Глава 19. Экскреция и осморегуляция

Экскреция и осморегуляция — два важных гомеостатических процесса, характерные для живых организмов. Каждый из этих процессов в той или иной мере способствует сохранению постоянства внутренней среды организма в условиях изменяющейся внешней среды.

Экскреция — это выведение из организма ненужных ему продуктов обмена ("отходов"), накопление которых мешало бы поддержанию стационарного состояния внутренней среды. Из организма выводятся также многие вещества, которые не являются отходами, и вещества, не образующиеся в самом организме; в первом случае речь идет о секреции, а во втором — о дефекации. Чтобы отдифференцировать эти последние функции от экскреции, следует дать им четкое определение.

Секреция — это пассивное или активное выделение молекул из клеток во внеклеточное пространство (кровеносное русло, пищеварительный тракт) или в окружающую среду. Эти молекулы образуются в самом организме, как, например, гормоны или ферменты, поэтому их следует рассматривать как продукты метаболизма, но при этом они не являются отходами. Как мы увидим позже, секреция может быть составной частью процесса экскреции.

Дефекация — это удаление из организма балластных веществ (главным образом непереваренных остатков пищи), которые никогда не участвовали в метаболизме.

19.1. Значение экскреции и осморегуляции

Процессы экскреции и осморегуляции выполняют ряд функций, которые можно описать следующим образом.

1. Удаление отходов метаболизма, которые нередко бывают побочными продуктами главных метаболических путей. Оно необходимо для сохранения нужного равновесия биохимических реакций. Многие реакции обратимы, а по закону действующих масс направление реакции определяется лишь относительными концентрациями реагирующих веществ и продуктов реакции. Например, в фермента тивной реакции непрерывное образование жизненно необходимого метаболита С обеспечивается удалением побочного продукта D, сдвигающим равновесие в сторону прямой реакции.

2. Удаление таких отходов, которые в случае накопления отрицательно влияли бы на метаболическую активность организма. Многие из этих веществ токсичны, так как подавляют активность ферментов.

3. Регуляция ионного состава жидкостей тела. В водных средах организма соли ведут себя как электролиты и подвергаются диссоциации. Например, поглощаемый с пищей NaCl в жидкостях тела находится в виде ионов натрия (Na+) и хлора (С1-). Если концентрации этих и других ионов не будут удерживаться в узких пределах, многие физиологические и биохимические процессы могут быть нарушены; например, снижение концентрации Na+ приводит к ухудшению нервной координации. Помимо Na+ и СГ важную роль в организме играют ионы К+, Mg2+, Са2+ , Fe2+, Н+, I-, РО3-4 и НСО3-, концентрация которых должна жестко регулироваться, поскольку они участвуют во многих процессах, включая работу ферментов, синтез белка, образование гормонов и дыхательных пигментов, проницаемость мембран, электрическую активность и мышечное сокращение. Их влияние на содержание воды, осмотическое давление и рН жидкостей тела будет рассмотрено позже.

4. Регуляция содержания воды в жидкостях тела. Содержание воды в жидкостях тела и его регуляция — одна из основных проблем, с которыми сталкивались организмы при колонизации многих экологических ниш на планете. В ходе решения этих проблем сформировался ряд важнейших структурных и функциональных приспособлений. Механизмы, обеспечивающие получение воды, ее сохранение и выведение, весьма разнообразны, но все они, как мы увидим позже, имеют огромное значение для поддержания осмотического давления и объема жидкостей тела на стабильном уровне. Прежде чем перейти к рассмотрению этих механизмов, необходимо подчеркнуть, что осмотическое давление жидкостей тела зависит от количественного соотношения между растворенными веществами и растворителем, т. е. водой. Регулирование относительных концентраций растворенных веществ и воды называется осморегуляцией.

5. Регуляция концентрации водородных ионов в жидкостях тела. Природа рН и методы его измерения описаны в Приложении 1.1.5, но механизмы экскреции ионов, оказывающих большое влияние на рН (Н+ и НСО3-), будут рассмотрены в настоящей главе. Например, рН мочи может колебаться от 4,5 до 8,0, благодаря чему рН жидкостей тела поддерживается на достаточно постоянном уровне.

19.1.1. Продукты, подлежащие экскреции

Важнейшие экскреты сведены в табл. 19.1. Как видно из таблицы, далеко не все они являются отходами, т. е. веществами, которые не могут быть дальше использованы организмом. В действительности многие из них до или после выведения из организма еще могут служить определенным целям.

Таблица 19.1. Основные продукты, подлежащие экскреции, их источники, функции и дальнейшая судьба

19.1.2. Экскреция у растений

У растений экскреция не связана с таким множеством проблем, как у животных. Это объясняется фундаментальными различиями в физиологии и образе жизни растений и животных. Растения являются первичными продуцентами и синтезируют в нужном количестве все необходимые им органические соединения. Например, в растениях образуется лишь столько белка, сколько его необходимо в данный момент. Они никогда не синтезируют белок в избытке и поэтому выделяют очень мало азотистых отходов, образующихся при расщеплении белков. Если же белки расщепляются до аминокислот, то последние могут быть использованы для синтеза новых белков. Три конечных продукта, образующиеся в ходе определенных обменных процессов, — О2, СО2 и вода — используются у растений как исходные вещества для других реакций; это в особенности относится к СО2 и воде. Единственный газообразный продукт, выделяемый растениями в большом количестве, — это молекулярный кислород. На свету в растении образуется намного больше О2, чем ему нужно для дыхания, и этот избыток кислорода переходит в окружающую среду путем диффузии.

Многие органические отходы метаболизма откладываются у растений в омертвевших постоянных тканях (таких, как ядровая древесина), а также в листьях или коре, которые периодически сбрасываются. Многолетние растения состоят в основном из мертвых тканей. Экскреты скапливаются в этих тканях и уже не могут оказывать вредного воздействия на активность живых тканей. Аналогичным образом могут накапливаться многие минеральные соли, поглощаемые растением в виде ионов, накопление которых связано с разным использованием катионов и анионов. Органические кислоты, способные нанести вред растению, часто связываются с избыточными катионами и выпадают в виде нерастворимых кристаллов, которые могут сохраняться в клетках растения, не причиняя им вреда. Например, ионы кальция и сульфата одновременно поглощаются растением, но сульфат сразу же используется в синтезе аминокислот, а кальций остается в избытке. Ионы Са2+ легко реагируют со щавелевой и пектиновой кислотами, образуя с ними безвредные нерастворимые продукты — оксалат и пектат кальция. Другие ионы, такие как железо и марганец, а также органические кислоты вроде танниновой и никотиновой поступают в листья, где они накапливаются, придавая листьям характерную окраску перед их опадением. Подлежащие удалению вещества элиминируются не только с листвой, но и с лепестками, плодами и семенами, хотя экскреция не является главной функцией этих образований. У водных растений основная масса отходов метаболизма переходит путем диффузии прямо в окружающую воду.

19.1.3. Экскреция у животных

Потенциальным местом экскреции может быть любая проницаемая поверхность, которая напрямую связывает участок, содержащий экскрет, с внешней средой. К таким поверхностям относятся наружная мембрана одноклеточных организмов, эпидермис низших беспозвоночных, трахеи членистоногих, жабры и кожа рыб и амфибий, легкие и кожа высших позвоночных. Клетки организмов, имеющих относительно простое строение, обычно прямо контактируют с окружающей средой, и их экскреты сразу же удаляются путем диффузии. По мере усложнения организации животных у них развиваются выделительные органы, осуществляющие выведение отходов из организма в окружающую среду через протоки и поры прямым или непрямым путем. У высших позвоночных имеются специализированные органы выделения, к которым отходы метаболизма доставляются из всех клеток кровеносной системой. Наиболее важные органы выделения у таких животных — это кожа, легкие, печень и почки. В настоящем разделе мы рассмотрим только роль первых трех органов.

Кожа. Вода, мочевина и соли активно выводятся из кожных капилляров в протоки потовых желез. При выходе пота на поверхность кожи вода испаряется, что приводит к потере тепла и способствует терморегуляции.

Легкие. СО2 и водяные пары диффундируют с влажной поверхности легочных альвеол. Легкие у млекопитающих — единственный орган выделения СО2. Часть воды, испаряющейся в легких, представляет собой метаболическую воду, т. е. продукт клеточного дыхания, который можно было бы считать экскретом, но истинное происхождение этой воды не так уж важно ввиду большого общего объема воды, содержащейся в организме.

Печень. Учитывая многочисленные гомеостатические функции печени, описанные в разд. 18.5.2, вряд ли следует удивляться тому, что в число этих функций входит и экскреция. Выводимыми продуктами являются желчные пигменты, образующиеся при расщеплении гемоглобина старых эритроцитов. В составе желчи эти пигменты поступают в двенадцатиперстную кишку и выходят из организма вместе с калом, которому они придают характерный цвет. Но наиболее важная выделительная функция печени состоит в переработке отходов азотистого обмена, образующихся при дезаминировании избыточных аминокислот (разд. 18.5.2).

19.2. Азотистые экскреты

Азотистые продукты, подлежащие экскреции, образуются при расщеплении белков и нуклеиновых кислот. Непосредственный продукт дезаминирования белков — аммиак (суть этой реакции описана в разд. 18.5.2). Аммиак может выделяться прямо в окружающую среду или превращаться в такие продукты, как мочевина и мочевая кислота, различающиеся по растворимости и токсичности (рис. 19.1). Конкретно природа выделяемого продукта определяется метаболическими возможностями организма (наличием соответствующих ферментов), доступностью для организма воды (т. е. средой его обитания) и степенью контроля над ее потерей организмом.

Рис. 19.1. Химическая структура трёх важнейших азотистых экскретов


В соответствии с природой главного азотистого экскрета всех животных можно разделить на три основные группы. Как видно из табл. 19.2, существует определенная корреляция между природой выводимого вещества и средой обитания животного на стадии эмбриона, личинки и взрослой особи. Эта корреляция может быть суммирована следующим образом:

Таблица 19.2. Взаимоотношения между азотистым экскретом и стадиями жизненного цикла у различных групп животных


19.2.1. Аммиак

Аммиак — чрезвычайно растворимое низкомолекулярное соединение (мол. масса 17), легко диффундирующее в воде. Он токсичен для животных и не должен накапливаться в организме. Млекопитающие очень чувствительны к аммиаку и не могут переносить его в концентрациях выше 0,02 мг на 100 мл крови. У большинства водных организмов (от простейших до амфибий) аммиак благодаря своей высокой растворимости быстро выделяется в виде ионов аммония (NH+4), не успевая достигнуть токсичной концентрации.

19.2.2. Мочевина

Мочевина образуется в печени позвоночных в результате взаимодействия аммиака, отщепляющегося при дезаминировании, и углекислоты, образующейся в процессе дыхания. Синтез мочевины происходит в ходе циклического процесса, называемого орнитииовым циклом. Она менее растворима в воде и менее токсична, чем аммиак, и является главным азотистым экскретом у пластиножаберных и некоторых костистых рыб, взрослых амфибий и млекопитающих. Нормальное содержание мочевины в крови млекопитающих составляет 2,5-6,0 ммоль/л. Превращение головастика в лягушку сопровождается переходом от экскреции аммиака (аммониотелии) к экскреции мочевины (уреотелии).

19.2.3. Мочевая кислота

Мочевая кислота и ее соли — идеальные азотистые экскреты для наземных животных, а для организмов, откладывающих клейдоические яйца (заключенные в оболочку, разд. 19.4.8), их образование является обязательным, так как они сочетают высокое содержание азота с низкой токсичностью. Эти вещества могут храниться в клетках, тканях и органах, не оказывая никаких токсических или вредных осморегуляторных эффектов, и для их экскреции требуется минимальное количество воды. При увеличении содержания мочевой кислоты в тканях она выпадает в виде твердого осадка. Более подробно биохимический механизм образования мочевой кислоты описан в разд. 19.4.5. В виде мочевой кислоты и урата аммония выводятся азотистые продукты обмена у насекомых, ящериц, змей и птиц. Человек, обезьяны и (в связи с особым дефектом почек) далматский дог также выделяют небольшие количества мочевой кислоты, однако у них она образуется только при расщеплении нуклеиновых кислот, но не белков. В норме содержание мочевой кислоты в крови человека составляет 3мг на 100 мл, а экскреция ее с мочой — около 1 г в сутки.

19.2.4. Другие азотистые экскреты

Помимо уже описанных продуктов у некоторых морских рыб при расщеплении избыточного белка образуется еще одно вещество-триметиламин-оксид.

Триметиламиноксид

Синтез этого вещества происходит путем присоединения метальных групп к аммиаку, отщепляющемуся при дезаминировании, и последующего окисления полученного продукта. Триметиламиноксид придает рыбе ее характерный запах.

