Глава 22. Непрерывность жизни

В начале главы 7 говорилось о создании клеточной теории Шлейденом и Шванном. Рудольф Вирхов расширил эту теорию, провозгласив в 1855 г.: "omnis cellula е cellula" ("каждая клетка из клетки"). Признание непрерывности живого побудило ученых второй половины XIX века заняться исследованием строения клетки и механизмов клеточного деления. Совершенствование гистологических методов и создание микроскопов с более высокой разрешающей способностью позволило выявить важную роль ядра и в особенности заключенных в нем хромосом как структур, обеспечивающих преемственность между последовательными поколениями клеток. В 1879 г. Бовери и Флемминг описали происходящие в ядре события, в результате которых образуются две идентичные клетки, а в 1887 г. Вейсман высказал мысль о том, что при образовании гамет происходит деление иного типа. Эти два типа деления называют соответственно митозом и мейозом. Происходящие при этом процессы почти идентичны, однако они приводят к совершенно разным результатам.

Митоз — это такое деление клеточного ядра, при котором образуются два дочерних ядра с наборами хромосом, идентичными наборам родительской клетки. Вслед за ядерным делением обычно сразу же происходит деление цитоплазмы на две равные части, восстановление клеточной (плазматической) мембраны и клеточной стенки (у растений) или одной только клеточной (плазматической) мембраны (у животных) и разделение возникших таким образом двух дочерних клеток. Весь этот процесс и называют клеточным делением. Митотическое деление клеток приводит к увеличению их числа, обеспечивая процессы роста, регенерации и замещения клеток у всех высших животных и растений. У одноклеточных организмов митоз служит механизмом бесполого размножения, ведущего к увеличению их численности.

Мейоз — это процесс деления клеточного ядра с образованием четырех дочерних ядер, каждое из которых содержит вдвое меньше хромосом, чем исходное ядро. Его называют также редукционным делением (от лат. reductio-уменьшение): число хромосом в клетке уменьшается с диплоидного (2n) до гаплоидного (n). Значение мейоза состоит в том, что он обеспечивает сохранение в ряду поколений постоянного числа хромосом у видов с половым размножением. Мейоз происходит только при образовании гамет у животных и при образовании спор у тех растений, которым свойственно чередование поколений (см. разд. 20.2). В результате мейоза получаются гаплоидные ядра, слияние которых при оплодотворении ведет к восстановлению диплоидного числа хромосом.

Хромосомы играют главную роль в процессе клеточного деления, так как они обеспечивают передачу наследственной информации от одного поколения другому (см. разд. 23.2) и участвуют в регуляции клеточного метаболизма. В состав хромосом эукариотических клеток входят ДНК, белки и небольшие количества РНК (см. разд. 5.6). В неделящихся клетках хромосомы представлены чрезвычайно длинными тонкими нитями, распределенными во всем объеме ядра. Отдельные хромосомы неразличимы, но хромосомный материал окрашивается некоторыми основными красителями (см. Приложение 4.2) и поэтому был назван хроматином. В начале клеточного деления хромосомы укорачиваются и окрашиваются более интенсивно, так что становятся видимыми по отдельности. В диспергированном растянутом состоянии хромосомы участвуют в регуляции всех процессов биосинтеза, протекающих в клетке, но во время клеточного деления эта их функция прекращается.

При всех формах клеточного деления ДНК каждой хромосомы реплицируется, так что образуются две идентичные двойные полинуклеотидные цепи ДНК (см. разд. 22.4.2). Эти цепи окружаются белковой "оболочкой" и в начале клеточного деления имеют вид двух идентичных нитей, лежащих бок о бок. Каждая нить носит название хроматиды и соединена со второй нитью неокрашивающимся участком — центромерой (кинетохором).

22.1. Клеточный цикл

Последовательность событий, происходящих между образованием данной клетки и ее делением на дочерние клетки, называют клеточным циклом. Этот цикл состоит из трех главных стадий.

1. Интерфаза. Период интенсивного синтеза и роста. В клетке синтезируется много веществ, необходимых для ее роста и осуществления всех свойственных ей функций. Во время интерфазы происходит репликация ДНК.

Рис. 22.1. Клеточный цикл


2. Митоз (кариокинез). Это процесс деления ядра, при котором хроматиды отделяются одна от другой и перераспределяются в виде хромосом между дочерними клетками.

3. Цитокинез — процесс разделения цитоплазмы между двумя дочерними клетками[7].

Весь цикл показан на рис. 22.1.

Продолжительность клеточного цикла зависит от типа клетки и от внешних факторов, таких как температура, питательные вещества и кислород. Бактериальные клетки могут делиться каждые 20 мин, клетки кишечного эпителия — каждые 8-10 ч, клетки в кончике корня лука — каждые 20 ч, а многие клетки нервной системы не делятся никогда.

Опыт 22.1. Изучение фаз митоза

Обычно хромосомы можно наблюдать только во время деления ядра. Подходящим материалом для этого служит апикальная меристема кончиков корня чеснока (2n = 16), лука (2n = 16) и конских бобов (2n = 12). Этот материал помещают в такие условия, чтобы началось развитие корешков, кончики корешков срезают, фиксируют, окрашивают и мацерируют, после чего хромосомы можно изучать под микроскопом.

Материалы

Булавки

Пробирка с водой Скальпель

Маленькие пробирки с пробками Пинцет

Две чашки Петри

Водяная баня и пробирки

Предметное стекло

Покровное стекло

Пара тонких иголок

Несколько листков фильтровальной бумаги

Зубчик чеснока

Дистиллированная вода

Уксусная кислота

Одномолярный раствор соляной кислоты

Реактив Фёльгена

Метод

1. Проткните зубчик чеcнока булавкой и подвесьте его вверху пробирки с водой так, чтобы основание зубчика находилось в воде. Оставьте на 3-4 дня в покое, так как любое постороннее воз-действие может временно подавить клеточное деление.

