Глава 9 Подобно режиссеру фильма

Для бизнесмена или правительственного чиновника в промышленно развитых странах Запада слово «ДНК» становится столь же привычным, как «нефть» или «сталь».

М. Д. Франк-Каменецкий

Возраст жизни на Земле — сотни миллионов лет. К нам, в сегодняшние дни, жизнь пробивалась сквозь многие потрясения и катастрофы. Они стерли с лица планеты динозавров, мамонтов и других диковинных зверей. Но все-таки кое-какие следы древнейшей истории жизни сохранились. В куске каменного угля, извлеченного из недр, можно обнаружить отпечатки доисторического папоротника. В размолотом строителями валуне найти окаменевшие раковины моллюска. В выброшенных штормовыми волнами на песчаное побережье Балтики золотистых кусках янтаре, этой застывшей смоле реликтовых деревьев, порой удается разглядеть мумии насекомых.

Какой-нибудь запечатанный в янтаре комар являет собой удивительное зрелище! Подумать только: неисчислимое множество поколений отделяет его от современных сородичей, казалось бы, он обязан разительно отличаться от своих собратьев, родившихся в атомном веке. Так нет! Комар все тот же: природа пронесла облик насекомого из глубин тысячелетий в наше время почти неизменным. Различие, если оно и есть, кажется совершенно несущественным.

Как же природе удается из века в век репродуцировать, раз за разом повторять свои изделия? И не приближенно, не кое-как, спустя рукава, оставляя лишь главное, не заботясь о деталях, — а творить словно бы под копирку, добиваясь воспроизведения даже самых мельчайших особенностей и нюансов. Загадка? Величайшая! И слава науке, которая сумела эту тайну разгадать.


Эстафета поколений

Суть секрета — в устройстве молекулы ДНК. В том, что у нее не одна, а именно две спирали.

А в самом деле, к чему излишества? Ведь и на одной спирали-ленте можно было бы записать всю наследственную информацию. Записать-то можно, трудно сохранить!

Уникальность ДНК в том и состоит, что в природе это единственная молекула, способная размножаться делением, воспроизводя себя, давая живым клеткам шанс непрерывно удваивать их число. А научной истиной это положение стало во многом благодаря исследованиям Эрвина Чаргаффа.

Чаргафф, австриец по национальности, родился в 1905 году в Австро-Венгрии в городе Черновцы, теперь это территория Западной Украины, окончил Венский университет, биохимик, работал в Берлине, с приходом нацистов перебрался в Париж, затем оказался в США, многие годы отдал изучению нуклеиновых кислот.

Чаргафф рос и воспитывался в атмосфере классической науки, материальные основы генетики тогда еще не были известны. Возможно, поэтому, отдав делу изучения ДНК и РНК так много времени, имея в этой области огромные заслуги, он с недоверием и даже с неприязнью встречал последние новшества молекулярной генетики.

Впрочем, предоставим ему высказаться самому: «…я разделяю ученых на два основных типа: одни — это более редкий тип — стремятся понять окружающий мир, познать природу; другие, которых куда больше, непременно хотят объяснить мир. Первые ищут истину, иногда вполне четко сознавая безнадежность своих попыток; вторые стремятся к законченной стройной и целостной картине мира. Первым мир открывается в его лирической напряженности, вторым — в логической ясности, и это они, вторые, — его владыки…» И дальше, более резко: «А теперь придется ввести еще одну подгруппу, может быть, самую влиятельную в биологии, — это те, которые хотят перекроить природу. Этих я не буду касаться, потому что убежден, что именно попытка преобразовать или перехитрить природу почти привела к ее гибели…»

А вот более грустное признание Чаргаффа: «…человек не может быть без тайны. Можно сказать, что великие биологи прошлого творили в свете самой тьмы. Нам уже не досталось ничего от этой благотворной ночи. Луна, на которую я в детстве любил смотреть по ночам, — такой луны уже нет на небе. А что последует за этим? Боюсь, что меня поймут неправильно, если я скажу, что в каждом из наших великих научно-технических подвигов человечество необратимо теряет еще одну точку соприкосновения с жизнью».

