветами являются синий, красный и желтый, но на самом деле это упрощенная версия для школьников, в которой речь идет о вторичных цветах – голубом, пурпурном и желтом, которые являются визуальными негативами первичных. Вторичные цвета используются для смешивания красящих пигментов, поскольку пигменты поглощают первичные цвета света.
Ночное зрение сильно отличается от цветного и регистрирует только уровень освещенности. Однако имеется и смешанный тип зрения (так называемая мезопия или сумеречное зрение), когда используются оба вида чувствительных элементов сетчатки. При этом возникают совершенно особые ощущения. Сумеречное зрение обладает необычными чертами. Пожалуй, именно этим объясняется тот факт, что в сумерках людям часто видятся призраки и другие визуальные феномены. Это как раз то время, когда зрение чаще всего обманывает нас, поскольку обе системы соперничают между собой, снабжая мозг визуальной информацией.
Цветовые колбочки сконцентрированы в центре сетчатки. Если же освещение слабое, то порой мы видим лучше, глядя на предмет не прямым, а боковым зрением. В этом случае изображение фокусируется на палочках, которых больше на периферии сетчатки. Похоже, наши глаза специально устроены таким образом, чтобы в темноте можно было боковым зрением заметить подкрадывающегося хищника. Три типа колбочек воспринимают, соответственно, красный, синий и зеленый цвета, хотя эти диапазоны у них в значительной степени перекрываются. Скорее, можно сказать, что их максимальная чувствительность настроена на один из цветов. Не у всех животных можно наблюдать такой набор светочувствительных элементов. Одни вообще не различают цветов. У других, в частности у собак, цветовое зрение сильно ограничено, так как у них в сетчатке только два типа колбочек.
Фотоны, прошедшие путь от Альнилама до вашего глаза, достигают наконец задней поверхности сетчатки (как ни странно, световые рецепторы глаза повернуты задом наперед и обращены не вперед, а назад, что может объясняться какой-нибудь эволюционной ошибкой). На поверхности каждого сенсора находятся специальные светочувствительные молекулы (фоторецепторы). Когда электроны этих молекул поглощают фотон, возникает слабый электрический импульс, который служит пусковым механизмом для отправки сигнала в мозг.
Перед передачей в оптический нерв сигналы комбинируются. Количество нервных волокон, подходящих к глазу, намного меньше, чем количество рецепторов, поэтому на одно нервное окончание поступают сигналы сразу от нескольких чувствительных элементов, что требует некоторой предварительной обработки сигналов. Как правило, нервы от правого глаза посылают информацию в левое полушарие мозга, и наоборот, однако некоторое количество нервных волокон не перекрещивается, поэтому часть сигналов от правого глаза обрабатывается правым полушарием параллельно с сигналами, поступившими от левого глаза. Перекрещивание нервных путей позволяет нам получать трехмерное изображение, а вот у птиц, к примеру, глаза в значительной степени работают независимо друг от друга и перекрещивание зрительных нервов выражено намного слабее.
До сих пор мы имели дело только с электрическими сигналами, посылаемыми в мозг. Затем мозг начинает обрабатывать эту информацию, используя набор модулей, отвечающих за различные аспекты зрения. Эти модули не ограничены какими-то определенными участками мозга, а имеют, скорее, функциональный характер. В их задачу входит фиксация движения, выделение деталей, определение формы, соотнесение с привычными визуальными моделями и т. п.
После первоначальной обработки данных мозг создает на их основе образ. Он конструирует ночное небо со звездой Альнилам в центре. Все это совершенно не похоже на фотографию. То, что вы «видите», – это образ, искусственно сконструированный мозгом на основе сигналов и их обработки. Можно даже сказать, что он менее реален, чем обычная фотография.
Такая искусственная природа зрения является причиной возникновения оптических иллюзий. Ваш мозг непрерывно конструирует образы такими, какими они, по его мнению, должны быть, а не такими, какими их видят глаза. Так, например, на сетчатку проецируется перевернутое изображение, но мозг переворачивает его с головы на ноги. Этот феномен можно доказать с помощью специальных очков, переворачивающих изображение. Уже через несколько часов мозгу это надоедает и он восстанавливает правильную ориентацию картинки. Даже в таких очках люди опять начинают все видеть нормально.
Еще один пример того, как мозг вас обманывает, – это способ, с помощью которого он устраняет слепое пятно. Часть вашей сетчатки в том месте, где к ней подходит зрительный нерв, не обладает чувствительностью, так как там отсутствуют сенсоры. Однако ваш мозг, совмещая информацию, поступающую от двух глаз, ликвидирует этот пробел в изображении. Точно так же, когда вы смотрите на звезду в ночном небе, вам кажется, что ваши глаза не движутся и взгляд устремлен в одну точку. В действительности же глаза непрерывно совершают мелкие, как бы ощупывающие движения.
Эти движения глаз помогают мозгу создать более детальную картину окружающего мира. Совершаются они очень быстро – быстрее, чем любой другой частью тела. Глаз при этом поворачивается на 10 градусов менее чем за 1/100 секунды. Если бы вы действительно наблюдали все то, что отображается на сетчатке, картинка была бы расплывчатой и скачущей, но мозг постоянно редактирует его и устраняет то, что необязательно нужно видеть.
Перед вами простой пример, позволяющий понять, каким образом ваш сложнейшим образом устроенный мозг может приходить к ложным выводам о форме и цвете предметов.
Все мы знакомы с тем, как должна выглядеть шахматная доска, а мозг хорошо разбирается в эффектах света и тени. Однако рисунок специально выполнен таким образом, чтобы ввести его в заблуждение. Вы совершенно отчетливо видите, что один из черных квадратов А в верхней части доски намного темнее, чем белый квадрат Б. На самом же деле оба квадрата окрашены в абсолютно одинаковый серый оттенок.
Это достаточно легко проверить, если согнуть страницу и совместить оба квадрата. Вы сами увидите, что их окраска совершенно одинакова. Если вы не хотите мять книгу, зайдите на сайт www.universeinsideyou.com, выберите раздел Experiments и в нем тему Chessboard experiment. В видеоролике квадрат А сдвигается к квадрату Б и вы можете собственными глазами увидеть, что они имеют абсолютно одинаковый оттенок.
Оптическая иллюзия на шахматной доске
Вы уже неоднократно слышали о том, что фотон, который пересек пространство, чтобы вы могли увидеть звезду, является квантовой частицей. Но что это на самом деле значит? В последнее время слово «квант» часто употребляется совершенно не к месту, особенно когда рекламируются какие-то новшества вроде «квантовой вибрационной терапии» или превозносится «квантовый скачок» в развитии какой-то отрасли. Это лишь создает путаницу в головах.
