Глава 11 Свидание с клеткой

Кто вздумал отдохнуть, пройдя лишь полдороги, —

Ему ли одолеть подъем?

Жить — значит жечь себя огнем

Борьбы, исканий и тревоги.

Что виделось вчера как цель глазам твоим, —

Для завтрашнего дня — оковы;

Мысль — только пища мыслей новых,

Но голод их неутолим.

Эмиль Верхарн

…Толчок. Я открываю дверь и попадаю в тропики — оказываюсь в комнате, залитой ярким светом множества ламп. Воздух словно вибрирует, гудит от массированных ударов желтых и оранжевых лучей. Они бьют наотмашь, расстреливают в упор ряды тесно прижатых друг к другу металлических стеллажей, заставленных плотными шеренгами, толпами чашек, пробирок, колб и просто банок всех фасонов — от тех, что сдают в пункты приема стеклотары, до затейливых, специально изготовленных руками искусного стеклодува.

Остановившись среди этого нагромождения света, железа и стекла, замечаю: в комнате я не один, со всех сторон меня окружают тысячи заключенных в стеклянные оболочки живых существ. Эти зеленые сантиметровых размеров карлики в упор разглядывают меня, пытливо изучают. И это любопытство к пришельцу, шагнувшему из январской стужи в теплоту, так понятно! Ведь все эти создания выросли не в поле, они не знают почвы, капель росы на листьях, иссушающей жары и жестоких ударов холода, им незнакомы туманы, многоцветье радуги, восходы и закаты солнца, нега его животворных лучей. Эти ростки никогда не поливали не только июньские дожди, но даже лейка садовника, их не обдували ветры… Эти растения — каприз фантазии генных инженеров. Они скомбинированы из одной или двух-трех родительских растительных клеток, росли в тепличной лабораторной обстановке и, верно, здесь же, так и не вырвавшись на свежий воздух, не укоренившись на грядке, не добравшись до рук селекционера, здесь же завершат свой краткий «экспериментальный» жизненный путь.


Радости конструирования

Институт ботаники имени Холодного Академии наук Украины разбросан по нескольким районам Киева, однако каждое утро, дело было в начале 1988 года, покинув гостиницу, я выбирал все тот же маршрут. Транспорт мчал меня по заснеженным улицам туда, где за юго-западной окраиной города, за ВДНХ Украины, расположено местечко Феофания. (Когда-то тут действовал храм святого Феофания.) Автобусом № 61 я добирался до отдела цитофизиологии и клеточной инженерии — двухэтажного, окруженного теплицами и садом здания, места, где клеточные инженеры ведут свой научный поиск. До Крещатика час езды, вместо обеда приходится гонять чаи с бутербродами, рабочих, точнее, исследовательских мест явно не хватает — на такие условия могли согласиться только очень преданные науке люди!

Отдел, он утвержден в 1982 году, — молодой, быстрорастущий научный организм. Как-то принялись определять средний возраст сотрудников — вышла цифра 32 года. И защиты тут идут в основном по монографиям: клеточная инженерия только-только зародилась, обобщающие труды можно перечесть по пальцам, многие термины, такие, к примеру, как «трансмиссионная генетика», люди начали произносить совсем недавно, и нет твердой уверенности, что они приживутся в лексиконе ученых.

Душа отдела, его мозговой центр, средоточие всех надежд и планов, несомненно, Юрий Юрьевич Глеба. Стремителен научный взлет этого человека — путь от аспиранта до академика АН УССР (избран в начале 1988 года, в возрасте 38 лет) он прошел всего за полтора десятка лет. К сожалению, поговорить с Глебой не удалось, он был в командировке, но рассказов о нем наслышался я немало. Этот ученый первым в нашей стране получил фертильные, способные дать потомство клеточные гибриды растений. Пробовал он и диковинные сочетания, соединял — из любопытства? — скажем, клетки табака с клетками… слизистой собственной гортани! Глебой — в соавторстве с его бывшим научным руководителем академиком Константином Меркурьевичем Сытником — написаны уникальные и по тематике и по изяществу, особой гармонии изложения материала книги. Утверждают, что ученый создавал их с помощью привезенного из ФРГ персонального компьютера. Эти работы стали основным руководством для клеточных инженеров нашей страны, они цитируются во всех выходящих за рубежом изданиях.