2. После образования нескольких корешков длиной 1-2 см отрежьте от них концевые участки длиной 1 см.

3. Поместите отрезанные участки корешков в небольшую пробирку с уксусной кислотой, заткните ее пробкой и оставьте на ночь при комнатной температуре для фиксации.

4. Ухватив корешки пинцетом за верхний конец, перенесите их в чашку Петри с дистиллированной водой и отмывайте в течение нескольких минут для удаления фиксатора.

5. Перенесите кончики корешков в пробирку, содержащую одномолярный раствор соляной кислоты, и выдержите 3 мин при 60°С (для корешков лука, горошка или бобов — 6-10 мин). При этом срединные пластинки, удерживающие клетки вместе, разрушаются, а ДНК хромосом гидролизуется с образованием альдегидных форм дезоксирибозы, способных взаимодействовать с красителем (реактивом Фёльгена).

6. Кислоту вместе с кончиками корешков вылейте в чашку Петри. Перенесите корешки в другую чашку Петри, содержащую дистиллированную воду, и отмойте кислоту. Оставьте на 5 мин.

7. Перенесите корешки в маленькую пробирку с реактивом Фёльгена и заткните ее пробкой. Поставьте в прохладное темное место (лучше в холодильник) минимум на 2 ч.

8. Выньте один кончик и поместите его в капле уксусной кислоты на чистое предметное стекло.

9. Отрежьте концевой участок длиной 1-2 мм и отбросьте остальное.

10. Растреплите кончик корешка с помощью двух тонких иголок и накройте покровным стеклом. Поместите препарат на плоскую поверхность, накройте несколькими листками фильтровальной бумаги и сильно нажмите через нее на покровное стекло подушечкой большого пальца. Не допускайте смещения покровного стекла в стороны.

11. Изучите препарат под микроскопом при малом и большом увеличении и найдите клетки, находящиеся на разных стадиях митоза.

12. Зарисуйте ядра в разных фазах митоза и надпишите рисунки.

22.2. Митоз

События, происходящие в ядре во время митоза, обычно наблюдают на фиксированных и окрашенных клетках (см. Приложение 2.4.2). Такие препараты позволяют увидеть фазы, через которые проходят хромосомы при клеточном делении, но не выявляют их последовательность. Методы фазово — контрастной микроскопии и цейтраферной съемки дали возможность наблюдать, как происходит деление ядра в живой клетке. При быстром прокручивании пленки митоз предстает как непрерывный процесс, включающий четыре стадии. Изменения, происходящие на этих стадиях в животной клетке, показаны на рис. 22.2.

Интерфаза

Ее часто неправильно называют стадией покоя. Продолжительность интерфазы различна и зависит от функции данной клетки. Это период, во время которого клетка обычно синтезирует органеллы и увеличивается в размерах. Ядрышки хорошо видны и активно синтезируют рибосомный материал. Непосредственно перед клеточным делением ДНК и гистоны каждой хромосомы реплицируются. Каждая хромосома представлена теперь парой хроматид соединенных друг с другом центромерой. Вещество хромосом окрашивается и носит название хроматина, но сами эти структуры увидеть трудно.

Рис. 22.2. Схемы и краткие описания последовательных стадий митоза в животной клетке. Интерфаза

Профаза

Обычно самая продолжительная фаза клеточного деления. Хроматиды укорачиваются (до 4% своей первоначальной длины) и утолщаются в результате их спирализации и конденсации. При окрашивании хроматиды четко видны, но центромеры не выявляются. В разных парах хроматид центромера располагается по-разному. В животных клетках и у низших растений центриоли расходятся к противоположным полюсам клетки. От каждой центриоли в виде лучей расходятся короткие микротрубочки, образующие в совокупности звезду. Ядрышки уменьшаются, так как их нуклеиновая кислота частично переходит в определенные пары хроматид. К концу профазы ядерная мембрана распадается и образуется веретено деления.

Рис. 22.2. Схемы и краткие описания последовательных стадий митоза в животной клетке. Профаза

Метафаза

Пары хроматид прикрепляются своими центромерами к нитям веретена (микротрубочкам) и перемещаются вверх и вниз по веретену до тех пор, пока их центромеры не выстроятся по экватору веретена перпендикулярно его оси.

Рис. 22.2. Схемы и краткие описания последовательных стадий митоза в животной клетке. Метафаза

Анафаза

Это очень короткая стадия. Каждая центромера расщепляется на две и нити веретена оттягивают дочерние центромеры к противоположным полюсам. Центромеры тянут за собой отделившиеся одна от другой хроматиды, которые теперь называются хромосомами.

Рис. 22.2. Схемы и краткие описания последовательных стадий митоза в животной клетке. Анафаза

Телофаза

Хромосомы достигают полюсов клетки, деспирализуются, удлиняются, и их уже нельзя четко различить. Нити веретена разрушаются, а центриоли реплицируются. Вокруг хромосом на каждом из полюсов образуется ядерная оболочка. Вновь появляется ядрышко. За телофазой может сразу следовать цитокинез (разделение всей клетки на две).