Единственным, кроме белков, источником азотистых отходов являются нуклеиновые кислоты. Такие продукты питания, как дрожжи, печень и почки, содержат большое количество мелких клеток и поэтому богаты клеточными ядрами. При расщеплении компонентов этих пищевых продуктов образуются значительные количества оснований нуклеиновых кислот-пуринов и пиримидинов. У паукообразных и некоторых млекопитающих пуриновые основания — аденин и гуанин — выделяются в неизмененном виде, но у других организмов они расщепляются с образованием мочевой кислоты, как будет описано дальше.

Аденин и гуанин сходны по строению с мочевой кислотой, тогда как структура пиримидиновых оснований — цитозина, тимина и урацила — обусловливает их расщепление с образованием аммиака и аминокислоты. Аминокислота подвергается затем дезаминированию, и конечный азотистый продукт выводится в форме, характерной для данного организма. У насекомых, наземных рептилий, птиц, человека, обезьян и далматского дога пурины выделяются в виде мочевой кислоты. Однако у большинства млекопитающих в печени есть фермент уриказа, катализирующий превращение мочевой кислоты в аллантоин, который и выделяется. Двукрылые насекомые также выделяют аллантоин. У некоторых костистых рыб аллантоин окисляется в аллантоевую кислоту, и последняя экскретируется.

К числу других азотистых продуктов обмена относятся креатин и его производное креатинин. Креатин образуется в печени позвоночных из аминокислот аргинина, метионина и глицина. Около 2% всего креатина, имеющегося в организме, за сутки выводится в виде креатинина. Часть креатина фосфорилируется в мышцах с образованием фосфокреатина (фосфагена), который служит запасным источником энергии для регенерации АТФ путем фосфорилирования АДФ (разд. 1.4.8).

Наконец, еще одна группа азотистых отходов образуется в печени в процессах детоксикации. Чаще всего при этом образуется гиппуровая кислота, впервые обнаруженная в моче лошади (греч. hippos-лошадь), которая синтезируется путем связывания бензойной кислоты (поступающей с растительной пищей) с аминокислотой глицином. При помощи подобных реакций обезвреживаются и многие другие фенольные соединения.

19.3. Экскреция азотистых продуктов и осморегуляция

Основной источник конечных продуктов азотистого обмена — дезаминирование избытка аминокислот. В результате дезаминирования образуется аммиак, который чрезвычайно токсичен и подлежит выведению из организма. Будучи растворимым, аммиак может быть быстро и безопасно удален из организма, если он растворится в достаточном объеме воды. Для организмов, живущих в воде, это не составляет никакой проблемы, но это относится только к пресноводным организмам. Морские животные сталкиваются с острой проблемой получения воды, а наземные — с проблемой ее сохранения, поэтому для выведения азотистых отходов они могут использовать очень мало воды. Из табл. 19.2 видно, что у живущих в этих условиях организмов выработались иные пути экскреции азота. Они связаны с выработкой ряда анатомических, биохимических, физиологических и поведенческих механизмов, связанных с выведением азотистых веществ и одновременным поддержанием стационарного состава жидкостей тела. Так как проблемы экскреции и осморегуляции здесь связаны между собой, эти два процесса будут рассматриваться вместе.

Осморегуляция — это гомеосгатический механизм, с помощью которого у растений и животных поддерживается постоянство концентрации растворенных веществ в жидкостях внутренней среды. Жидкости тела делятся на внутриклеточные и внеклеточные. Например, у растений та жидкость, которая находится в вакуолях клеток, является внутриклеточной, а та, которая окружает клетки коры стебля или корней, — внеклеточная. У многоклеточных животных внутриклеточная жидкость распределена в клетках довольно равномерно, а внеклеточная представлена плазмой крови и тканевой жидкостью. Последняя подразделяется у позвоночных на собственно тканевую жидкость и лимфу. Для нормальной метаболической активности клеток очень важно, чтобы состав этих жидкостей оставался постоянным. Природа внутри- и внеклеточных жидкостей и регуляция их состава будут рассмотрены в разд. 19.3.2.

Слово "осморегуляция" означает не просто регуляцию водного баланса в организме, а регуляцию состава жидких сред организма, которые во всех случаях представляют собой растворы различной сложности. Детали физических и химических свойств растворов описаны в Приложении 1.4.

В живых системах даже в растворах с одинаковым осмотическим давлением (т. е. изотоничных друг другу) происходит перемещение молекул растворенных веществ, если их относительные концентрации различны. Перемещение молекул воды между двумя растворами определяется относительным осмотическим давлением этих растворов. Молекулы растворенных веществ проходят через полупроницаемые мембраны в направлении, зависящем от их относительной концентрации по обе стороны мембраны и от свойств самой мембраны. Это передвижение может быть пассивным или активным. В первом случае молекулы перемещаются путем диффузии "вниз" по концентрационному градиенту, т.е. из раствора с более высокой концентрацией в раствор с более низкой концентрацией. Во втором случае перемещение происходит против концентрационного градиента и осуществляется специальными механизмами, находящимися в мембране. Все мембраны организма, включая плазмалемму (клеточную, или плазматическую, мембрану), слои цитоплазмы, поверхности тела и легких, способны действовать как полупроницаемые мембраны, через которые могут проходить вода и растворенные вещества.

Концентрацию осмотически активных веществ в растворе мы будем называть в этой главе осмотическим потенциалом или осмолярностью и выражать в миллиосмолях на 1 л или на 1 кг воды.

В биологическом контексте при обсуждении осморегуляции концентрацию растворенных веществ можно выражать как депрессию точки замерзания раствора. Чистая вода замерзает при 0°С, но при добавлении растворимых веществ точка замерзания падает ниже 0°С, и новая температура замерзания показывает концентрацию растворенных веществ в растворе. Например, осмолярность морской воды составляет 1000 мосмоль/л, а ее депрессия точки замерзания равна -1,7 °С.

19.3.1. Механизмы осморегуляции

Осмотические взаимоотношения между двумя растворами, разделенными полупроницаемой мембраной, можно выразить в виде тоничности или осмолярности. Между этими двумя понятиями есть важные различия в отношении обстоятельств, при которых они употребляются; однако для простоты мы будем пользоваться словом "тоничность": будем называть раствор либо гипотоническим, либо гипертоническим, либо изотоническим по отношению к какому-то другому раствору.

У пресноводных организмов жидкости тела обычно гипертоничны по отношению к их водному окружению. Многие морские организмы, в том числе позвоночные, гипотоничны по отношению к морской воде, но многие морские беспозвоночные изотоничны ей.

Если в водной среде повышается концентрация растворенных веществ, животные отвечают на это одним из двух способов. У животных, не способных регулировать осмотическую концентрацию жидкостей тела (осмоконформеров), она изменяется так же, как в окружающей среде, тогда как у животных, способных к осморегуляции (осморегуляторов), она остается прежней при всех изменениях среды. Применяя терминологию, связанную с гомеостазом, первых все чаще называют теперь пойкилосмотическими, а вторых — гомойосмотическими животными, используя те же приставки, что и в случае термо-регуляции.

19.3.2. Осморегуляция у растений

Ткани растений содержат больше воды, чем ткани животных, и функционирование растительной клетки, так же как и всего растения в целом, зависит от постоянства содержания воды. У растений не существует тех проблем осморегуляции, с которыми встречаются животные, и растения можно рассматривать просто в связи с местообитанием, подразделив их на группы, описанные ниже.

Гидрофиты

Пресноводные растения типа элодеи (Elodea canadensis), тысячелистника (Myriophyllum) и водяной лилии (Nymphaea) относятся к гидрофитам и меньше сталкиваются с проблемами осморегуляции, чем растения всех остальных типов. В пресной воде растения окружены гипотонической средой, и в сок, содержащийся в вакуолях, вода поступает путем осмоса. Она свободно проходит через клеточную стенку и полупроницаемые плазматическую и вакуолярную мембраны. Когда за счет поглощения воды объем вакуоли увеличивается, в ней создается тургорное давление. Клетка становится тургесцентной, и достигается равновесное состояние, когда водный потенциал в ней повышается до той же величины, что и в окружающей воде (почти нулевой), и поступление воды прекращается (см. разд. 14.1.5). Это называют механической осморегуляцией. Пресноводная водоросль нителла (Nitella clavata) содержит чрезвычайно концентрированный сок, и вся проблема осморегуляции у нее сводится к поддержанию ионного состава этого сока, что осу-ществляется путем активного поглощения ионов из окружающей воды.

Галофиты

Единственными растениями, способными существовать в морской воде, являются водоросли — основной источник растительной пищи на морском побережье. Распределение видов водорослей по мере удаления от берега определяется многими факторами, в том числе устойчивостью к воздействию волн и к обезвоживанию при отливе, а также составом пигментов, участвующих в фотосинтезе. Во всех случаях эти виды способны переносить повышение солености, и главная задача осморегуляции сводится у них к предотвращению потери воды в результате испарения. Самую верхнюю зону морской растительности на укрытых скалистых берегах Британских островов занимает взморник бороздчатый (Pelvetia canaliculata). Этой водоросли помогают выживать толстые клеточные стенки, густой слой слизи и ножка в форме желобка.

На рис. 19.2 показана скорость потери воды и степень переносимости обезвоживания у четырех видов распространенных у Британских островов морских водорослей, которые располагаются по зонам в зависимости от их способности удерживать воду во время отлива.

Рис. 19.2. Скорость отдачи воды на воздухе четырьмя видами водорослей, растущих на морском побережье


Строго говоря, галофитами называются растения, произрастающие на сильно засоленных почвах, например в эстуариях рек и в соленых маршах около морей, где соленость постоянно меняется и может превышать соленость морской воды. Стебли этих растений не всегда находятся в условиях высокой солености, но их корневая система вынуждена переносить повышенную соленость песка и ила, которая создается во время отлива в жаркие ветреные дни. Считалось, что эти растения должны выдерживать периоды "физиологической засухи", когда вода бывает недоступна для тканей из-за гипертоничности среды, окружающей корни. Однако дело, по-видимому, обстоит не так, поскольку большая скорость транспирации и высокое осмотическое давление в клетках корневой системы обеспечивают поглощение воды из почвы. В эстуариях рек и соленых маршах растет галофит спартина (Spartina). Она имеет обширную систему корневищ, с помощью которой распространяется, и придаточные корни, обеспечивающие ей закрепление в почве и поглощение воды и солей. Другие галофиты, растущие в эстуариях рек и маршах, — более мелкие растения, запасающие воду, когда она имеется в изобилии. Наиболее известные среди них — солерос (Salicornia), сведа (Suaeda maritima) и морской портулак (Halimione). Некоторые виды, например глаукс морской и спартина, способны регулировать содержание в своих тканях солей, выделяя их через железы, расположенные по краям листьев.

Мезофиты

Большинство покрытосеменных растений относится к мезофитам и растет в местах, в достаточной мере обеспеченных водой. Эти растения сталкиваются с проблемой потери воды путем испарения со всех надземных частей и имеют ряд морфологических (ксероморфизм) и физиологических особенностей, помогающих им уменьшать эту потерю. Из таких особенностей следует упомянуть наличие кутикулы, защищенные устьица, диаметр которых может регулироваться, разнообразную форму листьев, сбрасывание листвы и экологическое распространение, связанное с устойчивостью к обезвоживанию. Более детальное описание и примеры этих механизмов можно найти в разд. 14.3.

Ксерофиты

Ксерофитами называют растения сухих местообитаний, способные переносить продолжительную засуху. Они составляют типичную флору пустынь и полупустынь и весьма обычны на морском побережье и в песчаных дюнах. Некоторые из этих растений переживают периоды экстремальных условий в виде семян и спор, которые после выпадения дождя могут прорастать; новые растения иногда за четыре недели успевают вырасти, зацвести и дать семена (как, например, эшшольция калифорнийская), которые пребывают в состоянии покоя до следующего дождливого периода.

С другой стороны, есть растения, обладающие разнообразными анатомическими (ксероморфизм) и физиологическими приспособлениями, позволяющими им вегетировать во время сильной засухи. Большинство ксерофитов Британских островов растет вдоль береговой линии и на песчаных дюнах, как, например, солянка (Salsola) и морская песчанка (Honkenya), растущие на невысоких песчаных холмах морского побережья. Песчаный пырей (Аgropyron) и песколюб (Ammophila) — доминирующие растения на молодых дюнах, они обладают обширной системой корневищ с придаточными корнями, позволяющими добывать воду из водоносного слоя ниже песка. Песчаный пырей способен переносить концентрацию соли в песке, в 20 раз большую, чем в морской воде. Оба растения имеют большое значение как пионеры заселения песчаных дюн.

Ксерофиты, растущие в пустынях, обладают рядом адаптаций для уменьшения потери воды и для ее запасания. Некоторые из этих адаптаций приведены в таблице 19.3.

