5. Путешествие в желудок

Если ваш желудок издает звуки, то, возможно, просто настала пора перекусить, однако это может свидетельствовать и о проблемах с пищеварением. Допустим, изжога – это не самое страшное в жизни, но и приятного тоже мало. Поэтому вы сразу хватаетесь за таблетку, которая на самом деле является вовсе не лекарством, а компонентом простой химической реакции.

Физики изучают, что такое атомы, а химики объясняют нам, как они соединяются друг с другом. Иногда можно услышать, что химия – это наука об электронах, потому что химические реакции обычно включают в себя обмен электронами между внешними слоями атомов различных веществ.

Химия у вас внутри

В желудке человека содержится сильная кислота – соляная. Это одна из тех кислот, на необходимость осторожного обращения с которой вам всегда указывали учителя, так как она может причинить серьезный вред здоровью. Но вашему желудку она необходима. С помощью соляной кислоты съеденная пища расщепляется, чтобы организм мог ее усвоить и выработать энергию. Кроме того, она способствует выведению отходов из организма.

Уровень кислотности в желудке постоянно меняется, и иногда это может вызвать дискомфорт. Порой кислота из желудка попадает в такие места пищеварительного тракта, где ей быть не положено. В качестве примера можно привести так называемый рефлюкс, когда кислота выталкивается из желудка в пищевод. Такие проблемы обычно возникают в результате неправильного режима питания (например, переедания или приема пищи прямо перед сном), хотя порой могут вызываться и физическими причинами вроде грыжи пищеводного отверстия диафрагмы.

Вы хотите как можно быстрее избавиться от неприятных ощущений? Примите антацид. Его действие представляет собой простую химическую реакцию.

Хотя существуют различные виды антацидов, большинство из них содержат соли угольной кислоты, например карбонат кальция или магния. Частью любого карбоната является атом углерода, соединенный с тремя атомами кислорода.

Съешьте кусок камня

Карбонат кальция – очень распространенный минерал. Он придает твердость яичной скорлупе и является главной составляющей частью известняка, мрамора и мела. Таким образом, принимая средство от изжоги, вы фактически едите растолченный камень (правда, я бы не рекомендовал пользоваться такими дешевыми заменителями).

Карбонаты отлично взаимодействуют с кислотами. К сожалению, мы наблюдаем это в случае выпадения кислотных дождей. Сооружения из мрамора и особенно из более мягкого известняка разрушаются буквально на глазах. Скульптуры теряют очертания, а надписи полностью исчезают, из-за чего на могильных плитах порой ничего нельзя прочитать.

Но то, что плохо для камней, полезно для желудка.

Карбонат кальция вступает в реакцию с соляной кислотой. Простейшая химическая реакция заключается в том, что части молекул различных веществ меняются местами. В основе этого явления лежат энергетические причины. Для соединения атомов внутри молекулы всегда необходима энергия, но межатомные связи бывают разными. Если при переходе от одной конфигурации атомов к другой происходит высвобождение энергии, то реакция осуществляется без труда. Это то же самое, что бросить с высоты некий предмет. Не составляет никакого труда скатить валун с вершины к основанию холма, потому что при этом высвобождается потенциальная энергия. Совсем другое дело – закатить валун на вершину, потому что здесь надо вложить массу энергии.

Эксперимент: химия в желудке

Положите в стакан таблетку антацида (выберите самое

простое средство, а не дорогостоящий препарат двойного действия) и добавьте немного уксусной кислоты. Вы увидите, как из таблетки выходят пузырьки. Такая же реакция происходит и у вас в желудке. При этом выделяется углекислый газ. Уксусная кислота намного слабее соляной, поэтому эффект не столь бурный. Если реакция не происходит, то вы, возможно, взяли таблетку, покрытую защитной оболочкой.

Повторите эксперимент, разломив таблетку надвое. Реакция идет более активно. Отчасти это объясняется тем, что вы разрушили защитную оболочку, но причина также и в увеличении площади взаимодействия карбоната с кислотой.

При соединении карбоната кальция и соляной кислоты возникает бурная реакция, которая заканчивается образованием трех молекул. Соляная кислота состоит из одного атома водорода и одного атома хлора. В ходе реакции хлор связывается с кальцием, образуя хлорид кальция, а пары атомов водорода присоединяются к атому кислорода, образуя воду. От молекулы карбоната остается только двуокись углерода, то есть углекислый газ. В результате уровень кислотности снижается и ваш желудок успокаивается (будем надеяться).

«Вредное» соединение

Двуокись углерода – простое химическое соединение, которое в наши дни пользуется дурной славой. Если бы мы снимали фильм про Джеймса Бонда, этот газ играл бы роль злодея, решившего установить господство над миром. Такую репутацию он заслужил из-за того, что, являясь парниковым газом, вносит свой вклад в глобальное потепление. Действительно, слишком большое содержание углекислого газа в атмосфере не приводит ни к чему хорошему. Но не следует мазать его исключительно черной краской, потому что в силу ряда причин мы не смогли бы без него жить.

Во-первых, парниковый эффект имеет и положительные стороны. В атмосфере он играет роль зеркала, отражающего тепло. Свет Солнца в основном пронизывает атмосферу и нагревает поверхность Земли. Она отдает тепло в виде инфракрасных лучей низкой энергии. Часть из них улавливается молекулами углекислого газа, а затем излучается опять же в инфракрасном диапазоне, но в разных направлениях. Какая-то часть рассеивается в пространстве, а какая-то возвращается на Землю. Таким образом, углекислый газ как бы выполняет функцию одеяла, укрывающего планету и поддерживающую на ней пригодную для жизни температуру.

Правда, если вы хотите увидеть, к чему может привести избыток углекислого газа, отправляйтесь на Венеру. Считается, что когда-то она напоминала по условиям Землю, но 97 процентов углекислого газа в атмосфере привели к парниковому эффекту, вышедшему из-под контроля. Средняя температура на Венере составляет 480 °С, а порой доходит и до 600 °С. У нас углекислый газ составляет лишь 0,039 процента по объему, но благодаря парниковому эффекту (в котором участвуют и другие газы, например водяной пар и метан) средняя температура на Земле на 33 °С выше, чем была бы без него. Если бы не парниковый эффект, средняя температура на Земле составляла бы -18 °С, что существенно ограничило бы возможность жизни на ней.