Рис. 22.2. Схемы и краткие описания последовательных стадий митоза в животной клетке. Телофаза


Рис. 22.2. (продолжение). Микрофотографии и основанные на них схемы, изображающие четыре стадии митоза в растительных клетках на примере клеток кончика корня Crocus balansae (2n — 6). (Любезно предоставлены д-ром S. A. Henderson, Dep. of Genetics, Univ. of Cambridge.) На этих давленых препаратах хорошо видны только хромосомы, которые были окрашены. Ядрышки, веретена и цитоплазма не окрашены и не видны. В начале деления (1) хромосомы длинные, тонкие, но уже явно двойные. Они спирализуются и укорачиваются. После полного укорочения хромосом ядерная мембрана разрушается и хромосомы выстраиваются на экваторе веретена (2, вид с полюса). Спустя некоторое время центромеры (изображены на схемах в виде точек) под действием нитей веретена отделяют сестринские хроматиды друг от друга (3). Нити веретена растаскивают центромеры, а вместе с ними и хроматиды к полюсам (4), где образуются две идентичные группы хромосом. После разделения цитоплазмы из них формируются ядра дочерних клеток

22.2.1. Центриоли и образование веретена

Центриоли — это органеллы, расположенные в цитоплазме около ядерной оболочки; они имеются в животных клетках и в клетках низших растений. Две центриоли, образующие пару, лежат перпендикулярно друг другу.

Каждая центриоль имеет примерно 500 нм в длину и 200 нм в диаметре; она состоит из девяти групп микротрубочек, по три в каждой группе. Полагают, что соседние тройки микротрубочек соединены между собой фибриллами (рис. 22.3).

Рис. 22.3. A. Электронная микрофотография поперечного среза центриоли из клетки поджелудочной железы куриного эмбриона. Б. Схематический рисунок: сделанный на основе микрофотографии


Структуры типа центриолей имеются также у оснований ресничек и жгутиков; в этом случае их называют базальными тельцами (см. разд. 17.6.2).

Нити веретена имеют трубчатую форму и диаметр около 25 нм. Они образуются во время митоза и мейоза и построены из микротрубочек, состоящих из тубулина и других белков. Прежде считалось, что центриоли играют роль организаторов нитей веретена, но теперь от этого мнения отказались: в большинстве растительных клеток центриолей нет, однако у них образуются нити веретена, состоящие из таких же микротрубочек, как и в животных клетках. Некоторые нити веретена идут от одного полюса к другому, тогда как другие образуют пучки, прикрепленные к центромерам хромосом. Как полагают, расхождение дочерних хромосом в анафазе митоза обусловлено движением нитей веретена относительно друг друга. Как показывают результаты электронно-микроскопических исследований, между нитями двух типов имеются поперечные мостики; это наводит на мысль, что относительное смещение нитей сходно по своему механизму со скольжением миофиламентов в мышечных волокнах (см. разд. 17.4.6).

Добавление колхицина (см. разд. 23.9.1) к активно делящимся клеткам подавляет образование веретена, так что пары хроматид остаются там, где они находились в метафазе. Этот метод позволяет производить подсчет хромосом и изучать их структуру под микроскопом.

22.2.2. Деление цитоплазмы

Деление цитоплазмы называют цитокинезом. Оно обычно следует за телофазой и ведет к периоду G1 интерфазы. При подготовке к делению клеточные органеллы вместе с хромосомами равномерно распределяются по двум полюсам телофазной клетки. В животных клетках плазматическая мембрана во время телофазы начинает впячиваться внутрь на том уровне, где прежде располагался экватор веретена. Как полагают, это происходит под действием находящихся здесь микрофиламентов. В результате этого впячивания образуется непрерывная борозда, опоясывающая клетку по экватору. В конце концов клеточные мембраны в области борозды смыкаются, полностью разделяя две клетки.

В растительных клетках нити веретена во время телофазы начинают исчезать, сохраняясь лишь в области экваториальной пластинки. Здесь они сдвигаются к периферии клетки, число их увеличивается, и они образуют боченковидное тельце — фрагмопласт. В эту область перемещаются также микротрубочки, рибосомы, митохондрии, эндоплазматический ретикулум и аппарат Гольджи; последний образует множество мелких пузырьков, наполненных жидкостью. Пузырьки появляются сначала в центре клетки, а затем, направляемые микротрубочками, перемещаются и сливаются друг с другом, образуя клеточную пластинку, расположенную в экваториальной плоскости (см. рис. 7.23). Содержимое пузырьков идет на построение срединной пластинки и стенок дочерних клеток, а из их мембран образуются новые клеточные мембраны. Клеточная пластинка, разрастаясь, в конце концов сливается со стенкой родительской клетки и полностью разделяет две дочерние клетки. Новообразованные клеточные стенки называют первичными; в дальнейшем они могут дополнительно утолщаться за счет отложения целлюлозы и других веществ, таких как лигнин и суберин, образуя вторичную клеточную стенку (рис. 22.4). В определенных участках клетки пузырьки клеточной пластинки не сливаются, так что между цитоплазмами дочерних клеток сохраняется контакт. Эти цитоплазматические мостики покрыты клеточной (плазматической) мембраной и образуют структуры, называемые плазмодесмами.

Рис. 22.4. Строение клеточной стенки, образовавшейся в результате деления родительской растительной клетки

22.2.3. Митоз в животных и растительных клетках

Самое важное событие, происходящее во время митоза, — это равное распределение удвоившихся хромосом между двумя дочерними клетками. Митоз протекает в животных и растительных клетках почти одинаково, но имеется и ряд различий (табл. 22.1).

