Придет тот день, когда каждый будет брать на обед таблетку азота, чуть-чуть жиров, немного крахмала или сахара, бутылочку ароматического флейворинга и, смешав все это, получать кушанье по собственному вкусу. Производство всех необходимых ингредиентов на фабриках будет дешевым и неограниченным. Тем самым получение пищевых продуктов не будет зависеть от хороших или плохих сезонов, от дождей и засухи, от зноя, иссушающего растения, или мороза, губящего надежды тех, кто выращивает фрукты. И когда придет этот день, химия вызовет революционное изменение мира, результаты которого никто не может предсказать.
Мы живем в необычное время. Население Земли умножается невиданными темпами. В 1850 году на земном шаре жил 1 миллиард человек, к 1930 году землян стало 2 миллиарда, в 1960 году — 3, а к 1990-му, полагали статистики, — нас будет 5 миллиардов.
Эксперты просчитались. «Днем рождения пятимиллиардного человека» Организация Объединенных Наций объявила 11 июля 1987 года.
Где родилось пятимиллиардное дитя? На какой широте, какой долготе? В огромном городе, крохотной деревушке? В русской, китайской, американской, индийской семье? Стало представителем большого или маленького народа? Этих подробностей никто никогда не узнает. Зато демографы уверены в том, что если рост населения пойдет с прежней скоростью, то к 2000 году (нас привораживает этот срок: стык тысячелетий!) Землю будут населять уже более 6 миллиардов человек — огромное количество!
Грозный смысл этой цифры хорошо иллюстрирует то, что ежегодно, данные 1987 года, на планете появляется 80 миллионов новых жителей, ежедневно — 220 тысяч, ежесекундно примерно 2 человека, которых нужно кормить! Прежде Земля худо-бедно, но справлялась с этой задачей, а что будет в будущем? Что станет тогда привычной для обитателей Земли пищей? Какое меню предложат человеку наука и техника?
«…Люди занимают на земле не так уж много места. Если бы два миллиарда ее жителей сошлись и стали сплошной толпой, как на митинге, все они без труда уместились бы на пространстве размером двадцать миль в длину и двадцать в ширину. Все человечество можно было бы свалить в кучу на самом маленьком островке в Тихом океане» (Антуан Сент-Экзюпери. Маленький принц).
Много ли человеку земли нужно? Еще Лев Николаевич Толстой в известном рассказе-притче размышлял об этом. В философском плане. Нас будет интересовать статистика.
Первобытный человек был охотником и собирателем дикорастущих растений. Он употреблял в пищу их плоды, семена, нежные листья, побеги и корни — все, что было съедобным. При таком образе жизни требовались большие пространства, территория, равная примерно 25 квадратным километрам на одного человека. Неудивительно, что население Земли росло тогда крайне медленно.
Ну а сколько земли человеку нужно сейчас? Ответить на это попытался голландский физиолог растений Корнелиус де Вит. Он полагает, что максимум того, что могут дать растения в идеале, это 500 центнеров в год с гектара земли. Далее этот ученый перевел центнеры в калории и пришел к выводу: в Нидерландах на площади в один гектар могут, питаясь довольно умеренно, прокормиться 50 человек.
Еще немного арифметики — и, оказывается, что суша планеты способна прокормить 1000 миллиардов человек!
Оглушительный вывод, но не очень привлекательный. Вспоминается научно-популярный фильм: показательная птицеферма, громадные постройки, где буквально крыло к крылу теснится несметное количество кур, продирающихся к медленно ползущей ленте конвейера с зерном…
А что, если наш среднестатистический гражданин захочет растительную диету сменить на мясную (не одной картошкой жив человек!), потребует фруктов… Да и одеть его не мешает — даешь площади под хлопок, лен! — вот и выходит, что среднеплодородной землицы потребуется уже гораздо больше. Накинем сюда еще гектары, занятые под дороги, города, аэродромы. Проявив человеколюбие, допустим также, что у среднестатистического гражданина есть душа, требующая отдыха на лоне природы: рыбалка там, грибы всякие, прогулки на велосипедах… Если теперь вновь вернуться к цифрам, то окажется, что величина максимально возможного населения Земли только в малой степени будет определяться площадями, отведенными для производства продуктов питания.
А конечный итог расчетов ученого таков: в некоем идеальном случае на Земле могут жить 60–80 миллиардов человек. Это не так мало, но и не так много — народонаселение Земли удваивается примерно каждые 30 лет: человечество вскоре может подойти к лимитной черте.
Кроме того, сейчас трудно представить себе потребности и запросы человека завтрашнего дня. Да и что такое природное равновесие, мы пока плохо понимаем: возможно, непроходимые заросли джунглей, тундра и бесплодные пустыни — все это очень необходимо планете. И уж во всяком случае никак нельзя представлять ее себе каким-то одним сплошным огородом!
Итак, чтобы прокормить человечество, земли пока хватает. Однако размеры планеты оказались не столь уж и велики. В СССР на душу населения в 1955 году приходилось 1,2 гектара пашни, что-то около футбольного поля по площади, в 1970-м — 0,92, в 1981-м — только 0,82, а ведь страна наша имеет самую обширную территорию: шестая часть суши! Поэтому лучше уповать не на освоение новых земель, а на увеличение урожаев.
«Земля-тарелка: что положишь, то и возьмешь» (Владимир Даль. Пословицы русского народа). Эта простая истина стала очевидной не сразу. Вряд ли индейцы Америки, которые клали несколько рыбьих голов на каждый холмик, засеянный несколькими зернами кукурузы, имели хоть какое-то представление об агрохимии. Но уже в средние века в Европе для поднятия плодородия почвы использовали навоз животных. Он тогда был главным продуктом животноводства! А производство мяса — делом побочным. Об этом свидетельствовало, в частности, незначительное отличие цен на мясо и зерно.
Подлинный переворот в сельском хозяйстве произошел в 1840 году. Тогда немецкий химик Юстус Либих (1803–1873), опубликовав книгу «Химия в приложении к земледелию», создал теорию минерального питания растений. Тем самым ученый опроверг господствовавшую до него гумусовую теорию, утверждавшую, что растения питаются непосредственно перегноем — гумусом.
Растениям необходимы лишь вода и минеральные соли, учил Либих. Используя вместо навоза химикалии, возвратив пашне потерянные ею, вынесенные с урожаем минеральные вещества («закон возврата»), можно резко увеличить урожаи.
Но по-настоящему химическая революция совершилась в сельском хозяйстве примерно в середине нашего века, когда началось массовое применение химических удобрений и химических же средств для борьбы с сорняками, с вредителями и болезнями растений.
И замелькали дотоле непривычные слова: пестициды (точный перевод этого слова с латыни — «убивающий заразу»), гербициды (убивающие траву), инсектициды (убивающие насекомых), зооциды, фунгициды, репелленты (отпугивающие насекомых), аттрактанты (привлекающие их), всевозможные протравы для семян, хемостерилизаторы, дефолианты, регуляторы роста. Отметим: все это — новейшее завоевание химии. Так, первый гербицид — 2,4-дихлорфеноксиуксусная кислота, сокращенно 2,4-Д, был получен в 1941 году. В наши дни с его помощью уничтожают сорняки в посевах пшеницы, овса, ячменя.