Таблица 19.3. Способы преодоления недостатка воды у различных растений (см. главы 14 и 16)

19.3.3. Процессы, связанные с экскрецией и осморегуляцией

Ультрафильтрация — процесс удаления из раствора молекул растворителя и растворенных веществ в соответствии с их способностью проходить через поры фильтра. У большинства животных роль фильтра выполняет слой, разделяющий циркуляторную систему и орган осморегуляции или экскреции, а движущей силой служит гидростатическое давление крови. Раствор, образующийся при фильтрации, называется фильтратом. При фильтрации крови из нее удаляется большинство ее компонентов, и остаются в ней только очень крупные молекулы, такие как белки, и клетки, например эритроциты.

Избирательная реабсорбция представляет собой избирательное обратное всасывание из фильтрата молекул растворенных веществ и воды в нужных организму количествах. Отходы метаболизма не реабсорбируются. Растворенные вещества и вода тоже не всасываются обратно, если это может привести к избыточному их содержанию в жидкостях тела, нарушающему нормальное стационарное состояние. Вначале реабсорбция происходит путем пассивной диффузии, продолжающейся до тех пор, пока не уравняются концентрации, после чего дальнейшая реабсорбция происходит путем активного транспорта. По мере реабсорбции растворенных веществ фильтрат становится все более разбавленным и гипотоничным по отношению к жидкостям тела; поэтому вслед за ионами будут двигаться путем осмоса молекулы воды, и в конечном счете образуется фильтрат, изотоничный жидкостям тела. В том участке осморегуляторно-экскреторного органа, который непроницаем для воды, фильтрат опять становится гипотоничным в результате поглощения из него ионов.

Секреция — это процесс активного переноса растворенных веществ из жидкостей тела в фильтрат или непосредственно в окружающую среду. Таким образом, секреция действует в направлении, противоположном реабсорбции. Этот процесс приводит к дальнейшему повышению осмотического давления фильтрата и к снижению осмотического давления жидкостей тела.

Конечный результат действия этих трех механизмов (ультрафильтрации, избирательной реабсорбции и секреции) является гомеостатическим, так как он поддерживает постоянство состава жидкостей тела.

Существует большое многообразие осморегуляторных или экскреторных органов и органелл, различных по своей локализации и строению, но в основе функциональной активности всех этих структур лежит один или несколько описанных выше механизмов. Некоторые из этих структур относительно мало специализированы и имеют ряд общих черт в филогенетическом ряду организмов (сократительные вакуоли, нефридии, почки), тогда как другие относительно специализированы (жабры, ректальные железы, солевые железы).

19.3.4. Влияние окружающей среды на экскрецию и осморегуляцию

Для различных групп организмов характер окружающей среды создает определенные проблемы осморегуляции. Многие водные организмы, живущие в гипертонической среде, теряют воду путем осмоса и поглощают растворенные вещества путем диффузии. Потеря воды возмещается разными способами, включая питье и потребление пищи, но при этом повышается также концентрация в организме солей и возникает необходимость удаления их избытка путем активного транспорта. Организмы, живущие в гипотонической среде, напротив, поглощают воду путем осмоса и теряют растворенные вещества за счет диффузии. Уменьшить этот обмен нередко помогает организмам непроницаемый наружный покров, а потерю солей приходится возмещать путем их активного поглощения из окружающей среды.

Все наземные организмы сталкиваются с проблемой потери воды и растворенных веществ из жидкостей тела в окружающую среду. Постоянство состава внутриклеточной жидкости поддерживается у этих организмов путем регуляции состава внеклеточной жидкости специализированными осморегуляторно-экскреторными органами, такими как мальпигиевы сосуды и почки. Количество получаемых и выделяемых молекул воды и ионов должно быть сбалансировано. Проблемы водного баланса будут рассмотрены в разд. 19.4.

Адаптация к сильнозасушливым условиям

Кенгуровая крыса (Dipodomys) выделяется среди млекопитающих своей удивительной способностью переносить засушливые условия, существующие в пустынях Северной Америки. Она прекрасно чувствует себя в этих условиях благодаря уникальному сочетанию морфологических, физиологических и поведенческих адаптаций. Потеря воды с выдыхаемым воздухом снижается у нее за счет того, что выдыхаемый воздух имеет более низкую температуру, чем внутренние области тела. При вдохе воздух забирает тепло в носовых ходах и охлаждает их. Во время выдоха водяные пары, содержащиеся в теплом воздухе, конденсируются на слизистой носа, и таким образом вода задерживается. Питается кенгуровая крыса сухими семенами и другой сухой растительной пищей и совсем не пьет. Единственные источники воды для нее — это вода, образующаяся в организме в процессе тканевого дыхания, и те очень малые количества воды, которые содержатся в пище. Шмидт-Ниельсен в своих классических исследованиях, суммированных в табл. 19.4, измерил водный баланс у кенгуровой крысы, весящей 35 г и съедающей 100 г ячменя, в экспериментальных условиях (при 25 °С и относительной влажности 20%). Единственным источником воды для нее в течение исследуемого периода служили зерна ячменя.

Таблица 19.4. Водный обмен у кенгуровой крысы в экспериментальных условиях. Животное получало только ту воду, которая содержалась в пище


Наконец, в природных условиях кенгуровая крыса избегает потери воды за счет ее испарения, проводя много времени в относительно влажной атмосфере подземной норы.

Другой поразительный пример сохранения воды — водный баланс верблюда, физиологические адаптации которого были рассмотрены в разд. 18.4.7.

19.4. Филогенетический обзор органов и процессов, участвующих в выделении азотистых веществ и в осморегуляции

При рассмотрении этого вопроса нужно иметь в виду следующие моменты:

1) на характер выводимого продукта и на процесс осморегуляции влияет окружающая среда;

2) в некоторых группах организмов имеются виды, приспособленные к жизни в разных условиях;

3) некоторые организмы способны переносить значительные колебания внешних условий.

19.4.1. Простейшие

Простейшие обитают в пресной и морской воде, а также в жидкостях тела других организмов. Внутриклеточная жидкость у простейшего отделена от внешней среды только полупроницаемой плазматической мембраной. Выделение СО2 и аммиака происходит путем простой диффузии через всю поверхность клетки. Удалению отходов метаболизма способствует высокое отношение поверхности к объему.

Все пресноводные виды простейших гипертоничны по отношению к окружающей среде и обладают специальными осморегуляторными органеллами — сократительными вакуолями. Эти органеллы необходимы для удаления воды, поступающей в клетку путем осмоса через клеточную мембрану из гипотонической окружающей среды, и таким образом участвуют в регуляции объема клетки, предотвращая его увеличение. Строение и локализация сократительной вакуоли сильно варьируют. У амёбы Amoeba proteus такая вакуоль может образовываться в любом участке клетки и освобождать заключенную в ней жидкость во внешнюю среду в любом участке поверхности тела (рис. 19.3). У инфузории Paramecium aurelia имеются две сократительные вакуоли, расположенные в определенных местах (рис. 19.4). Однако способ функционирования сократительных вакуолей, по-видимому, одинаков у всех видов и состоит в том, что вода из цитоплазмы поступает в мелкие пузырьки, которые сливаются с сократительной вакуолью и передают ей свое содержимое. Вокруг сократительной вакуоли группируются митохондрии, которые, по-видимому, доставляют энергию для выполняемой ею осмотической работы.

Рис. 19.3. А. Электронная микрофотография сократительной вакуоли амёбы


Рис. 19.3. Б. Схема функционирования вакуоли. Вода секретируется в мельчайшие пузырьки, которые сливаются с мембраной вакуоли и опорожняют в вакуоль содержащуюся в них воду (Продолжение)


Рис. 19.4. Микрофотография фиксированной парамеции. Видны сократительные вакуоли. 1 — передняя сократительная вакуоль с канальцами; 2 — каналец задней вакуоли


Изучение функционирования сократительной вакуоли у гигантской амебы (Chaos chaos) показывает, что поступление в клетку воды путем осмоса, рассчитанное по данным об осмотическом давлении внутриклеточной жидкости, соответствует объему воды, выводимой вакуолью. Содержимое сократительной вакуоли гипотонично по отношению к внутриклеточной жидкости, но гипертонично по отношению к окружающей воде. Предложено несколько гипотез для объяснения образования вакуолярной жидкости, и одно из вероятных объяснений показано на рис. 19.5.

Рис. 19.5. Схема предполагаемого механизма поглощения воды сократительной вакуолью


У многих морских корненожек сократительная вакуоль отсутствует, так как их внутриклеточная жидкость изотонична морской воде. Это позволяет предполагать, что главная функция такой вакуоли — осморегуляция.

19.4.2. Кишечнополостные

Кишечнополостные, по-видимому, не имеют специальных органов или органелл для выделения и осморегуляции, и механизм осморегуляции у них неизвестен. Основные токсичные продукты обмена у них — СО2 и аммиак, которые путем диффузии выходят из клеток прямо в воду внеклеточной среды.

19.4.3. Плоские черви

У плоских червей основная масса отходов метаболизма переходит в сильно разветвленный кишечник и выводится из организма через ротовое отверстие. Однако некоторая их часть поступает в систему канальцев, выполняющих и выделительную, и осморегуляторную функцию. Эти канальцы представляют собой примитивный тип нефридиев и называются протонефридиями. Главная функция протонефридиев — осморегуляция. Протонефридии характерны в основном для животных, лишенных вторичной полости тела (целома), таких как плоские черви и коловратки. У планарий имеется пара протонефридиев, которые тянутся вдоль всего тела и открываются наружу через многочисленные поры (рис. 19.6,А). Отдельный протонефридий состоит из множества ветвящихся канальцев, заканчивающихся крупными клетками с просветом внутри. В этот просвет выступают реснички; если имеется только одна ресничка, клетку называют соленоцитом, а если целый пучок ресничек, то пламенной клеткой (рис. 19.6,Б). Реснички пламенных клеток колеблются, и это движение напоминает колебание пламени свечи, отсюда и их название. Биение ресничек способствует постоянному току жидкости в канальцы и через протоки — к выделительным порам. Находящаяся в пламенных клетках жидкость состоит из воды и конечных продуктов обмена, образующихся в тканях. Предполагается, что одни из этих продуктов секретируются в канальцы путем активного транспорта, а другие — путем ультрафильтрации через цитоплазму пламенных клеток. Вода поступает в просвет пламенных клеток путем осмоса. Пламенные клетки имеются также у некоторых кольчатых червей. Соленоциты характерны в основном для головохордовых, представителем которых является ланцетник.

Рис. 19.6. Строение выделительной системы плоского червя Planaria, состоящей из протоне — фридиев. А. Общее схематическое изображение. Б. Пламенная клетка

19.4.4. Кольчатые черви

У кольчатых червей органами выделения и осморегуляции, поддерживающими постоянный химический состав жидкостей тела, служат метанефридии (или просто нефридии). У представителей разных классов круглых червей — у полихет, олигохет и пиявок — строение и расположение нефридиев варьируют, но основной структурный план у всех одинаков. Нефридии представляют собой неразветвленные канальцы, соединяющие целом с внешней средой. У некоторых форм, например у пескожила (Arenicola), нефридий образуется путем слияния эктодермального канальца, открывающегося порой наружу, с мезодермальным канальцем, открывающимся в целом. У дождевого червя (Lumbricus) имеется пара нефридиев в каждом сегменте (кроме трех первых и последнего), а у полихет и пиявок их меньше.

Нефридий состоит из покрытой ресничками воронки (нефростома), которая соединена длинным канальцем, снабженным ресничками и мышечными волокнами, с мочевым пузырем, где жидкость накапливается и откуда выводится через наружное отверстие — нефридиопор. Выделяемая жидкость называется мочой и образуется путем ультрафильтрации, избирательной реабсорбции и активной секреции. Целомическая жидкость, содержащая и нужные организму вещества, и отходы, загоняется ресничками в нефростом (рис. 19.7) и, движимая биением ресничек и сокращением мускулатуры, проходит по узкому длинному канальцу, в котором еще не происходит никакой реабсорбции ценных веществ. Далее следуют короткий средний и более длинный широкий канальцы, клетки которых всасывают обратно нужные организму вещества и активно секретируют их в кровеносные капилляры канальца, а из капилляров в каналец дополнительно секретируются отходы. По мере обратного всасывания нужных веществ моча становится менее концентрированной, но в ней растет содержание отходов метаболизма. Эта гипотоничная по отношению к целомической жидкости моча выводится через нефридиопор. Способность к образованию гипотоничной мочи указывает на то, что нефридий выполняет и осморегуляторную функцию. Как показали исследования, в отношении осморегуляции дождевой червь сходен с пресноводными организмами, так как при помещении его в солевые растворы он поддерживает гипертоничность жидкостей своего тела по отношению к окружающей среде и вместе с тем выделяет гипотоничную мочу. Хотя дождевой червь — казалось бы, сухопутное животное, он находится в прямом контакте с водяной пленкой, покрывающей частицы почвы в стенках подземного хода; поэтому его можно рассматривать как пресноводный организм. Осморегуляция у типичных морских полихет вроде Nereis diversicolor описана в разд. 19.4.6.

