Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысячелетий человек пользовался генетическими методами для улучшения домашних животных и возделываемых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.
Однако лишь в начале XX в. ученые стали осознавать в полной мере важность законов наследственности и ее механизмов. Хотя успехи микроскопии позволили установить, что наследственные признаки передаются из поколения в поколение через сперматозоиды и яйцеклетки, оставалось неясным, каким образом мельчайшие частицы протоплазмы могут нести в себе "задатки" того огромного множества признаков, из которых слагается каждый отдельный организм.
Первый действительно научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866 г. опубликовал статью, заложившую основы современной генетики. Мендель показал, что наследственные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособленных) единиц. Эти единицы, представленные у особей парами, остаются дискретными и передаются последующим поколениям в мужских и женских гаметах, каждая из которых содержит по одной единице из каждой пары. В 1909 г. датский ботаник Иогансен назвал эти единицы генами, а в 1912 г. американский генетик Морган показал, что они находятся в хромосомах. С тех пор генетика достигла больших успехов в объяснении природы наследственности и на уровне организма, и на уровне гена.
Грегор Мендель родился в Моравии в 1822 г. В 1843 г. он поступил в монастырь августинцев в Брюнне (ныне Брно, Чехословакия), где принял духовный сан. Позже он отправился в Вену, где провел два года, изучая в университете естественную историю и математику, после чего в 1853 г. вернулся в монастырь. Такой выбор предметов, несомненно, оказал существенное влияние на его последующие работы по наследованию признаков у гороха. Будучи в Вене, Мендель заинтересовался процессом гибридизации растений и, в частности, разными типами гибридных потомков и их статистическими соотношениями. Эти проблемы и явились предметом научных исследований Менделя, которые он начал летом 1856 г.
Успехи, достигнутые Менделем, частично обусловлены удачным выбором объекта для экспериментов — гороха огородного (Pisum sativum). Мендель удостоверился, что по сравнению с другими этот вид обладает следующими преимуществами:
1) имеется много сортов, четко различающихся по ряду признаков;
2) растения легко выращивать;
3) репродуктивные органы полностью прикрыты лепестками, так что растение обычно самоопыляется; поэтому его сорта размножаются в чистоте, т. е. их признаки из поколения в поколение остаются неизменными;
4) возможно искусственное скрещивание сортов, и оно дает вполне плодовитых гибридов.
Из 34 сортов гороха Мендель отобрал 22 сорта, обладающие четко выраженными различиями по ряду признаков, и использовал их в своих опытах со скрещиванием. Менделя интересовали семь главных признаков: высота стебля, форма семян, окраска семян, форма и окраска плодов, расположение и окраска цветков.
И до Менделя многие ученые проводили подобные эксперименты на растениях, но ни один из них не получил таких точных и подробных данных; кроме того, они не смогли объяснить свои результаты с точки зрения механизма наследственности. Моменты, обеспечившие Менделю успех, следует признать необходимыми условиями проведения всякого научного исследования и принять их в качестве образца. Условия эти можно сформулировать следующим образом:
1) проведение предварительных исследований для ознакомления с экспериментальным объектом;
2) тщательное планирование всех экспериментов, с тем чтобы всякий раз внимание было сосредоточено на одной переменной, что упрощает наблюдения;
3) строжайшее соблюдение всех методик, с тем чтобы исключить возможность введения переменных, искажающих результаты (подробности см. ниже);
4) точная регистрация всех экспериментов и запись всех полученных результатов;
5) получение достаточного количества данных, чтобы их можно было считать статистически достоверными.
Как писал Мендель, "достоверность и полезность всякого эксперимента определяются пригодностью данного материала для тех целей, в которых он используется".
Следует, однако, отметить, что в выборе экспериментального объекта Менделю кое в чем и просто повезло: в наследовании отобранных им признаков не было ряда более сложных особенностей, открытых позднее, таких как неполное доминирование (разд. 23.7.1), зависимость более чем от одной пары генов (разд. 23.7.6), сцепление генов (разд. 23.3).
Для своих первых экспериментов Мендель выбирал растения двух сортов, четко различавшихся по какому-либо признаку, например по расположению цветков: цветки могут быть распределены по всему стеблю (пазушные) или находиться на конце стебля (верхушечные). Растения, различающиеся по одной паре альтернативных признаков, Мендель выращивал на протяжении ряда поколений. Семена от пазушных цветков всегда давали растения с пазушными цветками, а семена от верхушечных цветков — растения с верхушечными цветками. Таким образом, Мендель убедился, что выбранные им растения размножаются в чистоте (т.е. без расщепления потомства) и пригодны для проведения опытов по гибридизации (экспериментальных скрещиваний). Его метод состоял в следующем: он удалял у ряда растений одного сорта пыльники до того, как могло произойти самоопыление (эти растения Мендель называл "женскими"); пользуясь кисточкой, он наносил на рыльца этих "женских" цветков пыльцу из пыльников растения другого сорта; затем он надевал на искусственно опыленные цветки маленькие колпачки, чтобы на их рыльца не могла попасть пыльца с других растений. Мендель проводил реципрокные скрещивания — переносил пыльцевые зерна как с пазушных цветков на верхушечные, так и с верхушечных на пазушные. Во всех случаях из семян, собранных от полученных гибридов, вырастали растения с пазушными цветками. Этот признак — "пазушные цветки", — наблюдаемый у растений первого гибридного поколения, Мендель назвал доминантным; позднее, в 1902 г., Бэтсон и Сондерс стали обозначать первое поколение гибридного потомства символом F1. Ни у одного из растений F1 не было верхушечных цветков.
На цветки растений F1 Мендель надел колпачки (чтобы не допустить перекрестного опыления) и дал им возможность самоопылиться. Семена, собранные с этих растений F1, были пересчитаны и высажены следующей весной для получения второго гибридного поколения, F2 (поколение F2 — это всегда результат инбридинга в поколении F1, в данном случае самоопыления). Во втором гибридном поколении у одних растений образовались пазушные цветки, а у других — верхушечные. Иными словами, признак "верхушечные цветки", отсутствовавший в поколении F1, вновь появился в поколении F2. Мендель рассудил, что этот признак присутствовал в поколении F1 в скрытом виде, но не смог проявиться; поэтому он назвал его рецессивным. Из 858 растений, полученных Менделем в F2, у 651 были пазушные цветки, а у 207-верхушечные. Мендель провел ряд аналогичных опытов, используя всякий раз одну пару альтернативных признаков. Результаты экспериментальных скрещиваний по семи парам таких признаков приведены в табл. 23.1. Во всех случаях анализ результатов показал, что отношение доминантных признаков к рецессивным в поколении F2 составляло примерно 3:1.
Таблица 23.1. Результаты экспериментов Менделя по наследованию семи пар альтернативных признаков. (Наблюдаемое соотношение доминантных и рецессивных признаков приближается к теоретически ожидаемому 3:1)
Приведенный выше пример типичен для всех экспериментов Менделя, в которых изучалось наследование одного признака (моногибридные скрещивания). Вкратце он сводится к следующему:
Наблюдения
На основании этих и аналогичных результатов Мендель сделал следующие выводы:
1. Поскольку исходные родительские сорта размножались в чистоте (не расщеплялись), у сорта с пазушными цветками должно быть два "пазушных" фактора, а у сорта с верхушечными цветками — два "верхушечных" фактора.
2. Растения F1 содержали по одному фактору, полученному от каждого из родительских растений через гаметы.
3. Эти факторы в F1 не сливаются, а сохраняют свою индивидуальность.
4. "Пазушный" фактор доминирует над "верхушечным" фактором, который рецессивен.
Разделение пары родительских факторов при образовании гамет (так что в каждую гамету попадает лишь один из них) известно под названием первого закона Менделя, или закона расщепления. Согласно этому закону, признаки данного организма детерминируются парами внутренних факторов. В одной гамете может быть представлен лишь один из каждой пары таких факторов.
Теперь мы знаем, что эти факторы, детерминирующие такие признаки, как расположение цветка, соответствуют участкам хромосомы, называемым генами.
Описанные выше эксперименты, проводившиеся Менделем при изучении наследования одной пары альтернативных признаков, служат примером моногибридного скрещивания. Его можно описать при помощи символов и связать с современными представлениями о формировании гамет и оплодотворении. Генотип принято обозначать первой буквой слова, описывающего доминантный признак, причем большой буквой обозначают доминантный аллель, а маленькой — рецессивный. Все используемые здесь генетические термины и символы объяснены в табл. 23.2.
Таблица 23.2. Перечень наиболее употребительных генетических терминов (с пояснением на примере скрещиваний, представленных на рис. 23.1)
На рис. 23.1 показан правильный способ описания моногибридного скрещивания или решения генетических задач по наследованию одной пары альтернативных признаков.
Рис. 23.1. Полное генетическое объяснение одного из моногибридных скрещиваний, проводившихся Менделем. А — пазушные цветки (доминантный признак); а — верхушечные цветки (рецессивный признак); 2n — диплоидное состояние; n — гаплоидное состояние (см. разд. 22.3)
Отношение доминантных фенотипов к рецессивным 3:1 характерно для расщепления при моногибридном скрещивании. Выводы Менделя о передаче каждой гаметой одного аллеля и о его фенотипическом проявлении соответствуют вероятностным законам. Вероятность того, что гамета, образованная гетерозиготной родительской особью F1, будет нести доминантный аллель А или рецессивный аллель а, равна 50%, или 1/2. Если среди гамет данной родительской особи гаметы каждого из двух типов встречаются с вероятностью 1/2, то вероятность каждой из четырех возможных комбинаций гамет при оплодотворении составит 1/2 х 1/2=1/4. Статистическая вероятность встречи гамет, содержащих аллели А и а, при случайном оплодотворении показана на рис. 23.2. Вследствие доминирования отношение фенотипов среди потомков составит 3 доминантных фенотипа на 1 рецессивный фенотип. Как видно из табл. 23.1, результаты, полученные Менделем в его экспериментах по скрещиванию, подтверждают это теоретически выведенное отношение.
Рис. 23.2. Вероятностное объяснение менделевского отношения 3:1 при моногибридном скрещивании
23.1. При скрещивании чистой линии мышей с коричневой шерстью с чистой линией мышей с серой шерстью получаются потомки с коричневой шерстью. В F2 от скрещивания между этими мышами получаются коричневые и серые мыши в отношении 3:1.