В физическом смысле квант – это мельчайшая возможная часть, самая крошечная порция чего-либо существующего. Как мы уже видели, первоначально это слово употреблялось по отношению к частице, которую позже назвали фотоном, но сегодня квантовая физика занимается изучением и других мельчайших частиц.
Когда в начале XX века в научной среде появилось понятие кванта, все очень быстро поняли, что это нечто очень странное и необычное, своего рода Страна чудес, где частицы ведут себя совсем не так, как более крупные объекты в привычном нам повседневном мире. Бросая мяч, мы можем предсказать, как он себя поведет (при наличии достаточной информации). Но когда мы имеем дело с местоположением или характером движения квантовой частицы, речь может идти только о вероятностях. Вероятность трансформируется в точные данные только в момент измерения.
Пожалуй, самой яркой демонстрацией странностей квантового мира может служить эксперимент, который был проведен в начале 1800‑х годов Томасом Юнгом с целью доказательства волновой природы света. Для этого луч света направлялся через пару узких прорезей и затем попадал на экран, установленный на некотором отдалении. Вместо того чтобы высветиться на экране в виде двух ярких полос, он образовывал последовательность расплывчатых светлых и темных участков.
Опыт Юнга
Это рассматривалось как доказательство волновой природы света, так как пятна на экране представляли собой интерференционный узор. Когда две волны на поверхности воды сталкиваются под некоторым углом друг к другу, возникает характерный узор. Если в точке соприкосновения обе волны находятся в верхней точке, их фазы складываются, образуя дополнительный подъем. Если обе находятся в нижней точке, в месте соприкосновения образуется более глубокая впадина. Если же в момент соприкосновения одна волна находится в верхней фазе, а вторая – в нижней, они взаимно компенсируются, и в этом месте можно наблюдать ровную поверхность воды. Это и есть интерференция. Очевидно, свет в этом опыте вел себя так же: темные полосы на экране обозначали компенсацию фаз, а светлые – их сложение.
Такая интерференция была бы невозможна, если бы свет представлял собой поток частиц. Представьте себе поток мелких частиц, направляемых в стену с двумя прорезями.
Они просто пролетели бы сквозь щели в прямом направлении, не образуя никаких узоров. Но, как вы уже знаете, свет – это поток фотонов. Почему же происходит интерференция? К слову, даже если вы будете запускать фотоны через щель по одному, они все равно создадут интерференционный узор. С чем же они в таком случае взаимодействуют?
Вот тут-то и начинаются квантовые странности. Это происходит из-за того, что фотон проходит сквозь обе щели и интерферирует сам с собой! Вспомните, что квантовая частица может избрать любой возможный путь от А до Б, но с разной вероятностью. Поскольку фотон не имеет точного местоположения, а только комбинацию вероятностей, он проходит через обе щели. Вероятность того, где он может быть найден, распределяется подобно волне, и именно эта вероятность создает интерференционный эффект частиц.
Если вы поставите специальные детекторы, которые будут определять, через какую именно щель прошел фотон, интерференционный узор исчезнет, а на экране появятся яркие точки, чего и следовало бы ожидать, если бы фотоны были просто частицами. При проведении измерений фотон вынужден занимать определенное положение в пространстве, а не распределяться по нему в соответствии с вероятностью, поэтому проходит только сквозь одну щель. Достаточно лишь обратить внимание на фотон, чтобы он полностью изменил свое поведение.
Квантовая теория может показаться слишком расплывчатой и неопределенной наукой, но имейте в виду, что каждый раз, глядя на что-то, вы запускаете квантовый процесс. Все ваше тело состоит из атомов, каждый из которых состоит из квантовых частиц. Пожалуй, самым известным термином, относящимся к квантовым частицам, является принцип неопределенности. Его иногда интерпретируют так, что в квантовом мире не существует ничего определенного, но на самом деле за этой концепцией стоит совсем другая философия. Принцип неопределенности (его еще иногда называют принципом Гейзенберга по имени сформулировавшего его немецкого физика) гласит, что чем большей информацией вы располагаете об одних свойствах квантовой частицы, тем меньше будете знать о других. Например, чем точнее вы можете определить местоположение частицы, тем неопределеннее будет ее момент (масса, умноженная на скорость). Если вам точно известен момент, это значит, что частица может находиться во Вселенной где угодно.
Чтобы лучше понять принцип неопределенности, представьте себе, что фотографируете частицу. Предположим, ваш фотоаппарат имеет такую малую выдержку, что вам удалось сделать четкий снимок частицы в пространстве. Вы можете рассмотреть ее во всех деталях. Но по фотографии вы не сможете определить, куда и как она движется. Может быть, она вообще стоит на месте, а может, несется с бешеной скоростью. Если же выбрать выдержку снимка подольше, то изображение будет размазанным. По такой фотографии вы мало что сможете сказать о том, как выглядит частица, поскольку изображение будет слишком нечетким, но зато сможете сделать вывод о том, с какой скоростью она движется. Примерно так же выглядит и компромисс между определением момента частицы и ее местоположения.
В квантовом мире есть еще много (очень много!) вещей, от которых голова идет кругом, но мне хотелось бы вкратце упомянуть самую примечательную из них – так называемую квантовую запутанность. Она заключается в том, что между двумя квантовыми частицами может существовать такая тесная связь, что они являются фактически единым целым, даже если одна из них попадает в ваш глаз, создавая зрительный образ, а другая в этот момент находится в космосе на расстоянии нескольких световых лет.
Квантовый спин – удивительная вещь. Он происходит от английского слова spin, что значит «вращение», но частица не вращается вокруг своей оси, как Земля. Спин – это просто одна из числовых характеристик частицы. Если вы проводите его измерение, то на выбор может быть только две возможности: спин направлен либо вверх, либо вниз. До начала измерений ничего сказать о спине невозможно. Существует лишь вероятность одного из двух результатов.
Предположим, что эта вероятность составляет 50:50. Это значит, что в половине случаев измерения данной частицы вы получите «верхний» спин, а в половине – «нижний». Но пока вы не проведете измерение, определить, какой результат будет получен, невозможно, поскольку частица находится не в каком-то одном из этих состояний, а в обоих сразу. Точно так же фотон может следовать по любому из возможных путей до тех пор, пока вы не вычислите его местонахождение.