Рис. 19.7. Стадии образования мочи у дождевого червя. Толстыми стрелками показаны участки, в которых происходит активная секреция веществ. Известно, что белки имеются в нефростоме, но отсутствуют в моче, выделяемой через нефридиопор; это означает, что на какой-то стадии они извлекаются из мочи, но механизм их поглощения пока не ясен. (По Ramsey.)

19.4.5. Членистоногие

Членистоногие приспособились к жизни в самых разнообразных местообитаниях — от морских до полностью наземных. Не удивительно поэтому, что механизмы выделения и осморегуляции у представителей этого типа весьма разнообразны. Для иллюстрации этого разнообразия мы рассмотрим адаптации насекомых к наземным условиям существования и ракообразных — к жизни в морской воде, в эстуариях рек и в пресной воде.

Одна из главных проблем жизни на суше предотвращение потери воды. У насекомых имеется почти непроницаемая кутикула, уменьшающая испарение воды с поверхности тела, и дыхальца, уменьшающие потерю воды через систему газообмена-трахеи и трахеолы. Прочная кутикула состоит из хитиновой экзо- и эндокутикулы, покрытой тонким водопроницаемым слоем — эпикутикулой толщиной 0,3 мкм (см. разд. 4.10.1). Потере воды путем испарения препятствуют водонепроницаемые свойства эпикутикулы, образованной упорядоченным мономолекулярным слоем липидов, покрытым несколькими слоями нерегулярно расположенных липидных молекул. Если эти восковые или липидные слои стираются острыми частицами, например песком или кремнеземом, скорость испарения возрастает и насекомому грозит обезвоживание. Интересно, что по мере повышения окружающей температуры скорость испарения растет постепенно, пока температура не достигнет определенной величины, после чего испарение быстро усиливается. Эту температуру называют "критической". Построив график зависимости испарения от температуры на поверхности тела (рис. 19.8), эту критическую температуру можно выявить более четко; она соответствует той температуре, при которой нарушается упорядоченное строение воскового монослоя.

Рис. 19.8. Зависимость потери воды с поверхности кутикулы таракана от температуры воздуха (треугольники) и от температуры самой кутикулы (кружочки). Видно, что отдача воды резко возрастает при температуре кутикулы около 29° С


Некоторые насекомые, питающиеся сухой пищей и живущие в очень сухих местах, способны поглощать влагу из воздуха, если относительная влажность воздуха превышает определенную величину, например 90% для мучного червя (личинки жука Tenebrio) и 70% для домового клеща (Dermatophagoides).

У насекомых проблема предотвращения потери воды при выведении экскретов решается с помощью специализированных органов выделения, называемых мальпигиевыми трубочками (или сосудами), которые образуют и выделяют почти нерастворимый продукт азотистого обмена — мочевую кислоту. Мальпигиевы трубочки представляют собой слепо оканчивающиеся канальцы, расположенные в полости брюшка и омываемые гемолимфой. Число трубочек у насекомых варьирует: у некоторых всего одна пара, у других может быть несколько сотен; кровососущий клоп Rhodnius имеет четыре трубочки. Все они открываются в заднюю кишку в месте ее перехода в среднюю кишку и могут быть длинными и тонкими или короткими и компактными (рис. 19.9).

Рис. 19.9. Схема взаимного расположения мальпигиевых трубочек и пищеварительного тракта у клопа Rhodnius prolixus


Уиглсуорс, изучавший функцию мальпигиевых трубочек в процессе образования мочевой кислоты у Rhodnius, предполагает следующий механизм. Трубочка состоит из двух разных по гистологическому строению отделов — верхнего сегмента (дистального по отношению к кишке), построенного из одного слоя клеток и содержащего прозрачный раствор, и нижнего сегмента. Клетки нижнего сегмента имеют на внутренней поверхности микроворсинки, на которых из раствора осаждаются кристаллы мочевой кислоты (рис. 19.10). Содержимое трубочек выводится в заднюю (прямую) кишку, где смешивается с непереваренными частицами пищи. Ректальные железы, расположенные в стенках прямой кишки, осуществляют обратное всасывание воды из экскрементов и из суспензии мочевой кислоты, и в результате из организма выводятся совершенно сухие экскременты в виде шариков.

Рис. 19.10. Схема предполагаемого механизма выделения мочевой кислоты через мальпигиевы трубочки. 1. Мочевая кислота (H2U), образующаяся в клетках тела, выводится в гемолимфу: где она вступает в реакцию с бикарбонатами натрия и калия и водой с образованием уратов натрия и калия (NaHU и KHU), СО2 и воды (на схеме показан только калий). 2. Эти соли активно секретируются в просвет трубочки: а вслед за ними в него путем осмоса поступает вода. 3. Во время передвижения растворенных соединений по трубочке образуются бикарбонаты; которые активно всасываются в гемолимфу, а за ними выходит путем осмоса вода. Так как в результате реабсорбции бикарбонатов в проксимальной части трубочки снижается рН, мочевая кислота выпадает в осадок в виде кристаллов


Животные, ведущие исключительно наземный образ жизни, не сталкиваются с теми проблемами осморегуляции, с которыми встречаются водные или земноводные организмы. Однако насекомым приходится регулировать ионный состав гемолимфы, и эта регуляция состоит в поддержании баланса между ионами, получаемыми с пищей, и ионами, теряемыми в процессах синтеза, дефекации и экскреции. Больше всего адаптаций к местообитанию и образу жизни мы находим у органов осморегуляции и выделения водных членистоногих, таких как речной рак Astacus и представитель морских ракообразных зеленый краб Carcinus maenas.

Речной рак живет в пресной воде — гипотонической среде. У его нимф некоторая часть азотистых продуктов обмена и СО2 (в виде карбоната) откладывается в кутикуле и вместе с ней сбрасывается во время линьки. Но у взрослого рака азотистые отходы выводятся в виде аммиака через специализированные органы выделения, называемые антеннальными или зелеными железами.

Эти железы представляют собой слепо оканчивающиеся мезодермальные образования, которые лежат в гемолимфе перед ротовым отверстием и открываются наружу порой, находящейся у основания антенны. Каждая антеннальная железа состоит из четырех отделов: слепого целомического мешочка, зеленого канальца, называемого лабиринтом, длинного белого нефридиального канальца и тонкостенного мочевого пузыря, открывающегося наружу (рис. 19.11).

Рис. 19.11. Схема строения и функции антеннальной (зеленой) железы речного рака. На графике внизу показаны изменения осмотической концентрации фильтрата. (По Peters, из Barrington.)


Вода с растворенными в ней веществами фильтруется в целомический мешочек из гемолимфы под действием гидростатического давления крови. Когда этот фильтрат проходит через лабиринт, выстланный изнутри железистой тканью, и по нефридиальному канальцу, ценные для организма вещества всасываются обратно в гемолимфу, а в фильтрат секретируются новые порции отходов метаболизма, в том числе азотистые соединения.

Внутренняя среда речного рака гипертонична по отношению к окружающей среде, и вода поступает в организм через любую проницаемую поверхность, в первую очередь через жабры. Это поступление воды путем осмоса уравновешивается выделением большого количества мочи, гипотоничной по сравнению с гемолимфой. Азотистые продукты обмена выделяются в основном в виде аммиака, но образуется и некоторое количество мочевины.

Зеленый краб живет в приливной зоне и большую часть времени находится в морской воде. Он имеет такие же антеннальные железы, как речной рак, через которые выводятся азотистые продукты обмена, главным образом аммиак. Как у многих других морских животных, некоторые участки его покровов проницаемы для воды и солей, а жидкости тела изотоничны морской воде. Для морских организмов это выгодно, так как им не приходится затрачивать энергию на поддержание в жидкостях тела более высокого или более низкого осмотического давления по сравнению с окружающей средой. Однако, несмотря на изотоничность жидкостей организма окружающей среде, концентрация отдельных солей в них может быть иной, чем в морской воде, и для регуляции их ионного состава необходима затрата энергии.

Зеленый краб обитает в весьма различных местах. Он способен переносить гипертонические условия, которые создаются в соленых озерцах, образующихся на скалистом морском берегу или в затопляемых морем низинах, когда в жаркое время из них испаряется вода. В этих условиях он ведет себя как осмоконформер — осмотическая концентрация жидкостей тела повышается в результате поглощения солей и ткани могут переносить это; моча в этом случае гипертонична по отношению к жидкостям внутренней среды. Краб способен также переносить изменчивые условия солености в эстуариях рек, т. е., подобно большинству обитающих здесь животных, является эвригалинным организмом. Если соленость воды уменьшается вследствие разбавления ее речной водой или в результате ливней, зеленый краб становится гипертоничным по сравнению с окружающей средой (рис. 19.12); вода теперь стремится войти в организм путем осмоса, а растворенные вещества, напротив, стремятся выйти из организма путем диффузии. В этих условиях зеленый краб становится "осморегулятором", или гомойосмотическим животным: состав жидкостей тела стабилизируется у него за счет активной реабсорбции натрия из мочи в гемолимфу в клетках антеннальных желез. В связи с реабсорбцией натрия в организме будет также удерживаться и некоторое количество воды, но общий объем тела не будет увеличиваться благодаря жесткой кутикуле. Выделяемая в этих условиях моча изотонична жидкостям тела.

Рис. 19.12. Взаимоотношения между внутренней средой организма и внешней средой у пойкилосмотических и гомойосмотических форм и у четырех видов морских организмов — пелагических ракообразных Leander и Palaemonetes, червя Nereis и краба Carcinus

19.4.6. Адаптации к изменениям окружающей среды у беспозвоночных

Беспозвоночные, живущие в морской воде, например актинии, изотоничны окружающей среде. Если их поместить в разведенную морскую воду, они немедленно начнут поглощать воду и терять соли. То же самое при уменьшении солености среды происходит с пескожилом. Вначале масса тела его увеличивается, а затем возвращается к нормальной величине. Объясняется это тем, что вода поступает внутрь путем осмоса быстрее, чем выходят ионы. Через короткий период времени условия стабилизируются благодаря потере ионов, жидкости тела становятся изотоничными окружающей среде и масса тела возвращается к норме, если соленость среды не падает слишком сильно. Многощетинковый червь Nereis живет обычно в море, зарывшись в песок или в ил, но он может осуществлять осморегуляцию при уменьшении солености морской воды до 10% нормы и жить в эстуариях рек. Он является гомойосмотическим организмом и способен оставаться гипертоничным по отношению к среде благодаря пониженной проницаемости наружных покровов и способности поглощать ионы хлора из окружающей воды (рис. 19.12).

Существует несколько видов морских беспозвоночных, которые гипотоничны по отношению к морской воде, как, например, ракообразные Palaemonetes и Leander (рис. 19.12). Они успешно борются с потерей воды и поступлением внутрь солей, заглатывая морскую воду и активно секретируя соли обратно во внешнюю среду через жабры. Эти механизмы осморегуляции настолько эффективны, что животные могут поддерживать стабильное содержание воды в организме при колебаниях солености от 2 до 110% от обычной солености моря. Как полагают, эта способность указывает на то, что эти ракообразные произошли от пресноводных предков и уже вторично поселились в морской среде. Солоноводный рачок Artemia гипотоничен по отношению к чрезвычайно соленой среде его обитания и поддерживает гипотоничность жидкостей тела путем непрерывного удаления ионов Na+ и С1-, поступающих в организм с тем концентрированным раствором, который животное пьет. Эти ионы удаляются из гемолимфы через жаберный эпителий. Рачок способен также поддерживать стационарный состав жидкостей тела при колебаниях солености среды от 10 до 100% по отношению к морской воде.

Некоторые животные, обитающие в солоноватой воде, например мидия (Mytilus), могут поддерживать состав внутриклеточной жидкости в довольно стабильном состоянии, несмотря на изменения состава внешней среды и внеклеточной жидкости. Предполагают, что это связано с регуляцией состава внутриклеточной жидкости самими клетками.

Полагают, что многие пресноводные животные, например речной рак, произошли от обитателей солоноватых вод, а те — от морских форм путем постепенного совершенствования регуляции водно-солевого обмена.

Для мелких пресноводных беспозвоночных характерно сравнительно высокое отношение поверхности к объему. Будучи гипертоничны по отношению к среде, они поглощают воду и теряют соли, и это происходит у них быстрее, чем у более крупных беспозвоночных (вроде речного рака) с меньшим отношением поверхности к объему. Эту проблему мелкие беспозвоночные в какой-то мере разрешают за счет того, что во внутренних жидкостях концентрация ионов у них ниже, чем у более крупных форм.

19.4.7. Иглокожие

Все иглокожие — морские животные. Азотистые отходы метаболизма выводятся у них в виде аммиака через жабры и амбулакральные ножки. Иглокожие имеют амбулакральную систему, содержащую морскую воду, с которой клетки тела изотоничны. Никаких проблем осморегуляции для них не существует.

