Одним из физических процессов, сопровождающих атомный взрыв, является возникновение и действие ударной волны. При лавинообразной цепной реакции взрывного типа атомный заряд и его оболочка мгновенно превращаются в раскаленную массу с температурой в несколько миллионов градусов. Внутри образующегося при этом огненного шара возникает сверхвысокое давление, вследствие чего он моментально расширяется, сжимая окружающую среду и придавая ей поступательное движение. В результате во все стороны от места взрыва со сверхзвуковой скоростью распространяется ударная волна, обладающая большой разрушительной силой.
В зависимости от среды, в которой взорвался атомный заряд, развитие ударной волны происходит по-разному. При воздушном взрыве волна представляет собой распространяющуюся область сжатого воздуха, имеющего наибольшее давление на ее внешней границе. От этой границы, называемой фронтом ударной волны, по направлению к центру взрыва давление (а следовательно, и плотность) воздуха постепенно уменьшается до атмосферного. За зоной сжатия (область сжатого слоя воздуха) следует зона разрежения, после которой давление снова выравнивается и становится таким же, как и в невозмущенной атмосфере.
Скорость ударной волны в момент ее возникновения чрезвычайно велика. Вблизи центра взрыва атомной бомбы (эквивалентной 20 000 тонн тротила) она превышает 4000 метров в секунду. Однако при дальнейшем распространении скорость волны быстро снижается, приближаясь к скорости звука (340 метров в секунду).
Движущаяся со сверхзвуковой скоростью ударная волна подвергает сжатию все бóльшую и бóльшую массу воздуха, находящегося на пути ее распространения. Поэтому длина волны (толщина зоны сжатия) непрерывно увеличивается. Одновременно возрастает и продолжительность ее действия. Вместе с тем давление в зоне сжатия падает, разрушительная сила атомного взрыва уменьшается. Так, на расстоянии 600 метров от эпицентра взрыва атомной бомбы среднего калибра избыточное давление достигает 1,4 кг/см2 при продолжительности действия 0,5 секунды. На удалении же в 2200 метров оно составляет только 0,18 кг/см2, зато продолжительность действия волны увеличивается до 1 секунды, т. е. в два раза.
Частицы воздуха, смещенные со своего прежнего места в зону сжатия, постепенно замедляют скорость и под влиянием меньшего давления в зоне разрежения движутся (отсасываются) обратно. Таким образом, после прохождения волны сжатия и волны разрежения давление в воздушной среде достигает прежней величины, т. е. становится равным атмосферному.
Поражающее действие воздушной ударной волны зависит от мощности атомного заряда, высоты, на которой он взорван, расстояния от эпицентра взрыва, рельефа местности, формы, размеров и прочности объекта, его положения относительно фронта волны.
Если взрыв произошел в воздухе над землей или водной поверхностью, происходит своеобразное явление, характерное для взрывов большой мощности. До достижения поверхности воды (земли) ударная волна распространяется концентрически во все стороны в виде все увеличивающейся шаровой поверхности. Под проекцией точки взрыва, называемой эпицентром, падающая вниз ударная волна достигнет земли и отразится от нее. Вследствие резкой остановки сжатого слоя воздуха, двигавшегося со сверхзвуковой скоростью, давление и плотность его в ударной волне резко возрастают и превышают первоначальные величины в два с лишним раза. Так как за зоной сжатия падающей волны следует зона разрежения, то наличие резкого перехода в давлениях вызывает движение остановившегося на мгновение сжатого слоя воздуха в обратном направлении, т. е. вверх и в стороны.
Примерно до расстояния, равного высоте взрыва заряда, падающая и отраженная ударные волны будут иметь почти одинаковую скорость и общую точку соприкосновения, двигаясь одна за другой. Затем отраженная ударная волна вследствие прохождения ее в более уплотненной воздушной среде (к тому же немного разогретой идущей впереди падающей волной) будет двигаться быстрее и станет наползать с тыльной стороны на зону сжатия падающей волны, а потом сольется с ней. С этого момента у поверхности воды (земли) образуется третья волна — головная ударная волна. Она имеет вертикальный фронт и давление больше, чем в каждой из волн, ее образовавших. Поэтому разрушающее действие атомного взрыва в дальней зоне будет определяться главным образом мощью головной ударной волны.
Можно сказать, что при воздушном взрыве падающая ударная волна, постепенно теряющая свою силу, получает как бы дополнительный разовый импульс от догнавшей ее отраженной волны. Наибольшие по площади разрушения зданий городского типа ударная волна производит, например, при взрыве атомной бомбы малого и среднего калибра на высотах от 400 до 600 метров.
Таким образом, в ближней зоне поражающее действие будет нанесено кораблям и береговым объектам главным образом отраженной ударной волной, а в дальней зоне — головной волной. Последняя возникает с расстояния, равного высоте взрыва, и все время увеличивается по высоте. Практически все наземные объекты и корабли в радиусе разрушения будут полностью накрыты головной ударной волной.