Таблица 22.1. Особенности митоза у растений и у животных


У разных организмов и в разных тканях митотическое деление клеток протекает с различной скоростью с наибольшей у бактерий и у зародышей многоклеточных организмов и с наименьшей в высокодифференцированных тканях. Очень быстро могут делиться изолированные растительные и животные клетки при росте на питательных средах в условиях, оптимальных для деления. Клеточную популяцию, полученную от одной родительской клетки, называют клоном (см. разд. 20.1.1). Клетки, входящие в состав данного клона, не обязательно должны быть идентичны по строению и функции. Отдельные клетки, взятые из какого-либо организма, могут дать начало новой особи или новой ткани, идентичной той, из которой они были выделены; например, одна клетка, взятая из легкого, может дать начало легочной ткани с ее альвеолами и бронхиолами.

22.2.4. Значение митоза

Генетическая стабильность. В результате митоза получаются два ядра, содержащие каждое столько же хромосом, сколько их было в родительском ядре. Эти хромосомы происходят от родительских хромосом путем точной репликации ДНК, поэтому гены их содержат совершенно одинаковую наследственную информацию. Дочерние клетки генетически идентичны родительской клетке, так что никаких изменений в генетическую информацию митоз внести не может. Поэтому клеточные популяции (клоны), происходящие от родительских клеток, обладают генетической стабильностью.

Рост. В результате митозов число клеток в организме увеличивается (процесс, известный под названием гиперплазии), что представляет собой один из главных механизмов роста (см. гл. 21).

Бесполое размножение, регенерация и замещение клеток. Многие виды животных и растений размножаются бесполым путем при помощи одного лишь митотического деления клеток. Способы вегетативного размножения описаны более подробно в разд. 20.1.1. Кроме того, митоз обеспечивает регенерацию утраченных частей (например, ног у ракообразных) и замещение клеток, происходящее в той или иной степени у всех многоклеточных организмов.

22.3. Мейоз

Мейоз (от греч. meiosis-уменьшение) — форма ядерного деления, сопровождающаяся уменьшением числа хромосом с диплоидного (2n) до гаплоидного (n). Не вдаваясь в подробности, можно сказать, что при этом в родительской клетке происходит однократное удвоение хромосом (репликация ДНК, как при митозе), за которым следуют два цикла клеточных и ядерных делений (первое деление мейоза и второе деление мейоза). Таким образом, одна диплоидная клетка дает начало четырем гаплоидным клеткам, как это схематически показано на рис. 22.5.

Рис. 22.5. Схема основных этапов мейоза (дупликация одной хромосомы и два последующие ядерные и клеточные деления)


Мейоз происходит при образовании спермиев и яйцеклеток (гаметогенез) у животных (см. разд. 20.3.1 и 20.3.2) и при образовании спор у большинства растений (у тех, у которых имеет место чередование поколений; см. разд. 20.2.2). У некоторых низших растений чередования поколений нет, и мейоз у них происходит при образовании гамет. Стадии мейоза удобно наблюдать на ядрах сперматоцитов из мужских гонад прямокрылых или на ядрах незрелых пыльцевых мешков крокуса.

Подобно митозу, мейоз — процесс непрерывный, но его тоже можно подразделить на профазу, метафазу, анафазу и телофазу. Эти стадии имеются в первом делении мейоза и еще раз повторяются во втором. Поведение хромосом во время этих стадий представлено на рис. 22.6, где показано деление ядра, содержащего четыре хромосомы (2n = 4), т. е. два пары гомологичных хромосом.

Интерфаза

Продолжительность различна у разных видов. Происходит репликация органелл, и клетка увеличивается в размерах. Репликация ДНК и гистонов в основном заканчивается в премейотической интерфазе, но частично захватывает и начало профазы I. Каждая хромосома представлена теперь парой хроматид, соединенных центромерой. Хромосомный материал окрашивается, но из всех структур четко выявляются только ядрышки (ср. с рис. 22.2, где показан митоз).

Профаза I

Самая продолжительная фаза. Ее часто делят на пять стадий (лептотена, зиготена, пахитена, диплотена и диакннвз), но здесь она будет рассматриваться как непрерывная последовательность изменений хромосом.

А. Хромосомы укорачиваются и становятся видимыми как обособленные структуры. У некоторых организмов они выглядят как нитки бус: участки интенсивно окрашивающегося материала — хромомеры — чередуются у них с неокрашивающимися участками. Хромомеры — это те места, где хромосомный материал сильно спирализован.

Рис. 22.6. Схемы и краткие описания последовательных стадий мейоза в животной клетке. А. Ранняя профаза I


Б. Гомологичные хромосомы, происходящие из ядер материнской и отцовской гамет, приближаются одна к другой и конъюгируют. Эти хромосомы одинаковой длины, их центромеры занимают одинаковое положение, и они обычно содержат одинаковое число генов, расположенных в одной и той же линейной последовательности. Хромомеры гомологичных хромосом лежат бок о бок. Процесс конъюгации называют также синапсисом; он может начинаться в нескольких точках хромосом, которые затем соединяются по всей длине (как бы застегиваясь на "молнию"). Пары конъюгировавших гомологичных хромосом часто называют бивалентами. Биваленты укорачиваются и утолщаются. При этом происходит как более плотная упаковка на молекулярном уровне, так и внешне заметное закручивание (спирализация). Теперь каждая хромосома с ее центромерой ясно видна.

Рис. 22.6. Схемы и краткие описания последовательных стадий мейоза в животной клетке. Б. Профаза I


В. Гомологичные хромосомы, составляющие бивалент, частично разделяются, как будто отталкиваясь друг от друга. Теперь видно, что каждая хромосома состоит из двух хроматид. Хромосомы все еще соединены между собой в нескольких точках. Эти точки называют хиазмами (от греч. chiasma — перекрест). В каждой хиазме происходит обмен участками хроматид в результате разрывов и воссоединений, в которых участвуют две из четырех имеющихся в каждой хиазме нитей. В результате гены из одной хромосомы (например, отцовской — А, В, С) оказываются связанными с генами из другой хромосомы (материнской — а, b, с), что приводит к новым генным комбинациям в образующихся хроматидах. Этот процесс называют кроссинговером. Гомологичные хромосомы после кроссинговера не расходятся, так как сестринские хроматиды (обеих хромосом) остаются прочно связанными вплоть до анафазы.