Еще одна чрезвычайно важная черта углекислого газа заключается в том, что он является пищей для растений. Как уже было сказано, жизненный цикл обитателей Земли базируется на растениях. В них нуждаются даже плотоядные животные, поедающие других животных, так как в конце пищевой цепи вы непременно обнаружите растение. Растения поглощают углекислый газ из воздуха, используя углерод в процессе фотосинтеза и вырабатывая в качестве побочного продукта кислород, которым мы дышим.

Добавьте немного шипучки

Еще одно свойство углекислого газа, на этот раз не столь серьезное, было обнаружено сравнительно давно. В 1756 году шотландский врач Джозеф Блэк впервые получил чистую двуокись углерода. Спустя 11 лет Джозеф Пристли, открывший впоследствии кислород, начал изучать свойства этого газа в пивоварне Лидса. Один из экспериментов заключался в пропускании пузырьков углекислого газа через воду. Часть газа при этом растворялась, придавая обычной воде привкус альпийских минеральных вод.

Пристли совсем забыл об этом опыте и вспомнил о нем лишь в 1772 году на ужине у герцога Нортумберлендского в Лондоне. Развлекая гостей, хозяин предложил им морскую воду, опресненную методом дистилляции. Гости сочли ее слишком безвкусной, и тогда Пристли объявил, что знает, как улучшить вкус. На следующий день он приготовил содовую. В то время Пристли получал углекислый газ в ходе реакции серной кислоты с мелом, весьма схожей с той, что происходит в желудке при приеме таблетки антацида. Впоследствии его выгнали из пивоварни за то, что он испортил целую партию пива, пытаясь растворить двуокись углерода в эфире. К сожалению, Пристли так и не поставил производство содовой воды на коммерческую основу. Спустя несколько лет этим изобретением воспользовался швейцарец Иоганн Швеппе.

Менделеев и его таблица

Должно быть, в школе химия ассоциировалась у вас с громоздкой периодической таблицей элементов. Так вот, эта таблица позволяет предсказать, как поведет себя кислота в вашем желудке, если выпить таблетку антацида. Когда Дмитрий Иванович Менделеев представил ее научной общественности, она стала настоящим прорывом в химии. Русский ученый был не единственным и далеко не первым, кто пытался обнаружить какой-то порядок в многообразии различных элементов, из которых состоит окружающий мир. Но он оказался самым упорным и настойчивым в раскладывании пасьянса из карточек с названиями элементов и в итоге сумел расположить их так, чтобы придать смысл всей картине.

Принципы, лежащие в основе периодической таблицы, достаточно просты. В ней есть несколько рядов, в которых элементы располагаются друг за другом слева направо в порядке возрастания массы. Эти ряды разделяются на колонки, в которых объединяются элементы со схожими свойствами. Сам того не осознавая, Менделеев поместил в каждую колонку элементы, у которых внешний слой имел одинаковое количество электронов (или одинаковое количество недостающих электронов). Поскольку именно эти электроны определяют характер связи атома с другими элементами, от них зависят и химические свойства.


Периодическая таблица элементов


Данный подход доказал свою правоту, когда Менделеев предсказал существование новых элементов, которые до этого были неизвестны. В таблице были пробелы, и Менделеев посчитал, что их должны занять атомы, обладающие схожими свойствами с уже известными элементами данной группы. Так, например, под кремнием оказалось пустое место, и Менделеев назвал недостающий элемент экакремнием (от санскр. эка – один).

Вскоре действительно был открыт элемент, заполнивший пустое место в таблице. Его назвали германием. У этого элемента есть ряд схожих черт с кремнием (оба в настоящее время используются для изготовления транзисторов и других электронных устройств), и его химические свойства точно совпали с предсказанными Менделеевым.

Познакомьтесь с элементом № 114

Периодическая таблица вплоть до нынешнего дня используется для того, чтобы определить химические свойства новых элементов, хотя и не все они так предсказуемы, как у германия. Взять хотя бы элемент с порядковым номером 114. К моменту написания книги он все еще не имеет настоящего названия[1] и проходит под «кличкой» унунквадий (от лат. unum-unum-quartum – один-один-четыре). К настоящему времени самый тяжелый элемент, имеющий название, – это коперниций (порядковый номер 112).

Сверхтяжелый элемент № 114 никогда не попадет в ваш желудок. Он не встречается в природе. Самым тяжелым из природных элементов является уран (порядковый номер 92). Все более тяжелые элементы получены искусственно – либо в ядерных реакторах, либо на ускорителях частиц. Для создания сверхтяжелых элементов требуются специальные условия, потому что сила, удерживающая ядро атома (сильное взаимодействие), должна преодолевать силу отталкивания, возникающую между большим количеством положительно заряженных протонов.

Сильное взаимодействие имеет один существенный недостаток: оно проявляется лишь на очень-очень малом расстоянии. Таким образом, 92 протона в атоме урана (порядковый номер элемента показывает, сколько протонов находится в ядре и сколько электронов образуют его оболочку) – это предел, при превышении которого сильное взаимодействие уже не может удержать частицы ядра вместе. Все более тяжелые элементы, как правило, очень нестабильны.

Время жизни большинства сверхтяжелых элементов составляет тысячные или даже миллионные доли секунды. Затем они распадаются. Однако унунквадий находится на так называемом «островке стабильности», то есть в той части таблицы, где атомы проявляют способность сохраняться несколько дольше, поскольку количество частиц в ядре позволяет упаковать их в более или менее стабильную форму. Изотоп элемента № 114, имеющий атомную массу 289, способен прожить несколько секунд.

Изотопы, как уже говорилось выше, – это варианты одного и того же элемента, отличающиеся друг от друга количеством нейтронов в ядре. Ядро самого простого из всех атомов – водорода – состоит из одного-единственного протона. Если добавить к нему нейтрон, то полученный элемент по-прежнему будет проявлять все химические свойства водорода, так как у него только один электрон, а именно от него зависит, как атом будет вести себя с другими веществами. Однако благодаря лишнему нейтрону ядро станет тяжелее и будет по-другому вести себя в ядерных реакциях. Вместо водорода мы получили его изотоп – дейтерий.

Поскольку практически вся масса атома сосредоточена в ядре, атомная масса элемента представляет собой сумму количества протонов и нейтронов. Поэтому в ядре изотопа унунквадия с атомной массой 289 содержится 175 нейтронов (289–114 = 175).