19.4.8. Позвоночные

У различных позвоночных встречается экскреция всех трех азотистых продуктов, что, как правило, зависит от доступности воды для того или иного вида. Механизмы осморегуляции у позвоночных более эффективны, чем у беспозвоночных, благодаря малой проницаемости наружных покровов и наличию почек. Биологи до сих пор спорят о том, где возникли первые рыбы в морской или пресной воде. Многие биологи считают более вероятным морское происхождение первых рыб и рассматривают почки как более позднее приобретение, необходимое для выживания в гипотонических условиях пресных водоемов. В этих условиях почки служат для удаления избытка воды и задержки солей. Последующее развитие почек зависело от характера окружающей среды и шло по линии все большего усложнения в ряду позвоночных от рыб до млекопитающих. Увеличение сложности строения почек было связано с заселением суши. Благодаря повышенной эффективности механизмов выделения и осморегуляции состав внутренней среды у позвоночных колеблется в более узких пределах, чем у беспозвоночных.

Структурно-функциональной единицей почечной ткани является нефрон. Нефроны — сегментарные структуры, образовавшиеся из мезодермальных нефротомов (разд. 21.8), вступивших в тесный контакт с кровеносными сосудами, отходящими от аорты, и связанных с целомом через ресничную воронку. Нефроны у зародышей рыб имеют наиболее примитивное строение, при котором несколько нефронов открываются в перикардиальную полость и в совокупности образуют структуру, называемую пронефросом (рис. 19.13) или предпочкой. У всех взрослых рыб и амфибий пронефрос утрачивается, а вместо него развивается более компактное образование состоящее из значительно большего числа нефронов и расположенное в брюшном и хвостовом отделах тела. Это мезонефрос, или первичная почка. В мезонефросе нефроны утратили связь с целомом и объединены собирательным протоком, ведущим к мочеполовому отверстию. Такое строение идеально подходит для выделения разбавленной мочи, образующейся в основном у обитателей пресных вод.

Рис. 19.13. Строение примитивного нефрона. Образующийся в клубочке фильтрат поступает через воронку с ресничным эпителием в целом или через соединительный каналец объединяется с фильтратом из других нефронов


Рептилии, птицы и млекопитающие приспособились к жизни на суше, где вместо проблемы удаления воды, стоящей перед рыбами и амфибиями, встает задача удержания воды в организме. У этих животных орган выделения представляет собой еще более компактную структуру — метанефрос, или вторичную почку, которая состоит из еще большего числа нефронов с еще более длинными канальцами. В канальцах происходит реабсорбция воды и образуется концентрированная моча, которая в конце концов поступает в почечную лоханку, а из нее — в мочевой пузырь. (Более подробно строение и функции почки млекопитающего описаны в разд. 19.5.)

Образование мочи в почке позвоночных основано на принципах ультрафильтрации, избирательной реабсорбции и активной секреции. Моча представляет собой жидкость, содержащую отходы азотистого обмена, воду и те ионы, содержание которых в организме превышает необходимый уровень. Ультрафильтрации подвергаются также и ценные для организма вещества, но они всасываются обратно в кровь. Реабсорбируется 99% растворенных веществ, и на этот процесс расходуется энергия. С энергетической точки зрения такой механизм кажется неэкономным, но он обеспечивает позвоночным большую гибкость при освоении новых мест обитания, так как позволяет выводить чужеродные или "новые" вещества, как только они появляются в организме, и для их удаления не нужно создавать новый секреторный механизм.

Рыбы

У рыб органами выделения и осморегуляции служат жабры и почки. Оба органа проницаемы для воды, азотистых отходов и ионов и обладают большой поверхностью, облегчающей обмен. Почки в отличие от жабр отделены от окружающей среды стенками тела, тканями и внеклеточной жидкостью, и поэтому они могут контролировать состав внутренней среды организма. Хотя все рыбы живут в водной среде, механизм экскреции и осморегуляции у пресноводных и морских рыб настолько различен, что эти две группы следует рассмотреть по отдельности.

Пресноводные рыбы. У пресноводных костистых рыб осмолярность жидкостей тела составляет около 300 мосмоль/л, и они гипертоничны по отношению к внешней среде. Несмотря на относительную непроницаемость наружного покрова из чешуй, покрытых слизью, внутрь тела путем осмоса поступает значительное количество воды через высокопроницаемые жабры, и через них же теряются соли. Жабры служат также органами выделения таких азотистых продуктов, как аммиак. Для поддержания стационарного состояния жидкостей внутренней среды пресноводные рыбы должны постоянно выводить много воды. Это происходит у них благодаря образованию большого объема ультрафильтрата, из которого растворенные вещества извлекаются путем их избирательной реабсорбции в капилляры, окружающие почечные канальцы. Почки образуют большое количество сильно разведенной мочи (гипотоничной по отношению к крови), в которой содержится и ряд других растворенных веществ. Количество мочи, выделяемой за сутки, может составлять до одной трети от всей массы тела. Потеря солей с мочой возмещается за счет электролитов, получаемых с пищей, и за счет активного поглощения их из окружающей воды особыми клетками, находящимися в жабрах.

Морские рыбы. Полагают, что рыбы впервые появились в морской среде, затем успешно заселили пресноводные водоемы, и после этого некоторые из них вторично переселились в море, дав начало пластиножаберным и морским костистым рыбам. В процессе эволюции в пресной воде у рыб сформировались многие физиологические механизмы, приспособленные к такому осмотическому давлению жидкостей тела, которое в 2-3 раза меньше, чем у морской воды. После возвращения рыб в морскую среду жидкости их тела сохранили осмотическое давление, присущее их предкам, и в связи с этим возникла проблема гомеостаза жидкостей тела в условиях гипертонического окружения (рис. 19.14).

Рис. 19.14. Приблизительные концентрации растворенных веществ в жидкостях тела морских позвоночных. Пластиножаберные рыбы — единственные позвоночные, у которых жидкости тела гипертоничны по отношению к окружающей среде; но, как видно из диаграммы, концентрация электролитов у них лишь ненамного выше, чем у костистых рыб. Благодаря задержке мочевины осмотическое давление у них такое же, как у морской воды, о чем свидетельствует депрессия точки замерзания (Δ°С)


Пластиножаберные рыбы. У этих рыб исходная осмолярность жидкостей тела примерно такова же, что и у морских костистых рыб, т.е. эквивалентна 1%-ному раствору соли. Избыточная потеря воды в гипертонической морской воде предотвращается за счет синтеза и удержания мочевины в тканях и жидкостях тела. По-видимому, большинство клеток тела, за исключением клеток головного мозга, способно синтезировать мочевину, и для своей метаболической активности они не только нуждаются в присутствии мочевины, но и обладают толерантностью к высоким ее концентрациям. Исследования, проведенные на изолированных сердцах акул, показали, что сердце может сокращаться только при перфузии сбалансированным солевым раствором, содержащим мочевину. Жидкости тела у акул содержат 2-2,5% мочевины, что в 100 раз превышает концентрацию, переносимую другими позвоночными. Как правило, высокая концентрация мочевины приводит к разрыву водородных связей, денатурации белков и тем самым к инактивации ферментов. Однако у пластиножаберных рыб этого почему-то не происходит. Мочевина в сочетании с неорганическими ионами и другим азотистым продуктом обмена — триметиламиноксидом (CH3)3N=O, менее токсичным, чем аммиак, — создают в жидкостях тела более высокое осмотическое давление, чем в морской воде (Δ морской воды составляет 1,7°С, а у жидкостей тела пластиножаберных-1,8°С) (рис. 19.14). Будучи слегка гипертоничными по отношению к окружающей среде, пластиножаберные рыбы поглощают воду путем осмоса через жабры. Вода вместе с избытком мочевины и триметиламиноксидом выводится почками с мочой, которая слегка гипотонична по отношению к жидкостям тела. Почки имеют длинные канальцы, которые используются для избирательной реабсорбции мочевины, а не для выведения поступающих с пищей солей. Избыток же ионов натрия и хлора удаляется из жидкой среды организма путем активной секреции в прямую кишку клетками ректальной железы — маленькой железки, связанной протоком с прямой кишкой. Жабры относительно непроницаемы для отходов азотистого обмена, и их выведение целиком контролируется почками. Таким путем осмотическое давление жидкостей тела поддерживается на высоком уровне.

Морские костистые рыбы. У морских костистых рыб осмотическое давление жидкостей тела поддерживается на уровне более низком, чем у морской воды (рис. 19.14). Благодаря чешуе и слизи наружные покровы рыб относительно мало проницаемы для воды и ионов, но вода легко теряется из организма (а ионы поглощаются) через жабры. Для регуляции состава жидкостей тела костистые рыбы пьют морскую воду, а особые секреторные клетки в кишечнике извлекают из нее доли путем активного транспорта и выделяют их в кровь. В жабрах имеются хлоридные клетки, которые активно поглощают из крови ионы хлора и выделяют их в окружающую среду, а вслед за ионами хлора по принципу сохранения электрохимической нейтральности выходят и ионы натрия. Другие ионы, присутствующие в морской воде в большом количестве, — ионы магния и сульфата — удаляются с изотонической мочой, образуемой в небольшом количестве почками. Почки не имеют клубочков и поэтому не способны к ультрафильтрации. Все компоненты мочи, такие как азотистое соединение триметиламиноксид (придающий рыбе характерный запах) и соли, секретируются в почечные канальцы, а за ними осмотическим путем следует и вода.

Эвригалинные рыбы. Существует ряд видов эвригалинных рыб, которые не только переносят небольшие изменения солености воды, но и могут полностью адаптироваться к жизни в пресной и в морской воде на протяжении длительных периодов их жизни. В зависимости от того, куда эти рыбы движутся на нерест, различают анадромных и катадромных рыб. Анадромные рыбы (греч. аnа — вверх, dromein — бежать), такие как лосось (Salmo salar), выводятся из икры в пресной воде и мигрируют в море; здесь они достигают зрелости и затем возвращаются для нереста в реки. Катадромные рыбы (греч. cata-вниз), к которым относится угорь (Anguilla vulgaris), мигрируют в противоположном направлении. Они выводятся в морской воде и мигрируют в пресноводные водоемы, где достигают зрелости, после чего возвращаются для нереста в море. При переходе из реки в море угорь теряет за 10 часов около 40% своего веса. Чтобы компенсировать эту потерю и сохранить гипотоничность жидкостей тела, он пьет морскую воду, а соли выделяет путем активной секреции через жабры. При переходе угря из моря в реку его масса вначале увеличивается за счет поступления воды путем осмоса, но уже через два дня он достигает стабильного осмотического состояния. В пресной воде угорь поглощает соли через жабры путем активного транспорта.

На примере этих двух групп рыб мы видим, что механизмы активного транспорта в жабрах могут действовать в двух направлениях. Связано ли это с переменой направления работы ионных насосов в одних и тех же клетках или с функционированием разных групп клеток, пока неизвестно. Предполагается, что на эти механизмы влияют гормоны, выделяемые гипофизом и корой надпочечников. У рыб обеих групп при переходе в пресную воду существует период "выжидания", позволяющий механизмам осморегуляции приспособиться к новой среде.

Амфибии

Считается, что амфибии произошли от рыбообразных пресноводных предков и унаследовали от них проблемы осморегуляции, связанные с тем, что их кровь гипертонична по отношению к окружающей среде. Кожа лягушек проницаема для воды, и именно через кожу поступает из внешней среды в организм основная масса воды. Избыток поглощаемой организмом воды удаляется путем ультрафильтрации в многочисленных крупных почечных клубочках.

Почки амфибий широко использовались для изучения физиологии этих органов, так как их крупные клубочки расположены близко к поверхности. В эти клубочки и канальцы можно вводить микрошприц и извлекать из них фильтрат для анализа. Таким путем можно определить эффективность ультрафильтрации и избирательной реабсорбции. Амфибии выделяют большое количество очень разбавленной мочи, гипотоничной по отношению к жидкостям тела. Моча содержит мочевину, которая выводится путем ультрафильтрации и путем секреции в канальцы. Преимущество этого механизма состоит в том, что он позволяет амфибиям снижать скорость клубочковой фильтрации в засушливых условиях и таким образом уменьшать потерю воды с мочой, тогда как канальцы продолжают получать кровь из воротных сосудов почек, из которых в канальцы активно секретируется мочевина. В этом отношении данный механизм противоположен тому, что имеет место у пластиножаберных рыб, у которых мочевина в канальцах активно реабсорбируется.

Рис. 19.15. Экскреция и осморегуляция у пресноводных костистых рыб (А), пластиножаберных (Б) и морских костистых рыб (В). Сокращения Гипо-, Изо- и Гипер- указывают тоничность внутренней среды по отношению к внешней


Некоторая часть солей неизбежно теряется с мочой и в результате диффузии через кожу, но эта потеря возмещается за счет солей, поступающих с пищей, а также активно поглощаемых из окружающей воды кожей, которая служит у амфибий главным органом осморегуляции. Личинка бесхвостой амфибии — головастик — является полностью водным организмом и выделяет аммиак через жабры, но при метаморфозе состав азотистых экскретов и механизм их выделения меняются и становятся такими, как описано выше.