Пессимизм, возможно, природный, не мешал, однако, Чаргаффу быть великолепным исследователем. Он вспоминает, как в 1944 году поразило его сообщение Эвери, доказывающее вроде бы, что таинственные гены спрятаны в нуклеиновых кислотах. «Я был просто потрясен. Мне вдруг показалось, что я вижу неясные контуры грамматики биологии…»

Чаргафф тогда резко повернул руль своих научных поисков и занялся химией ДНК. И удача сопутствовала ему. Ученый доказал, что генетические буквы располагаются в спиралях ДНК строго попарно. Против аденина (А), расположенного на одной из спиралей, всегда находился тимин (Т), размещенный на другой спирали. Так же, словно взявшись за руки, вели себя и две другие буквы: гуанин (Г) обязательно располагался против цитозина (Ц).

Согласно Чаргаффу выходило, что в молекуле ДНК буквы алфавита подчиняются следующему математическому закону:

А + Г = Т + Ц.

Большое открытие! Оно сразу многое прояснило. Прежде всего, то, почему в генетическом алфавите четное число (четверка: А, Г, Т и Ц) букв. Понятно, нечетное число букв — три, пять и так далее — нельзя разбить на пары.

Стало ясным и то, каким образом удваивается молекула ДНК, плодя точные свои копии. Существование двух взаимосвязанных через дополнительные буквенные пары А — Т и Г — Ц спиралей, внешнее надстраивание на них дополняющих букв, позволяет природе легко размножать ДНК и клетки.

Процесс идет таким образом. Одна спираль, назовем ее нить А, воспроизводит дополнительную нить-спираль В, а нить В (вторая начальная спираль) — повторяет нить А. Вот так вместо одной возникают две молекулы ДНК, затем, если считать общее их число, — 4, 8, 16 и так далее — эстафета поколений! — в геометрической последовательности, до бесконечности. То есть до наших дней.


ДНК на ремонте

Репликация, удвоение ДНК идет с большой, прямо-таки пулеметной скоростью: до 500 букв за секунду у бактерий, до 50 букв у млекопитающих. Вот с какой сказочной быстротой совершается перепечатка громадного генетического архива. И это идет ежедневно, ежечасно, ежеминутно.

Тонкий процесс! Он поражает наблюдателя еще и своей точностью. Тем, повторимся, что какого-нибудь рачка, обитавшего в теплых морях палеозоя, очень трудно, не специалисту вообще невозможно, отличить от его нынешнего потомка.

Опечатки? Они, конечно, случаются. Без этого нельзя. Точно установлено учеными: при копировании ДНК человека, например, когда в каждой спирали содержится несколько миллиардов букв, число ошибок достигает десятков тысяч (!) на каждое клеточное деление.

И это не самые страшные для живой материи факты. Живая клетка, а вместе с ней и ДНК, часто оказываются под грозным воздействием ультрафиолетовых, рентгеновских и прочих вредных излучений. Спирали ДНК корежат, «выбивая» буквы, и различные попадающие в клетку химические агенты. Но даже если внешняя среда чиста, то и тут искажения в ДНК имеют место, на этот раз уже самопроизвольные, вследствие тепловые ударов. Подсчитано, что при 37 градусах Цельсия в среднем ДНК клетки теряют до 20 букв-оснований (в промежутках между двумя делениями).

Но как же тогда понимать, спросит удивленный читатель, примеры с комаром в янтаре, с прапрарачком, о которых упоминал автор? Что же гарантирует почти вечную повторяемость живого? Где истоки столь полезной для жизни консервативности ее форм?

Вначале генетики думали, что постоянство — это-де особое свойство генов, которые не подвержены никакому влиянию внешних воздействий. Но тогда, спрашивается, как же можно совместить с этим огромную гибкость, подвижность, удивительную приспособляемость, явную тягу живой материи к обновлению?