Элемент № 114 был открыт в 1998 году в Объединенном институте ядерных исследований в Дубне (Россия). В первом эксперименте был получен всего один атом этого элемента, и, хотя с тех пор был открыт целый ряд его изотопов, каждый раз речь шла всего о нескольких атомах. С учетом их малого количества и того обстоятельства, что существуют они всего несколько секунд, мы пока не имеем представления о том, как выглядит унунквадий. Предполагается, что он должен быть серебристо-серым металлом, как и большинство элементов из этой области периодической таблицы.

Тяжелый металл или благородный газ?

Периодическая таблица предсказывает, что унунквадий должен вести себя приблизительно, как свинец. По терминологии Менделеева, он и назывался раньше экасвинцом, так как находится в таблице прямо под ним. Однако, как ни странно, несмотря на то, что мы располагаем всего несколькими атомами унунквадия, высказываются предположения, что на самом деле он по своим свойствам должен быть больше похож на инертный газ, чем на металл.

Благородные, или инертные, газы составляют самую «мирную» последнюю колонку периодической таблицы. Их внешняя электронная оболочка заполнена до отказа, поэтому они не проявляют интереса к вступлению в реакцию с другими элементами. В их число входят, например, такие газы, как гелий, неон и ксенон. Они используются в различных типах осветительных устройств, однако более известным является гелий. Его необычность заключается в том, что впервые он был обнаружен на Солнце и лишь затем его нашли на Земле. Это объясняется тем, что гелий не так-то легко уловить в воздухе, поскольку он очень быстро поднимается в верхние слои атмосферы. Тем не менее этот элемент достаточно распространен, и мы можем купить баллончик с гелием, чтобы надуть воздушный шарик. Большая часть гелия извлекается из природного газа в ходе его добычи.

Но если у нас так мало материала для изучения, как же мы можем утверждать, что унунквадий ведет себя скорее как инертный газ, чем как металл?

Атомы элемента пропускают через тонкую трубку, покрытую внутри слоем золота. На одном конце трубка имеет комнатную температуру, которая последовательно понижается до ‑185 °С на другом конце. По мере прохождения по трубке атомы теряют энергию за счет понижения температуры, и их колебания становятся все меньше.

При этом мы ожидаем, что атомы металлов, например свинца, пройдут не слишком далеко и свяжутся с золотом в самом начале трубки. В то же время «необщительные» инертные газы проделают намного больший путь, прежде чем прикрепятся к стенке. Атомы элемента № 114 доходят до самого конца трубки, что позволяет сделать вывод о том, что они больше похожи на инертные газы, чем на свинец.

Это вовсе не значит, что периодическая система элементов дала сбой. Похоже, что на химию в данном случае начинает оказывать влияние теория относительности. Поскольку атомы тяжелых элементов содержат большое количество электронов, на внешних оболочках, которые расположены дальше всего от ядра, они должны двигаться быстрее обычного. Специальная теория относительности утверждает, что чем быстрее что-то движется, тем большую массу приобретает. Предполагается, что эти быстрые электроны приобретают достаточное количество дополнительной массы, чтобы изменить химические свойства вещества.

Превращение пищи в энергию

На что бы ни был похож унунквадий, вероятность его попадания в организм человека крайне низка, зато желудку приходится сталкиваться с огромным количеством других атомов. С технической точки зрения он выполняет в пищеварительной системе функцию предварительной переработки пищи, чтобы затем ее легче было превратить в энергию. В желудке пища подвергается воздействию соляной кислоты и ферментов – сложных химических веществ, которые специализируются на разложении белков. Получившаяся в итоге полупереваренная кашица поступает дальше в кишечник.

Предварительная переработка поступившей в организм пищи нужна для того, чтобы быстрее получить доступ к относительно простым веществам типа сахаров и жиров, состоящим из углерода, водорода и кислорода. В систему подается и дополнительный кислород, перенесенный кровью из легких. Он вступает в реакцию с сахарами и жирами, окисляя их. Мы не раз наблюдали в жизни реакцию окисления, глядя на огонь, дающий нам тепло. Реакция, происходящая в организме человека, – это фактически медленное химическое горение, в ходе которого кислород превращается в углекислый газ, воду и энергию, аккумулирующуюся митохондриями в химической форме.

Если сравнивать с животными, то у нас наблюдается одна важная особенность в подходе к еде. Перед тем как съесть продукты, мы их моем, очищаем и варим, чтобы они лучше усваивались.

Горячая еда – хорошая еда

Никто точно не знает, каким образом вареная пища заняла важное место в жизни человека. Обычно предполагается, что это произошло случайно, когда какое-то животное или зерна упали в огонь или оказались рядом с ним. Привлекательный запах, возможно, побудил людей подобрать и съесть поджаренную пищу, а приятный вкус привел их к выводу, что этот опыт имеет смысл повторить.

Разогревая продукты питания, мы меняем структуру белков, благодаря чему их становится легче жевать и усваивать. Кроме того, в ходе термической обработки высвобождаются некоторые сложные химические вещества, воздействующие на наше обоняние. Обычно принято считать, что при выборе пищи мы руководствуемся вкусовыми ощущениями. Однако запах является не менее важным компонентом в процессе определения качества еды. Вы ведь не станете пробовать экскременты на вкус, чтобы убедиться в том, что это не самое лучшее блюдо?

Обоняние представляет собой передовую линию обороны, защищающую нас от употребления опасных и вредных продуктов. Многое из того, что мы приписываем вкусу, на самом деле объясняется запахом. Аппетит просыпается за счет того, что в процессе варки углеводы распадаются на простые сахара, а кипящая вода способствует повышению концентрации запаха. Кроме того, в воздух при этом попадают ароматические вещества, стимулирующие не только обоняние, но и вкус.

Уже давно был замечен важный побочный эффект приготовления пищи – уничтожение бактерий и вирусов, обезвреживание некоторых токсинов, в частности фитогемагглютинина, который содержится в фасоли (употребление которой в сыром виде может привести к смерти), а также ядов, содержащихся в растениях семейства пасленовых (например, в картофеле).

Должно быть, прошло немало времени, прежде чем люди заметили, что вареное мясо не только вкуснее и мягче, но и уменьшает вероятность смерти и возникновения болезней. Но когда они это поняли, в пищу стали употребляться и те продукты питания, которые в естественном виде раньше были абсолютно несъедобными.