Химики вложили в руки земледельца грозное оружие. Скажем, гербициды сплошного действия способны извести всю растительность, без разбора. Такие средства необходимы, когда нужно уничтожить траву, она может стать причиной аварий на аэродромах, вокруг промышленных объектов, под линиями электропередачи, на насыпях железных дорог.
Конечно, гербициды избирательного действия отличают «своих» (культурные растения) от «чужих» (сорняки), но как непросто тут выбрать правильную дозировку, учесть все последствия. Сколько надо проявить осторожности, мудрости! Ведь нарушить природное экологическое равновесие очень легко. И тогда некоторые насекомые или клещи, прежде малозаметные, могут превратиться в опасных вредителей.
А побочные действия пестицидов? Какие, казалось, надежды сулило первое успешное применение печально известного препарата ДДТ. Какой был бум! Однако изумление перед мощью этого средства вскоре сменило радужную окраску на трагическую. Уносимый талой и дождевой водой с полей, ДДТ скапливался в водоемах, отравляя там все живое, а оттуда проникал вместе с рыбой и птицей в пищу жителей окрестных мест. Оборотистые дельцы на Западе давно уже смекнули, что к чему, и пустили в продажу биологически чистую пищу. Ее получают на фермах без использования минеральных удобрений и пестицидов. Стоит она гораздо дороже.
Химики были вынуждены снова взяться за дело. Теперь они пытаются создать пестициды, четвертое их поколение, безвредные для животных и человека. Тут есть и большие успехи и немалые, понятно, трудности.
Массированное использование в сельском хозяйстве химических средств себя оправдало: урожаи возросли. А еще выше они поднялись, когда химики заключили союз с селекционерами.
Американцы считают, что сельское хозяйство США ныне подошло к рубежу третьей в XX веке революции. Первая (1920–1950) стала результатом широкой механизации, когда фермеры перешли от использования мускульной силы животных к использованию энергии машин. Производительность труда возросла еще больше в период второй революции (1950–1980), когда была проведена химизация сельского хозяйства. Сейчас же, считается, настала очередь для третьей — генетической — революции (этой теме будут посвящены главы 8–11).
Но в развивающихся странах чаще произносят другие слова: там говорят про зеленую революцию. Началась она в Мексике, в 40-х годах. В стране ощущались трудности с пшеницей. Урожаи — в среднем 7 центнеров с гектара — были низки: более половины потребного зерна приходилось ввозить из-за границы. И возникла мысль поправить положение за счет выведения новых, более урожайных сортов.
Пшеничный переворот, зеленая революция — эти названия неразрывно связаны с именем теперь всемирно известного американского селекционера Нормана Борлауга, удостоенного в 1970 году Нобелевской премии за создание высокопродуктивных карликовых, неполегающих пшениц, занимающих в настоящее время огромные площади во многих странах мира.
Успех увенчал работу, которая шла в течение последних 25 лет в Международном центре по улучшению пшениц, риса, кукурузы и ячменя в Мексике. Ученые были поставлены в довольно жесткие условия. Исследования, не относящиеся к делу, не поощрялись. Как только появлялись хорошие результаты, их тут же передавали практикам. «Мы никогда не дожидались совершенства сортов или методов, — писал впоследствии Борлауг, — а каждый год брали лучшее из того, что есть…»
И вот во многих густонаселенных странах Америки, Африки и Азии, странах, казалось, обреченных на массовый голод, урожаи зерновых резко пошли вверх. А Мексика начиная с 1956 года стала обеспечивать себя пшеницей. Урожаи тут поднялись до 30–40 центнеров с гектара. 45–50 центнеров стали давать поля Индии и Пакистана.
Оптимизму не было предела. Многие считали, что проблема питания на земном шаре решена полностью. И основания для таких прогнозов вроде бы были, так как полученные селекционерами сорта зерновых обладали завидными свойствами: урожайностью, неполегаемостью, благодаря удачной архитектонике в расположении листьев они обладали высокой интенсивностью фотосинтеза. Идеальные растения! При должном уровне агротехники и механизации эти интенсивные сорта действительно были способны увеличить производство зерновых в несколько раз.
И все же зеленая революция не решила продовольственной проблемы. Надежды наконец накормить человечество, к сожалению, не оправдались. В итоге некоторые страны, включившиеся в свое время в зеленую революцию, сейчас импортируют зерна даже больше, чем до ее начала. И дело тут не только в том, что население этих стран заметно возросло.
Зеленая революция в том виде, как она была задумана — сверхвысокоурожайные сорта, изобилие воды, ядохимикаты и достижения передовой агротехники, — все же в целом, потерпела неудачу. Почему? Сейчас расскажем.
В химическом блеске, в шуме и грохоте аграрных машин и механизмов старое доброе сельское хозяйство может показаться анахронизмом, такой же приметой давно ушедшего, как лапоть или лучина. Но так ли уж плохо то, что ушло и уходит у нас на глазах?
Первобытный человек ничегошеньки не тратил, нечего было, а лишь приобретал. Бродил себе полуголый по лесам и искал орехи, корешки разные…
С переходом к земледелию все усложнилось — леса надо было рубить, корчевать, землю пахать. Но и тогда энергозатраты были еще незначительны. В сравнении с запасанием солнечной энергии культурными растениями. Однако это выгодное соотношение постепенно изменилось. Агротехника прошлого требовала преимущественно затрат мускульной силы человека и животных, но ввиду недостаточной продуктивности она не могла удовлетворить потребности в пище быстро растущего населения Земли. Оттого-то в развитых богатых странах, в бедных и сейчас хозяйство недалеко ушло от натурального, неизбежен был переход к высокопродуктивному земледелию, которое, к сожалению, крайне энергоемко.
По данным журнала «Ambio», чтобы получить бутылку молока, в США расходуется энергия, содержащаяся в половине бутылки нефти!
Отношение запасенной в растениях солнечной энергии к энергетическим затратам имеет вид: земледелие экстенсивное (соха, лошадь) 20 : 1, интенсивное земледелие (удобрения, трактора и прочее) 2 : 1, животноводство 2 : 10, тепличное хозяйство (ранние огурцы, помидоры) 2 : 100.
Так и получается, что каждый выращенный джоуль требует сотен джоулей безвозвратно потраченной энергии. И сытно накормить человека сможет лишь изобилие, а его пока еще на Земле нет, энергии. Настоящая революция в сельском хозяйстве без этого условия немыслима.
Собственно, мысль о том, что энергия насыщает, не столь уж и нова. Слова «кормящее солнце» — почти трюизм. Труднее осознать следующий парадокс. Выходит: можно спорить о том, кто ближе к сельскому хозяйству — ученый-ядерщик, изучающий на синхрофазотроне элементарные частицы с тайной надеждой найти невиданный по мощности источник энергии, или же селекционер-практик, на опытной делянке в поле опекающий новый высокоурожайный сорт пшеницы.