Представьте себе, что у нас есть тесно связанная пара таких квантовых частиц. Если мы измерили спин одной из них, то можем с полной уверенность говорить, что у второй он будет в этот момент противоположным. (Создать такую запутанность между двумя частицами можно несколькими способами. Самый простой из них состоит в том, чтобы одновременно создать два фотона из одного и того же электрона.)
А теперь начинается самое интересное. Вы можете отдалить эти частицы друг от друга на любое расстояние – хоть послать на другой конец Вселенной, – но если в ходе измерения вы определили, что у одной из них верхний спин, то можете знать наверняка, что у другой он будет нижним.
Казалось бы, что тут такого? Если мы возьмем, к примеру, монету и распилим ее вдоль, то у нас получится две половины: одна – орел, а другая – решка. Вы, не глядя, кладете одну половину к себе в карман, а другую, опять же не глядя, отправляете куда-то очень далеко. А теперь взгляните на половинку, которая лежит у вас в кармане. Если на ней орел, то вы сразу же понимаете, что на другой должна быть решка. Для этого не надо быть семи пядей во лбу. Однако с квантовыми частицами все обстоит не так просто.
Половинки монеты изначально являются либо орлом, либо решкой. Если же вы имеете дело с запутанными частицами, то их спин заранее не определен. Каждая из них в момент измерения может с 50‑процентной вероятностью находиться либо в одном, либо в другом состоянии. Обе частицы идентичны. Лишь когда вы обращаете внимание на одну из них и ее спин в этот момент случайно оказывается направлен вверх, вторая частица, где бы она в это время ни находилась, будет иметь нижний спин. Информация о состоянии друг друга мгновенно преодолевает просторы Вселенной. Вполне возможно, что в будущем можно будет таким образом хранить секретную информацию и получать ее в любой момент, когда только потребуется.
Если бы можно было использовать этот механизм для пересылки сообщений, они доходили бы до адресата мгновенно, где бы он ни находился. Правда, этот эффект проявляется случайно и не может нести значимую информацию. Вы не можете произвольно выбирать верхний или нижний спин.
Но даже в этом случае свойство квантовых частиц обмениваться информацией на огромных расстояниях может найти полезное применение. С его помощью можно так надежно шифровать сведения, что современным компьютерам для расшифровки понадобилось бы время, сопоставимое с возрастом Вселенной. Существует также возможность квантовой телепортации, основанной на создании точных копий частиц на значительном удалении.
Возможно, самым большим парадоксом квантовой теории является существование вашего тела. Как мы уже видели, каждый его атом состоит из квантовых частиц. Ваши органы чувств используют электрические и химические импульсы, в которых также задействованы квантовые частицы. Когда вы видите свет, пришедший от отдаленной звезды Альнилам, это значит, что квантовая частица пересекла пространство космоса, а квантовый процесс помог вашему глазу ее обнаружить.
Ваше тело – это квантовая машина, и все же вы способны воспринимать обычный, неквантовый мир, которому не свойственна неопределенность и в котором вещи не могут одновременно находиться в нескольких разных местах. Мне бы очень хотелось найти объяснение этому, но не получается. Ни один ученый не может понять, почему квантовые частицы ведут себя так, а материальные объекты, из которых они построены, – совершенно по-другому. Пока мы можем только пожать плечами и сказать: «Так уж устроен мир».
Давайте еще раз посмотрим на ночное небо. Если вы находитесь в Северном полушарии, то можете понаблюдать еще за одним объектом, который позволит раскрыть возможности вашего тела. Кассиопея – одно из самых узнаваемых созвездий (здесь снова вступает в действие способность распознавать знакомые образы). Пять ее главных звезд, образующих большую букву «W», невозможно не заметить (хотя вам она может больше напоминать букву «М»).
Однако в данный момент нас больше интересует не сама Кассиопея.
Если мысленно отнять от «W» правую «V» и представить ее себе в виде наконечника стрелы, то острие укажет на объект, находящийся на расстоянии, примерно равном ширине самой Кассиопеи. Это значительно менее известное созвездие – Андромеда. В той точке, куда сейчас устремлен ваш взгляд, находится маленькое размытое пятнышко света, едва видимое невооруженным глазом. Если вы посмотрите на него в сильный бинокль, то заметите, что это не обычная звезда.
Расположение галактики Андромеда
Если вы видите это крохотное пятнышко, значит, способны разглядеть самый маленький объект, доступный человеческому глазу без увеличения. Это туманность Андромеды – ближайшая к нашему Млечному Пути крупная галактика. Конечно, ее близость относительна. Галактика Андромеда находится от нас в 2,5 миллиона световых лет. Когда фотоны от ее звезд, попадающие в ваши глаза, начали свое путешествие, людей еще не существовало. Нам только предстояло появиться на Земле. Вы способны видеть невероятно далекий объект.
Ваши глаза – прекрасные детекторы света. Достаточно лишь нескольких фотонов, чтобы сигнал от них поступил в мозг. И все же зрение имеет ограничения. Вы можете увидеть лишь малую часть света, который посылает Андромеда.
У животных диапазон зрения несколько шире. Многие птицы, к примеру, имеют колбочки, чувствительные к ультрафиолетовым лучам. Это особенно помогает ястребам, кружащимся высоко в небе и выслеживающим мелких млекопитающих. Ястребы охотятся на мышей, полевок и землероек, окраска которых помогает им хорошо маскироваться в траве. Но эти мелкие грызуны часто оставляют на земле следы мочи, которые ярко светятся в ультрафиолетовом диапазоне. Поэтому ястреб выслеживает не мышей как таковых, а, скорее, следы их жизнедеятельности.
Вы тоже можете видеть ультрафиолетовый свет, но лишь опосредованно. Когда вы смотрите на флюоресцирующий предмет, вам кажется, что он светится сам по себе. Если мы что-то видим, то обычно это означает, что предмет испускает фотоны той же энергии, что и те, которые до этого были им поглощены. Однако при флюоресценции объект поглощает ультрафиолетовые лучи, а испускает фотоны видимого спектра света. Поэтому вы видите в данном случае как бы лишний свет, образующийся за счет первоначально невидимого излучения. То же самое происходит и во флюоресцентных лампах. Внутри лампы излучается ультрафиолетовый свет, а попадая на ее стенки, покрытые изнутри специальным составом, он трансформируется в видимый.
Найдите источник ультрафиолетового света: ультрафиолетовую лампу или телевизор с плоским экраном, который при отсутствии сигнала дает синее свечение.