Видимо, это был непростой процесс, особенно когда дело касалось продуктов, которые в сыром виде ядовиты, например фасоли. Трудно представить себе, как чувствовал себя человек, видевший, что его сосед умер, съев сырую фасоль, и все-таки шедший на риск и евший вареную фасоль! Видимо, на этот риск его толкал голод. Возможно также, что фасоль случайно оказалась в вареном блюде, но так или иначе люди заметили, что если ее сварить, то ужасных болей в желудке после этого не возникает.

Таким образом, термическая обработка продуктов стала для нас нормой и благодаря ей мы получаем энергию из пищи.

Бодрящая чашка

Разумеется, мы едим не только ради пополнения запасов энергии. Наши органы чувств настроены не только на обеспечение выживания, но и на получение удовольствия. В ряде продуктов содержатся вещества, оказывающие непосредственное воздействие на мозг. Взять хотя бы чашку чая или кофе. Кофеин, содержащийся в кофе, чае и некоторых других напитках, представляет собой наркотик, оказывающий быстрое воздействие на нервную систему. Люди уже очень давно начали использовать кофеин для того, чтобы взбодриться. Чай в Китае пьют уже много тысяч лет. Значительно позже – в XVI веке – в страны Запада пришел кофе из Африки, где его тоже издавна использовали в качестве стимулятора.

Кофеин оказывает многообразное воздействие на организм, но главный эффект состоит в том, что он способен присоединяться к рецепторам мозга, которые обычно привыкли иметь дело с химическим веществом, носящим название «аденозин». Рецепторы в мозге можно сравнить с замками, которые открываются только определенным ключом. Так вот, кофеин получает доступ к рецепторам, предназначенным для аденозина. Аденозин создает в организме ощущение сонливости и усталости. Занимая его место в рецепторах мозга, кофеин помогает нам чувствовать себя бодрее.

Побочным эффектом от снижения уровня аденозина является повышенная выработка мозгом другого вещества – дофамина. Это нейтротрансмиттер, молекулы которого используются для передачи сигналов от одного нейрона мозга к другому. Таким образом, результатом приема кофеина становится и всплеск мозговой активности.

Кофеин встречается во многих растениях: в чае, какао, кофе и коле, из которых мы получаем знакомые всем стимулирующие напитки. Его положительное воздействие на человека – не более чем побочный эффект. Собственно говоря, кофеин служит природным инсектицидом, защищающим растения от вредных насекомых. То, что он еще попутно влияет на нашу нервную систему, является всего лишь совпадением.

Порой становится немного не по себе при мысли о том, что глоток кофе или колы вызывает такие фундаментальные изменения в работе мозга. Однако практика показывает, что употребление кофеина не только не причиняет вреда, но и приносит некоторую пользу, позволяя сконцентрироваться. Правда, как и многие другие наркотики, он может вызвать привыкание и зависимость. Если человека, который уже попал в зависимость, лишить кофеина, это вызовет у него неприятные ощущения. Поэтому многие из тех, кто отказался от кофе, заявляют, что стали чувствовать себя лучше. Они подсознательно сравнивают свое нынешнее состояние с тем, которое испытывали во время зависимости. Однако если вы употребляете кофе и чай в разумных количествах, никаких причин отказываться от этих напитков нет.

Пища богов

Многие считают, что кофеин содержится и в другом излюбленном продукте – шоколаде. Однако это не так. Главным компонентом шоколада, оказывающим влияние на работу мозга, является горькое на вкус химическое вещество, принадлежащее к тому же семейству, что и кофеин, – теобромин. В вольном переводе с греческого это название означает «пища богов». Теобромин оказывает схожее с кофеином действие, но не столь выраженное. Любовь к шоколаду объясняется, помимо этого, сладким вкусом (вызванным добавлением сахара) и температурой плавления, близкой к температуре человеческого тела.

Хорошо известно, что собак не следует кормить шоколадом, потому что теобромин для них ядовит. Маленькую собачку убивают уже 50 г черного шоколада (который содержит больше теобромина, чем молочный). Но проблема не ограничивается только собаками. Теобромин в той или иной степени является ядом для всех млекопитающих. В частности, он очень токсичен для кошек, но у этих животных отсутствуют рецепторы сладкого вкуса, поэтому они не испытывают желания есть шоколад.

Теобромин ядовит и для человека, но это не должно вызывать у вас опасений. Любое вещество в больших количествах (даже вода) является ядом. У людей естественная переносимость теобромина в расчете на килограмм собственного веса втрое выше, чем у собак. Кроме того, человек, как правило, и весит больше, чем собака. Чтобы получить смертельную дозу яда, взрослый человек должен съесть более пяти килограммов молочного шоколада.

Кстати, вопрос о дозировке надо всегда иметь в виду, когда вы покупаете «экологически чистые» продукты питания, чтобы уберечься от вредного воздействия пестицидов на организм. Практически любое вещество таит в себе какую-то опасность, но пестициды попадают в наш организм в таких ничтожных количествах, что риск от них минимален. Все растения содержат природные пестициды, которые так же опасны для нас, как и искусственные.

Конечно, перед употреблением овощи и фрукты всегда нужно мыть (хотя бы из-за бактерий, живущих в почве), но если вы проанализируете факторы, которые могут привести к заболеванию раком, то в типичном рационе питания 93 процента факторов риска приходится на алкоголь, а 2,6 процента – на кофе. Если мы устраним из рациона все относительно опасные природные источники риска типа латука, перца, моркови, корицы и апельсинового сока, то оставшийся фактор риска – пестицид этилентиомочевина – составит всего 0,05 процента. Если содержание всех вместе взятых химических средств борьбы с вредителями находится в пределах установленных законом норм, то опасность заболеть после их употребления не выше, чем после употребления сельдерея.

Я не пытаюсь убедить вас, что надо избегать сельдерея и апельсинового сока. Главное – разумно оценивать степень риска.

Супертаблетка

Хочу привести вам еще один пример вещества, оказывающего значительное влияние на мозг и организм в целом, к которому мы уже настолько привыкли, что воспринимаем его как нечто само собой разумеющееся. Еще за 2 тысячи лет до нашей эры люди использовали отвар коры ивы и вытяжку из таволги как средство от головной боли, жара и воспалений. Упоминание об этом содержится в шумерских памятниках письменности времен 3‑й династии Ура. На протяжении всех времен указанные средства пользовались большой популярностью.

В XVIII веке вследствие одного недоразумения спрос на ивовую кору вырос еще больше. В то время для лечения смертельно опасной малярии использовался хинин, добываемый из коры хинного дерева, но он был очень дорогим. В качестве замены врачи рекомендовали значительно более дешевую кору ивы. Впоследствии выяснилось, что ивовая кора, в отличие от хинина, лишь снимает симптомы, но не излечивает от малярии, однако в то время ее популярность резко возросла.