Страстные дискуссии продолжались и после открытия Уотсона и Крика, когда структура ДНК обнажила свои очертания. Не сразу ученые догадались о существовании в клетке специальной ремонтной службы. О наличии микроспецов, денно и нощно пекущихся о сохранении чистоты смысла первоначальных записей.

Кстати, тут еще раз проявило себя значение двунитчатости ДНК. Она необходима не только для создания идентичных копий генетического материала, но и для пущей — с запасом! — сохранности записанной в ДНК информации, ибо повреждения редко затрагивают сразу две спирали. И целостность второй, неповрежденной, позволяет начать ремонтные работы!

Кто же взял на себя в клетке роль мастеров-ремонтников? Особые белки-ферменты, названные рестриктазами и лигазами.

Рестриктазы рвут, разрезают, последовательность букв в ДНК, но делают это не как попало, а лишь в тех местах, где имеется сочетание строго определенных букв, узнаваемых только данной рестриктазой. Арсенал рестриктаз постоянно пополняется и включает уже более 400 наименований. Любопытно, что рестриктазы открыли в известной мере случайно, ища ответ на совсем другой вопрос: пытаясь понять, как клетке удается расправляться с проникшими в нее вместе с бактериями или вирусами чужеродными ДНК.

Вот так стала ясна кухня «рубки» молекул ДНК на части. И тут же появились сомнения: а не разбегутся разрезанные куски в разные стороны, не затеряются ли? Как-то их потом соберешь? Как удается клетке собрать из обрезков ДНК нечто для нее полезное?

Получалось, что, кроме топоров, ножниц, вырезающих, удаляющих ненужные, лишние (повреждения, описки и т. д.) фрагменты, необходимы и средства для «склейки» кусочков ДНК. И здесь ученым повезло: они вскоре обнаружили ферменты лигазы. Белки, специализирующиеся на сшивании частей ДНК, на восстановлении ее целостности. Так было установлено, что в клетке в случае нужды есть кому не только кроить и пороть молекулы ДНК, но и сметывать их!


Стая жизнерадостных обезьян

Ощупав гены, свыкшись с их материальностью, человек тут же захотел заняться генной хирургией. Как подступиться к этому делу? Вначале — до открытия рестриктаз и лигаз — затея казалась безнадежной. Конечно, порвать молекулу ничего не стоит. Однако нужны не случайные разрывы: требовалось удалять одни гены и вставлять в освободившиеся «пустоты» другие.

Обсуждались разные проекты. Свои инструменты предлагали и физики, и химики. Что, если ударить по ДНК лазером? А может, лучше плавить молекулу наследственности в определенных местах? Или пилить ее химическими пилами? Идей и попыток было немало, но результаты не вдохновляли, ибо требовались такие хирургические ножи, которые позволяли бы разрезать молекулу ДНК с точностью до миллиардных долей метра. С атомными допусками. (Если бы с такой аккуратностью разделать батон колбасы, то каждому жителю земного шара досталось бы по кусочку!)

Барьер казался неодолимым. Наступление века генной инженерии отодвигалось на неопределенный срок. И вот в момент уныния на помощь ученым поспешила сама природа. Она предложила и «скальпели» (ферменты рестриктазы) и «иглы с суровой ниткой» (лигазы). Ведь мало было кромсать молекулу ДНК, хотя бы и с точностью часового мастера, нужно было еще научиться скреплять генные фрагменты, чтобы получать любые варианты генных гирлянд.

Геиноинженерная операция начинается с выделения из клеток, точнее из их ядер, молекул ДНК. Такую работу наблюдать очень поучительно.

Сначала к суспензии клеток добавляют ПАВы — поверхностно-активные вещества. Они разрушают, ломают мембраны — стенки клеток и ядер. Картина при этом получается любопытная. На ваших глазах мутноватая жидкость, налитая в стакан или колбу, превращается в прозрачный вязкий клей, почти студень. Это длиннейшие нитевидные молекулы ДНК выходят в раствор из лопнувших ядер. Осажденные затем спиртом ДНК выпадают рыхлыми беловатыми волокнами, которые можно вынуть из стакана, наматывая их на стеклянную палочку.