а) Дайте полное объяснение этим результатам.
б) Каким будет результат скрещивания гетерозиготы с коричневой шерстью из поколения F2 с серой особью из чистой родительской линии?
Организм из поколения F1, полученного от скрещивания между гомозиготной доминантной и гомозиготной рецессивной особями, гетерозиготен по своему генотипу, но обладает доминантным фенотипом. Для того чтобы проявился рецессивный фенотип, организм должен быть гомозиготным по рецессивному аллелю. В поколении F2 особи с доминантным фенотипом могут быть как гомозиготами, так и гетерозиготами. Если селекционеру понадобилось выяснить генотип такой особи, то единственным способом, позволяющим сделать это, служит эксперимент с использованием метода, называемого анализирующим (возвратным) скрещиванием. Скрещивая организм неизвестного генотипа с организмом, гомозиготным по рецессивному аллелю изучаемого гена, можно определить этот генотип путем одного скрещивания. Например, у плодовой мушки Drosophila длинные крылья доминируют над зачаточными. Особь с длинными крыльями может быть гомозиготной (LL) или гетерозиготной (LI). Для установления ее генотипа надо провести анализирующее скрещивание между этой мухой и мухой, гомозиготной по рецессивному аллелю (ll). Если у всех потомков от этого скрещивания будут длинные крылья, то особь с неизвестным генотипом-гомозигота по доминантному аллелю. Численное соотношение потомков с длинными и с зачаточными крыльями 1:1 указывает на гетерозиготность особи с неизвестным генотипом (рис. 23.3).
Рис. 23.3. Полное генетическое объяснение метода анализирующего скрещивания, с помощью которого можно определить генотип организма с доминантным признаком. Указаны фенотипы получающихся при этом потомков
23.2. Почему в анализирующем скрещивании нельзя использовать особь, гомозиготную по доминантному аллелю (например, ГТ), чтобы определить генотип особи, обладающей доминантным фенотипом? Проиллюстрируйте свой ответ схемой скрещивания с применением надлежагщих генетических символов.
Установив возможность предсказывать результаты скрещиваний по одной паре альтернативных признаков, Мендель перешел к изучению наследования двух пар таких признаков. Скрещивания между особями, различающимися по двум признакам, называют дигибридными.
В одном из своих экспериментов Мендель использовал растения гороха, различающиеся по форме и окраске семян. Применяя метод, описанный в разд. 23.1.1, он скрещивал между собой чистосортные (гомозиготные) растения с гладкими желтыми семенами и чистосортные растения с морщинистыми зелеными семенами. У всех растений F1 (первого поколения гибридов) семена были гладкие и желтые. По результатам проведенных ранее моногибридных скрещиваний Мендель уже знал, что эти признаки доминантны; теперь, однако, его интересовали характер и соотношение семян разных типов в поколении F2, полученном от растений F1 путем самоопыления. Всего он собрал от растений F2 556 семян, среди которых было
гладких желтых 315
морщинистых желтых 101
гладких зеленых 108
морщинистых зеленых 32
Соотношение разных фенотипов составляло примерно 9:3:3:1 (дигибридное расщепление). На основании этих результатов Мендель сделал два вывода:
1. В поколении F2 появилось два новых сочетания признаков: морщинистые и желтые; гладкие и зеленые.
2. Для каждой пары аллеломорфных признаков (фенотипов, определяемых различными аллелями) получилось отношение 3:1, характерное для моногибридного скрещивания — среди семян было 423 гладких и 133 морщинистых, 416 желтых и 140 зеленых.
Эти результаты позволили Менделю утверждать, что две пары признаков (форма и окраска семян), наследственные задатки которых объединились в поколении F1, в последующих поколениях разделяются и ведут себя независимо одна от другой. На этом основан второй закон Менделя — принцип независимого распределения, согласно которому каждый признак из одной пары признаков может сочетаться с любым признаком из другой пары.
Приведенный выше эксперимент можно описать с помощью известных нам генетических символов так, как это показано на рис. 23.4, А. В результате разделения (сегрегации) аллелей (R, r, Y и у) и их независимого распределения (рекомбинации) в каждой из мужских и женских гамет возможно одно из четырех сочетаний аллелей. Для того чтобы показать все возможные сочетания гамет, возникающие при случайном оплодотворении, используют запись в виде решетки Пённета, названной так по имени кембриджского генетика; она позволяет свести к минимуму ошибки, которые могли бы возникнуть при составлении списка всех возможных сочетаний гамет. При заполнении решетки Пённета рекомендуется сначала внести все мужские гаметы в клеточки по вертикальным столбцам, а затем все "женские" — в клеточки горизонтальных строк. Кроме того, определяя фенотипы особей F2, полезно обозначать идентичные фенотипы какими-нибудь хорошо различимыми значками (как это сделано на рис. 23.4,5). Как показывают рис. 23.4,А и Б, основанные на первом и втором законах Менделя, при каждом мужском или женском генотипе F1 возможно образование гамет со следующими сочетаниями аллелей:
R может встречаться только в сочетании с У или у (но не с r), т.е. в виде RY или Ry;
r может встречаться только в сочетании с Y или у (но не с R), т.е. в виде rY или rу.
Таким образом, для любой гаметы шанс получить какое-то одно из четырех указанных здесь сочетаний аллелей равен 1 из 4. Поскольку при моногибрид-ном скрещивании у 3/4 потомков F2 проявляется доминантный аллель, а у 1/4-рецессивный, вероятности проявления четырех рассматриваемых нами
Рис. 23.4. А. Формирование фенотипов F1 от скрещивания между гомозиготными родительскими особями. Это пример дигибридного скрещивания, поскольку рассматриваются две пары контрастирующих признаков. Б. Использование решетки Пённета с целью показать все возможные сочетания гамет при образовании генотипов в F2
Отсюда вероятности проявления соответствующих возможных сочетаний аллелей у потомков F2 равны:
Результаты экспериментов Менделя со скрещиванием сортов, различающихся по двум парам альтернативных признаков, близки к результатам этих теоретических расчетов.
23.3. У морской свинки (Cavia) имеются два аллеля, определяющих черную или белую окраску шерсти, и два аллеля, определяющих короткую или длинную шерсть. При скрещивании между гомозиготами с короткой черной шерстью и гомозиготами с длинной белой шерстью у всех потомков шерсть была короткая и черная.
а) Какие аллели являются доминантными?
б) Каким будет соотношение различных фенотипов в F2?
23.4. Окраска цветков у душистого горошка определяется двумя парами аллелей, R, r и S, s. При наличии по крайней мере одного доминантного гена из каждой пары аллелей цветки пурпурные; при всех других генотипах цветки белые. Каким будет соотношение разных фенотипов в потомстве от скрещивания двух растений RrSs с пурпурными цветками?
В сформулированных ниже положениях используются термины, принятые в современной генетике.
1. Каждый признак данного организма контролируется парой аллелей.
2. Если организм содержит два различных аллеля для данного признака, то один из них (доминантный) может проявляться, полностью подавляя проявление другого (рецессивного).
3. При мейозе каждая пара аллелей разделяется (расщепляется) и каждая гамета получает по одному из каждой пары аллелей (принцип расщепления).
4. При образовании мужских и женских гамет в каждую из них может попасть любой аллель из одной пары вместе с любым другим из другой пары (принцип независимого распределения).
5. Каждый аллель передается из поколения в поколение как дискретная неизменяющаяся единица.
6. Каждый организм наследует по одному аллелю (для каждого признака) от каждой из родительских особей.
Описанный здесь механизм наследования при дигибридном скрещивании, приведенные примеры и типичное отношение 9:3:3:1 относятся только к тем признакам, которые контролируются генами, лежащими в разных хромосомах. Если же гены лежат в одной и той же хромосоме, такое независимое распределение наблюдается не всегда (см. разд. 23.3).
Мендель опубликовал результаты своих исследований и свои гипотезы в 1866 г. в журнале "Труды Брюннского общества естествоиспытателей", который рассылался в научные общества многих стран. Однако ученые не сумели оценить значение его открытий; возможно, это объяснялось тем, что в то время нельзя было связать данные Менделя с какими-то конкретными структурами в гаметах, с помощью которых наследственные факторы могли бы передаваться от родителей потомкам.
К концу XIX в. в результате повышения оптических качеств микроскопов и совершенствования цитологических методов возможно стало наблюдать поведение хромосом в гаметах и зиготах. Еще в 1875 г. Гертвиг обратил внимание на то, что при оплодотворении яиц морского ежа происходит слияние двух ядер-ядра спермия и ядра яйцеклетки. В 1902 г. Бовери продемонстрировал важную роль ядра в регуляции развития признаков организма, а в 1882 г. Флемминг описал поведение хромосом во время митоза.
В 1900 г. законы Менделя были вторично открыты и должным образом оценены почти одновременно и независимо друг от друга тремя учеными-де Фризом, Корренсом и Чермаком. Корренс сформулировал выводы Менделя в привычной нам форме двух законов и ввел термин "фактор", тогда как Мендель для описания единицы наследственности пользовался словом "элемент". Позднее американец Уильям Сэттон заметил удивительное сходство между поведением хромосом во время образования гамет и оплодотворения и передачей менделевских наследственных факторов (табл. 23.3).
Таблица 23.3. Соответствие между событиями, происходящими при мейозе и оплодотворении, и гипотезами Менделя
На основании изложенных выше данных Сэттон и Бовери высказали мнение, что хромосомы являются носителями менделевских факторов, и сформулировали так называемую хромосомную теорию наследственности. Согласно этой теории, каждая пара факторов локализована в паре гомологичных хромосом, причем каждая хромосома несет по одному фактору. Поскольку число признаков у любого организма во много раз больше числа его хромосом, видимых в микроскоп, каждая хромосома должна содержать множество факторов.
В 1909 г. Иогансен заменил термин фактор, означавший основную единицу наследственности, термином ген. Альтернативные формы гена, определяющие его проявление в фенотипе, назвали аллелями. Аллели — это конкретные формы, которыми может быть представлен ген, и они занимают одно и то же место — локус — в гомологичных хромосомах (рис. 23.5).