Единственная проблема заключалась в том, что это лекарство очень негативно влияло на желудок. Его активный ингредиент, известный нам сегодня как салициловая кислота, устранял головную боль и жар, но вызывал расстройство пищеварения и острую боль в желудке, а иногда даже становился причиной опасного желудочного кровотечения.

В 1899 году немецкая химическая компания «Bayer» сумела найти частичное решение этой проблемы. Производное салициловой кислоты – ацетилсалициловая кислота – обладала теми же медицинскими свойствами, но не столь агрессивно влияла на желудок. Новое средство назвали аспирином. Оно стало одним из самых продаваемых медикаментов фирмы «Bayer» наряду с популярным средством от кашля – героином! Право на его производство имела только эта компания. Правда, сегодня некоторые страны, в частности Великобритания, имеют право производить аспирин от своего имени. Как ни странно, это право было получено в результате заключения мирного договора.

Двадцать восьмого июня 1919 года в Версале был подписан договор, определявший размер репараций, которые Германия должна была уплачивать по итогам Первой мировой войны. Большая часть этого договора, как и ожидалось, касалась новых границ, ограничений численности вооруженных сил и вооружений, финансовых компенсаций и поставок промышленной продукции странам-победителям. И в числе этих основополагающих требований вдруг оказалось право на использование наименования «Аспирин».

В то время как в Германии (и еще в 80 странах мира) аспирин по-прежнему является торговой маркой компании «Bayer», в Великобритании и других странах, подписавших Версальский договор, использовать это название имеет право любой производитель. Вам может показаться, что такое мелкое требование недостойно того, чтобы становиться частью исторического договора, но в то время обе воюющие стороны сильно пострадали от пандемии испанки, распространившейся по всему миру в конце войны, поэтому аспирин стал продуктом первой необходимости.

На протяжении 50 лет аспирин оставался чрезвычайно важным медикаментом. В моем детстве он был единственным популярным болеутоляющим средством, продававшимся без рецепта. Однако в 1970‑е годы он уступил позиции более безвредному для желудка парацетамолу. В США его называют ацетаминофеном, но он больше известен под торговыми наименованиями «Панадол» (производства компании «Bayer») и «Тайленол». Казалось бы, об аспирине можно забыть, но тут выяснилось, что он является профилактическим средством от инфарктов и инсультов.

Болеутоляющие и противовоспалительные свойства аспирина объясняются блокированием фермента циклооксигеназы. Ферменты представляют собой специальные белки, которые способствуют химическим реакциям в организме. Циклооксигеназа, в частности, стимулирует производство нескольких гормонов, являющихся причиной воспалительных процессов и передающих болевые сигналы в мозг. Подавляя эти реакции, аспирин устраняет боль. Но наряду с этим было установлено, что он снижает активность тромбоксана – вещества, стимулирующего деятельность тромбоцитов. Тромбоциты отвечают за свертывание крови, что очень важно для заживления ран, но если сгустки начнут образовываться в сосудах, они могут полностью перекрыть кровоток, что приведет к инфаркту миокарда или инсульту. Постоянный прием небольших доз аспирина для предотвращения этого риска уже вошел в привычку у многих людей.

Обнаружение новых свойств аспирина позволило ему начать новую жизнь. Каждый год производится около 35 тысяч тонн этого средства. Как и кофеин, аспирин представляет собой относительно простое соединение, которое взаимодействует со сложными сигнальными механизмами тела, давая положительные результаты.

От химической энергии к сокращению мышц

Итак, то, что попадает к нам в желудок, может приносить пользу с медицинской точки зрения и доставлять удовольствие, но все же главное, для чего мы едим, – это производство энергии. Мы уже говорили о том, что переваривание пищи представляет собой процесс медленного горения, в ходе которого вырабатывается энергия. Она запасается в молекулах АТФ, откуда ее берут мышцы, совершающие движения. Сокращение мышц происходит благодаря двум белкам, один из которых «ползет» по волокну другого, попеременно совершая захват и подтягиваясь, словно при лазании по канату. Этот процесс инициируется электрическим сигналом.

О возбуждении мышц при помощи электричества было известно уже давно, и это привело к созданию очень известного фильма ужасов. Как-то летом одна молодая женщина по имени Мэри Уолстонкрафт Годвин отправилась в романтическую поездку со своим женихом и захватила с собой несколько книг для чтения. В их числе оказался отчет итальянского ученого Луиджи Гальвани о своей работе. Выйдя замуж, Мэри сменила фамилию на Шелли. Однажды в Швейцарии в дождливый день ей пришла в голову идея романа «Франкенштейн».

Проводя эксперименты с препарированными лягушками, Гальвани случайно коснулся проводом под напряжением мышцы лягушачьей ноги, и та дернулась, словно лягушка была еще жива. Хотя многое в этом явлении в то время интерпретировалось неверно (в том числе и миссис Годвин), это было началом понимания того, какую роль электричество играет в организме животных и каким образом с его помощью передаются сигналы.

Как совершается работа

До сих пор я говорил об энергии как о хорошо понятной всем концепции, однако все же следует пояснить, о чем идет речь. Мы уже видели, что энергия и материя – разные проявления одной и той же сущности, однако для того, чтобы превратить материю в энергию, необходим особый процесс, например термоядерный синтез или аннигиляция материи и антиматерии. В организме человека химическая энергия, запасенная в электронных связях, которые обеспечивают соединение атомов в молекулах, высвобождается и превращается в механическую энергию мышц.

Как это происходит? Энергия сама по себе не совершает работы. Работа – это трансформация энергии из одного состояния в другое. Например, когда мы передвигаем предметы, работа измеряется количеством прилагаемых усилий, умноженным на расстояние.

Когда-то под работой понимался только физический труд. В наши дни работа многих людей не связана с физическими усилиями, но даже умственный труд требует трансформации энергии, и зачастую необходимо сначала поработать головой и только потом руками. Например, чтобы написать книгу, надо сначала придумать оригинальную идею.

Процесс обдумывания не связан с физическими усилиями. Они понадобятся позже, в процессе печатания рукописи и издания книги. В общих чертах можно сказать, что задача тела заключается в преобразовании химической энергии в работу.