Глеба не только крупный ученый, он еще и удивительная личность, с тонким художественным вкусом. Эпиграфом к книге «Слияние протопластов и генетическое конструирование высших растений» он выбирает слова французского эстета, поэта-академика Поля Валери: «Мы подошли здесь к радостям конструирования» (цитата из «Введения в систему Леонардо да Винчи»); рассуждая о генной инженерии, вспоминает о полотнах жившего в средние века великого нидерландского живописца Иеронима Босха, создавшего причудливые, фантастические, демонические образы химер — человекозверей и человекорастений… Мне говорили, что Глеба еще и гений коммуникации, Протей, способный подобрать ключ к любой личности, любой индивидуальности, найти для каждого из своих сотрудников наилучшие условия для творчества и самоотдачи. Он только начинает, слышал я, приоткрывать грани своего Я, и, видно, только какой-нибудь Сартр или Камю, или кто-то еще из прославленных экзистенциалистов был бы способен до конца понять и оценить иррациональную суть его истинной натуры… Что ж, удивляться тут нечему, необычность дела, которым заняты руководимые Глебой исследователи, требует и людей незаурядных.

Я беседовал со многими сотрудниками отдела, внимательно приглядывался к ним, вслушивался в их голоса — мне хотелось лучше понять всех этих одержимых наукой людей. Ведь это были не просто дети очень юной науки, которые научились конструировать живые игрушки и, еще не очень заботясь о пользе, играют с ними. Нет, то истинные энтузиасты своего дела, которые и во сне должны видеть процессы слияния клеток, их последовательное превращение в цветущие чудо-растения невиданных форм. Люди, способные субботним или воскресным утром (лучшее время для работы: народу меньше, нет обычной толкотни, можно собраться с мыслями) ехать в такую даль только для того, чтобы лишний раз включить противомикробную воздуходувку, чтобы под микроскопом следить за изменениями мозаики чужеродных хромосом.

Такую страсть можно понять: подобное занятие гораздо интереснее, чем даже сидение перед компьютерным дисплеем. Там — игра ума, а тут — биение пульса созданной тобой жизни. Похоже, что ты как бы берешь интервью у господа бога, вопрошаешь его, что он чувствовал, когда шел первый день творения, второй, третий?.. Самодовольство? Удивление? А может, тревогу или страх от того, что созданное тобой уходит из-под контроля, начинает бунтовать? А условия работы? Творец, говорят, действовал во тьме, лепил из хаоса, беспорядка, абсурда. А клеточный инженер? Светлая, чистая, с кондиционером, с развешанными по стенам репродукциями картин Ван Гога комната. Тишина. Без грязи, прилипающей к сапогам, без хлещущих дождей, без всех этих рабочих атрибутов для тех, кто возится с растениями в поле; ты, словно раскинувший — в аквариуме? — сети рыбак, уверен: добыча не ускользнет от тебя, радость открытия, этот улов исследователя, обязательно попадет в твои руки…


Как кошка Киплинга

Человек только начал чтение генетических карт. Он еще слабо ориентируется в этом новом для него фантастическом мире. Синтезированы лишь простейшие гены. Но так ли обязательно для ученых знать все тонкости генных механизмов? Уметь, как опытный часовщик, перебирать все до одного генные колесики, шестеренки, винтики? Может же неразумная природа обходиться без всего этого. И каких при этом успехов достигла!

А почему бы просто в качестве родителей не взять две клетки-донора разных видов растений и, не прибегая к посредничеству плазмид, слить их воедино? Такой способ гибридизации уже несколько десятков лет бытует в генетике животных клеток. А вот с растительными прежде не получалось: препятствием служила жесткая целлюлозно-пектиновая клеточная оболочка растений. Она полностью исключала возможность слияния.

Жаль! Какая замечательная идея: использовать не половые клетки (гаметы), а клетки тела (сомы), извлеченные из любой растительной ткани — листьев, стеблей, корней. И не создавать в клеточных оболочках проломов, а полностью уничтожить ограждения!

И эта цель в известной мере достигнута. С помощью обработки растительной ткани смесью пектолитических и целлюлитических ферментов можно полностью разрушить полисахаридные оболочки растительных клеток, оголить их. И они становятся податливыми для гибридизации: теперь удается сплавить воедино две, три и больше разнородных клеток.