Рис. 23.5. Клетка с двумя парами гомологичных хромосом. Положение двух разных генных локусов показано черными кружками. В данном случае два локуса расположены в разных парах гомологичных хромосом и каждый ген представлен двумя аллелями
Менделевский закон расщепления можно теперь объяснить расхождением гомологичных хромосом, происходящим в анафазе I мейоза и случайным распределением аллелей между гаметами. Эти события схематически представлены на рис. 23.6.
Рис. 23.6. Объяснение менделевского закона расщепления факторов (аллелей) А и а расхождением гомологичных хромосом, происходящим в мейозе
Менделевский принцип независимого распределения тоже можно объяснить особенностями передвижения хромосом во время мейоза. При образовании гамет распределение между ними аллелей, находящихся в данной паре гомологичных хромосом, происходит совершенно независимо от распределения аллелей из других пар (рис. 23.7). Именно случайное расположение пар гомологичных хромосом на экваторе веретена в метафазе I мейоза и их последующее разделение в анафазе I ведет к разнообразию сочетаний аллелей в гаметах. Число возможных комбинаций аллелей в мужских или женских гаметах можно определить по общей формуле 2n, где n-гаплоидное число хромосом. У человека n = 23, а возможное число различных комбинаций равно 223 = 8 388 609.
Рис. 23.7. Объяснение менделевского закона независимого распределения факторов (аллелей) А, а. В, b независимым расхождением разных пар гомологичных хромосом в мейозе
23.5. Отложение крахмала в пыльцевых зернах кукурузы контролируется наличием одного из аллелей определенного гена. При наличии другого аллеля этого гена отложения крахмала не происходит. Объясните, почему половина пыльцевых зерен, образуемых на данном растении кукурузы, содержит крахмал, а в другой половине его нет.
23.6. Рассчитайте число возможных сочетаний хромосом в пыльцевых зернах шафрана (Crocus balansae), у которого диплоидное число хромосом равно шести (2n = 6).
Все ситуации и примеры, обсуждавшиеся до сих пор в этой главе, относились к наследованию генов, находящихся в разных хромосомах. Как выяснили цитологи, у человека все соматические клетки содержат по 46 хромосом. Поскольку человек обладает тысячами различных признаков — таких, например, как группа крови, цвет глаз, способность секретировать инсулин, — в каждой хромосоме должно находиться большое число генов.
Гены, лежащие в одной и той же хромосоме, называют сцепленными. Все гены какой-либо одной хромосомы образуют группу сцепления; они обычно попадают в одну гамету и наследуются вместе. Таким образом, гены, принадлежащие к одной группе сцепления, обычно не подчиняются менделевскому принципу независимого распределения. Поэтому при дигибридном скрещивании они не дают ожидаемого отношения 9:3:3:1. В таких случаях получаются самые разнообразные соотношения, которые теперь, когда нам известна цитологическая основа закономерностей, открытых Менделем, можно довольно легко объяснить. (Здесь следует еще раз подчеркнуть, что Менделю посчастливилось выбрать для изучения наследования пары признаков, определяемых генами разных хромосом.) У дрозофилы гены, контролирующие окраску тела и длину крыла, представлены следующими парами аллелей (назовем соответствующие признаки): серое тело — черное тело, длинные крылья — зачаточные (короткие) крылья. Серое тело и длинные крылья доминируют. Ожидаемое отношение фенотипов в F2 от скрещивания между гомозиготой с серым телом и длинными крыльями и гомозиготой с черным телом и зачаточными крыльями должно составить 9:3:3:1. Это указывало бы на обычное менделевское наследование при дигибридном скрещивании, обусловленное случайным распределением генов, находящихся в разных, негомологичных хромосомах. Однако вместо этого в F2 были получены в основном родительские фенотипы в отношении примерно 3:1. Это можно объяснить, предположив, что гены окраски тела и длины крыла локализованы в одной и той же хромосоме, т. е. сцеплены (рис. 23.8).
Рис. 23.8. Генетическое объяснение отношения фенотипов 3:1, получающегося в F2 в результате сцепления
Практически, однако, соотношение 3:1 никогда не наблюдается, а возникают все четыре фенотипа. Это объясняется тем, что полное сцепление встречается редко. В большинстве экспериментов по скрещиванию при наличии сцепления помимо мух с родительскими фенотипами обнаруживаются особи с новыми сочетаниями признаков. Эти новые фенотипы называют рекомбинантными. Все это позволяет дать следующее определение сцепления: два или более генов называют сцепленными, если потомки с новыми генными комбинациями (рекомбинанты) встречаются реже, чем родительские фенотипы.
События, приведшие американского генетика Томаса X. Моргана к открытию сцепления, можно проиллюстрировать одним из его экспериментов на дрозофиле, в котором он предсказывал результаты возвратного скрещивания между серой длиннокрылой гетерозиготой (из поколения F1 от скрещивания, представленного на рис. 23.8) и рецессивной гомозиготой с черным телом и зачаточными крыльями. Было предсказано два возможных результата:
1. Если две пары аллелей, определяющие серую или черную окраску тела и длинные или зачаточные крылья, лежат в разных парах хромосом (т.е. не сцеплены), то они должны распределяться независимо и давать следующее отношение фенотипов:
1 серое тело, длинные крылья
1 серое тело, зачаточные крылья
1 черное тело, длинные крылья
1 черное тело, зачаточные крылья
2. Если аллели, определяющие окраску тела и длину крыльев, лежат в одной и той же паре хромосом (т. е. сцеплены), то отношение фенотипов будет иным:
1 серое тело, длинные крылья
1 черное тело, зачаточные крылья
Объяснение этих предсказаний представлено на рис. 23.9.
Рис. 23.9. Генетическое объяснение предсказаний, сделанных Морганом
Морган провел такое возвратное скрещивание несколько раз и ни разу не получил ни один из предсказанных результатов. Всякий раз он получал следующие результаты:
41,5%-серое тело, длинные крылья
41,5%-черное тело, зачаточные крылья
8,5%-серое тело, зачаточные крылья
8,5%-черное тело, длинные крылья
На основании этих результатов Морган постулировал, что
1) изучаемые гены находятся в хромосомах;
2) оба гена находятся в одной хромосоме, т.е. сцеплены;
3) аллели каждого гена расположены в гомологичных хромосомах;
4) во время мейоза между гомологичными хромосомами происходил обмен генами. Появление рекомбинантных сочетаний аллелей у
17% потомков было объяснено на основании пункта 4. Это явление получило название кроссинговера (перекреста).
23.7. Гомозиготное растение с пурпурными цветками и коротким стеблем скрестили с гомозиготным растением с красными цветками и длинным стеблем; у гибридов F1 были пурпурные цветки и короткий стебель. При анализирующем скрещивании растения F1 с двойной гомозиготой по рецессивным генам были получены следующие потомки:
52 с пурпурными цветками и коротким стеблем
47 с пурпурными цветками и длинным стеблем
49 с красными цветками и коротким стеблем
45 с красными цветками и длинным стеблем.
Дайте полное объяснение этим результатам.
В 1909 г. бельгийский цитолог Янссенс наблюдал образование хиазм во время профазы I мейоза (см. разд. 22.3). Генетическое значение этого процесса разъяснил Морган, высказавший мнение, что кроссинговер (обмен аллелями) происходит в результате разрыва и рекомбинации гомологичных хромосом во время образования хиазм. В дальнейшем сопоставление цитологических данных с данными о соотношениях рекомбинантных фенотипов подтвердило, что обмен генетическим материалом в мейозе происходит почти буквально между всеми гомологичными хромосомами. Аллели, входящие в группы сцепления у родительских особей, разделяются и образуют новые сочетания, которые попадают в гаметы, — процесс, называемый генетической рекомбинацией. Потомков, которые получаются из таких гамет с "новыми" сочетаниями аллелей, называют рекомбинантами. Таким образом, кроссинговер представляет собой важный источник генетической изменчивости, наблюдаемой в популяциях.
Для иллюстрации принципа кроссинговера можно рассмотреть поведение пары гомологичных хромосом дрозофилы, несущих аллели серой окраски тела и длинных крыльев (оба аллеля доминантные) и черной окраски тела и зачаточных крыльев (оба аллеля рецессивные), во время образования хиазм. Скрещивание между гомозиготным серым длиннокрылым самцом и гомозиготной черной самкой с зачаточными крыльями дало в F1 гетерозиготных потомков с серым телом и длинными крыльями (рис. 23.10).
Рис. 23.10. Генетическое объяснение процесса кроссинговера и появления рекомбинантных генотипов. Подсчитав число особей, у которых выявляется рекомбинация (х), и общее число особей (у), можно вычислить частоту рекомбинаций по формуле: Частота рекомбинации (%) = x/y ·100
При возвратном скрещивании мух из поколения F1 с гомозиготными двойными рецессивами были получены следующие результаты:
Как показывают эти результаты, гены, определяющие окраску тела и длину крыльев, сцеплены. (Вспомните, что если бы эти гены находились в разных хромосомах и поэтому распределялись случайным образом, то при дигибридном скрещивании гетерозиготы F1 с гомозиготой по двум рецессив-ным признакам получилось бы соотношение фенотипов 1:1:1:1.) Из приведенных цифр можно вычислить частоту рекомбинации генов, определяющих окраску тела и длину крыльев.
Частота рекомбинаций вычисляется по формуле
В нашем примере частота рекомбинации равна
Это значение соответствует числу рекомбинаций, происходящих при образовании гамет. Один из учеников Моргана, А. X. Стертевант, высказал мысль, что частоты рекомбинаций свидетельствуют о линейном расположении генов вдоль хромосомы. Еще более важное предположение Стертеванта состояло в том, что частота рекомбинаций отражает относительное расположение генов в хромосоме: чем дальше друг от друга находятся сцепленные гены, тем больше вероятность того, что между ними произойдет кроссинговер, т.е. тем выше частота рекомбинантов (рис. 23.11).
Рис. 23.11. А В и С — три генных локуса, расположенных в одной хромосоме. Вероятность кроссинговера и разделения для генов А и С выше, чем для генов В и С или А и В, так как частота кроссинговера зависит от расстояния между генами
23.8. На приведенной ниже схеме изображены локусы двенадцати аллелей, расположенные в паре хромосом. Показаны их относительные расстояния от центромеры.