Работа и энергия измеряются в джоулях. В повседневной жизни мы все еще пользуемся устаревшей единицей измерения – калорией, которая составляет чуть больше четырех джоулей. Энергетическую ценность продуктов питания мы измеряем в тысячах калорий (килокалориях). Американские диетологи посчитали, что приставка «кило» будет вводить публику в заблуждение, поэтому в обиходе заменяют, к примеру, 129 килокалорий на 129 калорий (что явно неправильно) или 129 Калорий (написание с заглавной буквы в данном случае формально верно, но приводит к путанице).

Великая загадка шмеля

Каждый раз, совершая движение, вы используете энергию, запасенную организмом. Это совершенно очевидно. Однако некоторые животные, похоже, расходуют на движение больше энергии, чем получают ее с пищей. Получается, что они берут энергию как бы ниоткуда. Самым известным примером является шмель. Возможно, вам уже приходилось слышать: «Это просто загадка какая-то. Никто не понимает, почему шмель способен летать. У науки нет ответа». Зачастую подобные высказывания приводятся в качестве доказательства, что Бог способен создать то, чего не может объяснить наука.

В действительности так называемый парадокс шмеля – это не более чем заблуждение. Да, на первый взгляд кажется странным, что такое большое тело удерживается в воздухе с помощью маленьких и хрупких крылышек. Но шмель имеет на удивление низкий вес, а его крылья совсем не похожи на крылья птиц, и их подъемная сила создается за счет иных явлений. Они напоминают вертолетный винт, создающий вертикально направленные вращающиеся потоки воздуха, которые обладают большей подъемной силой, чем потоки воздуха, обтекающие крыло обычного самолета. Таким образом, здесь нет никакой проблемы. Шмелю не приходится тратить больше энергии, чем он потребляет.

Кенгуру на пружинах

Есть еще один представитель животного мира, который в определенном смысле расходует больше энергии, чем получает. Это кенгуру. Если сложить всю энергию, которая нужна ему для прыжков в течение дня, то она явно окажется выше, чем та, что он потребляет с пищей. Создается впечатление, что он производит энергию из ничего.

Однако при выполнении этих расчетов биологи упустили из виду, что мышцы ног кенгуру устроены наподобие резинового мяча. Если уронить мяч, то при ударе об пол он сжимается, накапливая энергию, а затем за счет упругости восстанавливает форму. При этом высвобождается энергия, отталкивающая его от пола. Точно так же энергия накапливается в пружине и растягиваемой резиновой ленте. Никакой дополнительной энергии извне в систему не поступает, но мяч подпрыгивает в воздух за счет энергии, запасенной при деформации от удара об пол.

Нечто похожее происходит и с кенгуру. Его мышцы устроены таким образом, что, когда ноги ударяются о землю, в них накапливается энергия, словно при растяжении резиновой ленты. Затем она высвобождается и используется для следующего прыжка. Таким образом, кенгуру для движения нуждается в меньшем количестве пищи. Если бы не эта специфическая конструкция мышц, то вся энергия при приземлении превращалась бы в звук и тепло. Однако, как мы видим, часть ее запасается для повторного использования. Точно так же электрический транспорт использует процесс торможения для пополнения заряда аккумуляторов, который будет расходоваться при последующем разгоне.

Тепло – это движение

Рассматривая движение энергии в своем теле и в теле кенгуру, мы имеем дело с термодинамикой. Если разложить это слово на составные части, получается «движение тепла». Так оно и есть, если вспомнить, что тепло является одной из форм энергии. Тепло – это кинетическая энергия движущихся молекул вещества. Нагрейте любой предмет – и его молекулы начнут двигаться быстрее. Термодинамика приобрела особое значение в XIX веке, так как позволила объяснить принцип работы паровых двигателей. С тех пор она стала фундаментальной частью науки.

О значении термодинамики свидетельствует изречение одного из самых великих ученых XX века Артура Эддингтона: «Если кто-то указывает на то, что ваша теория устройства Вселенной противоречит уравнениям Максвелла (описывающим электромагнитные явления), то тем хуже для Максвелла. Если обнаруживается, что она противоречит наблюдениям, то не исключено, что экспериментаторы что-то напутали. Но если ваша теория вступает в противоречие со вторым началом термодинамики, то у вас нет никакой надежды. Вы потерпите крах и будете осмеяны».

Ко второму началу термодинамики, о котором говорит Эддингтон, мы вернемся чуть позже, а пока поговорим об остальных. Как ни парадоксально, но термодинамика начинается с нулевого закона (или начала). Он получил такое название потому, что был сформулирован после первых трех, но фактически является для них основой. Этот закон гласит, что при контакте двух тел, имеющих одинаковую температуру, передачи тепла между ними не происходит. Поскольку тепло представляет собой движение молекул, то передача энергии от одного тела другому и обратно, конечно же, осуществляется, но она взаимно компенсируется и сводится к нулю.

Первое начало термодинамики состоит в том, что в любой изолированной системе запас энергии остается неизменным (закон сохранения энергии). Ее нельзя ни создать, ни уничтожить. Что вложили, то и получите на выходе. Второе начало, о котором говорил Эддингтон, устанавливает, что тепло (то есть энергия) переходит из более нагретого места в менее нагретое. Для полноты картины необходимо упомянуть и о третьем начале, которое гласит, что тело невозможно охладить до абсолютного нуля с помощью конечного числа операций. С каждым шагом вы можете чуть ближе подходить к абсолютному пределу холода, но никогда не сможете его достичь.

Эксперимент: термодинамика в действии

Наполните электрочайник водой, включите его и послушайте (а если чайник прозрачный, то и посмотрите), что будет происходить. В соответствии с нулевым началом термодинамики до включения чайника передачи тепла между нагревательным элементом и водой не происходит, но, как только вы его включите, элемент нагреется с помощью электричества и вскоре его температура станет выше, чем у окружающей воды. Энергия начнет переходить от горячего вещества к холодному (второе начало).

Затем вы услышите легкое шипение, которое постепенно будет становиться все громче. Незадолго до полного закипания наступает тишина, а в самом конце процесса раздается бурление кипящей воды.

Источником шипящего звука являются многочисленные крохотные пузырьки водяного пара, которые, едва образовавшись, вновь схлопываются. Поскольку нагревательный элемент значительно горячее точки кипения, соприкасающаяся с ним вода получает большую порцию энергии и переходит в газообразное состояние, образуя пузырьки. Они перемещаются в слои воды, удаленные от нагревательного элемента и потому значительно более холодные. Там они вновь переходят в жидкое состояние, производя характерный легкий хлопок. Сливаясь, эти звуки от множества схлопывающихся пузырьков и создают знакомое всем шипение. Непосредственно перед закипанием этот звук пропадает, так как практически вся масса воды подходит к температуре кипения и пузырьки больше не образуются.

