Первая статья действительно была революционной. Но была ли это теория относительности? Нет. Ее время еще только приближалось. А в этой статье речь шла о той работе, которую Эйнштейн позднее назвал «Gelegenheitsarbeit» (работой, выполненной между прочим). Свой рассказ о ней мы начнем с совершенно, казалось бы, тривиальных вещей.
Если нагреть кусок железа, он станет теплым. Если продолжать нагревать его, он станет теплее, потом раскалится докрасна. По мере того как продолжается нагревание, свечение становится все ярче и меняет окраску — от оранжевого к желтому, а вскоре к ослепительному голубовато-белому цвету. Это звучит достаточно банально. Тем не менее здесь, оказывается, скрывается нечто глубоко загадочное.
Как мог бы ученый приступить к поиску математической формулы, описывающей свечение железа при различных температурах? Один путь — это провести эксперименты, измеряя и свечение, и его цвет, затем составить график результатов в надежде, что какие-то четкие математические зависимости сами бросятся в глаза. Но даже если бы это удалось, теоретики вряд ли были бы удовлетворены. Они бы стремились вывести математическую формулу исходя из того, что известно о поведении света, теплоты и материи.
А что именно известно? Смотря о каком времени идет речь. Во второй половине XIX в. было известно немало прекрасно взаимосвязанных между собой правил и понятий, по большей части удивительно удачных. Очень нелегко дались ученым эти знания. Об этом можно было бы так долго рассказывать, что мы остановимся лишь на немногих основных моментах.
Вот, например, свет. В XVII в. Ньютон создал теорию света и цвета, объясняющую все без исключения известные в то время экспериментальные данные в области оптики. Не вдаваясь в излишние подробности, можно сказать, что он считал свет потоком частиц, каждая из которых обладает определенной пульсацией, причем цвет определялся частотой пульсации. Современник Ньютона голландский физик Христиан Гюйгенс выдвинул совершенно иную теорию. Он полагал, что свет — это не поток частиц, а некоторая элементарная волна. Но так как теория Ньютона позволяла с единой точки зрения объяснить большее число явлений, то предпочтение было отдано ей.
Понимание природы света не изменилось сколько-нибудь существенно и в следующем веке. Правда, в 1799 г. английский врач и физик (позднее он стал еще и египтологом) Томас Юнг обнаружил поразительные данные, говорящие в пользу волновой теории света. Вникать в подробности нам ни к чему, однако основная идея все-таки требует внимания. По существу, Юнг доказал, что свет, падающий на свет, может создавать темноту. Например, свет от небольшого источника, проходя через две щели, образует на экране чередующиеся полосы света и тени. Каким образом при наложении света на свет получаются темные полосы? Корпускулярная теория Ньютона не могла дать этому явлению адекватное объяснение. Для волновой же теории такое объяснение не представляло никаких трудностей. Темные полосы — это те места, где налагающиеся волны погашались, ибо постоянно «шли не в ногу»; когда одна волна достигала гребня, другая была на спаде, и наоборот. Юнг назвал это волновое явление интерференцией; светлые и темные полосы стали называться интерференционными полосами.
Стоит отметить, что Юнг поддерживал сторонников волновой теории света, не дожидаясь того времени, когда с ее помощью окажется возможным объяснить все известные оптические эффекты. И как обычно это бывает, стоило только Юнгу выступить против устоявшихся представлений, — и его работа подверглась резким нападкам. Но спустя лет десять Юнг нашел страстного защитника своих идей в лице французского физика Огюстена Френеля. Тот самостоятельно пришел к идее интерференции и обнаружил новые серьезные аргументы против корпускулярной теории. Далее факты такого рода стали накапливаться с такой быстротой, что еще через десяток лет корпускулярная теория отошла в прошлое. И действительно, хотя особой нужды в coup de grâce[13] не было, однако ученые предпочитают все доводить до полной ясности. Дабы поставить точки над «i», был осуществлен решающий эксперимент по измерению скорости света в воде. В соответствии с теорией Ньютона свет должен был распространяться в воде быстрее, чем в воздухе; в соответствии же с волновой теорией — медленнее. Эксперимент показал, что скорость уменьшалась.