Слипнуться две оголенные клетки заставляют, например, добавлением в раствор, где находятся клетки, различных химических веществ. Скажем, полиэтилен-гликоля… Это соединение усиливает взаимную адгезию — прилипание внешних клеточных оболочек-мембран.

Итак, две клетки соприкоснулись. Теперь необходимо, чтобы они слились в одно целое, стали единой клеткой. Для этого раствор отмывают от полиэтиленгликоля и добавляют в него ионы кальция Ca2+. Их высокая концентрация увеличивает текучесть клеточных мембран, они рвутся в местах соприкосновения клеток. И через эти прорехи навстречу друг другу устремляется содержимое двух прежде раздельных клеток. Клетки агрегируют, сливаются воедино.

Слияния клеток можно добиться и физическим путем, используя импульсы электрического тока. Слабые электрические разряды разрушают соприкасающиеся мембраны слипшихся клеток, и их прежде разделенный генетический материал становится общим достоянием.

Клеточная инженерия, соматическая (парасексуальная) гибридизация. Новый прием имеет разные названия. Можно говорить еще и о гибридах в пробирке, ибо мало оголить клетки, надо создать для слитых в одно клеток разных видов сносные условия развития.

И это сделано. Получены специальные питательные среды, где отдельная изолированная от растения клетка, или группа клеток, утратив признаки, характерные для ткани, из которой они взяты, начинают жить и размножаться как независимый одноклеточный организм. Как клетка, живущая, по примеру кошки из сказки Киплинга, сама по себе.

В ходе обычного развития растений из зародыша клетки дифференцируются: превращаются в клетки корня, стебля, листа. Выделенные же из организма они словно бы становятся безликими. Тут важна степень активности различных генов этой клетки. И можно сделать так, чтобы дремавшие до поры гены начали работать, другие же, наоборот, застопорились, перестали действовать. Вот тут-то и начинаются чудеса. Свободная клетка в отличие от заключенной в организме может овладеть и новой «специальностью». Взятая из корня, например, способна стать клеткой листа или стебля, цветка, а то и превратиться в зародыш и дать начало целому нормальному растению.

С помощью особых воздействий — важную роль здесь играют фитогормоны ауксины и цитокинины, влияющие на скорость деления клеток, их дифференциацию, и органогенез — удается активизировать в клетке гены, ответственные за выполнение всей программы развития. (Если концентрация ауксинов больше, чем цитокининов, то формируются только корни, в противоположном случае — образуются только побеги.) Так в пробирке из одной только клетки можно развить любой орган. Вероятно, в будущем так будут получать необходимые для пересадки больным искусственные «запасные части».

Пробирочная гибридизация. Комбинирование in vitro уже не кусков молекулы ДНК, а голых, каждая со своим наследственным материалом, клеток. Так можно решать задачи, которые не по силам для селекции обычной.


Священные письмена жизни

Как и во многих других отрядах науки, в отделе, вернемся в Институт ботаники АН УССР, торжествует примат узкой специализации, действует мануфактурное разделение труда. Бок о бок трудятся биохимики, культуральщики, электронные микроскописты, цитологи и другие специалисты. Они анализируют белки, растят ткани, делают микроснимки. Большая часть отдела так или иначе работает на анализ. И лишь крошечная группка из четырех человек, ею руководит сам Глеба, она не имеет четкого названия, занята собственно «синтезом», находится на передовой, на самом ответственном и решающем участке сражения за новое знание. Эти разведчики клеточной инженерии, истинные конструкторы клеток бросают вызов природе, хотят превзойти ее в умении и сноровке.

Беседую с Александром Николаевичем Околотом, одним из членов поисковой группы, инженером. По полученным им методикам (он в отделе с самого основания, с 1975 года, тогда была организована для Глебы лаборатория цитофизиологии и конструирования растительной клетки), по созданным им клеточным моделям уже защищена не одна кандидатская диссертация, а он до сих пор без степени. Поиск засасывает, не дает времени заняться бумажным копошением, да и достигнутая цель каждый раз представляется чем-то незначительным, второстепенным, малоинтересным, а вот — чисто альпинистский азарт! — белеющая снежная вершина впереди волнует и манит…

Сущность занятия Околота и его товарищей в том, что для гибридизации растений используются оголенные клетки, они называются протопластами, каждая имеет свою мембранную оболочку. Их заставляют слиться в единый организм — клетку особыми приемами. Все экспериментальные манипуляции обычно ведут в прозрачной размером и формой с баночку от ваксы чашке Петри. Ее дно заполнено агар-агаром, веществом типа желатина. Эта как бы «почва» имеет все необходимое для жизни клеток — минеральные соли, витамины, питательные вещества, регуляторы роста.