Зеленая революция потерпела неудачу в основном из-за разразившегося в 70-х годах энергетического кризиса. И голод по-прежнему еще бродит по Земле, потому что земледельцы в развивающихся странах не в состоянии выращивать капризные высокоурожайные сорта, требующие громадных, в первую очередь энергетических затрат. И ныне, по данным ФАО (продовольственная и сельскохозяйственная организация при ООН), половина населения планеты систематически недоедает.
Этим обстоятельством умело пользуются богатые страны Запада. Они не только делают бизнес на голоде, но и давно превратили голод в политическую проблему. Бывший министр сельского хозяйства США Эдвард Батц сказал: «Я думаю, что продовольственное оружие — самое мощное оружие, которым мы располагаем сегодня».
Американцы уже не раз пускали это средство в ход. Палата представителей конгресса США запретила поставки продуктов в Египет после того, как правительство Гамаль Абдель Насера выступило с критикой американской агрессии в Конго. Таким же образом была наказана Шри Ланка за национализацию американских компаний. Продовольственную блокаду Вашингтон применил и против Чили, когда там пришло к власти правительство Сальвадора Альенде…
Накормит энергия! Этот лозунг-мечта и обещает и вместе с тем обманывает. Как мы сейчас убедимся, он предлагает больше, чем реально может дать.
Прежде крестьянин торговал солнечным светом, воздухом и своим трудом. Теперь же человечество подошло к тем рубежам, когда уже уместно спрашивать: а почем солнечные лучи? Во что обходятся прежде казавшиеся неисчерпаемыми, бесплатными вода, воздух, почва?
Мера должна быть во всем, и всему, наконец, есть пределы,
Дальше и ближе которых не может добра быть на свете.
Эти строки римского поэта Горация (65–8 годы до нашей эры) удачно характеризуют положение, сложившееся сейчас в сельском хозяйстве. Обозначились рубежи, слепое стремление к которым грозит превратиться в бессмыслицу. Вот пример. В США производство продуктов питания для одного человека требует 1,2 · 106 килокалорий энергии в год. Если бы все страны мира приняли американскую энергетическую диету и технологию производства продовольствия, то разведанные ресурсы нефти были бы исчерпаны всего за 13 лет!
Выходит, ставка только на энергию себя не оправдывает. Более того, энергетические затраты в сельском хозяйстве надо уже не увеличивать, а снижать. Ведь выясняется, что идея зеленой революции не оправдывает себя даже в условиях США, хотя эта страна находится в исключительно благоприятных почвенно-климатических, энергетических и технологических условиях.
В США, да и в других передовых государствах уже зафиксированы рекордные урожаи. Для пшеницы, ячменя, кукурузы они составляют 150–250 центнеров с гектара, для сахарной свеклы, картофеля — 1000–1200. Однако — и это важный момент! — при массовом производстве урожайность тех же культур обычно оказывается в несколько раз ниже. Чтобы понять, где тут собака зарыта, пришлось бы долго на разные лады склонять словосочетания, обязательной приставкой к которым явилось бы слово «экология».
Это просто знамение времени! Человек все более переходит от коммерческого сиюминутного, чисто потребительского мышления не только к энергетическому (оно, видимо, также носит переходный характер) видению процессов, но к мышлению долговременному, даже, можно сказать, вечному — к мышлению экологическому.
Беда в том, что человек упорно навязывает свои представления природе. Товарное производство продуктов питания привело к чистым одновидовым посевам — только пшеница, только рожь, сплошные посадки подсолнечника, кукурузы, это своего рода «солдатики», бесстрашно шагающие навстречу граду снарядов и пуль, которые в них сыплет и природа (климатические невзгоды, бедность почв и так далее), и многие их недруги — сорняки и различные вредители.
Трудно приходится «солдатикам», тесно им в поле: все растения требуют одного и того же набора ресурсов, их корневая система уходит на одну и ту же глубину, они одновременно зацветают и созревают. Словом, буквально наступая друг другу на пятки, они все занимают одну и ту же экологическую нишу. И оказывается, что по сравнению со своими дикими сородичами культурные растения хуже пригнаны к окружающей среде. Что, впрочем, неудивительно: ведь тысячи лет люди развивали в культурных растениях главным образом одно качество — продуктивность. Поэтому на опытных участках при постоянной и дорогостоящей опеке культурные сорта выказывают чудеса урожайности, при массовых же посевах в известной мере предоставленные сами себе, брошенные на произвол судьбы они, попав в трудные условия, свою урожайность теряют.
В ГДР создают заповедники для сорняков. У сорняков есть чему поучиться. По ним можно определять состояние почвы: ее потребность в известковании, режим удобрений… А еще сорняки помогают понять природу живучести растений.
Существует такое экологическое понятие — стратегия выживания растений. Еще в конце 20-х годов нашего века советский биолог Леонтий Григорьевич Раменский (1884–1953) по этому признаку разделил растения на три типа: на «львов», «верблюдов» и «шакалов». У львов способности борца, они, захватывая львиную долю почвенных ресурсов, теснят с поля конкурентов. «Верблюды» отличаются выносливостью к неблагоприятным условиям существования, а «шакалы» — их спасает быстрота размножения.
Дикие растения успешно пользуются всеми этими тремя стратегиями. Помогают им утвердиться на земле и разные другие хитрости. К примеру, как только наступают невзгоды, многие сорняки уменьшают свои размеры с тем, чтобы хотя бы часть их могла выжить. Семена самых опасных сорняков прорастают неодновременно, одни из них успевают отцвести до начала уборки, другие же, напротив, цветут после нее…
Снабдить культурные сорта растений цепкостью сорняков, их стойкостью и выносливостью — цель, которую сейчас ставят перед собой ученые. Это крупный резерв увеличения эффективности сельского хозяйства. И уменьшения энергетических затрат!
Попытки мобилизовать естественную энергию, заключенную в самих растениях, делает экологическая генетика культурных растений. В СССР эту новую науку развивает отряд ученых, возглавляемый членом-корреспондентом АН СССР президентом АН Молдавии Александром Александровичем Жученко. Задача эта сложна, ибо на генетическом уровне надо разбудить, растормошить адаптивный, приспособительный потенциал культурных растений, не утеряв при этом важных для дела урожайности хозяйственных признаков.
Есть и другие обещающие идеи. К примеру, стоит попытаться пересмотреть проблему борьбы с сорняками, постараться превратить их из злейших врагов в союзников. Ведь при отсутствии на поле сорняков почвенная микрофлора обедняется. Кроме того, своими длинными корнями сорняки увеличивают биологический обмен между приповерхностным и более глубокими слоями, что уменьшает эрозию почвы. Так отчего же не попробовать создать смешанные посевы, в которых превращенные во «львов» культурные растения (интенсивные сорта с широкими листовыми пластинками, быстро развиваясь, они заглушают конкурентов) сами бы препятствовали буйному развитию сорняков. И они превратились бы в полезные компоненты такого агросообщества, могли бы, скажем, снижать почвоутомление, увеличивать содержание в ней азота…
Многое делается, многое еще предстоит сделать. Но человека не отпускает мысль стать менее зависимым от растений, добиться большей самостоятельности. В самом деле, разберемся: что делают растения? Они синтезируют из простейших химических веществ белки, жиры и углеводы — нашу пищу. Но ведь, казалось бы, то же в состоянии сделать и химики, и тогда люди наконец смогли бы стать независимыми. А может, сельское хозяйство действительно устарело и ему пора подать в отставку? И химия способна заменить естественные продукты искусственными.