Достаточное для работы количество ДНК получено. Но в каком они виде! Это каша обломков, обрубков. Как же выловить из этого хаоса, из случайно перемешанных обрезков нужный нам ген? Вполне определенную осмысленную последовательность букв ДНК?

Вот как описывает трудность подобной задачи доктор биологических наук Борис Михайлович Медников: «Представьте, — пишет он, — полное академическое собрание сочинений Пушкина, изданное тиражом в сотни миллионов экземпляров. (С таким количеством исходных клеток в колбе обычно имеют дело молекулярные биологи.) Весь тираж при этом напечатан в одну строчку на телеграфной ленте и перемешан в огромный ворох, который непрерывно перелопачивают (имитация теплового движения молекул в растворе), а стая жизнерадостных обезьян (это аналог ферментов нуклеаз, полностью избавиться от них при выделении молекул ДНК из клеток невозможно) рвет ленту, где им это понравится. Теперь представьте, что, не прикасаясь руками и не видя текста, с расстояния пятидесяти метров надо из этой кучи выбрать все ленты, на которых отпечатан, например, „Анчар“ или первая глава „Евгения Онегина“».

Примерно такого рода задача стояла перед учеными. И удивления достойно, что они с ней справились. Все тонкости этого дела мы пересказать, понятно, не в состоянии. Важен итог, то, что теперь исследователи умеют выделить любой нужный им ген.


Escherichia coli — «рабочая лошадка»

С помощью рестриктаз и лигаз первые химерические молекулы ДНК, их еще называют рекомбинантными, были получены. Но что с ними делать? Ведь проявить свои необычные свойства такие молекулы наследственности могут, только находясь в каком-то живом организме. Начался поиск существ, способных приютить, приголубить рекомбинантные ДНК и дающих им возможность нормально удваивать свое число. Конечно, кров для химерических молекул следовало выбирать попроще. А что может быть проще бактерий, одноклеточных созданий, управлять которыми наиболее легко?

Бактерии. Один из наиболее древних эшелонов жизни. Миллиарды лет были единственными обитателями биосферы. Ни человека, ни животных, ни высших растений не было на Земле, а бактерии уже праздновали не одну весну. Да они и сейчас настоящие хозяева планеты. И мы живем среди них, как экзотические цветы жизни, как редкостные образования в тьмамиллиардной массе трудяг-невидимок. Бактерии истинные космополиты: они населяют толщи почв и все водные бассейны, они поселились и в нас самих, эти малютки буквально вездесущи. Это бактерии создавали и создают месторождения полезных ископаемых, они же превращают останки живых существ в материал для новой жизни, помогают нам переваривать пищу и готовить ее, увы, еще они способны и убить нас, вызвав болезни.

Для молекулярных биологов бактерии — заманчивый объект исследований. Подкупает простота их устройства. Это всего одна клетка (обычно палочковидной формы, по-гречески bakterion и значит «палочка»).

У них нет ядра, всего одна хромосома (у человека их 23), с одной ниточкой ДНК.

Однако мир бактерий очень велик — кого выбрать, предпочесть? Кто тут наиболее пригоден для манипуляций с генами?

Так получилось, что выбор молекулярных биологов пал на кишечную палочку, научное название Escherichia coli, микроорганизм, обнаруженный австрийским врачом Теодором Эшерихом (отсюда и название «ешерихиа коли») еще в 1885 году. Бактерия, обитающая в кишечнике человека как один из основных компонентов нормальной кишечной флоры.

В тех исследованиях, о которых идет сейчас речь, кишечная палочка стала основной «рабочей лошадкой». Ее достоинства? Простота культивирования: неприхотлива, питается сахаром, особенно любит глюкозу. Кроме того, эта бактерия очень хорошо изучена, имеется ее полная генетическая карта, известны основные пути обмена веществ, быстро размножается. Ее жизненный цикл — до деления — длится всего 40 минут.