Понаблюдайте за тем, как ведут себя в этом освещении потенциальные источники флюоресценции. Как правило, это предметы, на которые нанесены флюоресцентные краски. Попробуйте взять недавно постиранную белую рубашку, поскольку отбеливающие и моющие средства содержат вещества, обладающие флюоресцентными свойствами, чтобы белье казалось еще белее. Вы можете также обнаружить, что обложки глянцевых журналов и упаковки продуктов часто демонстрируют флюоресценцию, чтобы бросаться в глаза.
Ультрафиолетовые лучи и видимый свет представляют собой лишь часть светового спектра. Стоя у себя в саду и глядя на звезды, вы подвергаетесь бомбардировке фотонами самых разных энергий, невидимыми для глаза. Самой низкой энергией обладают радиоволны, источниками которых являются радиостанции, Wi-Fi и мобильные телефоны. Далее следуют микроволны, используемые в ближней связи, радарах и микроволновых печах. А непосредственно перед видимым светом есть еще инфракрасное излучение, которое мы воспринимаем как тепло.
Спектр электромагнитного излучения
За ультрафиолетовым излучением следуют рентгеновские и гамма-лучи, обладающие еще большей энергией. Разница между ними заключается в способе их образования. Источ ником рентгеновских лучей, как и обычного света, являются электроны, находящиеся на внешних оболочках атомов и отдающие свою энергию. Гамма-лучи образуются в ядрах атомов. Диапазоны этих двух видов излучения в значительной степени перекрывают друг друга. В силу исторических обстоятельств и то и другое мы по привычке называем лучами, хотя это, по сути, те же самые фотоны, но только с более высоким уровнем энергии.
Все эти фотоны различных видов, включая и видимый свет, поступают к нам со звезд. Чем больше времени им для этого требуется, тем дальше в прошлое вы можете заглянуть. Фотоны, которые прошли самый длинный путь, иногда называют эхом Большого взрыва, и для этого есть все основания. Они идут отовсюду и ниоткуда.
Хотя телевизоры с ручной настройкой, улавливающие аналоговый сигнал (в отличие от современного цифрового вещания), встречаются в наше время сравнительно редко, вам, вероятно, доводилось их видеть, и вы могли наблюдать на экране «снег» из белых точек, когда телевизор не настроен на какой-то определенный канал. Часть этих помех имеет земное происхождение, а часть – космическое. Такой телевизор фактически является грубой моделью радиотелескопа, улавливающего фотоны, которые отправились в путешествие примерно через 300 тысяч лет после Большого взрыва, то есть более 13 миллиардов лет назад.
Радиотелескопы вы, скорее всего, тоже видели, по крайней мере на фотографиях. Как правило, это огромные тарелки, порой достигающие сотен метров в поперечнике. Они играют роль зеркал в оптических телескопах, собирая радиосигналы из отдаленных источников и фокусируя их на принимающую аппаратуру. Правда, если для улавливания фотонов, образовавшихся в результате Большого взрыва, вы используете телевизор, вам не надо направлять антенну в ту точку, где он произошел. И тут возникает важный вопрос: если Вселенная, согласно теории Большого взрыва, образовалась в одной точке, то где же эта точка находится?
Поднимите вверх палец одной руки примерно в 30 сантиметрах от кончика носа. Теперь поднесите к нему почти вплотную палец другой руки. Как раз между пальцами и находится то место, где произошел Большой взрыв.
Вы удивлены? Откуда я могу знать, что сейчас вы стоите именно на том месте, где родилась Вселенная?
Чтобы дать ответ на этот вопрос, необходимо сначала объяснить еще одну странность Вселенной. Почти все галактики удаляются от нас. Исключение составляют лишь очень близкие галактики вроде Андромеды (а она действительно очень близка по космическим меркам – всего каких-то 2,5 миллиона световых лет!). Как ни удивительно, но мы, кажется, оказались в самом центре Вселенной, где и произошел Большой взрыв. Это даже слишком удивительно.
Чтобы понять, почему Большой взрыв произошел буквально у вас под носом и почему мы оказались в центре Вселенной, купите воздушный шарик. Нанесите на него фломастером несколько точек. Они будут символизировать галактики. Слегка надуйте шарик и отметьте, на каком расстоянии друг от друга находятся галактики. Надуйте его посильнее и повторите измерение. Что происходит?
Точки, обозначающие галактики, удаляются друг от друга. Однако на самом деле они не перемещаются по поверхности шарика, а по-прежнему остаются на том же участке резины, где и были раньше, вот только сам шарик становится больше. Поэтому, в какой бы точке пространства вы ни находились, все галактики будут удаляться от вас, и ни одна из них не может претендовать на центральное место во Вселенной.
А теперь начинайте выпускать воздух из шарика. Он становится все меньше и меньше. Похоже на то, как если бы вы запустили время вспять. В действительности шарик будет уменьшаться до тех пор, пока не достигнет первоначального размера. Но представьте, что он продолжает уменьшаться, пока не превратится в крошечную точку. В эту точку войдет каждый участок резины шарика. Какой бы фрагмент надутого шарика вы ни выбрали, он будет находиться в этой точке. Таким образом, Большой взрыв произошел повсюду во Вселенной. Где бы вы ни находились, вы можете с полным правом сказать, что это и есть место Большого взрыва, потому что вся Вселенная является той точкой, с которой все началось.
Почему же некоторые галактики движутся в нашем направлении? Потому что сила тяжести сближает их быстрее, чем происходит расширение Вселенной. Примерно через пять миллиардов лет Андромеда врежется в наш Млечный Путь, и после возникшего в результате хаоса со временем образуется новая супергалактика. Если вы тревожитесь по поводу судьбы Земли, успокойтесь. Во-первых, вы до этого не доживете, а во-вторых, Земля к тому времени будет поглощена расширяющимся Солнцем, которое превратится в красного гиганта.
Таким образом, Большой взрыв произошел повсюду во Вселенной. Поэтому для улавливания эха Большого взрыва, или, говоря научным языком, фонового космического излучения, вам не нужен направленный радиотелескоп. Оно идет отовсюду. Если бы ваши органы чувств были способны улавливать микроволны, вы бы повсюду видели свечение, оставшееся с раннего периода Вселенной. Оно фиксируется с помощью специальной аппаратуры.
Мы не можем проследить все события вплоть до самого Большого взрыва, потому что в самом начале Вселенная была настолько компактна и заполнена энергией, что свет не мог пробиться сквозь нее. Это примерно то же самое, что попытка видеть сквозь Солнце. Однако спустя 300 тысяч лет Вселенная достаточно охладилась и стала прозрачной для гамма-лучей, обладавших колоссальной энергией, то есть для света в его самой мощной форме.