5 апреля 1894 года на банкете синдиката фабрикантов химических продуктов с речью (она была вскоре опубликована под названием «В 2000 году») выступил выдающийся химик-органик Пьер Эжен Марселей Бертло (1827–1907). «В 2000 году, — заявил он, — не будет более ни сельского хозяйства, ни крестьян, ибо химия сделает излишним современное земледелие».
Бертло был не только замечательным ученым: он синтезировал громадное число органических соединений — аналоги природных жиров, простейших углеводородов и т. д., чем нанес окончательное поражение представлению о витализме, «жизненной силе», доказав, что химия способна обойтись без этих лжепонятий. Не только глубоким историком науки: в 1885 году выпустил в свет труд «Происхождение алхимии», опубликовал также собрания древнегреческих, западноевропейских, сирийских и арабских алхимических рукописей, с переводами, комментариями и критикой. Не только крупным общественным деятелем: министр просвещения, министр иностранных дел Франции, во время осады Парижа немцами, 1871 год, возглавлял ученый комитет защиты столицы, провел большую работу по изысканию взрывчатых веществ, отливке дальнобойных орудий, подготовке других оборонительных средств. Бертло был еще и большим мыслителем, естественно, видящим мир прежде всего глазами химика.
Вера в могущество химии дает о себе знать и в знаменитой речи Бертло: 2000 год он представлял «чисто химическим годом». Химия окрасила и мечты ученого о светлом будущем человечества. Вот его подлинные слова: «Мы будем очень близки к осуществлению мечты социализма… под тем условием, конечно, что удастся изобрести и какую-нибудь духовную химию, способную изменить нравственную природу человека так же глубоко, как наша химия изменила природу материальную!..»
Бертло не сомневался: к кануну третьего тысячелетия люди будут обладать изобилием энергии — его даст полное использование теплоты солнца («быть может, песчаные пустыни станут излюбленным местом обитания будущего цивилизованного человечества», — говорил ученый) и внутреннего жара нашей планеты. Верил, что это энергетическое половодье позволит решить задачу производства пищи химическим путем. «В принципе, — говорил Бертло, — проблема уже решена: синтез жиров и масел осуществлен сорок лет тому назад; синтез сахаров и углеводов осуществляется на наших глазах, а синтез азотистых тел (белков. — Ю. Ч.) не замедлит последовать. Таким образом, вопрос о снабжении питательными веществами, — не забудем этого, — вопрос химический. В тот день, когда будет открыт источник экономической (дешевой. — Ю. Ч.) энергии, не замедлит и производство пищевых веществ целиком из углерода, заимствованного из угольной кислоты, из водорода, взятого из воды, и кислорода и азота — прямо из атмосферы…»
В 2000 году, считал Бертло, — все пищевые продукты будут производиться в необходимых количествах на заводах. «Но не подумайте, — говорил ученый, — что в этом мире, где будет царить химическая сила, искусство, красота, все прелести человеческой жизни окажутся обреченными на гибель. Если поверхность земли не будет более служить на пользу человеку и, — прибавим шепотком, — не будет более обезображена геометрически правильной обработкой земледельца, она покроется роскошной зеленью растительности, лесами, цветами; вся земля превратится в обширный сад, орошаемый подземными водами, где человечество заживет среди изобилия и радостей сказочного золотого века».
Бертло не был одинок в своем прогнозе, что пища будущего примет вид пилюль и таблеток, ну, в крайнем случае, концентрированного питательного желе. Проглотил с утра таблетку — сыт до обеда. За обедом ложку желе и еще две таблетки — сыт до ужина. Быстро и просто!
Фантастика? Давайте пофантазируем еще. Представьте себе: вы отправились в аптеку, словно на базар. Полкило стрептоцида, набор микстур, немного хины, листа эвкалипта, сульфадимезин, аспирин и многое другое заполнили авоську. Дома достали поваренную книгу, придирчиво подобрали удачный вариант химического меню: салат с пирамидоном, кисель из фруктозы… И не надо этому удивляться: ведь когда-то в стародавние времена многие теперь всем известные продукты были лекарствами.
Достаточно полистать страницы Геопоники — византийской сельскохозяйственной энциклопедии X века. В ней даны характеристики лечебного действия многих овощей: редьки, тыквы, свеклы, укропа, чеснока, огурцов. Особенно восхвалялись лекарственные свойства капусты. «Если отварить капусту, растереть ее, положить опять в ту же воду, в которой она варилась, и, остудив, смазать этим раны, свежие и старые, а также опухоли, то боль проходит». «Если съесть капусту в сыром виде, то она прекращает бессонницу, и страшных снов не будет…»
А знаете ли вы, что чай — обыкновенный чай — вначале использовали только как лекарство? Его пили больные для быстрого восстановления сил. Хорошо помогал чай и при отравлениях.
Трудами многих поколений из диких растений создавались культурные. Одни питали человека, другие лечили. Но случалось и так: лекарство становилось привычной пищей, и наоборот. Тысячи людей знали морковь лишь как сладкий и сочный корнеплод. А недавно ученые обнаружили: в семенах моркови содержатся ценные лекарственные вещества. Препарат из этих семян, названный даукарином, способен расширять коронарные сосуды, лечить стенокардию.
В обыкновенной капусте работники Всесоюзного института лекарственных растений открыли вещества, условно названные пока витамином U (от латинского «улькус», что значит «язва»). Новый витамин обладает противоязвенным действием.
Из ростков картофеля выделено неизвестное ранее соединение — соланин. Так стала понятна действенность старинного народного врачевания — дышать при простуде паром только что сваренного картофеля.
Еще пример: одуванчик.
Одуванчик золотой —
Цветик милый, хоть простой,
Он сидит среди травы,
Средь зеленой муравы,
Прямо к солнышку лицом,
Так и смотрит молодцом!
Отцветет он — не беда:
Он еще милей тогда;
Превращен в пушистый шар,
Он наряднее всех бар;
Как его ни повернешь,
Скажешь: чудо как хорош!
Прав был Николай Александрович Холодковский (1858–1921) — ученый-поэт (прославился переводом «Фауста» Гёте, за что ему Академией наук в 1917 году была присуждена премия имени Пушкина), столь горячо рекомендуя одуванчик в одной из своих многочисленных «ботанических миниатюр». Это известное лекарственное растение, его использует и научная медицина, его высушенные корни применяют как горечь для возбуждения аппетита, как желчегонное средство. Однако во многих странах (Франция, ГДР) одуванчик культивируют и как огородную культуру: из молодых листьев готовят салаты, поджаренные корни могут стать суррогатом кофе.