Затем, когда достигается температура кипения, в воде появляются крупные пузыри водяного пара, причем не только в точке соприкосновения с нагревательным элементом, а по всему объему жидкости. Мы воспринимаем это как бульканье кипящей воды.

Почему невозможен вечный двигатель

Первое и второе начала термодинамики неумолимы. В совокупности они доказывают невозможность создания вечного двигателя. Если у вас есть маленькие дети, то, пожалуй, вам уже приходило на ум, что их можно назвать вечными двигателями, но энергия человеческого организма постоянно пополняется за счет пищи. А как было бы здорово создать двигатель, который будет работать вечно! Достаточно подключить его к генератору – и у вас появляется неисчерпаемый источник электроэнергии.

Если бы вы могли отменить любой из этих законов, жизнь была бы прекрасна. Если бы не действовало первое начало, вы могли бы использовать больше энергии, чем вложили в систему. Запущенный двигатель давал бы больше энергии, чем потребляет, то есть он смог бы не только сам работать безостановочно, но еще и давать лишнюю энергию. Точно так же отмена второго начала позволила бы перемещать энергию от холодного тела к горячему. Эту энергию можно было бы использовать в своих целях.

Может сложиться впечатление, что холодильник нарушает второе начало термодинамики, поскольку он перемещает энергию изнутри (из холода) наружу (в более теплое помещение). Но сам по себе холодильник на такое не способен. Второе начало применимо только к замкнутым системам, работающим без поступления энергии извне, а ведь холодильник постоянно снабжается электроэнергией и при этом тратит больше, чем перемещает.

Люди пытаются построить вечный двигатель на протяжении как минимум последних 1300 лет. Это занятие оказалось настолько популярным, что патентные бюро прекратили рассмотрение подобных заявок, если не будет продемонстрирована действующая модель. Иногда складывается впечатление, что вы действительно видите перед собой вечный двигатель, но каждый раз неизменно оказывается, что к нему откуда-то поступает энергия.

В чем фокус?

Пожалуй, самым известным примером, якобы доказывающим возможность существования вечного двигателя, является радиометр Крукса.

В этом устройстве вертушка с несколькими лопастями установлена в стеклянной колбе. Лопасти не подключены ни к какому источнику энергии. Там нет ни моторчиков, ни солнечных батарей. И все же вертушка вращается не останавливаясь. Все это очень смахивает на вечный двигатель, но на самом деле источником движения является солнце (или любой другой источник света). Стеклянная колба предотвращает воздействие на лопасти любых внешних сил, но не может служить препятствием для солнечного света, и эта форма энергии непрерывно поступает в радиометр.

Раньше считалось, что вертушка вращается из-за давления световых лучей. Одна сторона каждой лопасти окрашена в черный цвет, а другая – в белый. Фотоны света якобы поглощаются черной стороной, но отражаются белой. Хотя фотоны не обладают массой, в них достаточно энергии, а Эйнштейн утверждает, что масса и энергия – это две разные стороны одного и того же явления. Поэтому фотоны могут создавать момент силы. В принципе можно было бы создать космический корабль с большими солнечными парусами, которые улавливали бы солнечный ветер.

К сожалению, для этого понадобились бы поистине огромные паруса. Лопасти в радиометре для этого слишком малы. На самом деле их вращает движение воздуха внутри колбы. Воздух в колбе сильно разрежен, чтобы уменьшить сопротивление, но он все же присутствует. Поскольку черная сторона лопасти поглощает фотоны, она нагревается сильнее, чем белая. Часть этого тепла передается молекулам воздуха (в соответствии со вторым началом термодинамики), те начинают двигаться быстрее и с большей силой бомбардируют черную поверхность, заставляя вертушку вращаться.

Зайдите на сайт www.universeinsideyou.com, выберите раздел Experiments и в нем тему Crookes in action. Видеоролик демонстрирует, как работает радиометр Крукса.

Можно без труда доказать, что причиной вращения является теплота, а не давление света, потому что радиометр крутится не в том направлении, в каком можно было бы ожидать. Если бы все дело было только в свете, то повышенное давление оказывалось бы как раз на белые стороны лопастей, а не на черные, и радиометр вращался бы в обратном направлении.

Неисчерпаемая чистая энергия

Идея вечного двигателя зародилась, скорее всего, в викторианскую эпоху, но в 2007 году ирландская компания «Steorn» подняла большую шумиху в прессе, заявив, что ей удалось создать подобное устройство. Было дано обещание продемонстрировать машину, производящую «неисчерпаемую чистую энергию». По заявлению компании, устройство под названием «Orbo» использовало магнитные поля для выработки энергии из ничего. После массированной рекламной кампании демонстрация машины в Лондоне была отложена «из-за технических сложностей». Было дано разъяснение, что освещение создает слишком высокую температуру, приводящую к выходу из строя подшипников. Казалось, что на устранение неисправностей уйдет от силы несколько дней, однако демонстрация «Orbo» так и не состоялась.

Предполагается, что в этом устройстве используется комбинация фиксированных и подвижных магнитов, которые перемещаются по сложной траектории в магнитном поле Земли и за счет этого вырабатывают энергию. Компания «Steorn» присоединилась к длинной череде изобретателей, чьи попытки создания вечного двигателя закончились неудачей. Под вечным двигателем следует понимать машину, работающую на подлинно возобновляемых источниках энергии. Когда мы считаем «возобновляемой» энергию ветра или солнечного света, то упускаем из виду, что она поступает к нам все-таки извне – от Солнца. Несмотря на то что эти источники будут существовать еще очень и очень долго, их нельзя назвать поистине вечными.

Возрастание энтропии

Второе начало термодинамики часто формулируется как возрастание энтропии. На первый взгляд энтропия представляет собой весьма расплывчатое понятие. Попросту говоря, это мера беспорядка и хаоса в системе. В вашем теле, например, энтропия намного меньше, чем просто в наборе химических веществ, из которых оно состоит, потому что организм обладает структурой. А вот в комнате подростка энтропия достаточно велика. Чем больше беспорядка, тем выше энтропия. На самом деле энтропия – это не описательное понятие, а статистическая единица измерения. Она выражается в количестве способов, с помощью которых можно организовать различные элементы системы.