Рис. 22.6. Схемы и краткие описания последовательных стадий мейоза в животной клетке. В. Кроссинговер во время профазы I


Г. Хроматиды гомологичных хромосом продолжают отталкиваться друг от друга, и биваленты приобретают определенную конфигурацию в зависимости от числа хиазм. Биваленты с одной хиазмой имеют крестообразную форму, с двумя хиазмами-кольцевидную, а с тремя и более — образуют петли, лежащие перпендикулярно друг другу. К концу профазы все хромосомы полностью уплотнены и интенсивно окрашиваются. В клетке происходят и другие изменения: миграция центриолей (если они имеются) к полюсам, разрушение ядрышек и ядерной мембраны, а затем образование нитей веретена.

Рис. 22.6. Схемы и краткие описания последовательных стадий мейоза в животной клетке. Г (I). Бивалент с одной хиазмой


Рис. 22.6. Схемы и краткие описания последовательных стадий мейоза в животной клетке. Г (П) Бивалент с двойной хиазмой. В результате поворота плеч хромосом образуется кольцевая структура

Метафаза I

Биваленты выстраиваются в экваториальной плоскости, образуя метафазную пластинку. Их центромеры ведут себя как единые структуры (хотя часто выглядят двойными) и организуют прикрепленные к ним нити веретена, каждая из которых направлена только к одному из полюсов. В результате слабого тянущего усилия этих нитей каждый бивалент располагается в области экватора, причем обе его центромеры оказываются на одинаковом расстоянии от него — одна снизу, а другая сверху.

Рис. 22.6. Схемы и краткие описания последовательных стадий мейоза в животной клетке. Д. Поздняя метафаза I

Анафаза I

Имеющиеся у каждого бивалента две центромеры еще не делятся, но сестринские хроматиды уже не примыкают одна к другой. Нити веретена тянут центромеры, каждая из которых связана с двумя хроматидами, к противоположным полюсам веретена. В результате хромосомы разделяются на два гаплоидных набора, попадающих в дочерние клетки.

Рис. 22.6. Схемы и краткие описания последовательных стадий мейоза в животной клетке. Е. Анафаза I

Телофаза I

Расхождение гомологичных центромер и связанных с ними хроматид к противоположным полюсам означает завершение первого деления мейоза. Число хромосом в одном наборе стало вдвое меньше, но находящиеся на каждом полюсе хромосомы состоят из двух хроматид. Вследствие кроссинговера при образовании хиазм эти хроматиды генетически неидентичны, и при втором делении мейоза им предстоит разойтись. Веретена и их нити обычно исчезают.

У животных и у некоторых растений хроматиды деспирализуются, вокруг них на каждом полюсе формируется ядерная мембрана и образовавшееся ядро вступает в интерфазу. Затем начинается деление цитоплазмы (у животных) или формирование разделяющей клеточной стенки (у растений), как при митозе. У многих растений не наблюдается ни телофазы, ни образования клеточной стенки, ни интерфазы, и клетка прямо переходит из анафазы I в профазу II.

Интерфаза II

Эта стадия обычно наблюдается только в животных клетках; продолжительность ее варьирует. Фаза S отсутствует, и дальнейшей репликации ДНК не происходит. Процессы, участвующие во втором делении мейоза, по своему механизму сходны с происходящими в митозе. Они включают разделение хроматид в обеих дочерних клетках, получившихся в результате первого деления мейоза. Второе деление мейоза отличается от митоза главным образом двумя особенностями: 1) в метафазе II мейоза сестринские хроматиды часто сильно обособляются друг от друга; 2) число хромосом гаплоидное.

Рис. 22.6. Схемы и краткие описания последовательных стадий мейоза в животной клетке. Ж. Телофаза I в животной клетке

Профаза II

В клетках, у которых выпадает интерфаза II, эта стадия тоже отсутствует. Продолжительность профазы II обратно пропорциональна продолжительности телофазы I. Ядрышки и ядерные мембраны разрушаются, а хроматиды укорачиваются и утолщаются. Центриоли, если они есть, перемещаются к противоположным полюсам клеток; появляются нити веретена. Хроматиды располагаются таким образом, что их длинные оси перпендикулярны оси веретена первого деления мейоза.

Рис. 22.6. Схемы и краткие описания последовательных стадий мейоза в животной клетке. З. Профаза II

Метафаза II

При втором делении центромеры ведут себя как двойные структуры. Они организуют нити веретена, направленные к обоим полюсам, и таким образом выстраиваются по экватору веретена.

Рис. 22.6. Схемы и краткие описания последовательных стадий мейоза в животной клетке. И. Метафаза II

Анафаза II

Центромеры делятся, и нити веретена растаскивают их к противоположным полюсам. Центромеры тянут за собой отделившиеся друг от друга хроматиды, которые теперь называются хромосомами.

Рис. 22.6. Схемы и краткие описания последовательных стадий мейоза в животной клетке.Л. Стадии, следующие за телофазой II ; разделение цитоплазмы (в случае животной) и К. Анафаза II

Телофаза II

Эта стадия очень сходна с телофазой митоза. Хромосомы деспирализуются, растягиваются и после этого плохо различимы. Нити веретена исчезают, а центриоли реплицируются. Вокруг каждого ядра, которое содержит теперь половинное (гаплоидное) число хромосом исходной родительской клетки, вновь образуется ядерная мембрана. В результате последующего деления цитоплазмы (у животных) или образования клеточной стенки (у растений) из одной исходной родительской клетки получается четыре дочерних клетки.