а) Как называют изображенные здесь хромосомы?
б) Между какими двумя локусами чаще всего будет происходить кроссинговер?
в) Произойдет ли кроссинговер между генами, определяющими цвет глаз и форму антенн? Обоснуйте свой ответ.
Данные о частотах рекомбинаций важны прежде всего потому, что дают генетикам возможность составлять карты относительного расположения генов в хромосомах. Хромосомные карты строятся путем прямого перевода частоты рекомбинаций между генами в предполагаемые расстояния на хромосоме. Если частота рекомбинации между генами А и В равна 4%, то это означает, что они расположены в одной и той же хромосоме на расстоянии 4 морганид друг от друга (морганида — единица расстояния на генетической карте); если частота рекомбинации между генами А и С равна 9%, то они разделены расстоянием 9 морганид. Однако эти данные еще не позволяют сказать, в каком порядке расположены гены А, В и С (рис. 23.12).
Рис. 23.12. Определение возможного положения генов А, В и С в хромосоме, основанное на данных, изложенных в тексте
На практике обычно определяют частоту рекомбинации по меньшей мере для трех генов одновременно; этот метод, называемый триангуляцией, позволяет определить не только расстояния между генами, но и их последовательность. Рассмотрим, например, частоты рекомбинации, установленные в результате ряда экспериментальных скрещиваний при участии четырех генов:
Р — Q = 24%
R — Р = 14%
R — S = 8%
S — Р = 6%
Для того чтобы установить последовательность генов и расстояния между ними, вычерчивают линию, изображающую хромосому, и производят следующие действия.
1. В середину хромосомы помещают гены с наименьшей частотой рекомбинации, т. е. S — Р = = 6% (рис. 23.13,I).
2. Выбирают следующую по величине частоту рекомбинации, т.е. R — S = 8%, и указывают два возможных положения R в хромосоме по отношению к S (рис. 23.13,II).
Рис. 23.13. Установление положений генов Р, Q, R и S в хромосоме с помощью метода триангуляции
3. Проделывают то же самое со следующей частотой рекомбинации, т.е. R — Р = 14%. При этом выясняется, что R не может находиться вправо от Р (рис. 23.13,III).
4. Проделывают то же самое для Р — Q = 24% (рис. 23.13,IV). Положение Q не может быть установлено без дополнительной информации. Если, например, окажется, что частота рекомбинации Q — Я =10%, то это подтвердит расположение гена Q в левом конце хромосомы.
При построении хромосомных карт могут возникнуть затруднения, создаваемые двойным кроссинговером; особенно это касается тех случаев, когда изучаемые гены разделены большими расстояниями, так как число выявляемых рекомбинантов бывает при этом меньше фактического числа перекрестов. Если, например, произойдет кроссинговер в двух местах — между А и В и между В и С (рис. 23.14), то А и С внешне проявят себя как сцепленные, но хромосома будет нести теперь рецессивный аллель b.
Рис. 23.14. Пора гомологичных хромаmид, одна из которых несет доминантные аллели А, В и С, а другая — рецессивные аллели a, b и с. Кроссинговер происходит в двух точках -* 1 и *2. II. Результат разделения хроматид: последовательности аллелей в них иные, хотя последовательность генных локусов и расстояния между ними остаются прежними
23.9. У кукурузы гены окрашенного семени и гладкого эндосперма доминируют над генами неокрашенного семени и сморщенного эндосперма. Линию, гомозиготную по обоим доминантным признакам, скрещивали с линией, гомозиготной по рецессивным признакам; при анализирующем скрещивании F2 с растениями F1 были получены следующие результаты:
окрашенные семена, гладкий эндосперм 380
неокрашенные семена, сморщенный эндосперм 390
окрашенные семена, сморщенный эндосперм 14
неокрашенные семена, гладкий эндосперм 10
Вычислите расстояние в морганидах между генами окраски семян и характера эндосперма.
Изложенные в этой главе данные демонстрируют постепенный рост наших знаний о механизмах наследственности. Генетические исследования, проводившиеся в начале нашего века, в основном были направлены на выяснение роли генов в передаче признаков. Работы Моргана с плодовой мушкой Drosophila melanogaster показали, что большинство фенотипических признаков объединено у нее в четыре группы сцепления и признаки каждой группы наследуются совместно. Было замечено, что число групп сцепления соответствует числу пар хромосом.
Изучение других организмов привело к сходным результатам. При экспериментальном скрещивании разнообразных организмов обнаружилось, что некоторые группы сцепления больше других (т.е. в них больше генов). Изучение хромосом этих организмов показало, что они имеют разную длину. Морган доказал наличие четкой связи между этими наблюдениями. Они послужили дополнительными подтверждениями локализации генов в хромосомах.
В 1913 г. Стертевант начал свою работу по картированию положения генов в хромосомах дрозофилы, но это было за 21 год до того, как появилась возможность связать различимые в хромосомах структуры с генами. В 1934 г. было замечено, что в клетках слюнных желез дрозофилы хромосомы примерно в 100 раз крупнее, чем в других соматических клетках. По каким-то причинам эти хромосомы многократно удваиваются, но не отделяются друг от друга, до тех пор пока их не наберется несколько тысяч, лежащих бок о бок. Окрасив хромосомы и изучая их с помощью светового микроскопа, можно увидеть, что они состоят из чередующихся светлых и темных поперечных полос (рис. 23.15). Для каждой хромосомы характерен свой особый рисунок полос. Первоначально предполагали, или скорее надеялись, что эти полосы представляют собой гены, но оказалось, что дело обстоит не так просто. У дрозофилы можно искусственным путем вызывать различные фенотипические аномалии, которые сопровождаются определенными изменениями в рисунке поперечных полос, видимых под микроскопом. Эти фенотипические и хромосомные аномалии коррелируют в свою очередь с генными локусами, обозначенными на хромосомных картах, которые были построены по данным о частоте рекомбинаций в экспериментальных скрещиваниях. Это позволяет сделать вывод, что полосы на хромосомах действительно как-то связаны с генами, но взаимоотношения между теми и другими остаются пока неясными.
Рис. 23.15. Гигантские хромосомы из клеток слюнных желез Drosophila melanogaster. Видны четыре пары хромосом, соединенных своими центромерами
Особенно четким примером описанного выше метода установления зависимости между фенотипическими признаками организмов и строением их хромосом служит определение пола. У дрозофилы фенотипические различия между двумя полами явно связаны с различиями в хромосомах (рис. 23.16). При изучении хромосом у самцов и самок ряда животных между ними были обнаружены некоторые различия. Как у мужских, так и у женских особей во всех клетках имеются пары одинаковых (гомологичных) хромосом, но по одной паре хромосом они различаются. Это половые хромосомы (гетеросомы). Все остальные хромосомы называют аутосомами. Как можно видеть на рис. 23.16, у дрозофилы четыре пары хромосом. Три пары (II, III и IV) идентичны у обоих полов, но пара I, состоящая из идентичных хромосом у самки, различается у самца. Эти хромосомы называют Х- и Y-хромосомами; генотип самки XX, а самца-XY. Такие различия по половым хромосомам характерны для большинства животных, в том числе для человека (рис. 23.17), но у птиц (включая кур) и у бабочек наблюдается обратная картина: у самок имеются хромосомы XY, а у самцов-XX. У некоторых насекомых, например у прямокрылых, Y-хромосомы нет вовсе, так что самец имеет генотип Х0.
Рис. 23.16. Хромосомные наборы самца и самки D. melanogaster. Они состоят из четырех пар хромосом (пара I-половые хромосомы)
Рис. 23.17. Вид половых хромосом человека в метафазе митоза
При гаметогенезе наблюдается типичное менделевское расщепление по половым хромосомам. Например, у млекопитающих каждое яйцо содержит одну Х-хромосому, половина спермиев — одну X-хромосому, а другая половина — одну Y-хромосому (рис. 23.18). Пол потомка зависит от того, какой спермий оплодотворит яйцеклетку. Пол с генотипом XX называют гомогаметным, так как у него образуются одинаковые гаметы, содержащие только Х-хромосомы, а пол с генотипом XY-гетерогаметным, так как половина гамет содержит Х-, а половина — Y-хромосому. У человека генотипический пол данного индивидуума определяют, изучая неделящиеся клетки. Одна Х-хромосома всегда оказывается в активном состоянии и имеет обычный вид. Другая, если она имеется, бывает в покоящемся состоянии, в виде плотного темно-окрашенного тельца, называемого тельцем Барра. Число телец Барра всегда на единицу меньше числа наличных Х-хромосом, т.е. у самца (XY) их нет вовсе, а у самки (XX)-только одно. Функция Y-хромосомы, очевидно, варьирует в зависимости от вида. У человека Y-хромосома контролирует дифференцировку семенников, которая в дальнейшем влияет на развитие половых органов и мужских признаков (см. разд. 20.3.1). У большинства организмов, однако, Y-хромосома не содержит генов, имеющих отношение к полу. Ее даже называют генетически инертной или генетически пустой, так как в ней очень мало генов. Как полагают, у дрозофилы гены, определяющие мужские признаки, находятся в аутосомах, и их фенотипические эффекты маскируются наличием пары Х-хромосом; в присутствии одной Х-хромосомы мужские признаки проявляются. Это пример наследования, ограниченного полом (в отличие от наследования, сцепленного с полом), при котором, например, у женщин подавляются гены, детерминирующие рост бороды.
Рис. 23.18. Генетическое объяснение соотношения полов у человека
Морган и его сотрудники заметили, что наследование окраски глаз у дрозофилы зависит от пола родительских особей, несущих альтернативные аллели. Красная окраска глаз доминирует над белой. При скрещивании красноглазого самца с белоглазой самкой в F1 получали равное число красноглазых самок и белоглазых самцов (рис. 23.19, A). Однако при скрещивании белоглазого самца с красноглазой самкой в F1 были получены в равном числе красноглазые самцы и самки (рис. 23.19, Б). При скрещивании этих мух F1 между собой были получены красноглазые самки, красноглазые и белоглазые самцы, но не было ни одной белоглазой самки (рис. 23.19,В). Тот факт, что у самцов частота проявления рецессивного признака была выше, чем у самок, наводил на мысль, что рецессивный аллель, определяющий белоглазость, находится в Х-хромосоме, а Y-хромосома лишена гена окраски глаз. Чтобы проверить эту гипотезу, Морган скрестил исходного белоглазого самца с красноглазой самкой из F1 (рис. 23.19, Г). В потомстве были получены красноглазые и белоглазые самцы и самки. Из этого Морган справедливо заключил, что только Х-хромосома несет ген окраски глаз. В Y-хромосоме соответствующего локуса вообще нет. Это явление известно под названием наследования, сцепленного с полом.