Околот показывает мне микрофотографии исходных клеток и результаты их гибридизации:

— Это атропа или, если без латыни, белладонна, что по-итальянски значит «прекрасная дама», «красавица», по-русски же мы зовем это растение красавкой. Обратите внимание, какие у этой клетки мелкие хромосомы. Эти единицы наследственности гораздо более крупны у партнера красавки по парасексуальной гибридизации — у клетки табака… А теперь взгляните на гибридную клетку атропы и табака…

Я вижу прихотливое смешение мелких и крупных хромосом, эти семена жизни, ее священные письмена. Картина чем-то напоминает китайские иероглифы, с той разницей, что тут зашифровано не одно какое-то слово или понятие, а вся жизнь гибридного растения.

Почти спортивная цель, заветная мечта каждого клеточного конструктора — получить гибриды растений, как можно дальше отстоящих друг от друга, имеющих как можно меньшее родство. Добиться того, что ни природе, ни селекционерам вообще недоступно. Растительное племя ученые делят на виды, роды, трибы, семейства, порядки (соответствует отряду у животных), классы… царства…

Уже получены межродовые гибриды картофеля с томатом, межтрибные — атропы с табаком, арабидопсиса с турнепсом, дурмана с беленой, сныти с морковью (отметим, что межтрибные и выше гибриды классической селекции совершенно неподвластны), межсемейственные — сои с сизым табаком. Биохимический и цитологический анализы подтвердили: сконструированные клетки оказались истинным гибридами, у них есть хромосомы обоих родителей, они синтезировали характерные белки. Однако, как правило, довести эти «зародыши» до образования корней, до цветения, до полноценных плодоносящих растительных форм пока не удается. Пока это всего лишь наработка методик, накопление конструкторского опыта.



— Мы хотели сразу перепрыгнуть через несколько ступеней, — говорит Околот. — Взялись за межклассовую гибридизацию, попытались соединить лук с табаком. К сожалению, органические связи между чужеродными хромосомами не установились, хромосомы не удваивались, а рвались при делении клетки… Успехи за рубежом? Примерно те же. Венгерские исследователи, к примеру, получили гибрид моркови с табаком. Нобелевская премия? Ее, думаю, дадут только за наиболее важный для человечества объект — за улучшенные, доведенные до самовоспроизводящихся растений клеточные гибриды пшеницы…


Клонирование

Клеточная инженерия открывает сказочные перспективы. Исследователи теперь могут перейти с организменного уровня на клеточный. И работать с миллионом и более клеток в пробирке вместо того чтобы иметь дело с миллионом растений, занимающих значительно большие площади, требующих больших затрат времени и для роста, и для постановки с ними опытов. А от клеток, добившись цели, можно опять вернуться к целому растению.

Появилась возможность и тиражирования живого, что в науке носит название клонирования: бесполое, вегетативное размножение от одного общего предка, создание идентичных копий любого биологического объекта.

Все эти мысли не новы. В 1924 году английский физиолог, член Лондонского Королевского общества Джон Холдейн (1860–1936) опубликовал небольшую книжку «Дедал, или Наука и Будущее», а несколько лет спустя его соотечественник писатель Олдос Хаксли (1894–1963) создал антиутопию «Прекрасный новый мир». И вот что удивительно — рисуя общество будущего, Холдейн предсказал создание детей в пробирке, а Хаксли пророчествовал о массовом, «под копирку», производстве совершенно одинаковых человеческих существ, полученных методом клонирования.

О поточном производстве Ван Гогов и Достоевских не раз рассуждали фантасты и популяризаторы науки. Они отмечали, что было бы ужасно скучно встречать на улицах одних лишь, если думать об улучшении человеческой породы, Мэрилин Монро и Альбертов Эйнштейнов. Дойдет ли наша цивилизация до таких попыток, остается гадать. Но с растениями подобные пробы уже предприняты. Такие исследования ведутся у нас в стране в Институте физиологии растений под руководством члена-корреспондента АН СССР и ВАСХНИЛ Раисы Георгиевны Бутенко в Москве и в других центрах.