При наземном взрыве на образование воздушной ударной волны существенное влияние оказывает поверхность земли. Энергия взрыва, которая расходовалась на создание сферической ударной волны при воздушном взрыве, здесь тратится на образование ударной волны только в одной верхней полусфере, так как нижнюю полусферу занимает среда другой плотности — земля. Следовательно, та же энергия взрыва расходуется на воздушную среду, в два раза меньшую по объему, и по существу сила наземного атомного взрыва удваивается. По этой причине давление во фронте ударной волны наземного взрыва в полтора–два раза больше, чем в падающей волне воздушного взрыва.
Ударная волна наземного взрыва распространяется параллельно поверхности земли (фронт ее вертикальный) и постепенно затухает. Раскаленные газы из огненного шара растекаются по поверхности земли в виде клина, срезающего и сжигающего все объекты на своем пути.
При надводном взрыве образуется воздушная ударная волна с такими же параметрами, как и при наземном взрыве. Одновременно в прилегающих слоях воды возникнет подводная ударная волна и морские поверхностные волны. Для надводных кораблей в этом случае более опасна воздушная ударная волна, радиус разрушения которой будет больше, чем у слабой подводной ударной волны.
При встрече ударной волны с преградой возникает так называемое давление отражения, превышающее давление в свободном воздухе в два раза и более (в зависимости от давления во фронте ударной волны). Повышение давления в этом случае объясняется тем же явлением, что и при образовании отраженной ударной волны.
В условиях военно-морских баз, которые в большинстве случаев создаются в закрытых от ветров бухтах, имеющих удобные якорные стоянки, взрыв атомной бомбы может причинить большие повреждения кораблям, а также причальным сооружениям и объектам, находящимся на берегах этих бухт. Наоборот, объекты, расположенные на обратных скатах окружающих холмов, в ущельях и ложбинах, будут в известной степени экранированы от ударной волны и испытают лишь значительно ослабленное ее воздействие.
При взрыве атомной бомбы над г. Хиросима, например, разрушения были на площади около десяти квадратных километров, а в г. Нагасаки, где часть городских построек была экранирована холмами, здания и сооружения были разрушены на площади в четыре квадратных километра.
При взрыве атомной бомбы над водой ударная волна распространяется главным образом в воздухе. Как показали испытания американцами атомных бомб в районе атолла Бикини в 1946 году, такая волна может поражать военные корабли различных классов примерно на следующих расстояниях от эпицентра взрыва: вывод корабля из строя или очень тяжелые повреждения — 800–1000 метров; сильные повреждения (надстроек, котлов и оборудования) — 1000–1150 метров; средние повреждения — до 1330 метров; легкие повреждения — до 1665 метров.
Естественно, что степень поражения во многом зависит и от класса корабля. Например, линейные корабли и тяжелые крейсера оказались устойчивыми даже на сравнительно близких расстояниях от эпицентра взрыва. Два линкора, находившихся на удалении 500–580 метров, имели вмятины обшивки, пробоины в верхней палубе, разрушения надстроек и паровых котлов (ударная волна проникла через трубы), но остались на плаву. Примерно такие же повреждения получил на расстоянии в 1400 метров один тяжелый крейсер. Артиллерия в башнях не пострадала. Третий линейный корабль, расположенный в 600 метрах, вообще не имел серьезных повреждений.
Корабли с легкой конструкцией корпуса и толщиной обшивки борта до 10 миллиметров подверглись более сильному воздействию. Так, авианосец водоизмещением 10 000 тонн, стоявший в 800 метрах от эпицентра взрыва, имел вмятины обшивки глубиной до метра, разрушенные палубы и течь корпуса. От повреждений ударной волной у атолла Бикини затонули 5 кораблей-мишеней из 77, находившихся на различных расстояниях от эпицентра взрыва (в том числе крейсер, два эскадренных миноносца и два военных транспорта).
При воздушном и надводном взрывах ударная волна действует особенно сильно на надводную часть кораблей. Двигающиеся с большой скоростью сжатые массы воздуха в ударной волне можно уподобить летящему твердому телу, которое при встрече с преградой мгновенно производит резкий динамический удар. Поэтому современные корабли, обладающие развитой системой надстроек и высоким бортом, будут испытывать сильные динамические нагрузки. Для того чтобы представить величину этого воздействия, приведем следующий пример. Наибольшее зафиксированное давление в шквалах урагана на земле достигало 130 кг/м2, или 0,013 кг/см2. При воздушном атомном взрыве на расстоянии 1700 метров давление во фронте ударной волны составит около 0,22 кг/см2, т. е. почти в 17 раз превысит давление ветра при самом сильном урагане. Отсюда понятна опасность опрокидывания от воздействия ударной волны кораблей, обладающих большой парусностью и малой остойчивостью. Известно, что суда дальнего плавания должны выдерживать давление ветра на боковую поверхность не менее 210 кг/м2, или 0,021 кг/см2, т. е. более чем в полтора раза превышающее максимальное давление при самых сильных ураганах. При взрыве атомной бомбы такое давление будет примерно на удалении трех километров от эпицентра.