Но на этом дело не закончилось. Дальнейшее подтверждение волновой теории света пришло с совершенно неожиданной стороны. В 1819 г. датский физик Ханс Кристиан Эрстед обнаружил специфическую связь между электричеством и магнетизмом. Он показал, что электрический ток воздействует на магнитную стрелку компаса. Вскоре после этого французский физик Андре Мари Ампер с таким блеском провел математический и экспериментальный анализ этого явления, что его даже провозгласили Ньютоном электромагнетизма.
Тем временем выдающиеся экспериментальные открытия в области электромагнетизма сделал англичанин Майкл Фарадей. Он не получил специального образования и потому не мог столь искусно, как Ампер, применить математический аппарат для описания результатов своих экспериментов. Это обернулось большой удачей, ибо привело к революции в науке. Ампер и другие ученые сосредоточили свое внимание на том, что было доступно наблюдению, — на магнитах, проводах, по которым течет ток, прочей Аппаратуре и на измерении расстояния между ними. Таким образом, они следовали традиции, обязанной своим происхождением огромным успехам принципов механики Ньютона и закона гравитации. Эту традицию можно назвать изучением дальнодействия — действия на расстоянии. Фарадей же считал эту сторону физики второстепенной. По его мнению, самые существенные физические явления происходят в окружающем пространстве — поле, которое он в своем воображении наполнил «щупальцами». Именно эти щупальца своими «толчками» и движениями вызывают наблюдаемые электромагнитные явления. И хотя Фарадею удалось удивительно просто и точно объяснить свои эксперименты по электромагнетизму, большинство физиков — приверженцев широкого применения математики — считали представления Фарадея, не подкрепленные вычислениями, наивными.
Среди тех немногих, кто не разделял этой точки зрения, был шотландский физик Джеймс Клерк Максвелл (он уже упоминался мельком в связи с поступлением Эйнштейна в Бюро патентов). Максвелл осознал, что за примитивными на первый взгляд представлениями Майкла Фарадея о поле скрывалось богатейшее физическое содержание, и безоговорочно поверил в интуицию Фарадея. Надо сказать, что и сам Максвелл обладал не менее замечательной научной интуицией. Она-то и привела его к созданию псевдомеханической модели электромагнитного поля. Максвелл и сам не считал эту модель с фигурирующими в ней вихрями и шариками сколько-нибудь правдоподобной. Она была введена как сугубо временное интеллектуальное подспорье, призванное оказать помощь в разработке подлинно серьезной физической теории. По крайней мере эта модель исключала действие на расстоянии. Какова же была присущая Максвеллу интуиция, если в этой невероятной модели оказались заложены основы электромагнетизма! Используя упрощенные понятия, Максвелл построил чрезвычайно удачную систему уравнений, описывающих электромагнитное поле. Эта система уравнений обладала замечательной симметрией, что и позволило Максвеллу чисто математическим путем прийти к выводу о существовании электромагнитных волн, распространяющихся со скоростью света. Эти волны, как он установил, должны обладать наряду с другими свойствами также и теми, которые Юнг и Френель экспериментально обнаружили у световых волн. В результате Максвелл заявил, что световые и электромагнитные волны — это, по сути, одно и то же.
