ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ Транспортер для Венеры

В «ЮТ» № 8 за 2013 г. мы рассказали вам о проектах аэростатов для Марса.

Ну, а каким, по мнению специалистов, должен быть транспорт для Венеры? Оказывается, они подумали и об этом, хотя до освоения Венеры еще очень далеко.



Батискаф для «Утренней звезды»

Хотите верьте, хотите — проверьте, но когда советские ученые и инженеры в 70-е годы прошлого века отправили на Венеру первый спускаемый аппарат, то наделили его сахарным замком. Суть затеи была такова. «Если аппарат опустится на дно венерианского моря, — рассудили наши специалисты, — то сахар в жидкости вскоре растворится, освободит защелку и выпустит на поверхность поплавок с антенной, чтобы можно было держать связь с Землей»…

Никому тогда и в голову прийти не могло, что зонд «Венера-4» окунется в сухое пекло с температурой около 500 °C, при давлении, в 100 раз превышающем земное. Кроме того, атмосфера Венеры, наряду с огромным количеством углекислого газа (до 98 %), содержит примеси соляной и фтористой кислот. Все это делает весьма проблематичным сколько-нибудь долгое пребывание исследовательских аппаратов на поверхности планеты.

Но как тогда ее изучать? Да примерно так же, как мы изучаем океанское дно, считают ученые. И далее развивают эту идею следующим образом. «Неудобную» венерианскую атмосферу из врага можно превратить в союзника. На высоте примерно 50 км ее плотность и температура сравнимы с земной. Здесь, наверное, и имеет смысл разместить научную базу.

Она будет представлять собой гигантский аэростат, а еще лучше дирижабль, предложил инженер С. Житомирский. Оболочку такого летательного аппарата предполагается изготовить из тонкого гофрированного металла — чтобы она была жесткой и в то же время оказалась способной менять объем. База будет крейсировать в атмосфере по определенным траекториям, перемещаться в заданные районы планеты и зависать над избранным пунктом.

Чем заполнять оболочки венерианских летательных аппаратов, исследователи тоже продумали. Как показали расчеты, в данном случае нет смысла везти с Земли, скажем, традиционный гелий. Хотя собственный вес этого газа составит всего 9 % от массы аэростата, зато баллоны, в которых гелий придется транспортировать под давлением 300–350 атмосфер, «потянут» столько же, сколько и весь аппарат целиком. Если же мы захватим с собой аммиак в баллонах низкого давления или вообще обычную воду, то масса «тары» резко снизится. А на месте, под действием высоких венерианских температур, названные жидкости без дополнительных затрат энергии превратятся в пар, который и послужи рабочим телом для аэростата.

Понятное дело, аммиак, а тем более водяной пар, намного тяжелее гелия. Но, как уже говорилось, этот избыточный вес с лихвой окупится отсутствием на борту корабля — доставщика массивных баллонов высокого давления. А это значит, что в итоге даже «водяной» аэростат способен нести большую полезную нагрузку, чем гелиевый.

С долговременной летающей лаборатории на поверхность планеты смогут опускаться исследовательские зонды, построенные по подобию земных глубоководных батискафов. Для них, согласно идее кандидата технических наук Г. Москаленко, удобно использовать двухкомпонентное рабочее тело — лучше всего смесь тех же паров воды с парами аммиака или метилового спирта.

Зачем нужны две составляющие? Дело в том, что условия «аэростатического плавания» в атмосферах Земли и Венеры резко различны, поскольку давления, плотности и температуры атмосферных газов на каждой планете по-разному меняются с высотой. Указанная смесь как раз и выбрана с учетом специфики венерианской атмосферы. Соотношение термодинамических параметров двух составляющих позволит легко регулировать высоту подъема и режимы полета.

Водяной пар служит здесь основным рабочим телом и обеспечивает подъем аппарата до некоторой максимальной высоты (на которой «плавает» базовый дирижабль). Но по мере приближения к ней пар начнет конденсироваться, то есть попросту превращаться в воду, которая станет балластом, так что аппарат будет опять готов к спуску.

Более того, Г. Москаленко придумал и как зонду попутно запасаться электроэнергией при спусках и подъемах. Для этого достаточно выставить наружу, в набегающий поток газа крыльчатку. Вращаясь, она будет вращать электрогенератор. Запасая энергию в аккумуляторах, ее можно затем использовать, скажем, для подсветки ландшафтов Венеры прожектором или фотовспышкой. Ведь на поверхности ее, напомним, царит вечный сумрак…



Один из вариантов конструкции батискафа для Венеры (по Г. Москаленко).


Поедем на паруснике?

Впрочем, это не единственный способ изучения поверхности Венеры. Американские исследователи предлагают свой вариант. Согласно программе НАСА под названием Innovative Advanced Concepts, будет разработан планетоход под названием Zephyr («Зефир»), охлаждение которого сведут к минимуму, используя электронику на особо термостойкой элементной базе, способной работать при температурах до +500 °C без активного охлаждения.

«Температура на Венере не выше, чем внутри работающего реактивного двигателя, а на Земле уже созданы датчики, которые успешно работают в таких агрегатах», — резонно рассудили специалисты НАСА.

Правда, столь же неприхотливые электродвигатели для перемещения планетохода по поверхности сделать пока не удается. А потому в НАСА предлагают использовать для передвижения… местные ветры и прибегнуть к помощи парусов.

На первый взгляд, концепция не самая удачная — ведь скорости ветров на Венере всего порядка 1 м/с, то есть 3,6 км/ч. Каких размеров должен быть парус, чтобы двигать планетоход при столь ничтожном ветерке? Оказывается, не очень больших. Ведь плотность венерианского воздуха — 67 кг/м3, то есть лишь в 15 раз меньше воды. Следовательно, даже слабый ветерок даст Zephyr возможность двигаться при площади паруса порядка 12 кв. м.



Три колеса обеспечат максимальную устойчивость планетохода, спускаемого на парашюте. А перемешаться по поверхности он будет под парусом.


Лучшим сценарием путешествий будет такой. Планетоход будет поднимать парус на четверть часа в сутки. Переехав на новое место, он остановится и займется изучением ближайших окрестностей. Ведь на Венере, напомним еще раз, даже днем царит полумрак из-за плотных облаков, так что на ходу много не разглядишь.

Несмотря на то что поверхность Венеры практически плоская, в отличие от земной или марсианской, в конструкции предусмотрено маневрирование парусом для изменения направления движения. Так что если планетоходу-паруснику все же встретится препятствие, он сможет его обойти.

…Такие вот проекты изучения «Утренней звезды» предлагают специалисты. Какими они станут завтра, мы с вами еще увидим.

Публикацию подготовил С. ВЕТРОВ

Загрузка...