Лягушки способны накапливать воду в мочевом пузыре и многочисленных подкожных лимфатических пространствах. За счет этих запасов возмещается потеря воды путем испарения в те периоды, когда лягушка находится на суше. Жабы способны находиться в сухих условиях более продолжительное время, так как их почки могут реабсорбировать воду из клубочкового фильтрата и образовывать более концентрированную мочу, а кожа менее проницаема для воды. Известно, что проницаемость кожи у амфибий регулируется антидиуретическим гормоном, выделяемым задней долей гипофиза; как полагают, механизм регуляции проницаемости здесь тот же, что и в почечных канальцах млекопитающих.

Водный баланс у сухопутных организмов

Для нормального функционирования клеток в организме животного необходимо стационарное состояние внутриклеточной жидкости. Гомеостатический обмен водой между клетками, тканевой жидкостью, лимфой, плазмой крови и окружающей средой представляет проблему и для водных, и для наземных организмов. Водные формы получают или теряют воду путем осмоса через все проницаемые участки поверхности тела в зависимости от того, каково окружение — гипотоническое оно или гипертоническое. Наземные организмы сталкиваются с проблемой потери воды и для поддержания устойчивого водного баланса используют многочисленные приспособления, приведенные в табл. 19.5. Это устойчивое состояние водного обмена достигается за счет баланса между отдачей воды и ее получением (табл. 19.6).

Таблица 19.5. Механизмы сохранения воды у наземных животных


Таблица 19.6. Компоненты водного баланса у наземных организмов

Рептилии

Эти животные первыми приспособились к наземной жизни. Они обладают множеством морфологических, биохимических и физиологических адаптаций для существования на суше. Однако во всех трех отрядах (черепахи, ящерицы и змеи, крокодилы) имеются виды, которые вторично приспособились к жизни в пресной и морской воде. У всех этих животных механизмы выделения и осморегуляции адаптированы к соответствующим условиям.

У наземных пресмыкающихся потере воды препятствует относительно непроницаемая кожа, покрытая роговыми чешуйками. Органами газообмена у них служат легкие, расположенные внутри тела, что уменьшает потерю воды. В тканях образуется нерастворимая мочевая кислота, которая может выводиться без большой потери влаги. Для удаления избытка ионов натрия и калия нужна вода, но поскольку экономия воды имеет жизненно важное значение, эти ионы соединяются с мочевой кислотой, образуя нерастворимые ураты натрия и калия, которые удаляются вместе с мочевой кислотой. Почечные клубочки имеют малые размеры и образуют лишь такое количество фильтрата, которое необходимо для вымывания мочевой кислоты из почечных канальцев в клоаку, где часть воды реабсорбируется. У многих наземных рептилий почечные клубочки вообще отсутствуют.

У сухопутных рептилий нет специальных механизмов для выведения солей, а ткани способны переносить повышение концентрации солей на 50% по сравнению с обычным уровнем после приема их с пищей или избыточной потери воды. Морские пресмыкающиеся, такие как галапагосская игуана и зеленая черепаха (Chelone mydas), получают с пищей большое количество соли. Их почки не способны справиться с быстрым выведением этого избытка соли из жидкостей тела, и им помогают особые солевые железы, расположенные на голове. Эти железы способны секретировать раствор хлористого натрия, в несколько раз более концентрированный, чем морская вода. Солевые железы находятся у черепахи в глазницах, и протоки от них идут к глазам; отсюда впечатление, что черепаха плачет. В "слезах", выделяемых солевыми железами черепах, концентрация солей очень высока.

Клейдоические яйца

Важной особенностью рептилий и птиц, благодаря которой они могут существовать вне воды в течение всего жизненного цикла, является наличие у них клейдоических яиц (рис. 20.52). Яйцо заключено в плотную оболочку, которая предохраняет зародыша от обезвоживания. В процессе эмбриогенеза вырост задней кишки образует мешковидную структуру, называемую аллантоисом, в которой откладывается мочевая кислота, выделяемая эмбрионом. Поскольку мочевая кислота нерастворима и нетоксична, это служит для эмбриона идеальным способом депонирования экскретов. На более поздних стадиях развития аллантоис васкуляризуется, прижимается к оболочке и функционирует как орган газообмена.

Птицы

Птицы, по-видимому, произошли от наземных пресмыкающихся, таких как змеи и ящерицы, и унаследовали те же проблемы. Кожа птиц относительно непроницаема для воды, и благодаря наличию перьев и отсутствию потовых желез скорость испарения влаги у птиц очень мала. Однако значительное количество воды теряется у них в дыхательных путях в связи с очень активной вентиляцией легких и сравнительно высокой температурой тела. Вследствие большой интенсивности метаболизма некоторые мелкие птицы могут терять за сутки до 35% веса тела.

Азотистые продукты обмена удаляются в виде мочевой кислоты с мочой, гипертоничной по отношению к жидкостям тела. Моча поступает в клоаку, где часть воды из мочи и фекальных масс всасывается обратно, благодаря чему из организма выводятся почти твердые экскременты.

Почки птиц содержат мелкие клубочки. Вся кровь, снабжающая каналец, в котором происходит реабсорбция воды и секреция солей, поступает от клубочка, для эффективной работы которого необходимо относительно высокое кровяное давление. Таким образом осуществляется связь между образованием большого объема клубочкового фильтрата и последующим всасыванием большой части содержащихся в нем воды и солей. Это всасывание облегчается тем, что поверхность канальца увеличена за счет образования петли Генле. В результате деятельности этой структуры концентрация мочевой кислоты в моче достигает 21%, что почти в 3000 раз выше ее концентрации в жидкостях тела.

Некоторые морские птицы (пингвины, олуши, бакланы, альбатросы), которые питаются рыбой и пьют морскую воду, поглощают большие количества солей. Соли выводятся из жидкостей тела специализированными секреторными клетками солевых, или носовых, желез. Эти железы сходны с солевыми железами морских рептилий и тоже расположены в глазницах. Они выделяют раствор хлористого натрия, концентрация которого в 4 раза выше, чем в жидкостях тела. Носовые железы состоят из множества долек, содержащих большое число секреторных трубочек, которые открываются в центральный проток; этот проток ведет в носовую полость, где раствор соли освобождается в виде больших капель или выдувается в виде мельчайших брызг.

19.5. Почки млекопитающих

У млекопитающих почки служат главными органами выделения и осморегуляции. Их функции включают: 1) удаление из организма ненужных продуктов обмена и "чужеродных" веществ; 2) регуляцию химического состава жидкостей тела путем удаления веществ, количество которых превышает текущие потребности; 3) регуляцию содержания воды в жидкостях тела (и тем самым их объема) и рН этих жидкостей.

Почки обильно снабжаются кровью и гомеостатически регулируют состав крови. Благодаря этому поддерживается оптимальный состав тканевой жидкости, а следовательно, и внутриклеточной жидкости омываемых ею клеток, что обеспечивает их эффективную работу.

19.5.1. Расположение и строение почек

У человека имеется пара почек, лежащих у задней стенки брюшной полости по обе стороны позвоночника на уровне грудных и поясничных позвонков. Вес одной почки составляет около 0,5% общего веса тела; левая почка слегка выдвинута вперед по сравнению с правой.

Кровь поступает в почки через почечные артерии, отходящие от аорты, а оттекает от них по почечным венам, впадающим в нижнюю полую вену. Образующаяся в почках моча стекает по двум мочеточникам в мочевой пузырь, где накапливается до тех пор, пока не будет выведена через мочеиспускательный канал.

На поперечном разрезе почки видны две ясно различимые зоны: лежащее ближе к поверхности корковое вещество и внутреннее мозговое вещество. Корковое вещество почки покрыто фиброзной капсулой и содержит клубочки, едва видимые невооруженным глазом. Мозговое вещество состоит из канальцев, собирательных трубок и кровеносных сосудов, собранных вместе в виде почечных пирамид. Верхушки пирамид, называемые сосочками, открываются в почечную лоханку, образующую расширенное устье мочеточника (рис. 19.16). Через почки проходит множество сосудов, образующих густую сеть капилляров.

19.5.2. Общий план строения и кровоснабжения нефрона

Основной структурной и функциональной единицей почки является нефрон вместе с его кровеносными сосудами. У человека в одной почке содержится около миллиона нефронов, каждый из них длиной около 3 см. Благодаря такому количеству нефронов создается огромная поверхность для обмена веществами.

Каждый нефрон включает шесть отделов, сильно различающихся по строению и физиологическим функциям:

1) почечное тельце (мальпигиево тельце), состоящее из боуменовой капсулы и клубочка;

2) проксимальный извитой каналец;

3) нисходящее колено петли Генле;

4) восходящее колено петли Генле;

5) дистальный извитой каналец;

6) собирательная трубка.

Рис. 19.16. Разрез почки млекопитающего. Показано расположение кортикального и юкстамедуллярного нефронов


Структурные взаимоотношения между этими отделами нефрона показаны на рис. 19.17.

Рис. 19.17. Схема строения нефрона (масштаб отдельных частей не выдержан)


Существуют нефроны двух типов — корковые и юкстамедуллярные. Корковые нефроны расположены в коре и имеют относительно короткие петли Генле, которые лишь недалеко заходят в мозговое вещество. В юкстамедуллярных нефронах почечные тельца расположены около границы коркового и мозгового вещества (лат. juxta-рядом). Они имеют длинные нисходящие и восходящие колена петли Генле, глубоко проникающие в мозговое вещество (рис. 19.18). Значение этих двух типов нефронов связано с различием их функций. При нормальном количестве воды в организме объем плазмы контролируют корковые нефроны, а при недостатке воды происходит усиленная ее реабсорбция в юкстамедуллярных нефронах.

Рис. 19.18. А. Кортикальный нефрон (слева) и юкстамедуллярный нефрон (справа). Б. Кровоснабжение нефронов этих двух типов


Кровь поступает в почку по почечной артерии, которая разветвляется сначала на междолевые, а затем на дуговые и междольковые артерии; от последних отходят приносящие артериолы, снабжающие кровью клубочки. Из клубочков кровь, объем которой уменьшился, оттекает по выносящим артериолам. Далее она течет по сети перитубулярных капилляров, находящихся в корковом веществе и окружающих проксимальные и дистальные извитые канальцы всех нефронов и петли Генле корковых нефронов. От этих капилляров отходят прямые сосуды, идущие в мозговом веществе параллельно петлям Генле и собирательным трубкам. Функция обеих описанных сосудистых сетей — возвращение крови, содержащей ценные для организма вещества, в общую кровеносную систему. Через прямые сосуды протекает значительно меньше крови, чем через перитубулярные капилляры, благодаря чему в интерстициальном пространстве мозгового вещества поддерживается высокое осмотическое давление, необходимое для образования концентрированной мочи.

19.5.3. Функции почек

Почки служат не только органами выделения, но и гомеостатическими органами, поддерживающими постоянный состав жидкостей тела на фоне больших колебаний поступления воды и солей. Недостаток воды или избыточное ее потребление, чрезмерное потоотделение, нехватка или избыток солей — все это имело бы серьезные последствия для организма, если бы почка не могла приспосабливать свою деятельность к этим изменениям. При этом только в двух последних отделах нефрона — в дистальном извитом канальце и собирательной трубке — изменяется функциональная активность с целью регуляции состава жидкостей тела. Остальная часть нефрона вплоть до дистального канальца функционирует при всех физиологических состояниях одинаково. Конечным продуктом деятельности почек является моча, объем и состав которой варьируют в зависимости от физиологического состояния организма. В норме отделяется большое количество разведенной мочи, но при недостатке в организме воды образуется концентрированная моча.

19.5.4. Основные принципы работы почек

Трудно дать логичное объяснение работы почек, исходя лишь из пути фильтрата через нефрон, так как процессы, происходящие в одном отделе нефрона, имеют важные последствия для процессов, протекающих в других его отделах.

Образование мочи и поддержание постоянства внутренней среды организма — динамичный процесс, включающий перенос веществ из одной части нефрона в другую, например из собирательной трубки в восходящее колено петли Генле и из нефрона в окружающие его капилляры.

Задача этого раздела — описать общие принципы работы нефрона, выделив те процессы и механизмы, которые лежат в ее основе и которые будут рассмотрены более подробно в последующих разделах.

Процессы

1. Ультрафильтрация. В клубочке все низкомолекулярные вещества, такие как глюкоза, вода и мочевина, переходят в фильтрат, заполняющий боуменову капсулу и поступающий затем в каналец нефрона.

2. Избирательная реабсорбция. Все вещества, которые могут быть использованы организмом или нужны для поддержания водно-солевого состава жидкостей тела, всасываются из фильтрата в кровеносные капилляры; например, глюкоза всасывается в проксимальном извитом канальце.