Не без пользы для практики. Вспомним о селекции. Медлителен не только сам этот процесс. Растягивается на годы и внедрение полученных с таким трудом результатов. Чтобы получить семена нового сорта в большом количестве, нужно вырастить не один урожай. Еще сложнее, когда растение размножается черенками или отводками — за сезон удается получить лишь 20–50 потомков. А вот при клонировании счет может идти уже на миллионы!

Процесс ведут так. От верхушки побега материнского растения, эта активно растущая ткань носит название меристемы, берут несколько клеток. Их помещают в особую питательную среду, где они начинают быстро размножаться, образуя каллусную массу. Каллус (от латинского «callus» — «мозоль») — особый тип растительной ткани. Она образуется на месте повреждений. Такая ткань закрывает ранку, копит вещества, необходимые для заживления.

Накопление каллусной массы может идти сколь угодно долго. Надо лишь периодически пересаживать часть клеток в свежую питательную среду. Но можно ли получить из колоний таких клеток цельное растение? Этого удалось добиться, когда были найдены, частично они уже синтезированы, особые растительные гормоны, управляющие ростовыми процессами.

И если к питательным веществам добавляют такие гормоны, каллусная ткань перестает беспорядочно разрастаться. В прежде бесформенной массе развиваются зачатки корневой системы, ростков, листьев. И наконец в пробирке возникает, поднимается самое настоящее растение. Его уже можно пересадить на грядку.

Деля разрастающуюся ткань на небольшие порции, так можно получать тысячи и даже миллионы ростков в год. Надо ли говорить, насколько это экономически эффективно?


«Сторожевые» гены

Больше всего мне довелось беседовать с младшим научным сотрудником кандидатом биологических наук Михаилом Константиновичем Зубко. В каждом коллективе есть такой человек, умеющий просто и доходчиво объяснить суть своей профессии любому: и залетному корреспонденту газеты, и иностранцу-гастролеру, и лазутчику из смежной научной области. В школе Михаил биологии не признавал, собирался стать журналистом. Но в 9-м классе биологию стала преподавать новая учительница, сразу же обозвавшая Зубко ламаркистом, ее увлеченность предметом имела последствия — Михаил поехал в Киев поступать на биофак, и уже на первом курсе университета, как натура страстная, активная, стал бродить по лабораториям, искать наиболее увлекательную область науки. Вначале хотел заняться изучением рака, но, увидя, как в интересах науки режут белую мышь, очень огорчился и решил переключиться на растительную тематику. Какое-то время увлекался фотосинтезом, затем — молекулярной биологией, но однажды его познакомили с Глебой: очень молодой человек сидел на полу и неторопливо чинил дистиллятор…

Зубко высок, худ, порывист, то вдруг замолкнет — кажется, потерял всякий интерес к разговору, — то начинает частить словами… Михаил поведал мне о тайнах клеточной инженерии, познакомил со многими ее чудесами. Одно из них — в любой клетке листа, тычинки, пестика хранится полная информация о том, как растение должно развиваться, цвести, плодоносить… Все эти фазы развития — полный цикл требует примерно пяти месяцев — исследователи умеют воспроизвести, получив в итоге зрелое растение с листьями, корнями, цветами и плодами. Не какую-то там растительную недоделку или калеку!..

А вот с животной клеткой так не получается. Точнее, до двух недель все идет вроде бы нормально, клетки исправно делятся, и, лишь когда должна начаться дифференцировка тканей, все стопорится. Чего животным клеткам не хватает? Контакта с материнским организмом, общей кровеносной системы, общего газообмена, того, чтобы зародыш сделался частью, получающей от матери на каждом этапе своего развития гормональные и иные стимулы.