Все это время Вселенная продолжала расширяться, создавая больше и больше пространства для света (который шел отовсюду). Одним из следствий расширения пространства является снижение уровня энергии. Представьте себе, что кто-то бросает в вас тяжелый мяч. А теперь представьте, что он бросает в вас тот же мяч, но при этом убегает от вас на полной скорости. Во втором случае мяч ударит вас слабее, потому что в нем меньше энергии. Часть ее будет потрачена на преодоление дистанции. Точно так же свет из расширяющейся Вселенной обладает меньшей энергией, чем первоначально. А если фотоны теряют энергию, то они смещаются в нижнюю часть спектра.
Видимый свет сдвигается в сторону красной части спектра (так называемое красное смещение), а гамма-лучи со временем постепенно превращаются в рентгеновские, ультрафиолетовые, видимый свет, инфракрасное излучение и, наконец, в микроволны. Именно эти микроволны, улавливаемые спутниками, позволяют составить представление о последствиях Большого взрыва и создают помехи на телевизионных экранах.
Здесь следует сделать небольшую оговорку. Теория Большого взрыва является на данный момент самым подтвержденным предположением о том, с чего началась Вселенная, однако ее нельзя считать абсолютной истиной. Кроме того, серьезные ученые обсуждают и некоторые другие теории. Нам приходится иметь дело с косвенными данными, и не только потому, что мы не способны заглянуть за границу 300 тысяч лет с момента образования Вселенной. Все свидетельства, которыми мы располагаем, подтверждают теорию Большого взрыва, но имеются и некоторые неувязки.
Например, согласно теории Большого взрыва, исходной точкой являлась так называемая сингулярность, в которой не существовало ни пространства, ни времени и для которой была характерна бесконечно высокая плотность и температура. Но когда речь заходит о бесконечных величинах, становятся бесполезными все уравнения, способные предсказать поведение системы. Теория, на которой основана идея Большого взрыва, в этот момент перестает работать. Поэтому мы не можем быть абсолютно уверены в том, что Большой взрыв стал началом всего, так как математический аппарат, используемый в расчетах, отказывает как раз в тот момент, когда он нужнее всего.
Существуют другие теории, которые позволяют обойти проблемы, связанные с сингулярностью, но и они не лишены недостатков. На данный момент Большой взрыв остается самой лучшей теорией, поэтому имеются все основания признать ее как факт. Однако лабораторных экспериментов, которые мы могли бы провести для ее подтверждения, не говоря уже о прямых наблюдениях в космосе, не существует. Это умозаключение, полученное на основании различных косвенных свидетельств. Мы имеем дело всего лишь с моделью.
Говоря о модели, мы имеем в виду не некий материальный макет. Конечно, в науке иногда строятся и такие модели. Самым известным примером может служить работа Крика и Уотсона по определению структуры ДНК. Они начали с того, что построили часть молекулы ДНК из палочек и шариков. Однако, когда ученые говорят о моделировании, они обычно имеют в виду создание математических моделей. Это набор правил и чисел, которые в результате расчетов должны дать такой же результат, который наблюдается в реальном мире. Если модель и действительность совпадают, то вы, возможно, нашли объяснение реально происходящим во Вселенной событиям. Если же модель предсказывает одно, а на деле мы наблюдаем другое, значит, пора создавать новую теорию.
Так, например, мы обнаружили, что галактики ведут себя «неправильно». Единственной силой, удерживающей их вместе, является гравитация. Естественно, должна существовать и противоположно направленная сила, пытающаяся отдалить их друг от друга. Как и почти все объекты в космосе, галактики вращаются. Если вы взглянете на галактику Андромеда невооруженным глазом, то увидите лишь маленькое размытое световое пятнышко. Возможности человеческого тела поразительны, но порой приходится призывать на помощь технику. Современные телескопы позволяют увидеть достаточно деталей, чтобы сделать вывод о том, что любая галактика действительно вращается вокруг своего центра. В результате этого вращения звезды стремятся разбежаться в разные стороны по прямой линии, и удерживает их от этого лишь сила тяготения, направленная к центру галактики.
Вот тут-то и начинаются неувязки. Наблюдения показывают, что наша модель не соответствует действительности. Если подсчитать массу всего вещества в обычной галактике, то получается, что при такой скорости вращения ее недостаточно, чтобы удержать все звезды вместе. По теории они должны были бы разлететься в разные стороны. Значит, помимо известной нам гравитации, существует еще какая-то сила.
Разумеется, мы можем увидеть далеко не всю материю в галактике. Нам видны звезды и светящиеся пылевые облака, однако вне нашего поля зрения остаются планеты, черные дыры и скопления остывшей темной пыли. Но даже если мы сделаем поправку на них, все равно массы оказывается недостаточно. Самая популярная модель, объясняющая этот феномен, предполагает наличие так называемой темной материи. Мы не знаем, что это такое (хотя некоторые догадки на этот счет имеются), но в общих чертах речь идет о дополнительной массе, которая создает недостающее тяготение. Темная материя не взаимодействует с электромагнитным излучением (а следовательно, и со светом), поэтому не может быть обнаружена обычными методами.
Правда, это не единственная модель. Существует также теория, согласно которой в масштабах галактики гравитация проявляется несколько иначе. В конце концов, мы же знаем, что Вселенная ведет себя совершенно по-разному на квантовом уровне и в обычном мире. Так почему бы не предположить, что в галактических масштабах действуют особые правила? Эта теория называется модернизированной ньютоновской динамикой. Оказывается, достаточно внести лишь очень небольшие поправки в гравитационный эффект, чтобы объяснить повышенную скорость вращения галактик.
Еще одним примером необъяснимого несовпадения модели и реальности является темная энергия. Эта концепция призвана объяснить большие странности, которые происходят в ходе расширения Вселенной. Следовало бы ожидать, что расширение Вселенной будет понемногу замедляться. И дело тут не в трении, которое замедляет движение всех предметов в привычном нам мире, а в гравитации. На все объекты во Вселенной действует сила тяготения, которая стремится притянуть их друг к другу. Эта сила и должна замедлять процесс расширения.
Тем более удивительным оказался для ученых тот факт, что расширение ускоряется! Вселенная не просто становится больше; процесс ее роста происходит все быстрее и быстрее. Если это действительно так (хотя, возможно, все дело просто в очередной ошибке измерений), то имеется какая-то сила, которая ускоряет расширение. Она должна обладать колоссальной энергией. Именно эту энергию и назвали темной.