Итак, приют, удобная гавань, пристанище для химерических молекул наследственности было найдено. За чем же дело стало? Осталось перенести рекомбинантную молекулу в приготовленное для нее логово. И тут снова случилась закавыка. Что значит перенести? Ведь не возьмешь же ДНК пальцами и не посадишь в бактерию, хотя бы потому, что она, словно крепость, окружена стенками-мембранами. Вновь препятствие, оно казалось неодолимым. И тут — в который раз! — благосклонная природа указала прямые и простейшие средства.


Плазмиды

Один из побочных продуктов развития наук — создание всемирного языка. Все больше становится слов, что одинаково звучат во всех языках и имеют один и тот же смысл. «Спутник», «стресс», «композиты», «гены» — эти и многие другие слова равнопонятны ученому любой национальности.

А еще существует масса научных терминов, которые как бы ждут своего часа. Пока они употребляются лишь узким кругом людей, прячутся в тиши кабинетов и лабораторий, таятся до поры, но настает момент — и слово начинает блистать, как звезда первой величины. Такая судьба, безусловно, ожидает и слово «плазмиды».

Открыл плазмиды в начале 50-х годов американец Джошуа Ледерберг. Он обнаружил в кишечной палочке, кроме основной спиралевидной вытянутой во весь свой гигантский рост ДНК, еще и маленькие, свернутые в колечки ДНК.

О плазмидах дружно заговорили медики, когда в 1959 году было показано, что неэффективность многих антибиотиков обусловлена этими созданиями природы; они имеют особые гены устойчивости к антибиотикам. К примеру, вырабатываемый плазмидами фермент пенициллаза разрушает пенициллин, спасая бактерии от гибели. Что, конечно же, осложняет лечение больных. Парадокс, но лучший способ добиться того, чтобы антибиотик сохранил эффективность, — это вовсе не применять его!

Но нет худа без добра! То, что затрудняло работу медиков, пригодилось генным инженерам. Им как раз нужны были переносчики реконструированных молекул ДНК в живые объекты.

Правда, вначале на эту роль прочили вирусы-бактериофаги. Они действительно способны осуществлять генную буксировку, но они губят клетку, рубят сук, на котором сидят. Проникнув в клетку, вирус ведет себя как опасный хищник. Он переключает ресурсы клетки да удовлетворение своих нужд и примерно через полчаса губит ее. Клетка разрушается, и из нее вместо одного фага выпархивает сотня ему подобных, готовых творить новую агрессию.

Иначе поступает плазмида. Это микросоздание ограничивает свой аппетит, она в отличие от вируса не убивает клетку-хозяина. Если фаг подобен алчному хищнику, то плазмида напоминает домашнее животное, особенно собаку. Плазмида и приютившая ее клетка осуществляют симбиоз, их добровольный союз взаимовыгоден. Подобно верному псу, плазмида защищает бактерию от врагов, скажем, от пенициллина. Клетка же предоставляет плазмиде кров, ресурсы для питания, размножения.

Все эти доставившие медикам так много хлопот особенности сожительства бактерий и плазмид, а именно способность плазмид переходить «из рук в руки», легко проникать в клетки и жить в них, оказались благом для генной инженерии.


За монтажным столом

Так постепенно, шаг за шагом, возводилось то, что ныне зовется генной (генетической) инженерией. Странное это все же словосочетание. «Гены», святая святых живого — и тут же чисто техническое понятие «инженерия». Смысл, соединяющий эти далекие друг от друга термины, заключен в конструировании наследственных основ живого организма, так же как в технике собирают машины по заранее разработанным чертежам.

Спорят еще и о том, какое из прилагательных — «генная» или «генетическая» больше подходит к слову «инженерия». Большинство склонно придерживаться более широкого второго термина, говорить именно о генетической инженерии, подчеркивая, что тут речь идет не только о тасовании отдельных генов, ведь операции можно проводить и над геномами, и над клетками и их частями, и даже над зародышами. Поэтому кое-кто полагает, что вообще надо говорить о биоинженерии.