Все это происходило в 1861–1864 гг. Но поскольку соображения симметрии выходили за границы физической достоверности, теория Максвелла вызывала лишь восхищение, однако при жизни автора не получила широкого признания. Максвелл умер в 1879 г., и в этом же году родился Эйнштейн. Теория Максвелла нашла свое подтверждение лишь в 1888 г., когда немецкий физик Генрих Герц генерировал и уловил то, что сейчас называется радиоволнами. Он неоспоримо доказал, что поведение этих волн в точности соответствовало предсказанному Максвеллом. В результате уравнения Максвелла наконец- то были оценены по достоинству. Спустя год или два Герц отметил: «С нашей, человеческой, точки зрения, волновая теория света — несомненный факт». Световые волны — это такие электромагнитные волны, чьи частоты или скорости колебания лежат в довольно узком диапазоне, причем именно их частота определяет цвет. Непосредственно увидеть электромагнитное излучение за пределами этого узкого диапазона невозможно — оно становится невидимым. Более высокие частоты — это так называемое ультрафиолетовое излучение, а еще более высокие — рентгеновское и гамма-излучение. Более низкие частоты — это инфракрасное излучение, а еще более низкие — радиоволны. Подобное обобщение весьма примечательно. Объединенные единой теорией различные типы излучения представлены членами обширного семейства электромагнитных явлений, родственных той силе, которая управляла движением магнитной стрелки компаса и так заинтриговала пятилетнего Эйнштейна. Однако довольно о свете и электромагнетизме, эту гему на некоторое время можно оставить и перейти к рассмотрению теплоты. Вы возразите, что о ней только что говорилось. Но разговор касался теплоты, в форме излучения. Раскаленное железо также обладает запасом тепла (что в наши дни объясняется микроскопическими внутренними колебаниями), которое наряду с излучением считается одной из многих форм энергии.
История изучения теплоты и развития термодинамики как науки продолжительна и запутанна. В нашу задачу не входит раскрыть ее полностью. Хотя это несправедливо по отношению к смелым творцам, заложившим основы термодинамики вопреки сильному сопротивлению физиков, но не надо забывать, что наша книга — об Эйнштейне, а он все еще ожидает своей очереди, чтобы появиться в этой главе. Отметим лишь вкратце, что теоретикам, и в первую очередь Максвеллу и Больцману, удалось разработать теорию газов. Согласно этой теории, газы состоят из сталкивающихся частиц, находящихся в хаотическом движении. Энергия этого движения, подобно энергии внутренних колебаний в твердом теле, рассматривалась как теплота. А теперь поспешим в 1900 г. и посмотрим, что же послужило толчком к появлению первой знаменитой работы Эйнштейна 1905 г.
Берлин. Октябрь 1900 г. Выдающийся немецкий физик Макс Планк взбудоражен услышанными новостями. Как и другие физики, он пытался найти объяснение свечению горячего черного^ тела — идеальной модели раскаленного железа. В предшествующие годы Планк занимался выводом на основе известных физических принципов формулы, описывающей спектр свечения или, иначе говоря, распределение энергии излучения по частоте. Эта формула излучения черного тела была впервые выведена немецким физиком Вильгельмом Вином, получившим в 1911 г. Нобелевскую премию. Казалось, его формула вполне соответствовала экспериментальным данным, однако из экспериментов Планку было известно, что она была вполне адекватна для высоких частот, но не годилась для низких. Что было делать? Планк, искусно применив математический аппарат, вывел новую формулу излучения черного тела, и она выдержала проверку экспериментом.
Получив эту формулу путем математических ухищрений, Планк столкнулся с необходимостью вывести ее же, исходя уже из физических принципов. Как он говорил восемнадцать лет спустя в речи при получении Нобелевской премии, последующие недели были самыми напряженными в его жизни. К декабрю решение было найдено, но судите сами, насколько оно правдоподобно. Предположим, Планк со всей серьезностью заявил бы, что качели могут описывать только дуги длиною три, шесть, девять и т. д. футов, но не четыре фута, не полфута и т. д. Безусловно, вы скажете, что это чепуха. Тем не менее для того, чтобы вывести свою формулу, Планку пришлось допустить нечто подобное, хотя и в микроскопическом масштабе. Иначе говоря, ему пришлось допустить, что энергия этих микроскопических колебаний изменялась не гладко, а скачками на дискретные величины, названные им квантами. Ему пришлось также допустить, что соотношение энергия/частота колебаний должно обладать одним и тем же значением для каждого такого квантового скачка. Это значение, обозначенное им h, называется теперь постоянной Планка. А его квантовая гипотеза олицетворяет собой поворотный пункт в истории науки. Что же касается физики, то здесь она произвела подлинный переворот.