3. Секреция. До того как фильтрат покинет нефрон в виде мочи, в него могут секретироваться ненужные организму вещества; например, избыток ионов К+ , Н+ и NH+4 секретируется клетками дистального извитого канальца.

Механизмы

1. Активный транспорт. В описанных выше процессах 2 и 3 молекулы и ионы активно секретируются в фильтрат или всасываются из него. Так, например, осуществляется всасывание глюкозы в перитубулярные капилляры, окружающие проксимальный каналец, и NaCl — в толстом восходящем колене петли Генле.

2. Избирательная проницаемость. Различные участки нефрона обладают избирательной проницаемостью для ионов, воды и мочевины. Например, проксимальные канальцы относительно мало проницаемы по сравнению с дистальными. Проницаемость собирательной трубки может регулироваться гормонами.

3. Концентрационные градиенты. В результате действия механизмов 1 и 2 в интерстициальном пространстве мозгового вещества поддерживаются концентрационные градиенты; например, у человека осмолярность интерстициальной жидкости повышается с 300 мосмоль/л в корковом веществе до 1200 мосмоль/л в сосочке.

4. Пассивная диффузия и осмос. Ионы натрия и хлора и молекулы мочевины будут диффундировать в фильтрат и из него по концентрационному градиенту в тех участках нефрона, которые проницаемы для них. А молекулы воды в проницаемых для них участках нефрона будут выходить путем осмоса из фильтрата в тканевую (интерстициальную) жидкость почки там, где эта жид-кость гипертонична.

5. Гормональная регуляция. Водный баланс организма и экскрецию солей регулируют гормоны, действующие на дистальные извитые канальцы и собирательные трубки, — антидиуретический гормон, альдостерон и другие гормоны.

19.5.5. Методы изучения функции почек

Работу почек можно исследовать как прямым путем, например изучая процесс образования мочи в самой почке, так и косвенным путем, сравнивая состав плазмы и мочи.

Американский физиолог Ричарде, вводя микропипетку в боуменову капсулу почки лягушки, собрал некоторое количество клубочкового фильтрата и показал, что он сходен по составу с плазмой крови. Почки амфибий использовались в этих исследованиях потому, что мальпигиевы тельца в них относительно крупные и расположены близко к поверхности почки. Этот метод почечной микропункции был затем применен для получения жидкости из других отделов нефрона, в том числе у млекопитающих; с его помощью было получено много сведений о функциях различных участков.

Несмотря на эти достижения, многие процессы, протекающие в почках, еще недостаточно изучены (например, неясна функция петли Генле). В этих случаях наши представления — всего лишь гипотезы о том, как могли бы осуществляться те или иные функции.

Для определения скорости фильтрации и реабсорбции в почках и скорости кровотока в них использовались различные методы определения почечного клиренса веществ, содержащихся в плазме крови. Клиренс — один из показателей быстроты удаления веществ из плазмы почками.

Скорость фильтрации плазмы в почках (клубочковой фильтрации) может быть непосредственно вычислена по величине клиренса таких веществ, как инулин (С6Н10О5), которые фильтруются из крови почками, но не подвергаются реабсорбции или секреции. У человека общая скорость клубочковой фильтрации в обеих почках составляет около 125 мл/мин.

19.5.6. Строение и функция нефрона

Мальпигиево тельце состоит из почечного клубочка и окружающей его боуменовой капсулы. Эта капсула образуется в результате впячивания слепого конца эпителиального канальца и охватывает в виде двуслойного мешочка почечный клубочек. Последний состоит примерно из 50 собранных в пучок капилляров, на которые разветвляется единственная подходящая к клубочку приносящая артериола и которые сливаются затем в выносящую артериолу (рис. 19.19). Строение мальпигиева тельца целиком связано с его функцией — фильтрацией крови. Стенки капилляров состоят из одного слоя эндотелиальных клеток, между которыми имеются поры диаметром 50 -100 нм. Эти клетки лежат на базальной мембране, которая полностью окружает каждый капилляр и образует непрерывный слой, полностью отделяющий находящуюся в капилляре кровь от просвета боуменовой капсулы (рис. 19.20). Внутренний листок боуменовой капсулы состоит из клеток, называемых подоцитами и напоминающих морскую звезду с ее лучами.

Рис. 19.19. Клубочки и артериолы в почке собаки, инъецированные силиконовой смолой. Ткани растворены


Рис. 19.20 Схема строения мальпигиева тельца. Показаны типичные клетки клубочка и боуменовой капсулы


От тела подоцита отходят несколько больших первичных отростков, а от них — вторичные мелкие отростки, напоминающие амбулакральные ножки морской звезды. Вторичные отростки поддерживают базальную мембрану и окруженный ею капилляр. Между первичными отростками соседних подоцитов имеются щелевидные поры шириной 25 нм, которые облегчают процесс фильтрации. Клетки наружного листка боуменовой капсулы представляют собой плоские неспециализированные эпителиальные клетки (рис. 19.21 и 19.22).

Рис. 19.21. А. Электронная микрофотография, показывающая строение клубочкового капилляра и стенки боуменовой капсулы. Плазма, находящаяся в просвете капилляра (К), проходит через поры капилляра (указаны стрелками); БМ — базальная мембрана, действующая как фильтр между капилляром и полостью боуменовой капсулы (БК). Вторичные отростки (ВО) подоцита (П) оканчиваются на базальной мембране, и между ними видны щелевидные поры (ЩП). Б. Микрофотография клубочкового капилляра, полученная с помощью сканирующего электронного микроскопа


Рис. 19.22. Схема путей, по которым происходит фильтрация плазмы из клубочкового капилляра в боуменову капсулу


В результате ультрафильтрации, происходящей в клубочках, из крови удаляются все вещества с молекулярной массой менее 68 000 и образуется жидкость, называемая клубочковым фильтратом.

Всего через обе почки проходит 1200 мл крови в 1 мин, т.е. за 4-5 мин проходит вся кровь, имеющаяся в кровеносной системе. В этом объеме крови содержится 700 мл плазмы, из которых 125 мл отфильтровывается в мальпигиевых тельцах. Вещества, фильтрующиеся из крови в клубочковых капиллярах, проходят через их поры, базальную мембрану и щелевидные поры под действием давления в капиллярах. Основную часть этого давления составляет гидростатическое давление крови, но эффективное фильтрационное давление, под действием которого происходит фильтрация жидкости из клубочков, — это равнодействующая трех видов давления, показанных на рис. 19.23, и выражается уравнением

Рис. 19.23. Направление и величины сил, определяющих фильтрационное давление в почечных клубочках человека


Кровяное давление в клубочковых капиллярах может варьировать при изменениях диаметра приносящей и выносящей артериол, находящихся под нервным и гормональным контролем. Сужение выносящей артериолы приводит к уменьшению оттока крови из клубочка и повышению в нем гидростатического давления. При таком состоянии в клубочковый фильтрат начинают проходить и вещества с молекулярной массой более 68 000.

По химическому составу клубочковый фильтрат сходен с плазмой крови. Он содержит глюкозу, аминокислоты, витамины, некоторые гормоны, мочевину, мочевую кислоту, креатинин, электролиты и воду. Лейкоциты, эритроциты, тромбоциты и такие белки плазмы, как альбумины и глобулины, не могут выходить из капилляров — они задерживаются базальной мембраной, которая выполняет роль фильтра. Кровь, оттекающая от клубочков, обладает повышенным онкотическим давлением, поскольку в плазме повышена концентрация белков, но ее гидростатическое давление снижено.

Почечные канальцы и процессы избирательной реабсорбции и секреции

Скорость ультрафильтрации довольно стабильна. У человека образуется около 125 мл фильтрата в минуту. Если бы весь этот фильтрат выводился в виде мочи, то суточное количество мочи достигало бы примерно 180 л. Поскольку на самом деле выделяется в среднем лишь около полутора литров, очевидно, что большая часть фильтрата должна реабсорбироваться. И действительно, из 125 мл фильтрата, образующихся за 1 мин, 124 мл всасывается обратно. Главные места реабсорбции показаны на рис. 19.24.

Рис. 19.24. Схематическое изображение главных отделов нефрона, в которых происходит реабсорбция веществ из почечного фильтрата (обведены прерывистой линией)


Ультрафильтрация-процесс совершенно пассивный и неизбирательный (в отношении ценных для организма веществ). Вместе с "отходами" из крови удаляются и вещества, необходимые для жизнедеятельности. Обратное всасывание веществ, которые могут быть использованы организмом или нужны для поддержания постоянства внутренней среды, происходит в канальцах. В канальцах же может происходить дополнительное активное выведение ненужных продуктов из окружающих капилляров.

Проксимальный извитой каналец. Это наиболее длинная (14 мм) и широкая (60 мкм) часть нефрона, по которой фильтрат поступает из боуменовой капсулы в петлю Генле. Стенки этого канальца состоят из одного слоя эпителиальных клеток с многочисленными длинными (1 мкм) микроворсинками, образующими щеточную каемку на внутренней поверхности канальца. Наружная мембрана эпителиальной клетки примыкает к базальной мембране, и ее впячивания образуют базальный лабиринт. Мембраны соседних эпителиальных клеток разделены межклеточными пространствами, и через эти пространства и лабиринт циркулирует жидкость (рис. 19.25). Эта жидкость омывает клетки проксимальных извитых канальцев и окружающую сеть перитубулярных капилляров, образуя связующее звено между ними. В клетках проксимального извитого канальца около базальной мембраны сосредоточены многочисленные митохондрии, генерирующие АТФ, необходимый для активного транспорта веществ.

Рис. 19.25. Схема, иллюстрирующая предполагаемый механизм реабсорбции растворенных веществ, например глюкозы, из просвета проксимального извитого канальца в перитубулярные капилляры. Как полагают, молекулы-переносчики, участвующие в активном транспорте, находятся в базальной мембране. Цифры соответствуют описанным в тексте стадиям поглощения глюкозы


Избирательная реабсорбция. Большая поверхность проксимальных извитых канальцев, многочисленные митохондрии в них и близость перитубулярных капилляров — все это приспособления для реабсорбции веществ из клубочкового фильтрата. Здесь всасывается обратно более 80% веществ, в том числе вся глюкоза, все аминокислоты, витамины и гормоны и около 85% хлористого натрия и воды. Механизм всасывания можно описать следующим образом:

1. Глюкоза, аминокислоты и ионы диффундируют из фильтрата в клетки проксимального извитого канальца, откуда активно переносятся транспортными системами плазматической мембраны в межклеточные пространства и щели лабиринта.

2. Из межклеточных пространств и лабиринта они диффундируют в чрезвычайно проницаемые перитубулярные капилляры и выводятся из нефрона.

3. В результате непрерывного удаления всех этих веществ из клеток проксимального извитого канальца создается диффузионный градиент между находящимся в просвете канальца фильтратом и клетками, и по этому градиенту в клетки переходят все новые молекулы, которые затем активно транспортируются из клеток в межклеточные пространства и щели лабиринта, и весь процесс продолжается.

В результате активного поглощения натрия и сопровождающих его анионов осмотическое давление фильтрата снижается, и в перитубулярные капилляры путем осмоса переходит эквивалентное количество воды. Основная масса растворенных веществ и воды извлекается из фильтрата с довольно постоянной скоростью. В результате этого процесса в канальце образуется фильтрат, изотоничный плазме крови перитубулярных капилляров.

Из фильтрата путем диффузии реабсорбируется также около 50% мочевины, которая поступает в перитубулярные капилляры и возвращается таким образом в общую систему кровообращения; остальная мочевина выводится с мочой.

Белки с мол. массой менее 68 000, поступающие в процессе ультрафильтрации в просвет канальца, извлекаются из фильтрата путем пиноцитоза, происходящего у основания микроворсинок. Они оказываются внутри пиноцитозных пузырьков, к которым прикрепляются первичные лизосомы (разд. 7.2.8). Гидролитические ферменты лизосом расщепляют белки до аминокислот, которые либо используются самими клетками канальца, либо переходят путем диффузии в перитубулярные капилляры. И наконец, в этом отделе нефрона происходит активная секреция креатинина и "чужеродных" веществ. Эти вещества транспортируются из межклеточной жидкости, омывающей канальцы, в канальцевый фильтрат и выводятся с мочой.

19.5.7. Образование мочи

Моча образуется в результате обмена растворенными веществами и водой между фильтратом, покидающим проксимальный извитой каналец, и всеми последующими отделами нефрона (табл. 19.7).

Таблица 19.7. Состав плазмы и мочи и изменения концентрации в них растворенных веществ в процессе образования мочи у человека


Способность к образованию гипертонической мочи характерна только для тех позвоночных (птицы и млекопитающие), у которых имеется петля Генле. Концентрация образующейся мочи находится в прямой зависимости от длины петли Генле и толщины слоя мозгового вещества по сравнению с корой. Оба показателя возрастают с увеличением дефицита воды в зоне обитания. Например, у бобра (Castor) — полуводного млекопитающего — имеется тонкий слой мозгового вещества, состоящего из коротких петель Генле, и выделяется большой объем разведенной мочи (600 мосмоль/л), тогда как обитатели пустынь — кенгуровая крыса (Dipodomys) и тушканчик (Dipus) — обладают толстым слоем мозгового вещества с длинными петлями Генле и выделяют небольшое количество сильно концентрированной мочи (6000 и 9000 мосмоль/л соответственно).