Воздушная ударная волна может поражать людей, не защищенных надежными укрытиями, непосредственно и косвенно (повреждения от падающих обломков, конструкций зданий, камней и т. п.). В корабельных условиях действие воздушной ударной волны может особенно сказаться на личном составе открытых боевых постов. Возможны поражения от прямого действия волны, травмы при ударах о стены надстроек, палубу и даже снос за борт. Однако, если своевременно укрыться за прочные стенки, орудийные щиты и башни, а на берегу — за любую надежную преграду (ров, окоп, насыпь, неровность местности и т. п.), степень поражения ударной волной значительно уменьшится.
С проходом через место нахождения корабля зоны сжатия неизбежен прорыв сжатого воздуха во внутренние негерметизированные помещения (через открытые люки, горловины, вентиляционные каналы и т. д.), что может быть также причиной разрушения приборов и поражения личного состава.
Атомный взрыв в воде обладает своими характерными особенностями. При этом взрыве образуется мощная подводная ударная волна. По величине давления и скорости распространения она намного превосходит воздушную ударную волну. Объясняется это тем, что взрыв происходит в среде, которая в 800 раз плотнее воздушной. В среде большой плотности, плохо поддающейся сжатию, энергия взрыва передается на расстояние в несколько раз быстрее и с меньшими потерями.
Расширение парогазового облака взрыва в воде приводит к образованию подводной ударной волны. Достигнув свободной поверхности воды, ударная волна отражается от нее и в виде волны разрежения распространяется вниз и в стороны. Волна разрежения следует за фронтом подводной ударной волны и срезает часть высокого давления в зоне сжатия, расположенной вблизи поверхности раздела вода — воздух. Это явление проявляется тем сильнее, чем меньше глубина взрыва заряда и чем дальше расположена та или иная точка поверхности от места взрыва. Можно сказать, что подводная ударная волна, достигая свободной поверхности воды, по существу сама себя гасит. Поэтому, несмотря на то что давление во фронте этой ударной волны в десятки раз больше, чем в воздушной, радиусы повреждений и разрушений кораблей при подводном взрыве увеличиваются не столь значительно. Для кораблей с противоминной защитой бóльшую угрозу может представить воздушная ударная волна, чем подводная.
С увеличением глубины точки взрыва (но лишь до некоторых пределов) бóльшая часть энергии атомного заряда расходуется на образование ударной волны и радиус уничтожения кораблей увеличивается. При взрыве на небольшой глубине парогазовый пузырь прорывается в эпицентре на поверхность и мощность поражающего действия подводной ударной волны снижается.
Характер повреждений кораблей при подводном атомном взрыве в зависимости от расстояния их от центра взрыва и глубины, на которой он произошел, приведены в нижеследующей таблице.
Характер повреждений | Расстояния от центра взрыва | |
---|---|---|
взрыв на небольшой глубине | взрыв на глубине 300 м | |
Сильные повреждения или выход корабля из строя | 500–600 м | 660 м |
Значительные повреждения (котлов, главных машин) | 700–850 м | 1000–1500 м |
Легкие повреждения | До 1100 м | Более 1500 м |
Эти данные надо считать ориентировочными. Имеется в виду, что была взорвана атомная бомба с тротиловым эквивалентом примерно 20 000 тонн.
При подводном взрыве, как известно, образуются морские поверхностные волны высотой до двадцати пяти и более метров. Эти волны, расходясь концентрическими кругами от эпицентра взрыва, могут нанести серьезные повреждения кораблям (особенно потерявшим ход и имеющим повреждения), а также причальным сооружениям баз и береговым объектам, расположенным у уреза воды. Такие волны обладают большим запасом энергии.
При испытании американцами атомной бомбы в лагуне Бикини из 85 кораблей, подвергавшихся непосредственному воздействию подводной ударной волны, затонуло 10. Поверхностными волнами было выброшено на берег 2 десантных корабля (водоизмещением более 3000 тонн) и 6 десантных катеров.
Ударная волна — самый мощный поражающий фактор атомного взрыва. Однако воздействие ее на корабли и береговые объекты можно значительно уменьшить умелой и четкой организацией противоатомной защиты. Для этой цели с успехом могут применяться известные методы защиты от обычных взрывчатых веществ — усиление прочности военных объектов, боевых средств и вооружения, рассредоточение их, использование естественных и искусственных укрытий. Воины Советской Армии и Флота обязаны настойчиво совершенствовать свою боевую выучку, твердо знать свойства атомного оружия и средства защиты от него. Они всегда должны быть в состоянии полной готовности к ведению активных, решительных действий против любого агрессора, обладающего любым оружием. Высокое боевое мастерство, непреклонная воля к победе, способность стойко переносить трудности — эти качества надо настойчиво воспитывать у каждого советского военного моряка.