Однако не следует оценивать прошлое с позиций сегодняшнего дня. В 1900 г. квантовая гипотеза казалась Планку крайне непривлекательной. Много позже он назвал выдвижение этой гипотезы «актом отчаяния». Несмотря на свои опасения, 14 декабря 1900 г. Планк сделал сообщение об этой работе в Немецком физическом обществе. Его доклад был опубликован в «Трудах» общества. Расширенный вариант Планк отослал в «Annalen der Physik», где он был опубликован в 1901 г. Все это было встречено вежливым молчанием. Сам Планк в течение ряда последующих лет безуспешно пытался вывести свою формулу излучения иным, не столь радикальным путем. Не то чтобы он старался избавиться от h, ибо она занимала свое место в формуле излучения и никак не могла быть оттуда изъята. (На самом-то деле она косвенно содержалась уже в неверной формуле Вина). С конца 1900 по 1905 г. квантовая гипотеза оставалась в безвестности. В те годы во всем мире, пожалуй, только один человек осмелился воспринять ее всерьез. Это был Эйнштейн. Он быстро осознал все значение работы Планка и 17 марта 1905 г., через три дня после своего двадцатишестилетия, послал в «Annalen der Physik» первую — «очень революционную» — из четырех статей, о чем сообщил Габихту.
Работа Эйнштейна начиналась с простого, но серьезного замечания по самому существу проблемы. Он указал на глубокий конфликт между тем, как физики-теоретики рассматривают материю, и тем, как они рассматривают излучение. Материя считалась состоящей из частиц. Однако уравнения Максвелла, т. е. уравнения поля, описывали излучение как нечто гладкое и непрерывное, без какого-либо намека на атомарность, а потому одновременное рассмотрение и материи, и излучения привело бы к столкновению, а не к гармоничному взаимодействию традиционных теорий. Эйнштейн пошел дальше в своих рассуждениях и математически доказал, что такое столкновение неминуемо.
Можно ли избежать его? Эйнштейн прекрасно отдавал себе отчет, сколь огромны достижения электромагнитной волновой теории света. Ему было известно также, что для некоторых ситуаций эта теория просто не годилась. И вот Эйнштейн смело предложил рабочую гипотезу, согласно которой свет следует рассматривать состоящим из частиц.
И это не было дилетантской попыткой поразить невидимую цель. Эйнштейн не осмелился бы выдвинуть такую крайне экстравагантную идею, не имея на то веских оснований. Давайте проанализируем их хотя бы для того, чтобы показать всю глубину его интуиции. Ему пришлось смело, но осторожно выбираться из затруднительного положения. Эйнштейн основывался на неверной формуле излучения черного тела Вина, полагая, что она будет удовлетворять его целям, ибо в тех случаях, когда формула Вина «работала», она работала прекрасно. Тем самым Эйнштейну удалось в отличие от Планка избежать одностороннего подхода к проблеме. Так было надежнее.
У Вина он позаимствовал формулу энтропии излучения. Сопоставив ее с формулой излучения черного тела, выведенной самим же Вином, Эйнштейн показал, что в этом случае математическая запись энтропии излучения становилась аналогичной формуле энтропии газа, а тем самым и составляющих его частиц. Затем Эйнштейн сопоставил ее, но уже по-другому, с предложенной Больцманом формулой энтропии в теоретиковероятностной ее интерпретации. Далее Эйнштейн показал, что для этих частиц света соотношение энергия/частота должно в точности соответствовать той величине, которую Планк использовал для определения квантовых скачков.