Эти два темных компонента составляют подавляющую часть Вселенной. С учетом того, что материя и энергия являются разными формами одной и той же сущности, можно утверждать, что примерно 70 процентов Вселенной должна составлять темная энергия, ускоряющая ее расширение, около 25 процентов приходятся на темную материю, и остается всего 5 процентов на обычную материю (из которой состоит тело человека) и привычный нам свет. Таким образом, 95 процентов Вселенной нам совершенно не известны!
Диаграмма, демонстрирующая, насколько незначительна доля обычной материи
Такое положение вещей может повергнуть в уныние. Но мы все же не настолько невежественны. В конце концов, мы уже знаем о природе материи и света намного больше, чем всего 100 лет назад. И все же нам предстоит узнать еще очень многое. Когда Макс Планк, который впоследствии стал одним из основателей квантовой теории, учился в университете в конце XIX века, перед ним стоял выбор – стать ученым или музыкантом. Профессор физики посоветовал ему посвятить себя музыке, так как в науке уже не оставалось почти ничего непознанного. Как же он был неправ!
Продолжая тему о вещах, которые нам пока еще не вполне понятны, необходимо упомянуть, что если галактика Андромеда является самым удаленным от нас объектом, который можно видеть невооруженным глазом, то самые далекие светила, которые можно обнаружить с помощью телескопа, – это квазары. Когда их впервые открыли, то поначалу возникло предположение, что квазары (квазизвездные объекты) представляют собой просто далекие звезды, но спектр приходящего от них света был очень необычным – слишком красным.
Как уже было сказано, если объекты в космосе движутся в нашем направлении, энергия их света возрастает и происходит голубое смещение. Если же они движутся от нас, то энергия снижается, что выражается в красном смещении. В связи с расширением Вселенной, чем дальше от нас находится объект, тем сильнее будет заметно красное смещение. Первый квазар, изученный в 1960‑е годы, оказался самым далеким от нас (на тот момент) светилом. Однако его яркость была сопоставима со звездой из нашей галактики.
Проведя дополнительные исследования с помощью более совершенных инструментов, мы обнаружили, что квазары излучают столько же света, сколько целая галактика, и при этом их размеры не превышают размеров Солнечной системы. Для многих квазаров характерны выбросы горячего вещества и излучения в виде струй полярной направленности. Похоже, что квазары представляют собой зарождающиеся галактики. У большинства галактик в центре имеются сверхмассивные черные дыры. В зрелых галактиках типа нашего Млечного Пути черные дыры уже поглотили почти все близлежащее вещество, но в молодых они все еще собирают находящуюся поблизости материю.
Считается, что именно эта материя, разгоняющаяся почти до световых скоростей за счет притяжения черной дыры, придает квазарам такую яркость. Что касается струйных выбросов, то существует вероятность, что вокруг черных дыр имеется сфера из обломков космических тел, вращающихся с такой скоростью, что это не дает им упасть в черную дыру. На полюсах же остается незакрытое пространство, через которое материя выбрасывается в космос. Такое объяснение во многом является спекулятивным, так как нет никаких надежных свидетельств, которые могли бы его подтвердить.
Если о квазарах широкая публика мало что слышала, то черные дыры в особом представлении не нуждаются. Термин «черная дыра» вошел в наш язык как воплощение чего-то бездонного и прожорливого, от чего невозможно спастись. Черные дыры стали неотъемлемой частью мифологии космоса, символизируя темную и злобную силу.
Но принимать на веру все, что вы слышите о черных дырах, не стоит. Во-первых, их, может быть, и нет. Общая теория относительности Эйнштейна говорит о том, что они могут существовать, и у нас есть достаточно надежные косвенные свидетельства того, что так оно и есть, но в принципе их может и не быть, а все полученные доказательства могут оказаться следствием какого-то другого феномена.
Черные дыры считают чем-то вроде универсального пылесоса, который всасывает все, что только попадает в зону его досягаемости. Определенная доля истины в этом образе есть. Все звезды очищают пространство вокруг себя за счет мощного гравитационного поля. Однако черная дыра, образовавшаяся в результате коллапса звезды, которая не смогла совладать с собственным полем тяготения, обладает такой же гравитацией, как и породившая ее звезда. (Кстати, не стоит переживать по поводу того, что Солнце тоже может стать черной дырой. Оно для этого недостаточно массивно.)
Если бы вы находились на орбите вокруг звезды в тот момент, когда в ней происходит коллапс и она превращается в черную дыру, ваша орбита ничуть не изменилась бы и вас бы никуда не втянуло, так как масса звезды не изменилась.
Однако черная дыра намного меньше по размерам, чем звезда, обладающая той же массой. Теоретически черная дыра является точкой нулевого размера, или сингулярностью, однако, как и в случае с Большим взрывом, теория в этих обстоятельствах пасует, и мы не знаем, что происходит на самом деле. Видимым размером черной дыры является так называемый горизонт событий – сфера, диаметр которой намного меньше, чем размеры породившей ее звезды. Она является точкой невозврата. После прохождения горизонта событий притяжение становится настолько сильным, что вырваться из черной дыры не может ничто, даже свет.
Радиус звезды, из которой может сформироваться черная дыра, должен составлять около 1,5 миллиона километров, однако после ее коллапса радиус горизонта событий будет не больше 15 километров. Поскольку к нему можно подойти намного ближе, чем к обычной звезде, гравитация будет во много раз больше, ведь сила тяготения обратно пропорциональна квадрату расстояния. Таким образом, если дистанция сокращается вдвое, то сила тяготения увеличивается в четыре раза. Объекты, притягиваемые к черной дыре, по мере приближения к горизонту событий будут достигать почти световой скорости.
Черная дыра заставляет также по-новому задуматься о приливной силе. Эта сила образуется за счет разных значений гравитации в различных точках пространства. Приближаясь к черной дыре, вы будете испытывать на себе колоссальные приливные силы. Ваше тело станет объектом уникального гравитационного эксперимента.
Представьте, что вы в космическом скафандре приближаетесь к черной звезде ногами вперед. Ваши ноги, находящиеся ближе к черной дыре, будут испытывать значительно большее притяжение, чем голова. Эта разность сил, направленная вдоль оси тела, вытянет вас, превратив в длинную тонкую макаронину. Этот процесс так и называется – «спагеттификация» (вопреки бытующим представлениям, у ученых иногда есть чувство юмора).