Вот и выходит: наше меню наполовину составлено из лекарств! И что ж тут удивительного, если когда-нибудь наступит пора, и изготовленные химией синтетические лекарства, пройдя сложный путь, будут обладать не только узким лечебным действием. Вот мы и убедились, что «изделия», созданные флорой и руками химиков, не столь уж далеки друг от друга. И химизация пищи — мысль вполне допустимая.
В Институте элементоорганических соединений (ИНЭОС) Академии наук СССР в Москве есть лаборатории, которые называются так: лаборатория синтеза пищевых веществ, лаборатория химического запаха и вкуса и так далее. Над подобными проблемами в институте трудится около сотни человек. Есть в академии и специализированный совет «Научные основы получения искусственной пищи».
Все это создал (дело было начато в 1961 году) академик Александр Николаевич Несмеянов (1899–1980). Тогда он поставил вопрос о неотложности практических работ по получению пищи промышленными методами, минуя сельское хозяйство. Выступая в 1965 году на IX Менделеевском съезде химиков, Несмеянов говорил: «Представим себе… время, когда экономика синтеза пищи одержала верх над старинными традиционными способами ее получения. Несколько огромных заводов, расположенных в разных местностях страны, богатых углем или нефтью, вырабатывают потребную населению пищу…»
К тому времени объем химического производства достиг громадных размеров. Выпускались многие миллионы тонн новых полимеров и других химических изделий. Создалась уверенность, что и весь белок, необходимый для питания страны, также можно будет произвести чисто химическим путем.
И химики, засучив рукава, принялись за дело. Самый известный результат этих работ — получение искусственной черной икры. Такую задачу для сотрудников ИНЭОСа поставил Несмеянов. Он считал, что начинать надо с чего-то такого, что ошеломило бы людей и дало бы ученым возможность пробить стену недоверия к искусственной пище. Вот его слова: «Икра — это… реклама, что ли. Важно было доказать, что химия вкупе с биохимией способны дать и столь экзотический продукт».
Другой инициатор этой научной затеи доктор химических наук Григорий Львович Слонимский вспоминает: «…Одним из первых лабораторных образцов искусственной икры я угощал друзей в ночь на Новый год, это был 1965-й. Все были предупреждены, что участвуют в дегустации синтетического продукта; все ели и хвалили. А потом просили сознаться, что я их разыгрываю».
О том, как эрзац натуральной икры получают на заводе, однажды было рассказано на страницах газеты «Правда». Ее корреспондент самолично видел механического «осетра» — икрометную машину, которая, получив очередную порцию «корма» (исходные вещества), довольно заурчала, чуть подрагивая своим длинным сверкающим телом. Прошло небольшое время, пишет корреспондент, и из ее хвостовой части посыпалась в подставленный бак черная, по виду совсем как настоящая, икра…
Тут надо сразу же рассеять одно довольно распространенное заблуждение. Сильно ошибается тот, кто полагает, что искусственная икра — одно из чудес синтетики, что ее готовят из нефти или из ее продуктов. Отнюдь, исходные компоненты — натуральные пищевые продукты.
На заводе сквозь особое окошечко можно подсмотреть, что происходит внутри механического осетра. Вот раствор казеина — белка, извлекаемого из молока, и желатина продавливается через отверстия вращающегося диска. Горячие капли падают в холодное растительное масло и тут же сворачиваются в шарики. Поток воды увлекает их в ажурные корзиночки. Транспортер проносит корзинки через последовательно расположенные ванны с различными растворами, в которых невзрачные поначалу шарики приобретают достаточно прочную оболочку, окрашенную чаем (!), и впитывают в себя необходимое количество солей. А на заключительном этапе происходит обработка «икринок» эмульсией рыбьего жира и молок сельдевых и осетровых рыб.
Вот вам и синтетика! Вот вам и продукты из нефти! Что же, химики не справились с проблемой? Не смогли из простейших атомов «собрать» необходимое? Нет, во многом подобное им по плечу уже сейчас, но обошлось бы это слишком дорого. А ведь именно экономические соображения заставляют в конечном счете сделать выбор между различными способами получения пищи.
Технически организовать промышленный синтез пищи нелегко. Одного только хлеба в нашей стране съедают десятки миллионов тонн в год. Подобных количеств хлебопродуктов не смогли бы выпустить все существующие сейчас заводы органического синтеза. Поэтому-то ученые и выбрали, как говорится, золотую середину. И не химические таблетки, о которых писал Бертло, и не полный отказ от них, а путь постепенной химизации пищи.
Логика такова. Ведь сколько еще натуральных продуктов, которыми человек не сумел как следует распорядиться. Скажем, ценные биологические соединения, содержащиеся в отходах сельскохозяйственной и рыбной промышленности, и пока просто идущие в отвал. Тут много веществ либо невкусных, либо не усваиваемых нашим организмом. Извлечь все ценное, обогатить, сделать доступным и направить к нам на стол — это и есть кулинария по-научному, которой занимаются уже не повара, а химики.
И они мастерски справляются с таким заданием. Из малоценных продуктов извлекаются белки — самый дефицитный в питании продукт. Это белки молочные, соевые, из криля, из неходовых мясопродуктов, из низкосортной рыбы.
Другая забота химиков — облагораживание обычной пищи, улучшение ее свойств. Муку и крупу витаминизируют, добавляя в них синтетические витамины. В некоторые продукты вводят аминокислоты, минеральные соли, микроэлементы. Возникла идея сделать регулятором сбалансированного питания хлеб, обогатив его особо дефицитными биологически ценными веществами.
Химики создают и оригинальные продукты. Придумали, как получить белковый картофель, рис из зерновых отходов, макароны из казеина, белковое печенье, молоко из растений, аналоги ягод. И не надо чураться этих новинок. Ведь и сахар, и хлеб, и сливочное масло, и сыр в природе в готовом виде не встречаются! Все это тоже, по сути, продукты искусственные. И когда-то человек был их полностью лишен.
Но самая престижная задача для химиков — добиться нужного вкуса и запаха изготовленного ими продукта. И вот тут честолюбие химиков далеко не удовлетворено. Так, искусственно создать аромат хлеба им не удается.
«Семьдесят пять лет понадобилось химикам, чтобы выяснить природу хлебного запаха и определить составляющие его компоненты, — писал в статье „Чем пахнет буханка?“ кандидат химических наук А. Шамшурин. — К сороковым годам XX столетия стали известны мальтолы, диацетил, фурфурол и его производные (кстати, с запахом хлебной корки). Их назвали „ключевыми“ соединениями, ответственными за характерный хлебный запах, но это оказалось далеко не так. Неизвестными оставались десятки иных летучих компонентов, присутствующих в хлебе в ничтожных долях процента. И только с появлением методов газовой хроматографии к семидесятым годам удалось установить по меньшей мере 174 вещества, образующих хлебный аромат. Среди них 70 карбонильных соединений, 23 спирта и фенола, 32 кислоты, 17 эфиров, 21 углеводород, 9 серосодержащих компонентов и так далее. С помощью спектральных методов обнаружили еще несколько веществ, и сейчас список соединений перевалил за две сотни…»
Победа? Все еще нет. Полностью просчитать все варианты влияния компонентов на суммарный хлебный запах не под силу и самому мощному компьютеру. В лучшем случае получается удачная имитация с подобием натурального запаха. Так лишний раз нашли подтверждение слова Тимирязева. Он писал, что «ломоть хорошо испеченного хлеба составляет одно из величайших изобретений человеческого ума».