На наш взгляд, не так важно название новой профессии, сколько ее суть. Так что попробуем сейчас перечислить главные этапы работы биоинженеров:

1. Из клеток выделяются молекулы ДНК, а из них — нужные гены. Их словно карты тасуют, раскладывают генные пасьянсы, которые (скрепленные лигазами) и превращаются в химерические молекулы ДНК.

2. Теперь необходимо подыскать переносчиков. Как правило, это колечки-плазмиды, но переносчиками могут быть и фаги, и другие простейшие, способные внедряться, ввинчиваться в бактериальные клетки. Забавное название для переносчиков придумали американские исследователи из Висконсинского университета — разновидности одного из фагов они назвали «харонами», по имени мифического перевозчика душ мертвых до врат Аида, царства теней, через якобы находящуюся в подземном царстве реку Ахерон. В древности для уплаты за провоз покойнику клали в рот монету.

3. Зараженные плазмидами бактерии, кишечные палочки, к примеру, размножают и отбирают тех бактериальных потомков, которые по своим свойствам соответствуют замыслу генной операции. Миллиардное тиражирование бактерий — хорошо, что они быстро размножаются! — крайне важно. Только тогда можно наработать, накопить хотя бы миллионные доли грамма нужного вещества, чтобы уверенно работать с ним — расшифровать его состав, получить полезные продукты.

Дата рождения генетической инженерии известна довольно точно: 1972 год. Тогда в Станфордском университете американцем Полем Бергом были получены первые химерические молекулы ДНК. А если точнее, то Берг пришил ДНК обезьяньего вируса 40 (SV40), имеющегося в клетках человека и обезьян (у этого вируса всего пять генов), к ДНК фага, который и доставил генетическую информацию в кишечную палочку. Позднее, в 1980 году за эти опыты Берг был удостоен Нобелевской премии.

Методики, развитые Бергом и другими исследователями, позволили современным генным инженерам действовать подобно режиссеру фильма. Они также словно бы ведут монтаж отснятого «киноматериала». Удаляют из «киноленты жизни» неинтересные кадры и вставляют с помощью молекулярных (ферментных) ножниц и клея новые «кинокуски». Кинорежиссер творит за особым монтажным столом. И у генных инженеров в лабораториях есть особые химические столы, где они могут манипулировать с «кадрами» ДНК.



Человек, попавший в лабораторию, где ведутся генноинженерные операции, может быть обманут видимостью простоты оборудования. Действительно, в сравнении, скажем, с физической лабораторией — резкий контраст: вместо, к примеру, громадных синхрофазотронов — штативы с пробирками, какие-то шкафы, полки, на которых не только приборы, но и книги по биохимии, микробиологии. Не очень все это впечатляет!

Так воспримет святилище генных инженеров непосвященный, специалисты же будут придерживаться иного мнения. Вот что на сей счет пишет уже цитировавшийся нами Медников: «Современная биологическая лаборатория высокого класса насыщена разнообразной электроникой и прочей машинерией не менее, чем физическая. Высокооборотные центрифуги (они разделяют компоненты клеток, помогают выделить из них ядра и другие составляющие. — Ю. Ч.) с вакуумом и охлаждением, аппараты для электрофореза (в них под действием электрического поля могут быть, к примеру, рассортированы по размерам отрезки молекул ДНК. — Ю. Ч.), автоматические счетчики радиоактивности с программным управлением. Список этот легко продолжить. В принципе можно обойтись без части оборудования, но ценой самого дорогого — времени. Экономия здесь оказывается худшим видом расточительства.