— Размышляя в университете над этой проблемой, — вспоминает Зубко, — я решился на такой опыт: взял куриное яйцо, систему вроде бы абсолютно автономную, лишил его скорлупы, вылил содержимое в сосуд и стал наблюдать, как события начнут развиваться дальше. И вначале все шло более или менее нормально. Пока не пришел черед образованию кровеносной системы зародыша. Тут-то и выяснилось, что скорлупа зародышу очень нужна. Она служит и опорой — так плющ карабкается по стене здания, цепляется за нее — и мембраной, обеспечивающей особый режим дыхания… Моя затея обмануть природу, выпестовать птенца из лишенного скорлупы яйца провалилась. Теперь вы должны понять, отчего в искусственных условиях из животной клетки не удается получить взрослое животное — мышь или, допустим, собаку. И огромное счастье для нас, исследователей, что с растениями тот же номер проходит. Хотя и этого добиться порой бывает очень нелегко…

Воспроизвести из отдельной клетки целое растение — такая задача во многих случаях решается, но гораздо сложнее проблема — «сплавить», «срастить» гены, создав диковинный гибрид.

— При обычном половом способе скрещивания, — рассказывал Зубко, — дает себя знать несовместимость органов размножения растений, есть еще и гены несовместимости, «сторожевые» гены. Если б этих и иных «заборов» не было, в растительном царстве возникли бы хаос и неразбериха. Если б не существовала ювелирная отделка каждой отдельной растительной структуры, что и отличает данный конкретный тип растений от всех остальных, земная флора не создала бы высших растений, эти высочайшие образцы эволюционного процесса.

Стоит ли удивляться, что пока чаще всего в результате клеточной хирургии мы получаем создания разной, так сказать, степени инвалидности. Природа безжалостно убивает свои неудачные поделки, а человек ради их необычных свойств щадит. Гениальные дети обычно отличаются хрупким здоровьем, очень ранимы и физически и нравственно… Природа никогда не подарит нам помесь слона с амебой, мы же надеемся когда-нибудь соединить, например, мох с рожью. Выйдет монстр, уродец? Не беда! Ведь мы получим богатейшую научную информацию, начнем осознавать пределы возможностей клеточной инженерии, ее диапазон на данный момент развития нашей науки. Да и вообще, уродство… красота… Все эти категории зыбки, условны: к любому новшеству мы привыкаем не сразу, и аномалия, отклонение от нормы могут постепенно превратиться в высшее изящество и совершенство!..


Велосипед с крыльями

Зубко ставит на стол несколько растений. Вижу удивительное, совершенно белое растение-альбинос, рядом — нормальный зеленый росток, чуть поодаль — странная помесь: на стебле белые листья прихотливо чередуются с зелеными, есть и окрашенные частично в белые, частично в зеленые тона. Михаил объясняет, что можно было бы скроить и зелено-бело-красную мозаику листьев. К чему такой маскарад? Так легче визуально, без хитрых анализов, отбирать нужные экспериментатору формы.

Если взять клетку и повредить в ней один из генов, ответственных за синтез хлорофилла, образование этого зеленого пигмента прекратится — так можно вырастить в пробирке белое бесхлорофилльное растение. В природных условиях оно обречено, ибо в нем не образуется главный продукт фотосинтеза — углеводы. Однако в пробирке, на питательной среде, щедро удобренной сахарозой или фруктозой, белое растение чувствует себя как ни в чем не бывало. А теперь берем клетки белого и зеленого растения, соединяем их. Как убедиться, что получен истинный гибрид? По цвету. Очевидно, чисто белые и чисто зеленые экземпляры пошли либо «в папу», либо «в маму», полноценный же гибрид выдает смешанная окраска листьев, ее бело-зеленая пестрота…

К той же серии маркировочных опытов относится и такой. Генные инженеры взяли светлячка и выделили из него гены, обусловливающие свечение. Затем их встроили в клетку табака. И — поразительно — табак стал вырабатывать люцеферин, растение светилось в темноте!

Когда начинаешь размышлять о клеточной инженерии, ее успехах — в сознании в первую очередь тотчас же всплывает факт получения учеными гибрида картофеля и томата. Его можно звать по-разному: «помитофелем», «картомидором», «потомейтосом» (эту кличку придумали в ФРГ). Диво-дивное! Неужто создано растение, способное одаривать нас летом помидорами, а осенью — картошкой? Увы! Хотя такое растение и сконструировано, пока оно бесплодно и остается не более чем лабораторным курьезом: никаких полезных признаков — ни клубней картофеля, ни помидоров — растение не выказывает. И все же это большой успех — ведь в природе такой гибрид невозможен!

