За атомы, против невесомых материй

В годы, предшествовавшие постройке лаборатории, М. Ломоносовым были выполнены фундаментальные исследования, оцененные по достоинству лишь много позднее. К ним относятся три диссертации: «О нечувствительных физических частичках, составляющих тела природы», «О причине теплоты и холода» и «Попытка теории упругой силы воздуха».

Первая работа посвящена атомной теории. Это уже не умозрительные атомы Демокрита. М. Ломоносов утверждает, что все тела природы состоят из очень маленьких материальных частиц, называемых элементами и корпускулами. Элементы — простейшие частицы материи, то что мы теперь называем атомами. Соединяясь вместе, элементы образуют более сложные частицы — корпускулы, или, как говорят в наши дни, молекулы.

М. Ломоносов считал, что такие свойства тел, как «цвет, запах, удельный вес, определяются качеством, родом мельчайших частиц, их взаимным расположением и движением». В свою очередь, движение и взаимодействие мельчайших частиц подчиняется законам механики, а последние выражаются математическими уравнениями. Опираясь на эту связь, М. Ломоносов ставит необычную для своего времени задачу: создание «математической химии». Решить ее окончательно удастся, вероятно, лишь в наши дни.

Не менее интересно сочинение — «Попытка теории упругой силы воздуха», в котором он на основе атомного учения объясняет, почему газы сопротивляются сжатию. «Очевидно, — пишет он, — что отдельные атомы воздуха, взаимно приблизившись, сталкиваются с ближайшими, вторые атомы друг от друга отпрыгнули, ударились в более близкие к ним и снова отскочили; таким образом, непрерывно отталкиваемые друг от друга частыми взаимными толчками, они стремятся рассеяться во все стороны».

Эти бесчисленные удары частиц газа, складываясь вместе, и создают силу, ощущаемую нами, когда мы пытаемся сжать газ. Упругость газа, по Ломоносову, — свойство, присущее только коллективу частиц, обусловленное их взаимодействием.

Если газ сжать очень сильно, то, как он указывает, свободное от частиц пространство будет составлять лишь небольшую часть объема, занимаемого газом. Большая же часть пространства придется на долю самих несжимаемых частиц. При этих условиях газ должен оказывать большее сопротивление дальнейшему уменьшению объема, чем газ несжатый. Лишь сто лет спустя ученые вновь открыли эту важную особенность газов и теперь учитывают ее при всех расчетах. Одним из центральных вопросов науки в то время был вопрос о природе теплоты.

В наши дни мы заставляем служить себе огромные запасы энергии, заложенные в атомных ядрах. Во времена Ломоносова люди искали способы использования для той же цели запасов химической энергии, выделяющейся при горении в форме теплоты. Вопрос о природе теплоты тогда был настолько важен, насколько актуален сейчас вопрос о природе ядерных сил и ядерной энергии.

Что же говорили по этому поводу в те дни ученые?

Для ответа на затруднительные вопросы наука располагала тогда целым набором так называемых «невесомых материй». Существовала «невесомая материя упругости», «материя холода», «тепловая материя» и даже «невесомая материя тяготения».

Вас интересует, почему вода в чайнике, поставленном на огонь, нагревается. Ответ готов: невесомая тепловая материя, выделяемая огнем, входит в воду и нагревает ее. Если чайник с горячей водой поставить на лед, то в него войдет материя холода и вода охладится.

Хотя такого рода объяснения не помогают понять истинную причину тех или иных природных явлений, все же во времена М. Ломоносова, да и много лет позже, существование «тепловой материи» принималось без возражений почти всеми учеными. Так объясняли тепловые явления с университетских кафедр.

М. Ломоносов пришел к глубокому убеждению в произвольности представлений о существовании каких-то невесомых материй. В январе 1745 года он представил в Академию наук свои размышления «О причине теплоты и холода».

«Очень хорошо известно, — говорил он академикам, — что теплота возбуждается движением: от взаимного трения руки согреваются; дерево загорается пламенем; при ударе кремня об огниво появляются искры; железо накаливается докрасна от проковывания частыми и сильными ударами, а если их прекратить, то теплота уменьшается и произведенный огонь тухнет».

Но «тела могут двигаться двояким движением — общим, при котором все тело непрерывно меняет свое место при покоящихся друг относительно друга частицах, и внутренним, которое есть перемена места нечувствительных частичек материи». Какое же из этих движений производит теплоту?

«Так как, — заключает Ломоносов, — при самом сильном общем движении часто не наблюдается теплоты, а при отсутствии такого движения наблюдается большая теплота, то, следовательно, теплота состоит во внутреннем движении материи».

Итак, теплота — это движение тех самых частичек, из которых состоят все тела. Чем выше температура, тем быстрее движутся частицы. Но почему же мы ни просто глазом, ни с помощью микроскопа не замечаем никакого движения в нагретых телах?

И это М. Ломоносов не оставляет без ответа. «Ведь нельзя отрицать, — говорит он, — существования движения там, где его не видно: кто, в самом деле, будет отрицать, что, когда через лес проносится сильный ветер, то листья и сучья деревьев колышутся, хотя бы при рассматривании издали глаз не видел движения. Точно так же как здесь вследствие расстояния, так и в теплых телах вследствие малости частичек движущейся материи колебание ускользает от взора».

В диссертации М. Ломоносова встречаются мысли, поражающие своей прозорливостью. «Нельзя назвать, — пишет он, — например, какую-нибудь определенную скорость движения, чтобы мысленно нельзя было представить себе большую». Поэтому и температура тела может быть очень высокой. Мы знаем сейчас, что внутри звезд температура достигает миллионов градусов.

«Наоборот, — добавляет М. Ломоносов, — то же самое движение может настолько уменьшиться, что, наконец, тело достигнет совершенного покоя, и никакое дальнейшее уменьшение движения невозможно. Следовательно, по необходимости должна существовать наибольшая и последняя степень холода…»

Это заключение совпадает с современным представлением о том, что при абсолютном нуле, равном –273,2 градуса Цельсия, прекращается беспорядочное тепловое движение молекул.

Сочинение «О причине теплоты и холода» вызвало оживленные отклики. Подавляющее большинство ученых не поняли М. Ломоносова и не согласились с ним. Слишком революционными были его мысли.

Из современников только гениальный математик Л. Эйлер оценил значение физических исследований М. Ломоносова. Характеризуя их, Л. Эйлер писал в Санкт-Петербургскую академию наук: «Все сии диссертации не токмо хороши, но и весьма превосходны, ибо он пишет о материях (вопросах) физических и химических весьма нужных, которые поныне не знали и истолковать не могли самые остроумные люди… Желать должно, чтобы и другие академии в состоянии были произвести такие открытия, какие показал г-н Ломоносов».

Работы М. Ломоносова не были продолжены его современниками не потому, что они их не знали, а потому, что заложенные в них идеи опережали тогдашнюю науку более чем на сто лет.

Лучший судья всех научных теорий — время подтвердило правильность мыслей М. Ломоносова.

Загрузка...