Но главное даже не в этом. Получение ферментов, необходимых для работы, тех же рестриктаз, немыслимо без развитой микробиологической и химической промышленности самого высокого уровня. Хорошо еще, что ферменты-реактивы чрезвычайно активны и, допустим, пятисот миллиграммов рестриктазы хватит усердно работающей группе на год. Ведь сверхчистый фермент дороже золота, если оценивать по весу. Наконец, для генной инженерии совершенно необходимы многие соединения, меченные радиоактивными изотопами — фосфором, углеродом, тритием, причем активность их должна быть весьма высока, порядка сотен тысяч импульсов в минуту. Значит, требуются и ядерные реакторы, и радиохимические лаборатории для синтеза меченых органических соединений. Так что простота методов генной инженерии только кажущаяся. Как и везде, здесь ничто не дается даром. Наука никогда еще не стоила дороже, чем сейчас, но зато и никогда не приносила раньше столь фантастических результатов…»


Генноинженерное молоко

Конкретные успехи биоинженерии еще очень скромны. Что уже сделано? Главное — удалось превратить бактерии в микроскопические фабрики, производящие некоторые фармацевтические препараты.

Первым в списке надо поставить инсулин, белок, вырабатываемый в организме человека поджелудочной железой. Он регулирует углеводный обмен, в частности уровень сахара в крови. Недостаток инсулина вызывает диабет, или сахарную болезнь. Лечить ее не умеют: каждый день больному необходимо делать уколы — вводить инъекции инсулина.

А где его взять? Инсулин животных, как правило, не воспринимается людьми. Синтезировать этот продукт искусственно? В 60-х годах ученым удалось этого добиться, но стоил такой инсулин страшно дорого. Проще поступить так: в бактериальную клетку поместить ген человека, ответственный за выработку инсулина, и заставить ее штамповать лекарства от диабета.

Трудностей на этом пути пришлось преодолеть немало, основная же — быстро выяснилось, что бактерии не умеют обращаться с расчлененными на экзоны, смысловые блоки генной информации, и интроны, кажущиеся пока бессмысленными «инфорпустоты», генами высших организмов. На многие хитрости пришлось идти, целую приключенческую повесть можно было бы написать о том, как исследователям удалось обмануть бактерии, добиться — в нашей стране эти работы были выполнены в Институте биоорганической химии имени Шемякина АН СССР — получения столь необходимого людям продукта. Сейчас бактериальный инсулин уже продается в аптеках.

Теперь об интерфероне. Это особое вещество, обнаружено оно было в 1957 году, вырабатывают клетки животных и человека, подвергшиеся нападению вируса. Интерферон может предохранить человека от многих вирусных заболеваний, гриппа, например. Но где взять большие количества этого ценного препарата? Ведь из литра крови удается выделить всего лишь микрограммы интерферона, дозу, достаточную только для одной инъекции. И тут исследователи вновь обратились за помощью к бактериям. Создали химерические молекулы ДНК с генами человека, кодирующими биосинтез интерферона, встроили ее в плазмиду… Так удалось создать бактерии, способные синтезировать сотни микрограммов полезного вещества в расчете на литр раствора, где содержатся бактериальные клетки.

С помощью подобных же приемов из кишечной палочки (исследования Института молекулярной биологии АН СССР) удается нарабатывать еще один важный белок — гормон роста соматотропин. Его недостаток приводит к карликовости, избыток — к гигантизму.

Соматотропин известен медицине давно. В 1921 году были поставлены эффектные опыты: с помощью этого гормона — его вырабатывает особая железа, расположенная у человека и животных у основания черепа, — удалось вырастить крыс-гигантов. Выделен этот белок был в 1956 году. Тогда же его стали с успехом применять для лечения некоторых форм карликовости. Люди, которым он вводился, начинали быстро расти, и их тело принимало нормальные пропорции.

Где взять большие количества соматотропина? Здесь опять же помогли методы биоинженерии. Они же в скором времени позволят получать и другие ценные человеческие белки, ферменты и гормоны: помогающие при психических расстройствах эндорфины, ингибиторы (замедлители) развития злокачественных опухолей. В принципе так можно заставить бактерии синтезировать и белки мяса или молока. В Эдинбурге ученые сейчас изучают возможность изменения с помощью биоинженерии состава молока животных. В коровьем молоке будет, как в овечьем или козьем, больше жиров и белков.


Загрузка...