22.3.1. Значение мейоза

Половое размножение. У организмов, размножающихся половым путем, в результате мейоза образуются четыре дочерние клетки, каждая из которых содержит половинное число хромосом по сравнению с родительской клеткой. При оплодотворении ядра двух половых клеток (гамет) сливаются, образуя зиготу, которая содержит постоянное для каждого вида число хромосом. У всех организмов это число соответствует диплоидному (2n) состоянию (исключение из этого правила составляет полиплоидизация, см. разд. 23.9). Если бы не было мейоза, слияние гамет приводило бы к удвоению числа хромосом в каждом новом поколении, полученном половым способом. У всех организмов с половым размножением это предотвращается благодаря происходящему на какой-либо стадии жизненного цикла особому клеточному делению, при котором диплоидное число хромосом (2n) уменьшается до гаплоидного (n).

22.1. На рис. 22.10 показаны изменения количества ДНК в клетке при нескольких делениях ядра.

а) Какой тип деления представлен на рис. 22.10?

б) Каким стадиям соответствуют прерывистые линии W, X и Y?

в) Какой тип клеток представлен линией Z?

Генетическая изменчивость. Мейоз создает также возможности для возникновения в гаметах новых генных комбинаций. Это ведет к изменениям в генотипе и фенотипе потомства, получаемого в результате слияния гамет. Механизмы мейоза, участвующие в создании этой изменчивости, сводятся к следующему:

1. Уменьшение числа хромосом от диплоидного до гаплоидного сопровождается расхождением (разделением) аллелей, так что каждая гамета несет только один аллель по данному локусу (см. разд. 23.2).

2. Расположение бивалентов в экваториальной пластинке веретена в метафазе I и хромосом в метафазе II определяется случайным образом. Последующее их разделение в анафазах I и II соответственно создает новые комбинации аллелей в гаметах. Этот процесс, называемый независимым распределением, приводит к случайному распределению материнских и отцовских хромосом между дочерними ядрами. Он лежит в основе второго закона Менделя (разд. 23.1.3).

3. В результате образования хиазм между гомологичными хромосомами в профазе I часто происходит кроссинговер, ведущий к возникновению новых комбинаций аллелей в хромосомах половых клеток. При этом распадаются существовавшие ранее группы сцепления и возникают новые.

Рис. 22.7. А. Восемь стадий мейоза на примере сперматоцитое пустынной саранчи (Schistocerca gregaria; 2n = 22, +Х у самцов). Как и на рис. 22.2, микрофотографии сделаны с давленых препаратов, на которых видны только окрашенные хромосомы. Ядрышки, веретена и цитоплазма не окрашены, и детали их строения не видны. В начале первого деления мейоза (1) хромосомы длинные, тонкие, как бы растрепанные и плохо различимы по отдельности, кроме интенсивно окрашивающейся Х-хромосомы. В результате конъюгации гомологичных (материнской и отцовской) хромосом образуется набор из гаплоидного числа (11) бивалентов и одной Х-хромосомы (2, 3). Между тесно соприкасающимися материнской и отцовской хромосомами происходит обмен генетическим материалом. Затем они отделяются одна от другой по всей своей длине, за исключением тех точек, где произошли обмены (4). Эти точки носят название хиазм


Рис. 22.7 (продолжение). Б. В результате дальнейшего уплотнения образуются короткие толстые биваленты, которые после разрушения ядерной мембраны прикрепляются к веретену своими центромерами (5; вид с полюса). Нити веретена тянут хромосомы, составляющие биваленты, в разные стороны (6; вид сбоку). Х-хромосома, которая теперь окрашивается слабо, направляется, не разделившись, к одному полюсу. При втором делении мейоза хромосомы (в гаплоидном числе) располагаются в экваториальной плоскости (7; вид с полюса) и в результате активности нитей веретена хроматиды каждой хромосомы расходятся к разным полюсам (8; вид сбоку). (Микрофотографии и схемы любезно предоставлены д-ром S.A. Henderson, Dep. of Genetics, Univ. of Cambridge.)


Рис. 22.8. Хромосомы из одной клетки саранчи Locusta migratoria на стадии диплотены (профаза I). Видны биваленты с одной или двумя хиазмами. На схеме слева материнские и отцовские хромосомы изображены соответственно сплошными и прерывистыми линиями. В каждой хиазме произошел обмен генетическим материалом. Форма бивалентов варьирует от палочковидной до крестообразной или кольцевидной, в зависимости от числа хиазм и их расположения


Рис. 22.8. Продолжение


Рис. 22.9. Мейоз в живых клетках. Конъюгация и клеточное деление в живых сперматоцитах саранчи Locusta migratoria. Препараты сфотографированы методом, известным под названием интерференционного контраста Номарского; этот метод с использованием поляризованного света позволяет получать удивительно объемные картины живых неокрашенных клеток. В двух клетках можно видеть конъюгацию хромосом в ранней профазе I с совмещением хромомер (стрелка). Две другие клетки заканчивают первое деление мейоза. После того как образовались две полярные группы, начинается деление всей клетки с образованием двух дочерних клеток примерно одинаковой величины. Нитевидные структуры, тянущиеся от клетки к клетке между двумя полярными группами и перехваченные посередине подобно снопу пшеницы — это митохондрии


Рис. 22.10. График, который следует использовать при выполнении задания 22.1


Значение этих трех механизмов в процессах наследования и в создании изменчивости будет подробно описано в разд. 23.8.4.