Если взять, к примеру, буквы, напечатанные на этой странице, то существует лишь один способ расставить их в таком порядке, чтобы получились именно те слова, которые вы читаете. Бесчисленное множество других вариантов расстановки не приведет к желаемому результату. Поэтому в данном случае энтропия мала, но, согласно второму началу термодинамики, для этого требуется затратить много энергии. Буквы не сами по себе сложились в слова. Мне пришлось немало потрудиться, чтобы их написать. Большой труд вложили также редакторы и печатники. Любые опечатки, пропуски букв и другие погрешности вносят беспорядок в текст и тем самым повышают энтропию.

Представляется совершенно логичным, что энтропия возрастает. Например, чашка чая, стоящая на столе, характеризуется более высоким уровнем порядка, чем осколки той же чашки, разбросанные по полу. Повысить энтропию очень просто: достаточно лишь уронить чашку. Но зато практически невозможно понизить ее уровень, собрав все осколки воедино и воссоздав из них целую чашку.

Идея возрастания энтропии использовалась как аргумент против сторонников естественной эволюции жизни на Земле. Земля родилась из хаотичного набора молекул и постепенно развилась в относительно высокоорганизованную планету, на которой обитают различные формы жизни. Кое-кто склонен полагать, что это доказывает вмешательство Творца, который создал порядок из хаоса. Однако в данном случае мы имеем дело с неверным пониманием второго начала термодинамики, в соответствии с которым энтропия возрастает (или остается прежней) только в замкнутых системах, без притока энергии извне. Но наша планета не является замкнутой системой. Мы получаем колоссальное количество энергии от Солнца, и второе начало здесь неприменимо.

Физика монстров

Связь между энтропией и развитием жизни – это не единственный пример влияния базовых законов физики на живые существа. У вашего организма нет никаких проблем с законами физики (если не считать того, что отдельные участки кожи с возрастом начинают обвисать под действием силы тяготения). Но когда мы имеем дело с монстрами, ситуация существенно меняется. К таким монстрам, порожденным нашей фантазией, чаще всего относятся пауки и насекомые огромных размеров. Что будет, если такой безжалостный убийца, как паук, вырастет до размеров, при которых его добычей вполне может стать человек? Но лучше задуматься над тем, почему мы никогда не встречались с такими чудовищами. Почему они не выросли до таких размеров, которые позволили бы им завоевать весь мир? Вспомните громадных муравьев из фильма ужасов 1950‑х годов «Они!» или гигантских пауков из «Властелина колец» и «Гарри Поттера».

Если подобные монстры являются вам в ночных кошмарах, можете успокоиться. Они не могут существовать. Представьте себе, что мы увеличили паука в 100 раз. Какой ужас! Это значит, что он стал в 100 раз шире, а его ноги – в 100 раз длиннее. Если мы разрежем такую ногу поперек, то площадь среза будет в 10 000 (100 × 100) раз больше, чем у обычного паука.

А что с весом? Вес зависит от объема, следовательно, такой паук будет в 1 000 000 (100 × 100 × 100) раз тяжелее. А это значит, что увеличившийся в миллион раз вес должны будут поддерживать ноги, ставшие толще лишь в 10 тысяч раз. Этот паук сразу же рухнет под собственным весом.

Нечто подобное произошло бы и с любым млекопитающим (включая человека), но у пауков и насекомых при увеличении размеров возникает еще одна проблема. Они дышат всей поверхностью кожи. Ее площадь при увеличении размеров в 100 раз увеличится лишь в 10 тысяч раз. Для снабжения туши, ставшей в миллион раз тяжелее, просто не хватит кислорода. Такой огромный паук умрет от удушья сразу же после того, как у него сломаются ноги. Так что причин для страха нет.

Ходьба на двух ногах

Вернемся к телу человека. На первый взгляд наши средства передвижения устроены проще, чем у паука. Ведь ему приходится одновременно управлять работой восьми ног, чтобы не запутаться в них и не споткнуться. Разумеется, при наличии всего двух ног нам нужно осваивать относительно меньше необходимых двигательных навыков. Но у нас возникает другая проблема.

Две ноги представляют собой весьма неустойчивую опору. Чтобы это понять, достаточно лишь взглянуть на малыша, который пытается делать первые шаги. Разница здесь примерно такая же, как езда на трехколесном и двухколесном велосипеде. Когда мы впервые садимся на двухколесный велосипед, поддержание равновесия дается нам с большим трудом. То же самое испытывает и тот, кто учится ходить на двух ногах. Для этого требуются постоянная практика и большие затраты энергии. Фактически ходьба на двух ногах представляет собой непрерывный процесс падения вперед, но мы вовремя успеваем подставить очередную ногу, чтобы не рухнуть на землю.

Для нервных непосед

Для того чтобы встать со стула, требуется значительно больше энергии, чем для того, чтобы сесть. Но многие из нас не в состоянии сидеть спокойно. Интересно понаблюдать за людьми, находящимися вроде бы в состоянии покоя, но при этом совершающими массу ненужных мелких движений. К примеру, руки практически всегда находятся в движении. Моя бабушка часто сидела в кресле, сложив руки, и при этом непрерывно крутила большими пальцами. Это довольно распространенная привычка, хотя трудно объяснить, зачем люди это делают.

А есть еще люди, которые постоянно хрустят суставами пальцев.

Это действует нам на нервы, и, чтобы положить конец назойливой привычке, мы говорим таким людям, что если они и впредь будут поступать подобным образом, то им неизбежно грозит артрит. Но так ли это на самом деле? Один человек поставил перед собой цель выяснить истину. Врач из Калифорнии Дональд Унгер каждый день на протяжении 60 лет вытягивал себе суставы фаланг пальцев, добиваясь характерного хруста. При этом он экспериментировал только с левой рукой.

Разумеется, трудно прийти к каким-то достоверным выводам на основании опыта одного человека (всем нам нередко приходится слышать высказывания типа «Я курю по 40 сигарет в день начиная с двадцатилетнего возраста, и мне уже 95 лет»), тем не менее левая рука доктора Унгера не претерпела никаких негативных изменений по сравнению с правой. Поэтому связь между привычкой хрустеть пальцами и артритом вполне может оказаться очередным мифом.

Но, независимо от того, есть ли у вас такая привычка, я предлагаю перейти к следующей теме.

Загрузка...