Ученые апологеты конструирования новой пищи, создавшие множество аналогов молочных, мясных и других продуктов, подчеркивают огромную значимость этого начинания. Если, говорят они, переход от пищевой технологии первого поколения (охота и собирательство) к технологии второго поколения (выращивание и переработка пищевого сырья) позволил во много раз увеличить производство продовольствия на планете, то переход к пищевой технологии третьего поколения приведет к такому качественному скачку, какой, вероятно, можно сравнить с переходом от сжигания ископаемого топлива к использованию ядерной энергии.
Насколько оправданы такие прогнозы, покажет будущее. Однако нет сомнения в том, что новые пищевые технологии помогут выправить многие дефекты, присущие пище современного человека.
Обед 2000 года — каким ему быть? Неужто мы скоро станем питаться исключительно консервами? И реклама начнет диктовать, что нам есть и от чего отказываться? «Если было бы возможно, — ядовито писала одна шведская газета, — реклама, очевидно, убедила бы американское население о том, что подсоленные мыльные хлопья — прекрасная пища для завтрака».
А может, так? Может, настала пора, как полагал Бертло, взяться наконец за создание идеальной пищи и оптимального питания? Не приспело ли время наладить химическое производство питательных пищевых порошков? А то и прямо вводить в кровь питательные вещества, минуя желудочно-кишечный тракт? Это, по мысли сторонников подобной идеи, приведет к постепенной атрофии органов пищеварения (они станут реликтом нашего животного прошлого!) и будет таким образом стимулировать формирование «идеального по конструкции» человека будущего.
Еще совсем недавно в науке, классическая теория питания, господствовала доктрина баланса. Считалось, что пища должна просто компенсировать, восполнять потери аминокислот, моносахаридов, жирных кислот, витаминов и некоторых солей, которые организм несет в связи с обменом веществ и выполняемой им работой. А отсюда делался вывод: надо из пищи, оставив в ней только ценные вещества, удалить все шлаки, все ненужное.
И вот мукомолы, к примеру, на протяжении столетий всячески совершенствовали свою технологию, старались из зерна получать как можно больше муки высших сортов, в которых пищевые волокна уже практически отсутствуют. Это же привело к тому, что мы едим белый сахар, полированный рис и другие рафинированные продукты.
Житель Уганды получает в сутки с пищей в среднем около 150 граммов пищевых волокон, а современный американец — только 20–30 граммов. Хорошо ли это? Плохо! И очень. Так считает новая наука — трофология («наука о питании», если перевести с греческого), которую у нас в стране активно развивает член-корреспондент АН СССР Александр Михайлович Уголев.
Трофологи доказывают, что улучшенная, обогащенная за счет удаления балластных веществ пища стала в развитых странах причиной многих так называемых болезней цивилизации, потому что организм человека нуждается не только в жирах, белках и углеводах, витаминах и микроэлементах, но и в «бесполезных» волокнах.
Рассказывают, что Петр I, оставив дворцовый стол, месяц сидел на солдатской еде, велел готовить себе похлебку и щи да кашу, подавать ржаной хлеб, чтобы своим аппетитом — а самодержец был человеком здоровым и крепким — определить меру выдачи солдатского пайка. Рацион солдата русской армии состоял из трех фунтов черного хлеба, точнее, примерно 1300 граммов, и двухразового приема порций щей и каши. Грубая пища, но, видимо, вполне достаточная и доброкачественная. Служили же солдаты по 25 лет, исправно защищая матушку-Расею от ворогов!
Пищевые волокна? Да, они, оказывается, стимулируют работу желудка и кишечника; обстоятельство очень важное для нас, людей, ведущих преимущественно сидячий, малоподвижный образ жизни. Они поглощают (адсорбируют) многие нежелательные, а то и просто ядовитые вещества, которые либо образуются в организме, либо попадают в него извне. Волокна, особенно из отрубей и свеклы, вылавливают и желчные кислоты, снижая тем самым уровень холестерина в крови, оздоровляя сосуды и сердце. Они устанавливают правильный обмен всей внутренней среды организма (человек, учат трофологи, — это надорганизм: в нем и вместе с ним сосуществует великое множество микроорганизмов); очищают организм от промышленной грязи, например, свинца, который с выхлопными газами изрыгают потоки автомашин на улицах. Свинец лучше всего вылавливают пищевые волокна, содержащиеся в арбузных корках.
Одним словом, трофология радикально изменила представление о том, какой должна быть идеальная пища, как и чем должно питать человека. Эта наука опровергла миф о возможности питаться химическими таблетками. Она показала, что растения и разнообразные изготовленные из них блюда будут необходимы и в 2000 году, и скорее всего многие столетия после этого срока.
Химия в одиночку пока не в состоянии накормить человечество. Но, может, в деле этом существенную помощь ей окажут микробы? Рассмотрим такую возможность.
Благодаря микроорганизмам люди издавна получают вино, пиво, сыр. И нужные для выпечки хлеба дрожжи. Дрожжи появились в Египте примерно в середине второго тысячелетия до нашей эры, но употребляли их редко. У древних греков и римлян хлеб, изготовленный с помощью дрожжей, считался большой роскошью.
Любопытно, что люди, умевшие выпекать хлеб, имели в те времена большой авторитет. В Древней Греции булочник мог занять очень высокий пост. В Риме раб, умевший печь хлеб, стоил в десять раз дороже самого искусного гладиатора. А по старым германским законам преступник, убивший пекаря, наказывался втрое строже, чем за убийство любого другого человека.
Услугами микробов мы пользуемся давно и все же до самых недавних пор свои продовольственные надежды связывали с растениями и животными, а не с микроорганизмами. А ведь они могут дать людям не синтетические, а натуральные продукты. Причина нашего просчета проста: тысячелетиями люди и не подозревали о существовании рядом с ними особого мира. И лишь недавно человек обратился к невидимкам за помощью.
Однажды автору этой книги довелось побывать в Риге, в Институте микробиологии имени Кирхенштейна Академии наук Латвии, побеседовать с заместителем директора Института академиком Мартином Екабовичем Бекером.
Интерьер комнаты, где мы с Бекером находились, был необычен: всюду на стенах, от пола до потолка, — фотографии. Черные, белые тона всевозможных оттенков. Но нет на них ни человеческих лиц, ни пейзажей, а все какие-то нити, палочки, запятые, хвостики — странный и неведомый мир.