— Этот пример характерен. Иллюстрирует непонимание реальных возможностей клеточной инженерии, — говорит Зубко. — Логика природы и логика человека различны. Когда художник смешивает желтую краску с синей и получает на палитре зеленый цвет, это никого не удивляет. Но, слив воедино клетки капусты и редьки, мы отчего-то уверены, что обязательно будем иметь и капустные листья и съедобный корнеплод… Желаем, но вынуждены довольствоваться гибридом, который, к нашему огорчению, отчего-то утерял сразу и капустные и редечные свойства. А стоит ли этому удивляться? В известной басне Крылова лебедь, рак да щука тянут в разные стороны, и воз топчется на месте. И в экспериментах с капусторедькой и картомидором происходит, кажется, то же самое.

Помитофель? Возможно, в конце концов он будет получен, но должны пройти годы исследований, должно возникнуть настоящее понимание законов, по которым хромосомы различных видов соединяются при клеточном слиянии. А сразу, с первой попытки многого не добьешься.

Выходит, надо постепенно убедить Природу, что ей не чужды не только томаты и картофель, но и их экзотическое сочетание — помитофель?

— Что-то в этом роде. А сейчас мы словно бы пытаемся скрестить мотоцикл с трактором и ждем, что результирующий механизм будет и стремителен, как мотоцикл, и мощен, как трактор. По-видимому, в организм растения необходимо ввести какие-то небывалые свойства, зарядить его колоссальным биологическим потенциалом. Ныне возможности биоконструкторов еще очень ограничены. Как бы это понятней пояснить?.. Мы можем, к примеру, взять велосипед и его педаль заменить чем-то, что выполняло бы ту же роль, роль рычага. Или руль велосипеда: его можно причудливо изогнуть, или, скажем, сделать круглым, как у автомашины. И там и тут перемены малосущественны, фактически всякий раз мы получаем после дизайнерско-конструкторских манипуляций все тот же велосипед.

— Значит, велосипед с крыльями — пустая мечта, научная небылица?

— Кто знает! Абсолютного запрета на создание крылатого велосипеда нет. Вопрос только в том, как должен выглядеть тот приводимый ногами в движение мотор, который поднимет велосипед к облакам. И, видимо, подобные задачи станут нам под силу, когда мы поймем, как функционируют уже не отдельные гены, а их большие комплексы, генные ансамбли. Возьмем проблему азотфиксирующих растений. Эту идею фикс генных инженеров: растений, способных черпать азот не из почвы, а непосредственно из воздуха, как то умеют делать некоторые микробы. Выяснилось, что в свойстве этом повинен целый «оркестр» генов, насчитывающий порядка полутора десятков генных единиц. И еще стало понятно: любая произвольная перестановка генов нарушает слаженную работу всего ансамбля, и потому нежелательна.

Кроме того, необходимо сделать так, чтобы вся генная структура была встроена в подходящее генное окружение, в особую генную среду. Показательна здесь такая аналогия. В сое удалось найти и выделить гены, обеспечивающие образование аминокислот, эти гены встроили в клетку табака. И табак начал продуцировать белок, но… в мизерных количествах, в сотни-тысячи раз меньших, чем это делает соя…


Голубая пшеница

В 1984 году за успешную разработку фундаментальных основ клеточной генетической инженерии растений ряд сотрудников Института ботаники во главе с Сытником и Глебой были удостоены Государственной премии СССР. Константин Меркурьевич Сытник, директор Института ботаники, рассказывает, какую пользу делу селекции культурных растений приносят разработки клеточных инженеров:

— Трудности традиционной селекции известны. Скрещивание возможно только между филогенетически близкими растениями. Это ограничение настолько въелось в сознание селекционера, что ему и в голову не приходит мысль об использовании донора нужных генов из другого рода, а тем более трибы или семейства. Клеточная инженерия многое изменит в этом стереотипе. Кроме того, теперь, экономя массу времени, поиск нужных мутантов можно вести уже не в поле, а в стенах лаборатории, дав селекционеру практически готовый продукт, полуфабрикат, требующий только полевой обкатки. Приемы клеточной селекции настолько эффективны, что, по нашим подсчетам, одна лаборатория со штатом из нескольких сотрудников в состоянии обеспечить нужды крупного селекционного центра…

— Одна из важных задач, — рассказывает Константин Меркурьевич, — гибридизация культурных и диких видов. Дикарь малопривлекателен по своим пищевым качествам. Природа не стремится создавать очень вкусные яблоки, они будут быстро съедены зверьем, шанс на выживание у таких яблонь невелик. Зато генетически устойчив к различным возбудителям болезней, вирусам, грибкам, более вынослив к воздействию погодных зигзагов и т. д. Но беда в том, что при скрещивании дикий сорт, этот варвар, как тип более сильный, забивает культурное растение. И только методами клеточной селекции удается пересадить нужные гены дикаря в ядро культурного растения, не утеряв всех его ценных качеств.