Рис. 23.19. А и Б. Реципрокные экспериментальные скрещивания между красноглазой и белоглазой дрозофилами, проведенные Морганом. Обратите внимание на низкую частоту появления белых глаз. В. Инбридинг между красноглазым самцом F1 и красноглазой (гетерозиготной) самкой F1 подтвердил полученные результаты. Г. Скрещивание между белоглазым самцом и красноглазой (гетерозиготной) самкой F1. Обратите внимание на то, что признак белоглазости наблюдается только у самок, гомозиготных по этому аллелю
23.10. У дрозофилы гены длины крыльев и окраски глаз сцеплены с полом. Нормальная длина крыла и красные глаза доминируют над миниатюрными крыльями и белыми глазами.
а) Каким будет потомство F1 и F2 при скрещивании между самцом с миниатюрными крыльями и красными глазами и гомозиготной самкой с нормальными крыльями и белыми глазами? Объясните ожидаемые результаты.
б) Скрещивание между самкой из полученного выше поколения и белоглазым самцом с миниатюрными крыльями дало следующие результаты:
Самцы и самки с нормальными крыльями и белыми глазами 35
Самцы и самки с нормальными крыльями и красными глазами 17
Самцы и самки с миниатюрными крыльями и белыми глазами 18
Самцы и самки с миниатюрными крыльями и красными глазами 36 Объясните появление этих фенотипов и их численные соотношения.
Гены, находящиеся в половых хромосомах, называют сцепленными с полом. В Х-хромосоме имеется участок, для которого в Y-хромосоме нет гомолога (рис. 23.20). Поэтому у особей мужского пола признаки, определяемые генами этого участка, проявляются даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом, например цветовой слепоты, раннего облысения и гемофилии у человека. Гемофилия-сцепленный с полом рецессивный признак, при котором нарушается образование фактора VIII, ускоряющего свертывание крови. Ген, детерминирующий синтез фактора VIII, находится в участке Х-хромосомы, не имеющем гомолога, и представлен двумя аллелями-доминантным нормальным и рецессивным мутантным. Возможны следующие генотипы и фенотипы:
Рис. 23.20. Гомологичные и негомологичные участки половых хромосом
Особей женского пола, гетерозиготных по любому из сцепленных с полом признаков, называют носителями соответствующего рецессивного гена. Они фенотипически нормальны, но половина их гамет несет рецессивный ген. Несмотря на наличие у отца нормального гена, сыновья матерей-носителей с вероятностью 50% (1/2) будут страдать гемофилией.
От брака женщины-носителя с нормальным мужчиной могут родиться дети с различными фенотипами (рис. 23.21).
Рис. 23.21. Механизм наследования аллеля гемофилии, сцепленного с полом
Один из наиболее хорошо документированных примеров наследования гемофилии мы находим в родословной потомков английской королевы Виктории. Предполагают, что ген гемофилии возник в результате мутации у самой королевы Виктории или у одного из ее родителей. На рис. 23.22 показано, как этот ген передавался ее потомкам.
Рис. 23.22. Наследование гемофилии у потомков королевы Виктории. На схеме указаны только те потомки, которые участвовали в передаче гемофилии или были поражены ею. Родословная британского королевского дома продолжена, чтобы показать, почему гемофилия не проявилась здесь ни у одного из потомков королевы Виктории на протяжении семи поколений
23.11. Окраска тела у кошек и у крыжовниковой пяденицы (Abraxas grossulariata) контролируется сцепленным с полом геном, локализованным в Х-хромосоме. В двух экспериментальных скрещиваниях, в которых гомогаметный пол в родительском поколении был гомозиготным по окраске тела, получены следующие разультаты:
Какой пол является гетерогаметным у каждого из этих организмов?
До сих пор в этой главе рассматривались относительно простые аспекты генетики: доминирование, моногибридное и дигибридное скрещивание, сцепление, определение пола и наследование, сцепленное с полом. Известны, однако, и другие взаимодействия между генами, и возможно, что именно они определяют большую часть фенотипических признаков организма. Ниже будут описаны некоторые из этих взаимодействий.
Известны случаи, когда два или более аллелей не проявляют в полной мере доминантность или рецессивность, так что в гетерозиготном состоянии ни один из аллелей не доминирует над другим. Это явление неполного доминирования, или кодоминантность, представляет собой исключение из описанного Менделем правила наследования при моногибридных скрещиваниях. К счастью, Мендель выбрал для своих экспериментов признаки, которым не свойственно неполное доминирование; в противном случае оно могло бы сильно осложнить его первые исследования.
Неполное доминирование наблюдается как у растений, так и у животных. В большинстве случаев гетерозиготы обладают фенотипом, промежуточ ным между фенотипами доминантной и рецессивной гомозигот. Примером служат андалузские куры, полученные в результате скрещивания чистопородных черных и "обрызганных белых" (splashed white) кур. Черное оперение обусловлено наличием аллеля, определяющего синтез черного пигмента меланина. У "обрызганных" кур этот аллель отсутствует. У гетерозигот меланин развивается не в полной мере, создавая лишь голубоватый отлив на оперении.
Поскольку общепринятых символов для обозначения аллелей с неполным доминированием не существует, нам необходимо ввести для генотипов такие символы, чтобы сделать понятными приведенные ниже схемы получения андалузских кур. Возможны, например, такие обозначения: черные — В; "обрызганные" -b, W, Вw или BBW. Результаты скрещивания между гомозиготными черными и "обрызганными" курами представлены на рис. 23.23.
Рис. 23.23. Скрещивание кур андалузской породы: гибриды F1
При скрещивании между собой особей F1 отношение фенотипов в F2 отличается от менделевского отношения 3:1, типичного для моногибридного скрещивания. В этом случае получается отношение 1:2:1, где у половины особей F2 будет такой же генотип, как у F1 (рис. 23.24). Отношение 1:2:1 характерно для результатов скрещиваний при неполном доминировании. Другие примеры приведены в табл. 23.4.
Таблица 23.4. Примеры неполного доминирования
Рис. 23.24. Скрещивание кур андалузской породы: гибриды F2
23.12. У кошек гены, контролирующие окраску шерсти, находятся в Х-хромосоме и проявляют неполное доминирование (кодоминантность). При скрещивании черной кошки с рыжим котом в F1 были получены черные самцы и черепаховые самки. Каково ожидаемое отношение фенотипов в F2? Объясните полученные результаты.
Во всех рассмотренных до сих пор случаях каждый признак контролировался одним геном, который мог быть представлен одной из двух аллельных форм. Известно, однако, немало примеров, когда один признак проявляется в нескольких различных формах, контролируемых тремя и более аллелями, из которых любые два могут находиться в соответствующих локусах гомологичных хромосом. В таких случаях говорят о множественных аллелях. Такие признаки, как окраска шерсти у мышей, цвет глаз у мышей и группы крови у человека, контролируются множественными аллелями.
Группа крови контролируется аутосомным геном. Локус этого гена обозначают буквой I (от слова "изогемагглютиноген"), а три его аллеля буквами А, В и О. Аллели А и В доминантны в одинаковой степени, а аллель О рецессивен по отношению к ним обоим. Генотипы, представленные в табл. 23.5, определяют фенотипическое проявление групп крови. При наличии одного доминантного аллеля в крови образуется вещество, называемое агглютинином, которое действует как антитело. Например, при генотипе IАIO на мембране эритроцитов образуется агглютиноген А, а в плазме содержится агглютинин анти-В (кровь соответствует группе А).0 методе определения групп крови см. в разд. 14.14.6.
Таблица 23.5. Генотипы групп крови у человека
23.13. а. Используя надлежащие генетические символы, укажите возможные группы крови у детей, оба родителя которых гетерозиготны, причем у отца группа крови А, а у матери — В.
б. Если эти родители произведут на свет разнояйцовых близнецов, то какова вероятность того, что у обоих детей кровь будет относиться к группе В?
Известны случаи, когда один ген может оказывать влияние на несколько признаков, в том числе на жизнеспособность. У человека и других млекопитающих определенный рецессивный ген вызывает образование внутренних спаек легких, что приводит к смерти при рождении. Другим примером служит ген, который влияет на формирование хряща и вызывает врожденные уродства, ведущие к смерти плода или новорожденного.
У кур, гомозиготных по аллелю, вызывающему "курчавость" перьев, неполное развитие перьев влечет за собой несколько фенотипических эффектов. У таких кур теплоизоляция недостаточна, и они страдают от охлаждения. Для компенсации потери тепла у них появляется ряд структурных и физиологических адаптаций, но эти адаптации малоэффективны и среди таких кур высока смертность.
Воздействие летального гена ясно видно на примере наследования окраски шерсти у мышей. У диких мышей шерсть обычно серая, типа агути; но у некоторых мышей шерсть желтая. При скрещиваниях между желтыми мышами в потомстве получаются как желтые мыши, так и агути в отношении 2:1. Единственное возможное объяснение таких результатов состоит в том, что желтая окраска шерсти доминирует над агути и что все желтые мыши гетерозиготны. Атипичное менделевское отношение объясняется гибелью гомозиготных желтых мышей до рождения (рис. 23.25). При вскрытии беременных желтых мышей, скрещенных с желтыми же мышами, в их матках были обнаружены мертвые желтые мышата. Если же скрещивались желтые мыши и агути, то в матках беременных самок не оказывалось мертвых желтых мышат, поскольку при таком скрещивании не может быть потомства, гомозиготного по гену желтой шерсти (YY).