Нисходящее и восходящее колена петли Генле

Прежде чем подробно обсуждать строение и функцию различных участков петли Генле, необходимо рассмотреть ее функцию в целом. Петля Генле вместе с капиллярами прямых сосудов и собирательной трубкой создает и поддерживает продольный градиент осмотического давления в мозговом веществе по направлению от коркового вещества к сосочку за счет повышения концентраций хлористого натрия и мочевины. Благодаря этому градиенту возможно удаление все большего количества воды путем осмоса из просвета канальца в интерстициальные пространства мозгового вещества, откуда она переходит в прямые сосуды. В конечном счете в соединительной трубке образуется гипертоническая моча.

Механизм, с помощью которого петля Генле обеспечивает повышение концентрации хлористого натрия в мозговом веществе по направлению к сосочку, не вполне ясен. Не известна также степень проницаемости нисходящего колена петли Генле для хлористого натрия. Эта неясность не позволяет полностью понять механизм образования градиента, но не изменяет существенно того, что было сказано выше и будет сказано ниже. Движение ионов, мочевины и воды между петлей Генле, прямыми сосудами и собирательной трубкой можно описать следующим образом (см. соответствующие цифры в кружках на рис. 19.26):

Рис. 19.26 Общая схема, показывающая передвижение солей, мочевины и воды, в результате которого создается градиент осмолярности в мозговом веществе. Цифры в прямоугольниках показывают осмолярность (мосмоль/кг), а цифры в кружочках соответствуют пунктам текста. Тоничность разных отделов нефрона указана по отношению к плазме крови за пределами почки


1. Короткий и относительно широкий (30 мкм) верхний сегмент нисходящего колена непроницаем[4] для солей, мочевины и воды. По этому участку фильтрат переходит из проксимального извитого канальца в более длинный тонкий (12 мкм) сегмент нисходящего колена, свободно пропускающий воду.

2. Благодаря высокой концентрации хлористого натрия и мочевины в тканевой жидкости мозгового вещества создается высокое осмотическое давление, вода отсасывается из фильтрата и поступает в прямые сосуды.

3. В результате выхода воды из фильтрата его объем уменьшается на 5% и он становится гипертоничным. В верхушке мозгового вещества (в сосочке) нисходящее колено петли Генле изгибается в виде шпильки для волос и переходит в восходящее колено, которое по всей своей длине проницаемо для воды.

4. Нижний участок восходящего колена — тонкий сегмент — проницаем для хлористого натрия и мочевины, и хлористый натрий диффундирует из него, тогда как мочевина, напротив, диффундирует внутрь.

5. В следующем, толстом сегменте восходящего колена эпителий состоит из уплощенных кубовидных клеток с рудиментарной щеточной каемкой и многочисленными митохондриями. В этих клетках осуществляется активный перенос ионов натрия и хлора из фильтрата.

6. Вследствие выхода ионов натрия и хлора из фильтрата повышается осмолярность мозгового вещества, а в дистальные извитые канальцы поступает гипотоничный фильтрат.

Петля Генле-противоточный концентрирующий механизм

Роль петли Генле как противоточного концентрирующего механизма определяют следующие факторы:

1) близкое соседство нисходящего и восходящего колен;

2) проницаемость нисходящего колена для воды;

3) непроницаемость нисходящего колена для растворенных веществ;

4) проницаемость тонкого сегмента восходящего колена для растворенных веществ;

5) наличие механизмов активного транспорта в толстом сегменте восходящего колена.

Осмолярность фильтрата в обоих коленах петли Генле тоже позволяет предположить, что петля действует как противоточный концентрирующий механизм. В такой системе разность концентраций между жидкостями в восходящем и нисходящем коленах на каждом уровне может быть небольшой, но поскольку эта разность существует на большом протяжении (как в петле Генле), она суммируется и конечная концентрация фильтрата у изгиба петли оказывается намного больше, чем у ее концов. Чем длиннее петля, тем больше разность концентраций. Выход хлористого натрия из фильтрата в восходящем колене приводит к повышению его концентрации в тканевой жидкости мозгового вещества, в связи с чем из восходящего колена отсасывается вода. Эта вода сразу поступает в прямые сосуды, благодаря чему в тканевой жидкости и в фильтрате сохраняется высокая концентрация растворенных веществ, как показано на рис. 19.27. В процессе продвижения фильтрата по петле противоточный обмен продолжается. Непрерывная пассивная и активная циркуляция растворенных веществ обеспечивает постоянную высокую концентрацию хлористого натрия в мозговом веществе. Параллельно функционирует другая система-система противоточного обмена в прямых сосудах (см. ниже), и эти два противоточных механизма, работая сообща, обеспечивают градиент осмотической концентрации в мозговом веществе.

Рис. 19.27. Модель противоточного концентрирующего механизма, образуемого канальцами петли Генле. Ионы Na+ и Сl- активно транспортируются из толстого сегмента восходящего колена петли в тканевую жидкость, концентрация растворенных веществ в этой жидкости повышается. Вода выходит из просвета нисходящего колена петли. Цифрами указана осмотическая концентрация (мосмоль/кг). Градиент осмолярности между нисходящим и восходящим коленами петли Генле произвольно принят за 200 мосмоль/кг

Прямые сосуды как противоточный обменник

Узкий нисходящий и более широкий восходящий капилляры прямых сосудов на всем протяжении идут параллельно друг другу и образуют на разных уровнях ветвящиеся петли. Эти капилляры проходят очень близко к канальцам петли Генле, однако прямого переноса веществ из фильтрата петли в прямые сосуды не происходит. Вместо этого растворенные вещества выходят сначала в интерстициальные пространства мозгового вещества, где мочевина и хлористый натрий задерживаются из-за малой скорости кровотока в прямых сосудах, и осмотический градиент тканевой жидкости сохраняется. Клетки стенок прямых сосудов свободно пропускают воду, мочевину и соли, а поскольку эти сосуды идут рядом, они функционируют как система противоточного обмена. При вступлении нисходящего капилляра в мозговое вещество из плазмы крови вследствие прогрессирующего повышения осмотического давления тканевой жидкости выходит путем осмоса вода, а обратно входят путем диффузии хлористый натрий и мочевина (рис. 19.28). В восходящем капилляре происходит обратный процесс: в связи с уменьшением осмотического давления тканевой жидкости вода вновь переходит в плазму, а хлористый натрий и мочевина выходят из нее. Адаптивное значение этого механизма состоит в том, что благодаря ему осмотическая концентрация плазмы, выходящей из почек, остается стабильной независимо от концентрации плазмы, поступающей в них. Наконец, что особенно важно, поскольку все перемещения растворенных веществ и воды происходят пассивно, противоточный обмен в прямых сосудах происходит без всяких затрат энергии.

Рис. 19.28. Пассивное перемещение воды, ионов и мочевины между соседними прямыми сосудами и между этими сосудами и тканевой жидкостью мозгового вещества. Прямые сосуды образуют систему противоточного обмена. Цифры — величины осмолярности (моемо ль/кг)

Дистальный извитой каналец

Дистальный извитой каналец подходит обратно по направлению к мальпигиеву тельцу и весь лежит в корковом веществе. Клетки дистальных канальцев имеют щеточную каемку и содержат много митохондрий, и именно этот отдел нефронов ответствен за тонкую регуляцию водно-солевого баланса и рН крови. Гормональный контроль проницаемости клеток дистального извитого канальца для воды связан с таким же контролем собирательных трубок (оба механизма описаны ниже). Регуляция баланса электролитов и рН описана в разд. 19.7.

Собирательная трубка

Собирательная трубка начинается в корковом веществе от дистального извитого канальца и идет вниз через мозговой слой, где объединяется с несколькими другими собирательными трубками в более крупные протоки, называемые протоками Беллини. Проницаемость стенок собирательной трубки для воды и мочевины регулируется антидиуретическим гормоном (АДГ), и благодаря этой регуляции собирательная трубка участвует вместе с дистальным извитым канальцем в образовании гипертонической или гипотонической мочи в зависимости от потребности организма в воде.

19.6. Антидиуретический гормон (АДГ) и образование гипертонической или гипотонической мочи

Относительно стабильное осмотическое давление крови поддерживается за счет баланса между поступлением воды с питьем и пищей и потерей воды с выдыхаемым воздухом, потом, калом и мочой. Однако за тонкую регуляцию осмотического давления ответственно в основном воздействие антидиуретического гормона (АДГ) на проницаемость дистальных извитых канальцев и собирательных трубок.

При недостаточном потреблении воды, сильном потоотделении или после приема большого количества соли осморецепторы, находящиеся в гипоталамусе, регистрируют повышение осмотического давления крови. Возникают нервные импульсы, которые передаются в заднюю долю гипофиза и вызывают освобождение АДГ. АДГ повышает проницаемость для воды стенок дистального извитого канальца и собирательной трубки, вода выходит из фильтрата в тканевую жидкость коркового и мозгового вещества, и почки выделяют меньший объем более концентрированной (1000 мосмоль/л) мочи.

АДГ повышает также проницаемость собирательной трубки для мочевины, которая диффундирует из мочи в тканевую жидкость мозгового вещества. Здесь мочевина повышает осмолярность, что приводит к увеличению выхода воды из тонкого сегмента нисходящего колена петли Генле (рис. 19.29).

После приема большого количества воды, напротив, осмотическое давление крови снижается и секреция АДГ прекращается. Стенки дистального извитого канальца и собирательной трубки становятся непроницаемыми для воды, реабсорбция воды при прохождении фильтрата через мозговое вещество уменьшается и, как следствие, выводится большой объем гипотонической мочи (рис. 19.29).

Рис. 19.29. Схема, показывающая действие антидиуретического гормона (АДГ) на проницаемость дистального извитого канальца и собирательной трубки для воды и мочевины. МЧ — мочевина


В табл. 19.8 суммированы процессы, участвующие в регуляции водного баланса, а на рис. 19.30 дана общая схема взаимодействий, регулирующих водный и солевой баланс.

Таблица 19.8. Изменения, вызываемые антидиуретическим гормоном (АДГ) в эпителии дистального извитого канальца и собирательной трубки


При недостаточности АДГ возникает заболевание, называемое несахарным диабетом, при котором выделяются очень большие количества гипотонической мочи. Потерю жидкости с мочой приходится при этом возмещать обильным питьем.

19.7. Регуляция содержания ионов натрия в крови

Поддержание стабильной концентрации ионов натрия в крови контролируется гормоном альдостероном, который вторично влияет также на реабсорбцию воды. Уменьшение объема крови, вызванное потерей натрия, стимулирует группу клеток, расположенных между дистальным извитым канальцем и приносящей артериолой, — так называемый юкстагломерулярный аппарат. Эти клетки высвобождают при стимуляции фермент ренин. Ренин воздействует на содержащийся в плазме глобулин, синтезируемый печенью, который при этом превращается в активный гормон ангиотензин. Этот гормон побуждает кору надпочечников выделять альдостерон, а он в свою очередь стимулирует активный перенос натрия из фильтрата в плазму перитубулярных капилляров. Это поглощение ионов натрия сопровождается также реабсорбцией осмотически эквивалентного количества воды.

19.7.1. Гомеостатический контроль содержания воды и натрия в плазме

Когда организм имеет свободный доступ к воде и получает нормальное количество натрия с пищей, АДГ и альдостерон не секретируются; в этом случае эпителий дистального извитого канальца и собирательной трубки остается непроницаемым для солей, мочевины и воды и образуется обильная, сильно разведенная моча. Механизмы, поддерживающие это нормальное состояние, схематически представлены на рис. 19.30.

Рис. 19.30. Общая схема регуляции осмотического давления плазмы

19.8. Регуляция рН крови

Бикарбонатная и фосфатная буферные системы крови препятствуют снижению рН из-за накопления избытка водородных ионов (Н+), образующихся в процессах метаболизма. Эти системы регулируют также содержание в крови углекислоты, образующейся при дыхании, не позволяя ей изменять рН плазмы (когда СО2 еще находится в крови). Слишком сильным изменениям химического состава крови, которые могли бы сдвинуть рН с его нормальной величины, равной 7,4, препятствует дистальный извитой каналец: при снижении рН он экскретирует водородные ионы и задерживает ионы бикарбоната (гидрокарбоната), а при повышении рН, напротив, экскретирует ионы бикарбоната и задерживает ионы водорода. В результате этого рН мочи может колебаться в пределах от 4,5 до 8,5. Падение рН стимулирует также клетки почек к образованию иона аммония (NH+4), который, обладая основным характером, реагирует с поступающими в почки кислотами и выделяется в виде аммонийных солей.

Загрузка...