Профессия клеточного инженера сродни искусству, — продолжает Сытник. — Вот рядом два исследователя, они используют одни и те же методики, те же приемы работы, приборы. И объект наблюдения у них один — и все же у одного дело ладится, другой же терпит неудачу за неудачей: клетка словно бы чурается исследователя, не доверяет ему, не идет навстречу… Другой момент, который необходимо также подчеркнуть, то, что клеточная инженерия прокладывает пути к качественно новому способу производства пищи — биотехнологии. Агротехнологии очень зависят от погоды, организованности людской, умелости руководства. Многое надо «подстегивать», и в ход идут лозунги: «Сейте в срок!», «Соберем урожай без потерь!» и так далее. Но вряд ли когда-нибудь мы увидим надписи вроде: «Биотехнологи, увеличивайте количество гормонов!», ибо заранее предполагается: то, что наука на данный момент способна сделать, реализовано в биотехнологическом реакторе и никак не зависит от людского произвола…

Сытник говорит мне и о последних успехах клеточной инженерии. Соматическая гибридизация завоевала прочные позиции в семействе пасленовых, важном для человека отряде растений, куда входят картофель, томат, табак, перец, баклажаны. Усилиями ученых всего мира искусство выращивания растений из одной клетки распространено на такие важнейшие зерновые культуры, как рис, кукуруза. Есть надежда, что в ближайшие годы сюда добавятся и бобовые. И лишь пшеница, рожь, овес, ячмень и многие другие представители семейства злаковых — растений для планеты номер один — никак не уступают атакам науки. Трудности? Они в чисто эмпирическом характере поиска условий культивирования клеток. Очень непросто найти то единственное сочетание воздуха, воды, минеральных солей, углеводов и стимуляторов, способных заменить для клетки утерянный родительский организм — тут необходимо перепробовать миллионы вариантов.

В фантастическом романе братьев Стругацких «Второе нашествие марсиан» поминается голубая пшеница. Вот такую необычную пшеницу мечтают создать клеточные конструкторы. Прежде все их опыты давали результат отрицательный, клетки пшеницы отказывались делиться наотрез. И сотрудница отдела Надя Матвиенко несколько лет билась над той же задачей. Сплошные огорчения. Извелась, стал портиться характер, но сейчас… Я много раз в коридорах, комнатах отдела встречал веселую, полную жизни, смешливую молодую женщину. Мне говорили, работает она с утроенной энергией.

Объяснение этих метаморфоз? В ее руках протопласты пшеницы слились и начали наконец делиться. Ни у кого это не получалось, а у нее выходит! Пусть это лишь один из великого множества сортов пшениц, может быть, не самый лучший. Пускай это лишь начало цепи дальнейших мучительных поисков. Лед тронулся! Первый шаг сделан…


* * *

И снова утро. И вновь, выйдя из гостиницы, я, подобно нескольким десяткам клеточных инженеров, стекающихся в отдел из разных районов Киева, спешу в одетую снегами и льдом, с застывшими в садах деревьями, Феофанию. Зажигается свет в комнатах, включаются воздуходувки, микроскопы, центрифуги, готовятся питательные смеси, идет разгонка хромосом электрофорезом, листаются биохимические и цитологические справочники… Начинается работа одновременно и будничная и праздничная. Ведь здесь в причудливых, созданных волей и фантазией экспериментатора стеклянных карликовых садах происходит очередное свидание исследователя с клеткой, хранительницей всех тайн жизни, свидание, которое может принести и ощущение досады, и радость большого открытия. Свидание, долгая череда которых вершит судьбу не только отдельного человека-исследователя или даже одной из биологических наук, но которое, возможно, скажется и на судьбе всего человечества, всей цивилизации в целом.

Загрузка...