Рис. 23.25. Генетическое объяснение наследования окраски шерсти при скрещивании желтых мышей друг с другом (YY-летальный генотип)
В некоторых случаях в каком-то генном локусе присутствует пара аллелей, полностью контролирующая один фенотипический признак. Однако такие случаи сравнительно редки. Большинство признаков определяется взаимодействием нескольких генов, образующих генный комплекс. Например, признак может контролироваться двумя или большим числом взаимодействующих генов, находящихся в разных локусах. Так, наследование формы гребня у петухов контролируется генами, находящимися в двух локусах и притом в разных хромосомах; в результате взаимодействия этих генов возникают четыре разных фенотипа, известных под названиями гороховидного, розовидного, ореховидного и простого гребня (рис. 23.26). Развитие гороховидного и розовидного гребня определяется соответственно наличием доминантного аллеля Р или R при отсутствии другого доминантного аллеля. Ореховый гребень образуется в результате модифицированной формы неполного доминирования, когда имеется по меньшей мере по одному аллелю гороховидного и розовидного гребня (т. е. при генотипе PR). Простой гребень развивается только у гомозигот по обоим рецессивным генам (т. е. pprr). Эти фенотипы и генотипы представлены в табл. 23.6.
Таблица 23.6. Возможные генотипы кур с различной формой гребня
Рис. 23.26. Изменчивость формы гребня у кур: А — простой гребень
Рис. 23.26. Изменчивость формы гребня у кур: Б — гороховидный
Рис. 23.26. Изменчивость формы гребня у кур: В — розовидный
Рис. 23.26. Изменчивость формы гребня у кур: Г — ореховидный
Генотипы F2 и отношение фенотипов в F2 от скрещивания между гомозиготной курицей с гороховидным гребнем и гомозиготным петухом с розовидным гребнем показаны на рис. 23.27.
Рис. 23.27. Генетическое объяснение наследования формы гребня у кур
23.14. У кур аллель белого оперения (W) доминирует над аллелем черного оперения (w). Аллель Р дает гороховидный, а аллель R — розовидный гребень; при одновременном наличии этих двух аллелей образуется ореховидный гребень, а их рецессивные аллели в гомозиготном состоянии обусловливают развитие простого гребня.
При скрещивании черного петуха с розовидным гребнем и белой курицы с ореховидным гребнем были получены потомки со следующими фенотипами: 3 белых с ореховидным гребнем, 3 черных с ореховидным, 3 белых с розовидным, 3 черных с розовидным, 1 белый с гороховидным, 1 черный с гороховидным, 1 белый с простым и 1 черный с простым гребнем.
Укажите генотипы родительских особей. Объясните подробно, каким образом могли получиться указанные фенотипы.
Ген называют эпистатическим (от греч. epi-над), если его присутствие подавляет эффект какого-либо гена, находящегося в другом локусе. Эпистатические гены иногда называют ингибирующими генами, а те гены, действие которых ими подавляется, — гипостатическими (от греч. hуро-под).
Окраска шерсти у мышей контролируется парой генов, находящихся в разных локусах. Эпистатический ген определяет наличие окраски и имеет два аллеля: доминантный, определяющий окрашенную шерсть, и рецессивный, обусловливающий альбинизм (белая окраска). Гипостатический ген опреде-ляет характер окраски и имеет два аллеля: агути (доминантный, определяющий серую окраску) и черный (рецессивный). Мыши могут иметь серую или черную окраску в зависимости от своих генотипов, но наличие окраски возможно только в том случае, если у них одновременно имеется аллель окрашенной шерсти. Мыши, гомозиготные по рецессивному аллелю альбинизма, будут альбиносами даже при наличии у них аллелей агути и черной шерсти. Возможны три разных фенотипа: агути, черная шерсть и альбинизм. При скрещивании можно получить эти фенотипы в различных соотношениях в зависимости от генотипов скрещиваемых особей (рис. 23.28 и табл. 23.7).
Таблица 23.7. Некоторые соотношения фенотипов, получающиеся в потомстве при эпистатическом взаимодействии генов (см. также рис. 23.28)
Рис. 23.28. Генетическое объяснение необычных соотношений фенотипов в случае эпистаза
23.15. У кур-белых леггорнов — окраска оперения контролируется двумя группами генов:
W (белая окраска) доминирует над w (цветная)
В (черная окраска) доминирует над b (коричневая)
Гетерозиготное потомство F1 имеет генотип WwBb и белую окраску.
Объясните происходящее в этом случае взаимодействие между генами и укажите численные отношения фенотипов в поколении F2.
Многие из самых заметных признаков организма представляют собой результат совместного действия многих различных генов; эти гены образуют особый генный комплекс, называемый полигенной системой. Хотя вклад каждого отдельного гена, входящего в такую систему, слишком мал, чтобы оказать сколько-нибудь значительное влияние на фенотип, почти бесконечное разнообразие, создаваемое совместным действием этих генов (полигенов), составляет генетическую основу непрерывной изменчивости (см. разд. 23.8.2).
Изменчивостью называют всю совокупность различий по тому или иному признаку между организмами, принадлежащими к одной и той же природной популяции или виду. Поразительное морфологическое разнообразие особей в пределах любого вида привлекло внимание Дарвина и Уоллеса во время их путешествий. Закономерный, предсказуемый характер передачи таких различий по наследству послужил основой для исследований Менделя. Дарвин установил, что определенные признаки могут развиваться в результате отбора (см. разд. 24.4.2), тогда как Мендель объяснил механизм, обеспечивающий передачу из поколения в поколение признаков, по которым ведется отбор.
Мендель описал, каким образом наследственные факторы определяют генотип организма, который в процессе развития проявляется в структурных, физиологических и биохимических особенностях фенотипа. Если фенотипическое проявление любого признака обусловлено в конечном счете генами, контролирующими этот признак, то на степень развития определенных признаков может оказывать влияние среда.
Изучение фенотипических различий в любой большой популяции показывает, что существуют две формы изменчивости — дискретная и непрерывная. Для изучения изменчивости какого-либо признака, например роста у человека, необходимо измерить этот признак у большого числа индивидуумов в изучаемой популяции. Результаты измерений представляют в виде гистограммы, отражающей распределение частот различных вариантов этого признака в популяции. На рис. 23.29 представлены типичные результаты, получаемые при таких исследованиях, и они наглядно демонстрируют различие между дискретной и непрерывной изменчивостью.
Рис. 23.29. Гистограммы, отражающие распределение частот в случае прерывистой (А) и непрерывной (Б) изменчивости
Некоторые признаки в популяции представлены ограниченным числом вариантов. В этих случаях различия между особями четко выражены, а промежуточные формы отсутствуют; к таким признакам относятся, например, группы крови у человека, длина крыльев у дрозофилы, меланистическая и светлая формы у березовой пяденицы (Biston betularia), длина столбика у первоцвета (Primula) и пол у животных и растений. Признаки, для которых характерна дискретная изменчивость, обычно контролируются одним или двумя главными генами, у которых может быть два или несколько аллелей, и внешние условия относительно мало влияют на их фенотипическую экспрессию.
Поскольку дискретная изменчивость ограничена некоторыми четко выраженными признаками, ее называют также качественной изменчивостью в отличие от количественной, или непрерывной, изменчивости.
По многим признакам в популяции наблюдается полный ряд переходов от одной крайности к другой без всяких разрывов. Наиболее яркими примерами служат такие признаки, как масса (вес), линейные размеры, форма и окраска организма в целом или отдельных его частей. Частотное распределение по признаку, проявляющему непрерывную изменчивость, соответствует кривой нормального распределения (см. Приложение 2.7.3, т. 1). Большинство членов популяции попадает в среднюю часть кривой, а на ее концах, соответствующих двум крайним значениям данного признака, находится примерно одинаковое (очень малое) число особей. Признаки, для которых характерна непрерывная изменчивость, обусловлены совместным воздействием многих генов (полигенов) и факторов среды. Каждый из этих генов в отдельности оказывает очень небольшое влияние на фенотип, но совместно они создают значительный эффект.
Главный фактор, детерминирующий любой стенотипический признак, — это генотип. Генотип организма определяется в момент оплодотворения, но степень последующей экспрессии этого генетического потенциала в значительной мере зависит от внешних факторов, воздействующих на организм во время его развития. Так, например, использованный Менделем сорт гороха с длинным стеблем обычно достигал высоты 180 см. Однако для этого ему необходимы были соответствующие условия — освещение, снабжение водой и хорошая почва. При отсутствии оптимальных условий (при наличии лимитирующих факторов) ген высокого стебля не мог в полной мере проявить свое действие. Эффект взаимодействия генотипа и факторов среды продемонстрировал датский генетик Иогансен. В ряде экспериментов на карликовой фасоли он выбирал из каждого поколения самоопылявшихся растений самые тяжелые и самые легкие семена и высаживал их для получения следующего поколения. Повторяя эти эксперименты на протяжении нескольких лет, он обнаружил, что в пределах "тяжелой" или "легкой" селекционной линии семена мало различались по среднему весу, тогда как средний вес семян из разных линий сильно различался. Это позволяет считать, что на фенотипическое проявление признака оказывают влияние как наследственность, так и среда. На основании этих результатов можно определить непрерывную фенотипическую изменчивость как "кумулятивный эффект варьирующих факторов среды, воздействующих на вариабельный генотип". Кроме того, эти результаты показывают, что степень наследуемости данного признака определяется в первую очередь генотипом. Что касается развития таких чисто человеческих качеств, как индивидуальность, темперамент и интеллект, то, судя по имеющимся данным, они зависят как от наследственных, так и от средовых факторов, которые, взаимодействуя в различной степени у разных индивидуумов, влияют на окончательное выражение признака. Именно эти различия в тех и других факторах создают фенотипические различия между индивидуумами. Мы пока еще не располагаем данными, которые твердо указывали бы на то, что влияние каких-то из этих факторов всегда преобладает, однако среда никогда не может вывести фенотип за пределы, детерминированные генотипом.
Необходимо ясно представлять себе, что взаимодействие между дискретной и непрерывной изменчивостью и средой делает возможным существование двух организмов с идентичным фенотипом. Механизм репликации ДНК при митозе столь близок к совершенству, что возможности генетической изменчивости у организмов с бесполым размножением очень малы. Поэтому любая видимая изменчивость у таких организмов почти наверное обусловлена воздействиями внешней среды. Что же касается организмов, размножающихся половым путем, то у них есть широкие возможности для возникновения генетических различий. Практически неограниченными источниками генетической изменчивости служат два процесса, происходящие во время мейоза:
1. Реципрокный обмен генами между хроматидами гомологичных хромосом, который может происходить в профазе I мейоза. Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей (см. разд. 23.3 и 22.3).