— Это стада будущего, — заметив мое удивление, сказал тогда Бекер. — Фотопортреты микроорганизмов — дрожжей, бактерий, плесневых грибов, снятых с помощью самого современного электронного микроскопа со сканирующей приставкой. Вы видите микробов за работой…
Подведя меня к серии фотографий, он добавил:
— Вот, взгляните, что делают эти невидимки с соломой. Как она тает буквально на глазах. А микробы, поедая бесполезную для желудка человека и животных целлюлозу, быстро (фото через половину суток, сутки…) увеличивают свое число. Их крошечные тельца, как и все живое, на 35–50 процентов состоят из белка. Он-то и может пойти в пищу…
— Стара, как мир, цепочка: растения — животные — человек, — позднее, когда мне удалось войти в суть микробиологических проблем, пояснил академик свою главную мысль. — Казалось бы, несмотря на все убытки, которые мы терпим (разведение скота требует больших затрат труда, электроэнергии), без животных нам никак не обойтись. Но так ли это? Давайте уточним: мы ведь, строго говоря, нуждаемся не в говядине или свинине, а в содержащихся в них белках. А их-то нам могут дать и микроорганизмы. И новая более короткая цепочка: растения — микробы — человек оказывается гораздо выгоднее.
Мартин Екабович объяснил мне преимущества, которые сулит микробиологический способ производства белка. Он говорил, что, в сущности, каждая микробная клетка — это маленький химический завод, содержащий широкий набор биологических катализаторов. Завод, который способен вырабатывать ценные продукты.
Говорил академик и о том, что микробная масса растет буквально не по дням, а по часам. Некоторые бактерии дают потомство каждые 30 минут. За 5 часов из одной клетки образуется тысяча новых. Если за сутки молодой бык в полтонны нагуливает примерно полкилограмма мяса, то 500-килограммовая масса дрожжевых клеток дает привес свыше двух тонн. Микроорганизмы в десятки и сотни тысяч раз продуктивнее животных и растений. И они «плодоносят» в отличие от растений круглый год!
Увы! К великому сожалению, микробный белок пока не может стать пищей человеку. Медицинские эксперты не спешат включить его в рацион. Не так-то легко освободить его от излишних, не усвояемых желудком, а то и просто вредных веществ-примесей. Так что сейчас такой белок идет только на корм скоту.
Микробиологический способ производства пищи — лишь одна из наметок того, как, возможно, будет кормиться человек в будущем. И потому прогнозам, предсказаниям нет конца.
У Максимилиана Волошина (1877–1932) есть замечательные строки:
Быть черною землей. Раскрыв покорно грудь,
Ослепнуть в пламени сверкающего ока,
И чувствовать, как плуг, вонзившийся глубоко
В живую плоть, ведет священный путь.
Поэт почти наш современник, но созданный им образ мог бы принадлежать и древнему римлянину, и жителю Эллады. Плуг, соха, коса, серп… — это все уходящие приметы прошлого. Не они определяют лицо сельского хозяйства наших дней. В этом старинном занятии человека заботами науки появилось множество новинок.
Эксперты считают, что вскоре на поля выйдут… роботы. Нужда в них несомненная. Скажем, на тракторах человек пашет в семь раз быстрее, чем конным плугом. Но дальше увеличить скорость пахоты не удается: уровень вибрации возрастает непомерно, человеческий организм выдержать такое не в состоянии. Уже испытываются модели трактора, работающие автоматически. Необычно выглядят их пустые кабины, без водителей. Конструкторы задумываются, а зачем нужна в таком случае кабина? Разве для того, чтобы в ней сидел робот?
По этой и другим приметам видно, что сельскохозяйственное роботостроение будет быстро наращивать темпы. И тогда придумки писателей о размышляющих, наделенных сознанием агромашинах перестанут казаться чистейшей воды фантазиями. Как репортажная зарисовка будет восприниматься такой, к примеру, отрывок из рассказа Александра Проханова «Незримая пшеница»: «Я, самоходный комбайн СК-4, заводской номер 275201, с размером жатки 4,1 метра, с пропускной способностью четыре килограмма хлебной массы в секунду, на десятом году моего бытия, утомленный и старый, стою на краю хлебной нивы, быть может, последней в жизни, и испытываю, как всегда, страх от ее белизны и нетронутости, предчувствие боли, ее и своей, высших, безымянно-жестоких сил, столкнувших нас в истребительной, насмерть работе…»
Фантазии? До них рукой подать! В 1977 году в СССР был создан первый в мире агроробот — МАР-1. Две его руки длиной в 1250 миллиметров и грузоподъемностью по 75 килограммов движутся с точностью, не превышающей 1, а на ходу — 20 миллиметров. У робота есть «глаза», «уши», органы «осязания». Этот робот создали в Московском институте инженеров сельскохозяйственного производства. А в 1984 году руководитель этих работ Валерий Иванович Васянин опубликовал в издательстве «Колос» уникальную книгу — «Сельскохозяйственные роботы». В ней рассказано, какими должны быть роботы, предназначенные для теплиц, для животноводческих ферм (тут не обошлось без сюрпризов: на испытаниях свиньям пришлись по вкусу резиновые части робота, и он остался без «кистей»), для стрижки шерсти овец, для уборки чайных листьев на плантациях, для сбора плодов с деревьев (прообразом конструкции манипуляторов здесь послужил… хобот слона!), для уборки хлопчатника…
…Тракторы, комбайны, грузовики, как полагают футурологи, в скором будущем исчезнут с полей. Почему? Потому что громоздкая техника — мощный хлебоуборочный комбайн весит 10–12 тонн, — словно стадо гигантов слонов, буквально вытаптывают посевы. При чрезмерном использовании техники теряется от четверти до трети потенциального урожая, гибнет почва: пашня уплотняется, нарушаются водный и воздушный режимы, структура почвенных слоев.
Конструкторы ладят щадящие гусеницы, пытаются облегчить вес машин, заменяя металл пластмассами, внедряя ажурные конструкции в тела стальных коней, но все это полумеры. Радикальное же средство еще в 1931 году предложил советский инженер М. Правоторов. То, что позднее было названо мостовым земледелием.
Представьте себе, что все поля разделены узенькими рельсовыми путями на полосы по 100–150 метров шириной. Обработка почвы, возделывание растений, уборка урожая возложена на мостовой кран. По форме он родной брат могучих мостовых кранов, переносящих тяжелые детали в пролетах заводских корпусов. Энергию ему доставляет либо контактный рельс, как в метро, либо кабель. К крану можно подвешивать любые сельские агрегаты: плуги, культиваторы, сеялки или уборочные машины. Никаких тракторов и комбайнов, никакой бензиновой гари, прошли одну полосу посевов, переходим на другую.