Как глубоко должен был Эйнштейн знать и чувствовать физику, до чего безошибочной должна была быть его интуиция, чтобы выбрать именно те фундаментальные принципы, которые позволили получить эти выдающиеся результаты! Он прекрасно сознавал, сколь многочисленные возражения могут последовать со стороны физиков против его предложения. Тем не менее Эйнштейн распространил «квантовую инфекцию» непосредственно на свет, как будто мало было хлопот с самой гипотезой Планка. Он сумел объяснить гладкость поля в понимании Максвелла сглаживанием во времени аналогично тому, как при большой выдержке фотография бегуна получается размытой. Но Эйнштейну было прекрасно известно, что он не сумеет дать удовлетворительное объяснение волнам Максвелла, существование которых было доподлинно подтверждено Герцем; или неопровержимым опытам по определению скорости света в воде; или, уж если добираться до самых основ, «интерференции» Юнга и Френеля — весомому аргументу против ньютоновской корпускулярной теории света, распространившейся чуть ли не за сто лет до появления основополагающей идеи Планка.
Стоит отметить поразительную параллель между Юнгом и Эйнштейном. Когда Юнг впервые выдвинул против общепринятой корпускулярной теории понятие интерференции (свет гасит свет), он осознавал, что ему не разделаться со всеми трудностями, с которыми столкнется волновая теория. И все же это не остановило его, так как он чувствовал, что ньютоновская корпускулярная теория уязвима. Последующие исследования полностью оправдали его дерзость. Столетие спустя всеобщим признанием пользовалась волновая теория. Однако Эйнштейну, как и Юнгу до него, это не помешало утвердиться во мнении, что и теория Максвелла также уязвима. В пользу такого предположения говорили некоторые накопленные к тому времени факты.
Оставив временно в стороне спорные вопросы о квантах света, Эйнштейн сконцентрировал внимание на тех преимуществах, которые сулило принятие его идеи. Эти преимущества, как он доказал, отнюдь не были малосущественными, особенно если учесть, что они проявлялись именно там, где свет взаимодействовал с материей и где теория Максвелла сталкивалась с затруднениями. Эйнштейн показал, что его кванты света способны объяснить известный эффект, связанный с флуоресценцией. Он показал также, что эти кванты света могут объяснить наблюдавшийся эффект прохождения ультрафиолетового света через газ. И — что немаловажно — Эйнштейн применил свою идею для объяснения испускания электронов из металлов под воздействием света — явления, известного под названием фотоэлектрического эффекта. За три года до этого немецкий физик Филипп Ленард провел важные эксперименты по изучению фотоэлектрического эффекта. Он подчеркивал, что полученные им экспериментальные данные резко расходились с предсказаниями теории Максвелла. Например, увеличение частоты света приводило к возрастанию энергии испускаемых электронов, а этот факт никак нельзя было объяснить исходя из теории Максвелла. Эйнштейн показал, что идея квантов света с чрезвычайной легкостью объясняет озадачивающие результаты Ленарда. Взять, к примеру, эффект изменения частоты. Испускание электронов металлом обусловлено попаданием на него квантов света. Примем к сведению, что соотношение энергия/частота имеет фиксированное значение. А потому, чем выше частота, тем больше становится энергия и соответственно возрастает количество энергии, передаваемой квантом света электрону при столкновении с ним. Поэтому не удивительно, что при увеличении частоты света энергия испускаемых электронов также увеличивается. Ничуть не сложнее оказалось объяснить другие, не менее загадочные явления. Эйнштейну удалось элементарно просто описать фотоэлектрический эффект, перед чем спасовала даже классическая теория Максвелла. Следствия из предложенной Эйнштейном теоретической интерпретации фотоэлектрического эффекта значительно превосходили объем известных к тому времени экспериментальных фактов.