2. Ориентация пар гомологичных хромосом (бивалентов) в экваториальной плоскости веретена в метафазе I мейоза определяет направление, в котором каждый член пары будет перемещаться в анафазе I. Эта ориентация носит случайный характер. Во время метафазы II пары хроматид опять — таки ориентируется случайным образом, и этим определяется, к какому из двух противоположных полюсов направится та или иная хромосома во время анафазы II. Случайная ориентация и последующее независимое расхождение (сегрегация) хромосом делают возможным большое число различных хромосомных комбинаций в гаметах; число это можно подсчитать (см. разд. 23.2.1).
Третий источник изменчивости при половом размножении — это то, что слияние мужских и женских гамет, приводящее к объединению двух гаплоидных наборов хромосом в диплоидном ядре зиготы, происходит совершенно случайным образом (во всяком случае, в теории); любая мужская гамета потенциально способна слиться с любой женской гаметой.
Эти три источника генетической изменчивости и обеспечивают постоянную "перетасовку" генов, лежащую в основе происходящих все время генетических изменений. Среда оказывает воздействие на весь ряд получающихся таким образом фенотипов, и те из них, которые лучше всего приспособлены к данной среде, преуспевают. Это ведет к изменениям частот аллелей и генотипов в популяции (см. гл. 25). Однако эти источники изменчивости не порождают крупных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.
Мутацией называют изменение количества или структуры ДНК данного организма. Мутация приводит к изменению генотипа, которое может быть унаследовано клетками, происходящими от мутантной клетки в результате митоза или мейоза. Мутирование может вызывать изменения каких-либо признаков в популяции. Мутации, возникшие в половых клетках, передаются следующим поколениям организмов, тогда как мутации в соматических клетках наследуются только дочерними клетками, образовавшимися путем митоза, и такие мутации называют соматическими.
Мутации, возникающие в результате изменения числа или макроструктуры хромосом, известны под названием хромосомных мутаций или хромосомных аберраций (перестроек). Иногда хромосомы так сильно изменяются, что это можно увидеть под микроскопом. Но термин "мутация" используют главным образом для обозначения изменения структуры ДНК в одном локусе, когда происходит так называемая генная, или точечная, мутация.
Представление о мутации как о причине внезапного появления нового признака было впервые выдвинуто в 1901 г. голландским ботаником Гуго де Фризом, изучавшим наследственность у энотеры Oenothera lamarckiana. Спустя 9 лет Т. Морган начал изучать мутации у дрозофилы, и вскоре при участии генетиков всего мира у нее было идентифицировано более 500 мутаций.
Мутации возникают случайным образом и спонтанно, т.е. любой ген может мутировать в любой момент. Чатота возникновения мутаций у разных организмов различна, но, по-видимому, связана с продолжительностью жизненного цикла: у организмов с коротким жизненным циклом она выше.
В результате работ Г. Дж. Мёллера в двадцатые годы нашего века было установлено, что частоту мутаций можно повысить по сравнению с их спонтанным уровнем, воздействуя на организмы рентгеновскими лучами. В дальнейшем выяснилось, что частоту мутаций можно также значительно повысить с помощью ультрафиолетовых лучей и гамма-лучей. Частицы высокой энергии, такие как α- и β-частицы, нейтроны и космическое излучение, тоже мутагенны, т. е. способны вызывать мутации. Мутагенным действием обладают и разнообразные химические вещества, в частности иприт, кофеин, формальдегид, колхицин, некоторые компоненты табака и все возрастающее число лекарственных препаратов, пищевых консервантов и пестицидов.
Хромосомные мутации включают изменения числа хромосом и их макроструктуры. Некоторые типы хромосомных мутаций изменяют действие некоторых генов и оказывают на фенотип гораздо более глубокое влияние, чем генные мутации. Изменения числа хромосом обычно происходят в результате ошибок при мейозе, но они возможны и при нарушениях митоза. Эти изменения выражаются либо в анэуплоидии — утрате или добавлении отдельных хромосом, либо в полиплоидии — добавлении целых гаплоидных наборов хромосом.
Анэуплоидия может выражаться, например, в наличии добавочной хромосомы (n + 1, 2n + 1 и т.п.) или в нехватке какой-либо хромосомы (п — 1, 2n — 1 и т.п.). Анэуплоидия может возникнуть, если в анафазе I мейоза гомологичные хромосомы одной или нескольких пар не разойдутся. В этом случае оба члена пары направляются к одному и тому же полюсу клетки, и тогда мейоз приводит к образованию гамет, содержащих на одну или несколько хромосом больше или меньше, чем в норме (рис. 23.30). Это явление известно под названием нерасхождения. Когда гамета с недостающей или лишней хромосомой сливается с нормальной гаплоидной гаметой, образуется зигота с нечетным числом хромосом: вместо каких-либо двух гомологов в такой зиготе их может быть три или только один.
Рис. 23. 30. Нерасхождение хромосом при гаметогенезе и результаты слияния образующихся при этом аномальных гамет с нормальными гаплоидными гаметами. Это приводит к различным формам полисомии, при которой число хромосом может быть равно 2n+1 (трисомия), 2n+2 (тетрасомия), 2n+3 (пентасомия) и т. д. или же 2n-1 (моносомия) — в зависимости от числа гомологичных хромосом, не разошедшихся нормальным образом
Зигота, в которой число хромосом меньше диплоидного, обычно не развивается, но зиготы с лишними хромосомами иногда способны к развитию. Однако из таких зигот в большинстве случаев развиваются особи с резко выраженными аномалиями. Одна из наиболее часто встречающихся хромосомных мутаций, возникающих у человека в результате не расхождения, -трисомия-21, или синдром Дауна (2n = 47). Эта аномалия, названная так по имени врача, впервые описавшего ее в 1866 г., вызывается не расхождением хромосом 21 (рис. 23.31). К числу ее симптомов относятся задержка умственного развития, пониженная сопротивляемость болезням, врожденные сердечные аномалии, короткое коренастое туловище и толстая шея, а также характерные складки кожи над внутренними углами глаз, что создает внешнее сходство с представителями монголоидной расы. Синдром Дауна и другие сходные хромосомные аномалии чаще встречаются у детей, рожденных немолодыми женщинами. Точная причина этого неизвестна, но, по-видимому, она как-то связана с возрастом яйцеклеток матери.
Таблица 23.8. Фенотипические отклонения, обусловленные нерасхождением половых хромосом у человека
Рис. 23.31. Хромосомы женщины с синдромом Дауна. Нерасхождение хромосом G21 в одной из гамет привело к трисомии по этой хромосоме. Полный набор хромосом индивидуума, подобный представленному на этой фотографии, называют кариотипом
Возможно также нерасхождение мужских и женских половых хромосом, которое приводит к анэуплоидии, влияющей на вторичные половые признаки и плодовитость, а иногда и на умственное развитие (табл. 23.8)[15].
Гаметы и соматические клетки с увеличенным числом хромосом, кратным гаплоидному числу, называют полиплоидными; приставки три-, тетра- и т.д. указывают, во сколько раз увеличено число хромосом, т.е. степень плоидности: 3n-триплоид, 4n-тетраплоид, 5n-пентаплоид и т.д. У растений полиплоидия встречается гораздо чаще, чем у животных. Например, из 300 тысяч известных видов покрытосеменных примерно половина — полиплоиды. Относительная редкость полиплоидии у животных объясняется тем, что увеличенное число хромосом значительно повышает вероятность ошибок при мейозе во время гаметогенеза. Что касается растений, то большинство из них способно к вегетативному размножению, поэтому они могут эффективно воспроизводиться и в полиплоидном состоянии. Полиплоидные организмы часто обладают благоприятными признаками — более крупными размерами, выносливостью, устойчивостью к заболеваниям. Большинство наших культурных растений — полиплоиды, образующие крупные плоды, запасающие органы, цветки или листья.
Существуют две формы полиплоидии-аутополиплоидия и аллополиплоидия.
Аутополиплоидия может возникать как естественным, так и искусственным путем в результате увеличения числа хромосомных наборов у данного вида. Например, если произойдет репликация хромосом (в интерфазе) и хроматиды нормально разойдутся в (анафазе), но цитоплазма не разделится, то образуется тетраплоидная (4n) клетка с большим ядром. Такая клетка затем делится и дает тетраплоидные дочерние клетки. Количество цитоплазмы в этих клетках возрастает, чтобы сохранилось постоянство ядерно-плазменного отношения, и это ведет к увеличению общих размеров растения или какой-либо его части. Аутополиплоидизацию можно вызвать с помощью алкалоида колхицина, выделяемого из клубнелуковицы безвременника (Colchicum). В концентрации порядка 0,01% колхицин подавляет образование веретена деления, разрушая микротрубочки, так что хромосомы не расходятся во время анафазы. Колхицин и близкие к нему вещества использовали для выведения определенных сортов хозяйственно ценных культур, таких как табак, томаты и сахарная свекла. Аутополиплоиды обычно менее плодовиты, чем диплоиды, так как во время мейоза гомологичные хромосомы должны объединяться более чем по две.
У животных иногда наблюдается видоизмененная форма полиплоидии, при которой образуются отдельные полиплоидные клетки и ткани. Это обычно происходит при удвоении хромосом, не сопровождающемся разделением клетки. Гигантские хромосомы в клетках слюнных желез дрозофилы возникают в результате многократной репликации ДНК без перехода к митозу.
Аллополиплоидией называют удвоение числа хромосом у стерильного гибрида, в результате чего он становится плодовитым. Гибриды F1? получаемые при скрещиваниях между разными видами, обычно стерильны, так как их хромосомы не могут образовать гомологичные пары во время мейоза. Если, однако, число хромосом становится кратным исходному гаплоидному их числу, например равным 2(n1 + n2), 3(n1 + n2) и т.д. (где n1 и n2-гаплоидные числа хромосом у родительских видов), то возникает новый вид, который дает плодовитых гибридов при скрещивании с такими же полиплоидами, но стерилен при скрещивании с любым из родительских видов.