22.3.2. Сходства и различия между митозом и мейозом

Главные черты сходства между митозом и мейозом касаются механизмов, с помощью которых хромосомы и другие клеточные органеллы реплицируются и перемещаются в клетке перед ее делением и во время самого деления. Механизмы цитокинеза при митозе и мейозе тоже сходны.

Различия между этими двумя процессами перечислены в табл. 22.2.

Таблица 22.2. Различия между стадиями митоза и мейоза


Особенности, связанные с полом, и различия между животными и растениями. Приведенное выше описание мейоза в общем приложимо ко всем животным и растениям обоего пола, но между ними существуют также некоторые важные различия.

А. Мужской пол. У животных разделение клетки происходит в конце как первого, так и второго делений мейоза, дочерние клетки тотчас же теряют связь друг с другом и становятся независимыми. Все четыре продукта мейоза выживают, превращаются в сперматиды, а затем в спермин. У растений происходит формирование клеточных стенок, и дочерние клетки остаются связанными, образуя к концу первого деления мейоза диаду, а к концу второго — тетраду. Все продукты мейоза тоже выживают и превращаются в пыльцевые зерна.

Б. Женский пол. Как у растений, так и у животных из четырех продуктов мейоза выживает только один, образующий ядро яйцеклетки. У животных первое деление мейоза асимметричное — оно приводит к образованию ооцита второго порядка и полярного тельца. Второе деление мейоза тоже асимметричное: ооцит второго порядка делится на яйцеклетку и второе полярное тельце (первое полярное тельце также может делиться на два, но все полярные тельца дегенерируют); таким образом, в результате мейоза образуется только один функциональный ооцит. У растений мейоз приводит к образованию четырех ядер, заключенных в зародышевом мешке. Три из них дегенерируют, а четвертое дает начало ядрам зародышевого мешка и ядру яйцеклетки.

22.4. Структура хромосом

Гистохимическое и цитологическое изучение хромосом эукариотических клеток показало, что они состоят из дезоксирибонуклеиновой кислоты (ДНК) и белка с небольшой примесью хромосомной РНК. "Хромосомы" прокариотических клеток (бактерий и сине-зеленых водорослей) состоят из одной только ДНК и, строго говоря, их не следует называть хромосомами. Молекула ДНК несет отрицательные заряды, распределенные по всей ее длине, а присоединенные к ней белки, так называемые гистоны (относящиеся к основным белкам), заряжены положительно. Этот комплекс ДНК с белком называют хроматином[8]. Белковые молекулы увеличивают толщину хромосомы и, возможно, служат наружной защитной оболочкой для ДНК. Структурные взаимоотношения между ДНК и гистонамн в хромосоме еще не выяснены с полной достоверностью, однако создается впечатление, что хромосома — это не просто единичная молекула ДНК, окруженная слоем гистонов, а нечто гораздо более сложное. Предложено несколько моделей строения хромосом.

Толщина одной двойной спирали ДНК равна 2 нм, тогда как самые тонкие хромосомы, видимые в световой микроскоп, имеют толщину от 100 до 200 нм. Это может означать, что одна хромосома содержит либо много двойных спиралей ДНК, либо одну двойную спираль, еще дополнительно закрученную крупными витками. На электронных микрофотографиях хромосом типа ламповых щеток (названных так за их сходство со щетками, которыми в прежние времена чистили стекла керосиновых ламп) из ооцитов амфибий видно, что каждая хроматида состоит из плотно скрученной осевой нити с отходящими от нее боковыми петлями, образованными одной двойной спиралью ДНК (рис. 22.11). Эти петли, возможно, представляют собой ДНК, освобожденную от белков для осуществления транскрипции (см. разд. 22.6.6). Недавние исследования структуры хромосом позволяют думать, что спираль ДНК соединяется с группами из восьми гистоновых молекул, образующих нуклеосомы — частицы, имеющие вид нанизанных на нитку бусинок. Эти нуклеосомы и соединяющие их участки ДНК плотно упакованы в виде спирали толщиной 36 нм, на каждый виток которой приходится примерно 6 нуклеосом и которая по своим размерам и другим признакам соответствует хромосоме. Предполагаемая структура такой хромосомы показана на рис. 22.12.

Рис. 22.11. А. Хромосомы типа ламповых щеток из ооцита амфибии; видны центромера и три хиазмы. Б и В. Хромосомы растянуты, чтобы показать центральную нить ДНК и петли ДНК, в которых происходит синтез мРНК. Как полагают, уплотненные участки представляют собой хромомеры, а каждая хромомера и связанная с ней петля соответствуют определенному генному локусу. (Н. G. Callan, Int. Rev. Cytology, 1963, 151.)


Рис. 22.12. Предполагаемая структура нуклеосом и их соотношение с хромосомой и молекулой ДНК (в метафазной хромосоме). (E.J. Du Praw, School of Medicine, Univ. of Maryland.)


В хромосомах спермиев у некоторых видов, например у лосося и сельди, белками, связанными с ДНК, служат не гистоны, а протамины.

22.4.1. Данные, указывающие на роль ДНК в наследственности

Еще в начале XX века Саттон и Бовери высказали верную мысль, что именно хромосомы передают генетическую информацию от одного поколения другому (см. разд. 23.2), однако потребовалось еще много лет, для того чтобы выяснить, что служит генетическим материалом-ДНК или белок хромосом. В ряде экспериментов Альфред Мирский показал, что у особей данного вида все соматические клетки содержат одинаковое количество ДНК, которое вдвое больше количества ДНК в гаметах. Но то же самое относится и к содержанию в хромосомах белка, так что эти данные мало способствовали выяснению природы генетического материала.