В новых мостовых технологиях все операции можно будет сделать снайперски точными. Каждое сажаемое зернышко ляжет в специально отведенную для него лунку и на строго определенную глубину. Оператор портального механизма будет получать всю необходимую информацию: количество высеваемого зерна, глубину посева и состояние почвы. Записи обо всем, что распределяется на обрабатываемой площади, будут автоматически отображаться на индикаторах и фиксироваться в памяти ЭВМ…
А теперь еще один прогноз специалистов. Они предлагают более пристально всмотреться в океан. Осознать те возможности, которые он предлагает. Пока рыбаки добывают в морях всего 10–20 «популярных» пород рыб: сельдь, тунец, сардина, морской окунь, скумбрия, камбала, треска и еще некоторые. Между тем есть виды рыб, промысел которых развит незаслуженно слабо. Это, к примеру, акулы, мясо некоторых из них не просто съедобно, но очень вкусно.
Кое-кто из ученых начинает всерьез поговаривать о возможности возделывания морей. О выращивании для пищевых целей различных водорослей на обширных, специально для этого приспособленных «морских огородах»: аквакультура, или, точнее, марикультура.
Съедобных водорослей известно около 70 видов. По содержанию питательных веществ они подчас превосходят пшеницу, мясо, картофель. Еще более привлекают они как дешевая кормовая масса. С гектара морского дна можно получать 15 тонн водорослей, тогда как гектар луга дает не более 4 тонн травы. Морское «поле» не нужно ни пахать, ни поливать, получая десять урожаев за год.
Люди начнут питаться планктоном, этой переносимой с места на место морскими течениями смесью мельчайших растительных и животных организмов? Француз Ален Бомбар, бесстрашно пересекший на резиновой лодочке океан, кормился планктоном и уверяет, что он «иногда имеет вкус омара, когда — вкус креветки, иногда — вкус овощей». Во всяком случае, есть его можно. И это богатый источник белков, жиров, углеводов и витаминов. Но, увы, он распылен по громадным водным просторам: всего десятые доли грамма в одном кубометре воды в среднем. Вылавливать его — занятие утомительное, дорогое и пока нерентабельное.
Но если планктон не дается в руки, — может, заняться возделыванием хлореллы? Считается, что котлеты вовсе не обязательно готовить из свинины или баранины, можно и из хлореллы. Потому что эта чудесная водоросль наполовину состоит из белков.
Итак, разводим хлореллу. Для роста ей нужны только влага, углекислота, соли и свет. За сутки с квадратного метра водной поверхности удается собрать от 20 до 70 граммов хлореллы. Установки и опытные заводы для выращивания этой водоросли уже спроектированы и построены. Имеются они в Голландии, в Японии, в СССР и в других странах. С гектара получают до 500 центнеров биомассы: в десятки раз больше, чем удается снять с поля, вырастив лучшие урожаи пшеницы! Беда только, что необходимо очищать хлореллу от не усваиваемых желудком человека и просто вредных примесей. Пока хлорелла идет — витаминные, белковые добавки — лишь на прикорм домашнему скоту и птице.
Как накормить человечество? Споры не утихают, список предложений, как пополнить рацион землян, все растет. Вот, скажем, такое предложение — питаться… листвой. Пока мы добываем из листьев лимонную кислоту, но ведь в них много пригодного для питания белка. Особенно у бобовых растений. Сок из листьев диких растений выжимается прессом и после обработки превращается в твердую массу зеленого цвета. Эксперты утверждают, что по питательности такой продукт близок к молочному казеину.
Предположения, научно-технические проекты. Среди них выделяется масштабами мечта ученых создать… ночное солнце.
Представим такую картину. Весна. Она всегда торопит земледельца: с утра и до самой темноты снуют в поле трактора. Как мало времени, как много надо успеть! Но вечерние сумерки не отсрочишь. Световой день иссяк. Однако машины не спешат покинуть поле. Механизаторы словно чего-то ждут. И вот над горизонтом появилась яркая звезда, за ней — вторая, третья… Спутники! Стремительно набирая высоту, они заметно прибавляют в свечении, и скоро на поля полился яркий свет, словно несколько полных лун сошлись воедино. Они и выплеснули на Землю потоки спасительного для механизаторов солнечного света, отраженного космическими спутниками-рефлекторами.
Фантастика? Скорее реальность. Впервые идея космических рефлекторов была высказана в 1929 году немецким исследователем Германом Обертом. С тех пор уже около десятка различных конструктивных схем спутников-рефлекторов предложили ученые из разных стран. Один из них в настоящее время разрабатывается в Московском авиационном институте. Здесь выполнен проект орбитального эксперимента со спутником-рефлектором массой, ее надо всячески снижать, не более 200 килограммов и площадью рабочей поверхности 110 квадратных метров. Эти размеры, отнесенные к единице массы конструкции, должны быть как можно большими.
Ночное солнце не только позволит сокращать сроки полевых работ. Чрезвычайно интересна перспектива противодействия кратковременным ночным заморозкам на почве, а также возможность осушения посевов после ливней. По оценкам специалистов, в сельском хозяйстве осветительная система, если считать, что она эксплуатируется всего 20 ночей во время уборочного сезона и используется для обслуживания 10 районов, даст дополнительно за год 13 миллионов человеко-часов. Это означает, что в те же сроки то же количество людей сможет убрать урожай дополнительно с 1 миллиона гектаров. Кроме того, надо полагать, что при соблюдении определенных правил освещения наземных районов с помощью спутников-рефлекторов можно стимулировать фотосинтетическую деятельность растений и повышать урожайность. Таким образом, за 10–15 лет существования на орбите осветительной системы можно рассчитывать на весьма существенный доход от применения космических зеркал.
Фантазии, превращающиеся в дело. А отчего бы не отправить сельскохозяйственные фермы в космос? Поближе к Солнцу. На планете становится тесно, а просторы космоса безграничны! Скажут: там нет земной тверди? Ну, это дело поправимое. Вот что на сей счет думает американский писатель и ученый Айзек Азимов: «…в первую очередь в космосе будут возведены колонии с почвой, доставленной с Луны и доведенной до идеального плодородия. Космические фермы будут размещаться в специальных цилиндрах длиной в несколько километров. В них можно будет поддерживать требуемые атмосферные условия, влажность и температуру. Важно отметить, что в этих сельскохозяйственных мирах не будет никаких вредителей…»
Как видим, многие проблемы (правда, пока лишь мысленно!) удастся решить. Вначале, предлагают фантасты, следует колонизировать все планеты нашей Солнечной системы: Марс, Венеру и так далее. Затем — не отправляться же за три моря к соседним звездам! — можно будет раздробить планеты на более мелкие и устроить вокруг Солнца искусственный зеленый биопояс жизни…
Далеко занесли нас мечты — в XXI, даже, видимо, в XXII век. А мы в основном обсуждали «меню» 2000 года. Срок недалекий, зато тут уж можно твердо сказать: основную пищу для нас и в начале третьего тысячелетия будут готовить растения.
Так вот вдруг, сразу отказаться от хлеба, молока, мяса? Забыть про чай и кофе, перец и горчицу? Перейти к хлорелле, микробному белку, химической пище? Нет, такое вряд ли случится. Да мы просто не в состоянии будем это сделать к году 2000-му. Пока кормить нас по-прежнему будут растения, возделываемые, видимо, в основном традиционными способами.