Для большинства аллополиплоидных видов характерно диплоидное число хромосом, которое представляет собой сумму диплоидных чисел их родительских видов; например, Spartina anglica (2n = 122)-плодовитый гибридный аллополиплоид, полученный в результате скрещивания Spartina maritima (stricta) (In = 60) со Spartina alterniflora (2n = 62). (Гибрид F1 от скрещивания между этими двумя видами стерилен и получил название Spartina townsendii.) Большинство аллополиплоидных растений отличается по своим признакам от обоих родительских видов; к ним относятся многие из весьма ценных культур, выращиваемых человеком. Например, вид пшеницы Triticum aestivum (2n = 42), из которого получают муку, был выведен путем скрещивания и отбора за 5000 лет. В результате скрещивания дикорастущей пшеницы-однозернянки (2n = 14) с неидентифицированным диплоидом (2n = 14) был получен новый вид пшеницы-эммер (2n = 28). Пшеница эммер скрещивалась еще с одним дикорастущим диплоидным видом (2n = 14), в результате чего получилась форма Triticum aestivum (2n = 42), которая представляет собой гексаплоид (6п) первоначальной пшеницы-однозернянки. Другой пример межвидовой гибридизации — скрещивание редьки с капустой — будет описан в разд. 25.9.
У животных аллополиплоидия почти неизвестна, так как у них межвидовые скрещивания происходят редко. В результате полиплоидии генофонд не получает новых генов (см. разд. 25.1.1), но создаются новые генные комбинации.
При кроссинговере во время профазы I мейоза происходит реципрокный обмен генетическим материалом между гомологичными хромосомами. Это ведет к изменению последовательности аллелей в родительских группах сцепления, и в результате получаются рекомбинанты, но без потери каких-либо генных локусов. Сходные эффекты возникают при таких хромосомных перестройках, как инверсии и транслокации. При перестройках других типов — делециях и дупликациях — число генных локусов в хромосомах изменяется, и это может оказать глубокое влияние на фенотипы. Структурные изменения в хромосомах, связанные с инверсиями, делециями, дупликациями, а в некоторых случаях и транслокациями, можно наблюдать под микроскопом, когда в профазе I мейоза гомологичные хромосомы приступают к конъюгации. Гомологичные хромосомы конъюгируют (см. разд. 22.3), а в тех участках, которые затронула перестройка, одна из гомологичных хромосом образует петлю или же перекручивается. Какая из хромосом образует петлю и как расположатся ее гены, зависит от типа перестройки.
Инверсия возникает в результате вырезания участка хромосомы, который поворачивается на 180°, а затем вновь встраивается на прежнем месте. При этом никаких изменений генотипа не происходит, но возможны фенотипические изменения (рис. 23.32, А). Это показывает, что последовательность генов в данной хромосоме может быть небезразлична для их действия (так называемый эффект положения).
При транслокации от одной из хромосом отрывается участок и присоединяется либо к другому концу той же хромосомы, либо к другой, негомологичной хромосоме (рис. 23.32, Б). И в этом случае в фенотипе может проявиться эффект положения. Реципрокная транслокация между негомологичными хромосомами приводит к образованию двух новых пар гомологичных хромосом. В тех случаях, когда при синдроме Дауна сохраняется нормальное диплоидное число хромосом, причиной этого служит транслокация сверхкомплектной хромосомы 21 на одну из более крупных хромосом, обычно 15.
Рис. 23.32, Инверсия и транслокация (схемы) и их влияние на расположение генов. А. Образование петли в профазе мейоза, вызванное инверсией. Б. Часть хромосомы, несущая гены С, D и Е, оторвалась и присоединилась к хромосоме, несущей гены К, L и М
Самая простая форма хромосомной мутации — это деления, или нехватка, т.е. утрата хромосомой какого-нибудь участка, промежуточного или концевого. При этом в хромосоме уже недостает некоторых генов (рис. 23.33). Делеция может произойти в одной из двух гомологичных хромосом; в таком случае аллели, находящиеся в другой, нормальной, хромосоме, будут экспрессироваться, даже если они рецессивны. Если же делеция затронула одни и те же генные локусы в обеих гомологичных хромосомах, это обычно ведет к летальному исходу.
Иногда какой-либо участок хромосомы удваивается, так что возникает дупликация-повторение набора генов, локализованных в этом участке. Этот дополнительный набор может оказаться внутри той же хромосомы или на одном из ее концов, а иногда присоединяется к какой-нибудь другой хромосоме (рис. 23.33).
Рис. 23.33. Делеция и дупликация (схемы) и их влияние на расположение генов. В обоих случаях можно видеть образование петель
Внезапные спонтанные изменения фенотипа, которые нельзя связать с обычными генетическими явлениями или микроскопическими данными о наличии хромосомных аберраций, можно объяснить только изменениями в структуре отдельных генов. Генная, или точечная (поскольку она относится к определенному генному локусу), мутация-результат изменения нуклеотидной последовательности молекулы ДНК в определенном участке хромосомы. Такое изменение последовательности оснований в данном гене воспроизводится при транскрипции в структуре мРНК и приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся в результате трансляции на рибосомах (см. разд. 22.6).
Существуют различные типы генных мутаций, связанных с добавлением, выпадением или перестановкой оснований в гене. Это дупликации, вставки, делеции, инверсии или замены оснований. Во всех случаях они приводят к изменению нуклеотидной последовательности, а часто — и к образованию измененного полипептида. Например, делеция вызывает сдвиг рамки, последствия которого описаны в разд. 22.5.
Генные мутации, возникающие в гаметах или в будущих половых клетках, передаются всем клеткам потомков и могут влиять на дальнейшую судьбу популяции. Соматические генные мутации, происходящие в организме, наследуются только теми клетками, которые образуются из мутантной клетки путем митоза. Они могут оказать воздействие на тот организм, в котором они возникли, но со смертью особи исчезают из генофонда популяции. Соматические мутации, вероятно, возникают очень часто и остаются незамеченными, но в некоторых случаях при этом образуются клетки с повышенной скоростью роста и деления. Эти клетки могут дать начало опухолям — либо доброкачественным, которые не оказывают особого влияния на весь организм, либо злокачественным, что приводит к раковым заболеваниям.
Эффекты генных мутаций чрезвычайно разнообразны. Большая часть мелких генных мутаций фенотипически не проявляется, поскольку они рецессивны, однако известен ряд случаев, когда изменение всего лишь одного основания в определенном гене оказывает глубокое влияние на фенотип. Одним из примеров служит серповидноклеточная анемия — заболевание, вызываемое у человека заменой основания в одном из генов, ответственных за синтез гемоглобина. Молекула дыхательного пигмента гемоглобина у взрослого человека состоит из четырех полипептидных цепей (двух α- и двух β-цепей), к которым присоединены четыре простетические группы гема. От структуры полипептидных цепей зависит способность молекулы гемоглобина переносить кислород. Изменение последовательности оснований в триплете, кодирующем одну определенную аминокислоту из 146, входящих в состав β-цепей, приводит к синтезу аномального гемоглобина серповидных клеток (HbS). Последовательности аминокислот в нормальных и аномальных β-цепях различаются тем, что в одной точке аномальных цепей гемоглобина S глутаминовая кислота замещена валином. В результате такого, казалось бы, незначительного изменения гемоглобин S кристаллизуется при низких концентрациях кислорода; а это в свою очередь приводит к тому, что в венозной крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. Физиологический эффект мутации состоит в развитии острой анемии и снижении количества кислорода, переносимого кровью. Анемия не только вызывает физическую слабость, но и может привести к нарушениям деятельности сердца и почек и к ранней смерти людей, гомозиготных по мутантному аллелю. В гетерозиготном состоянии этот аллель вызывает значительно меньший эффект: эритроциты выглядят нормальными, а аномальный гемоглобин составляет только около 40%. У гетерозигот развивается анемия лишь в слабой форме, а зато в тех областях, где широко распространена малярия, особенно в Африке и Азии, носители аллеля серповидноклеточности невосприимчивы к этой болезни. Это объясняется тем, что ее возбудитель — малярийный плазмодий — не может жить в эритроцитах, содержащих аномальный гемоглобин (см. разд. 25.1.5).
Хромосомные и генные мутации оказывают разнообразные воздействия на организм. Во многих случаях эти мутации летальны, так как нарушают развитие; у человека, например, около 20% беременностей заканчиваются естественным выкидышем в сроки до 12 недель, и в половине таких случаев можно обнаружить хромосомные аномалии. В результате некоторых хромосомных мутаций определенные гены могут оказаться вместе, и их общий эффект может привести к появлению какого-либо "благоприятного" признака. Кроме того, сближение некоторых генов друг с другом делает менее вероятным их разделение в результате кроссинговера, а в случае благоприятных генов это создает преимущество.
Генная мутация может привести к тому, что в определенном локусе окажется несколько аллелей. Это увеличивает как гетерозиготность данной популяции, так и ее генофонд, и ведет к усилению внутрипопуляционной изменчивости. Перетасовка генов как результат кроссинговера, независимого распределения, случайного оплодотворения и мутаций может повысить непрерывную изменчивость, но ее эволюционная роль часто оказывается преходящей, так как возникающие при этом изменения могут быстро сгладиться вследствие "усреднения". Что же касается генных мутаций, то некоторые из них увеличивают дискретную изменчивость, и это может оказать на популяцию более глубокое влияние. Большинство генных мутаций рецессивны по отношению к "нормальному" аллелю, который, успешно выдержав отбор на протяжении многих поколений, достиг генетического равновесия с остальным генотипом. Будучи рецессивными, мутантные аллели могут оставаться в популяции в течение многих поколений, пока им не удастся встретиться, т. е. оказаться в гомозиготном состоянии и проявиться в фенотипе. Время от времени могут возникать и доминантные мутантные аллели, которые немедленно дают фенотипический эффект (см. разд. 25.5).
Материал, изложенный в этой главе, дает представление о происхождении внутрипопуляционной изменчивости и о механизмах наследования признаков, но он не объясняет, каким образом могло возникнуть поразительное разнообразие живых организмов, описанных в главах 2-4. Попытка ответить на этот вопрос составляет содержание двух следующих глав.