Правда, такой смертельный трюк необязательно произойдет до пересечения горизонта событий. Вы можете достигнуть его еще живым, так как начало процесса спагеттификации зависит от размеров черной дыры. Сверхмассивная черная дыра вроде тех, что встречаются в центрах галактик, не дает такого резкого увеличения гравитации. Вы можете даже проскочить горизонт событий, не заметив этого. Но по мере приближения к центру черной дыры ваше тело все равно вытянет в струну, если, конечно, вы к тому времени переживете смертельную дозу радиации, вызванной быстрым движением вещества к центру.
Я уже говорил, что центр черной дыры, представляющий собой сингулярность, теоретически не имеет размеров. И в этом заключается еще одна странность черных дыр. Сингулярность с научной точки зрения – это точка не в пространстве, а во времени. Общая теория относительности, предсказывающая возможность существования черных дыр, утверждает, что гравитация искривляет как пространство, так и время. В сердце черной дыры время искривлено до предела. Миновав горизонт событий, вы устремляетесь к точке во времени, а не в пространстве. В этот момент время для вас перестает существовать.
Черные дыры и квазары относятся к числу самых экзотических обитателей Вселенной, но в ней есть и много более знакомых объектов, которые непрерывно направляют к вам потоки фотонов, когда вы вглядываетесь в ночное небо. Мы уже упоминали о галактиках – огромных скоплениях звезд. В одной галактике может насчитываться от нескольких миллиардов до 100 триллионов звезд, а мы полагаем, что во Вселенной имеется примерно 150 миллиардов галактик. Она поистине необъятна.
В нашей галактике – Млечном Пути – насчитывается около 300 миллиардов звезд. Ясной ночью мы можем видеть их как светлую размытую полосу в черном небе. Но значительно лучше видны ближние к нам звезды и планеты нашей Солнечной системы. Невооруженным глазом мы можем разглядеть пять планет: Меркурий, Венеру, Марс, Юпитер и Сатурн, причем Венера и Юпитер являются самыми яркими светилами ночного неба после Луны. Правда, фотоны, доходящие к нам от планет, вынуждены проделывать двойной путь. Сначала они доходят до планет от главного источника света – Солнца – и только потом возвращаются к Земле.
Лишь глядя на Солнце (не в буквальном смысле, конечно, так как это повредит вашим глазам), можно понять, какое чудо представляют собой миллиарды миллиардов звезд во Вселенной. На самом деле ничего особенного в Солнце нет. Это середнячок и по размерам, и по яркости. Возраст у него тоже средний: ему 4,5 миллиарда лет, и оно прожило уже примерно половину отпущенного срока.
Солнце дает нам исключительно белый свет (на самом деле белый – это не цвет, а смесь всех видимых цветов). И все же, рисуя Солнце, мы обычно изображаем его желтым. А на закате, садясь в дымку, оно выглядит вообще красным. Похоже, мы немного запутались, но все дело опять-таки в фотонах света, взаимодействующих с материей.
В данном случае материей является воздух. Многие фотоны, идущие от Солнца, попадающие в атмосферу, пронизывают ее насквозь, не встречая препятствий, но достаточное количество поглощается молекулами газов в воздухе, а затем повторно излучается. Если при этом происходит смена направления, такое явление называется рассеиванием. Данный процесс происходит избирательно: сильнее всего рассеиваются лучи голубого участка спектра. Именно поэтому дневное небо имеет голубой цвет. Чем ближе мы к красной части спектра, тем слабее рассеивание.
Если бы солнечный свет состоял из всех цветов в равной степени, небо было бы фиолетовым, так как из всех видимых цветов фиолетовый рассеивается сильнее всего, но в солнечном свете голубых лучей намного больше, чем фиолетовых, поэтому голубой является доминирующим. Но если из изначально белого света забрать часть голубых фотонов, оставшиеся приобретают желтоватый оттенок. Именно таким мы обычно и воспринимаем Солнце. А когда солнечным лучам приходится проделывать в земной атмосфере значительно более долгий путь (это происходит на закате, когда лучи проходят по касательной по отношению к поверхности планеты), то они становятся почти красными.
Может быть, Солнце ничем не выделяется среди других звезд, но среди небесных тел Солнечной системы это настоящий гигант. Диаметром 1,4 миллиона километров, оно превосходит Землю в 100 раз по размеру и более чем в 330 тысяч раз по весу. Почти 99 процентов всей массы вещества Солнечной системы сосредоточено в Солнце. Кроме того, всем известно, что оно очень горячее. Если на его поверхности царит относительно «прохладная» температура 5500 °С, то в центре она приближается к 10 000 000 °С.
Если уж мы решили использовать свое тело как инструмент для познания научных истин, то важно понимать, что без Солнца его существование было бы невозможным. Во-первых, вы не могли бы ничего видеть, но это еще не самое главное, что дает нам солнечный свет. От Солнца Земля получает основную часть тепла. Правда, некоторое количество тепла поступает из ядра планеты, но подавляющая часть приходит с солнечным светом. Без этого постоянного источника энергии наша планета была бы слишком холодной для жизни.
Более того, без Солнца мы не могли бы дышать. Кислород, необходимый для дыхания, дают нам растения. Они производят его как побочный продукт фотосинтеза. Световая энергия используется в фотосинтезе для создания различных химических веществ (главным образом углеводов), которые служат топливом для всех форм жизни. Процесс фотосинтеза гораздо сложнее, чем фотоэлектрический эффект, используемый в солнечных батареях, где свет выбивает электроны из атомов специально подобранных материалов, давая в результате электроэнергию. Химические процессы фотосинтеза не только сложны, но и невероятно быстры. Некоторые реакции происходят быстрее, чем за 1/1 000 000 000 000 секунды.
При поглощении света растениями энергия электронов накапливается в специальных пигментах вроде хлорофилла, который придает растениям зеленую окраску. Это напоминает фотоэлектрический эффект, хотя на самом деле рассматриваемый процесс намного сложнее. Энергия света передается в химической форме в центр фотосинтеза, где происходят фундаментальные химические реакции, в ходе которых вырабатывается кислород, которым мы дышим. Способность производить кислород у разных растений неодинакова. Хотя мы часто слышим, что тропические леса называют легкими планеты, самый большой вклад в производство кислорода вносит океанический планктон.
Животные (в том числе и мы) не обладают способностью трансформировать световую энергию в питательные вещества. Мы вынуждены использовать промежуточные звенья, поедая либо растения, либо других животных (которые, в свою очередь, тоже питаются либо растениями, либо другими животными). Тем не менее источником практически любой жизни прямо или опосредованно является Солнце.