Таково вкратце содержание статьи Эйнштейна. Давайте же в завершение этой главы заглянем в будущее.
Идея Эйнштейна не была встречена физиками с распростертыми объятиями. Наоборот, Планк и другие видные ученые с легкостью нашли серьезнейшие возражения против гипотезы квантов света. К счастью, идея квантов получила у Эйнштейна дальнейшее развитие. Внутренняя теплота отождествлялась с энергией движения: в газах — сталкивающихся частиц, в твердых телах — внутренних колебаний. Эта теория считалась удачной и тем не менее в конце прошлого века встретилась со значительными трудностями, угрожавшими ее существованию. Эйнштейн спас ее в 1907 г. Он утверждал, что, если принять всерьез идею Планка, — он полагал это необходимым, — ее следует применять к всем без исключения разновидностям внутренних колебаний. Эйнштейн показал, что самые значительные трудности вполне преодолимы, если принять гипотезу о существовании квантов. В частности, ему удалось устранить несоответствия в экспериментальных данных, связанных с измерением внутренних тепловых колебаний в твердых телах. Кроме того, Эйнштейн теоретическим путем вывел некоторые неожиданные соотношения, получившие впоследствии экспериментальное подтверждение.
Понятие кванта, развитое Эйнштейном, лишь выглядело опасным, но при рассмотрении материальных тел было вполне терпимым. Вот почему и другие физики постепенно стали воспринимать идею Планка достаточно серьезно и даже начали вслед за Эйнштейном довольно успешно ее применять. Тем не менее введенные Эйнштейном кванты света не вызвали у них никакого энтузиазма. Напрасно экспериментаторы пытались проверить его формулу фотоэлектрического эффекта — опыты были столь сложны, что даже в 1913 г. их результаты все еще были недостаточно убедительными. 1913 г. упомянут не случайно. Дело в том, что именно в 1913 г. возник вопрос о приеме Эйнштейна в Прусскую академию наук, и Планку в составе группы видных ученых представился случай авторитетно оценить работу Эйнштейна. С энтузиазмом отзываясь о достижениях Эйнштейна, они защищали идею квантов света и осторожно призывали не нападать на смелого новатора, если в конце концов окажется, что Эйнштейн зашел в своих рассуждениях чересчур далеко.
После того как американскому экспериментатору Роберту Милликену удалось с высокой точностью измерить заряд электрона, он жаждал найти и покорить новые вершины и решил взяться за исследование фотоэлектрического эффекта. Милликен посвятил этому 10 лет. В его намерения входило раз и навсегда показать, что неправдоподобная теория Эйнштейна расходилась с экспериментальными данными. К своему изумлению, он, наоборот, обнаружил полное соответствие с ней. И все же, опубликовав в 1916 г. окончательные результаты своих экспериментов, Милликен все еще не мог заставить себя принять революционную идею квантов света. Тем не менее становилось все более очевидным, что к квантам света следует относиться серьезно, несмотря на всю необычность возникающих в связи с этим проблем. Становилось также очевидным, что еще в 1905 г. в Бюро патентов Эйнштейну многое открылось куда более отчетливо, чем кому бы то ни было из его современников. Настолько отчетливо выявилась необходимость признать существование частицы света — кванта, что даже потребовалось дать этой частице имя. Ее назвали фотоном. Однако произошло это лет через двадцать после возникновения самой гипотезы. Милликен получил Нобелевскую премию в 1923 г. А в 1921 г., когда Нобелевская премия была присуждена Эйнштейну, конкретно отмечалась лишь одна его работа, а именно, открытие закона фотоэлектрического эффекта.
Любопытно в заключение отметить, что фотоэлектрический эффект был открыт Генрихом Герцем в ходе тех самых экспериментов, которые подтвердили предсказание Максвелла и побудили Герца провозгласить истинность волновой теории света.