Оно дает нам не только тепло, кислород и пищу, но и подавляющее большинство всех используемых источников энергии. Залежи ископаемого топлива сформировались из растений, которые когда-то выросли благодаря Солнцу. То, что солнечная энергия исходит от Солнца, очевидно, но то же самое можно сказать и об энергии ветра, поскольку все климатические явления происходят из-за его непосредственного влияния. Единственными исключениями являются геотермальная и атомная энергия.
Для существования нам, как и всем другим живым существам, требуется энергия. А ее во Вселенной более чем достаточно. Глядя на звездное небо, невозможно не задуматься о том, что в других местах космоса тоже возможна жизнь. Солнце всего лишь одна из миллиардов звезд нашей Галактики, а во Вселенной есть еще миллиарды других галактик. Есть все шансы на то, что где-то еще существует жизнь, но я не стал бы слишком вас обнадеживать, так как она еще не обнаружена.
Другие планеты Солнечной системы – не самое привлекательное место для жизни. На заре научной фантастики писатели часто изображали жизнь на Луне, Венере и Марсе. Но упомянутые небесные тела мало пригодны для этого. Венера представляет собой раскаленный ад, где течет жидкий свинец, а небо покрыто облаками из серной кислоты. На Луне и Марсе слишком ограничены запасы воды и почти нет атмосферы. Кроме того, там слишком холодно. Правда, есть вероятность, что какие-то бактерии могут существовать в уютных защищенных уголках этих планет, но она слишком мала. Другие планеты еще менее пригодны для жизни.
Самые большие шансы на возникновение жизни в Солнечной системе, помимо Земли, имеет один из спутников Юпитера – Европа. На первый взгляд, это далеко не самое лучшее место. Европа расположена слишком далеко от Солнца и получает от него мало тепла. Температура поверхности составляет примерно ‑160 °С. Однако у Европы есть одно преимущество. Под ледяной коркой, возможно, находится жидкая вода, согреваемая как мощными приливными силами в поле тяготения Юпитера, так и радиоактивными процессами, происходящими в недрах спутника.
Если на Европе действительно есть океан, температура которого находится выше точки замерзания, то существует возможность (но не гарантия), что там могла развиться какая-то базовая форма жизни. Но вода и температура – это не единственные необходимые факторы. В основе всех известных нам форм жизни лежит углерод, и, хотя кое-кто утверждает, что основой жизни может быть не только углерод, но и кремний, этот элемент не так предрасположен к образованию крупных молекул, как углерод, а это является важнейшей предпосылкой возникновения жизни. Поэтому необходимо еще наличие углерода и других элементов, но в принципе жизнь на Европе может существовать.
Я не хочу утверждать, что разумной жизни во Вселенной не существует, но если она и есть, то, скорее всего, на одной из планет, вращающихся вокруг какой-нибудь далекой звезды. Несмотря на огромные межзвездные расстояния, мы уже нашли сотни планет за пределами Солнечной системы. Первые из них были обнаружены по колебаниям звезд, вызванным тем, что вокруг них вращаются громадные планеты типа Юпитера. С помощью других методов были найдены и планеты земного типа – меньшие по размерам и предположительно состоящие из твердого вещества. Однако до сих пор нет никаких данных о наличии на них какой бы то ни было жизни, не говоря уже о разумной.
Несмотря на большие усилия, предпринятые в поисках внеземных сигналов, мы пока не можем похвастаться успехами. Земля посылает в окружающее пространство радиосигналы уже на протяжении 100 лет, и они за это время распространились на расстояние 100 световых лет от нашей планеты. В принципе разумные существа, проживающие в этом радиусе и обладающие соответствующими технологиями, могли бы нас обнаружить. Разумеется, формы жизни, обитающие в указанном пространстве, могут не обладать разумом или еще не дошли до изобретения радио, но все же тот факт, что никто пока так и не объявился, немного разочаровывает.
Даже если мы обнаружим внеземной разум на сравнительно близком по космическим меркам расстоянии, скажем в пределах 20 световых лет (ближайшая к Солнцу звезда находится от нас в 4 световых годах), нам не удастся далеко продвинуться в общении с ним. При использовании в качестве средства коммуникации радиоволн (а это самый быстрый из всех имеющихся способов) нам придется 40 лет ждать ответа на каждый заданный вопрос. Да к тому же еще надо понять, как вообще наладить общение с внеземным разумом!
Что же касается посещения внеземных цивилизаций, то вопрос об этом вообще не стоит. У нас возникают серьезные технические трудности даже с отправкой людей на Марс, который при удачном взаимном расположении планет находится от нас всего в четырех световых минутах. Считается, что полет пилотируемого корабля на Марс займет шесть месяцев. Вместе с тем расстояние до ближайшей к Солнцу звезды в полмиллиона раз больше. Если мы не придумаем, как превзойти скорость света (наверное, это достижимо, но пока лежит далеко за гранью наших технических возможностей), о полетах на другие звезды можно даже не мечтать.
То же самое можно сказать и о пришельцах из других миров. Существует много подтвержденных сведений об НЛО, однако в большинстве случаев речь идет об оптическом обмане или действительно о каком-то летательном аппарате, который просто не был опознан. Но перед любым внеземным космическим кораблем встанут те же проблемы с расстоянием, что и перед нами. Поэтому, вероятнее всего, любые сообщения о пришельцах – это либо жульничество, либо самообман, либо ошибка.
Даже сам термин «летающая тарелка» весьма противоречив. Впервые он был использован в 1947 году в газетной заметке о том, что американский пилот Кеннет Арнольд увидел необычный летательный аппарат. Арнольд не говорил о том, что этот аппарат имел форму тарелки. Он лишь рассказывал, что его движение напоминало «прыжки тарелки, запущенной по поверхности воды». Однако это слово было подхвачено газетчиками, а затем ошибочно интерпретировано. С тех пор начались массовые сообщения об обнаружении чужих космических кораблей, имеющих форму тарелки.
Возможно, мы и не одни во Вселенной, но уж, во всяком случае, надежно изолированы на Земле.
И все же мы имеем возможность наблюдать за фотонами, пришедшими к нам из глубин Вселенной от квазаров и далеких галактик, а также от Солнца – источника жизни. Но настало время спуститься на землю, причем в самом прямом смысле. Возможно, после долгого разглядывания звезд у вас уже урчит в желудке. Если ваши глаза устремлены к звездам, то у желудка вполне земные заботы.