Ученые склонны были думать, что белок — это единственное вещество, молекулы которого обладают достаточным структурным разнообразием, чтобы служить генетическим материалом.

В 1928 г. английский микробиолог Фредерик Гриффит сделал наблюдение, которое впоследствии оказалось важным для решения этой проблемы. Во времена, когда еще не было антибиотиков, Гриффит пытался приготовить вакцину против пневмококка — возбудителя одной из форм пневмонии. Были известны две формы этой бактерии, из которых одна обладает студенистой капсулой и вирулентна (вызывает заболевание), а другая не имеет капсулы и невирулентна. Способность этих бактерий вызывать пневмонию, по-видимому, была связана с наличием капсулы. Граффит надеялся, что если ввести больному бескапсульную или убитую нагреванием инкапсулированную форму, то его организм начнет вырабатывать антитела, которые смогут предохранить от заболевания пневмонией. В ряде экспериментов Гриффит вводил мышам обе формы бактерий и получил результаты, представленные в табл. 22.3. При вскрытии погибших мышей в них были обнаружены живые инкапсулированные формы. На основании этих результатов Гриффит сделал вывод, что от убитых нагреванием инкапсулированных форм к живым бескапсульным формам, очевидно, передается какой-то фактор, заставляющий их вырабатывать капсулы и становиться вирулентными. Однако природа этого трансформирующего фактора оставалась неизвестной вплоть до 1944 г., когда его удалось выделить и идентифицировать. На протяжении 10 лет Эвери, Мак-Карти и Мак-Леод занимались выделением и очисткой молекул, входящих в состав убитых нагреванием инкапсулированных клеток пневмококка, и изучали их способность трансформировать бескапсульные клетки. Удаление полисахаридной капсулы и белковой фракции из клеточных экстрактов не оказывало влияния на эту способность, но добавление фермента дезоксирибонуклеазы (ДНКазы), гидролизующей ДНК, препятствовало трансформации. Способность высокоочищенных экстрактов ДНК из инкапсулированных клеток вызывать трансформацию показала, что фактором Гриффита была ДНК. Несмотря на эти результаты, многие ученые все еще отказывались признать, что генетическим материалом служит ДНК, а не белок. В начале пятидесятых годов множество неоспоримых данных, полученных при изучении вирусов, наконец, продемонстрировали универсальность ДНК как носителя генетической информации.

Таблица 22.3. Результаты экспериментов Гриффита


В сороковые годы вирусы стали одним из главных объектов экспериментальных генетических исследований; проведенные на них эксперименты считаются теперь такими же классическими, как эксперименты на горохе, плодовой мушке и, как будет описано позже, хлебной плесени Neurospora. Вирусные частицы имеют очень простое строение; они состоят из оболочки, образованной в основном из белка, и заключенной внутри нее молекулы нуклеиновой кислоты-ДНК или РНК (см. разд. 2.5.2). Это делает их идеальным материалом для изучения вопроса о том, что служит генетическим материалом — белок или нуклеиновая кислота. В 1952 г. Херши и Чейс приступили к ряду экспериментов на вирусах особого типа, заражающих бактериальные клетки и называемых бактериофагами. Бактериофаг Т2 проникает в клетку кишечной палочки (Escherichia coli) и заставляет ее за очень короткий срок образовать множество фаговых частиц. Херши и Чейс выращивали частицы фага Т2 в клетках Е. coli, которые росли на среде с радиоактивными изотопами серы (35S) или фосфора (32Р). Фаговые частицы, образующиеся в клетках Е. coli на среде с радиоактивной серой, включали 35S в свои белковые оболочки, а частицы, образующиеся в Е. coli на среде с изотопом фосфора, содержали ДНК, меченную 32Р. Такое избирательное распределение изотопов связано с тем, что белки не содержат фосфора, а нуклеиновые кислоты не содержат серы. Мечеными частицами фага Т2 заражали немеченые клетки Е. coli, и спустя несколько минут эти клетки встряхивали в смесителе, чтобы отделить фаговые частицы от клеточных стенок. Затем бактерий инкубировали и проверяли на радиоактивность. Результаты представлены на рис. 22.13.

Рис. 22.13. Схема экспериментов Херши и Чейза на фаге Т2 и Е. coli


Из полученных данных Херши и Чейз сделали вывод, что в бактериальную клетку проникает фаговая ДНК, которая и дает начало многочисленному фаговому потомству. Эти эксперименты показали, что наследственным материалом служит ДНК, которая определяет в новообразованных фаговых частицах структуру не только фаговой ДНК, но и фаговых белков. Результаты электронно-микроскопических исследований и более полные данные о жизненном цикле вирусов подтверждают, что в бактериальную клетку проникает только ДНК фага. (Жизненный цикл вирусных и фаговых частиц описан в разд. 2.5.3 и 2.5.4.)

22.4.2. Репликация ДНК

Модель структуры ДНК в виде двойной спирали, предложенная Уотсоном и Криком, описана в разд. 5.6.3. Одна из самых привлекательных особенностей этой модели состоит в том, что она одновременно подсказывает, каким способом могла бы происходить репликация ДНК. Уотсон и Крик высказали предположение, что две цепи, образующие спираль, могут раскручиваться и разделяться, после чего каждая из них служит матрицей, к которой путем спаривания оснований пристраивается комплементарная цепочка нуклеотидов. Таким образом, из каждой исходной молекулы ДНК получаются две копии с идентичной структурой.

В 1956 г. Корнбергу удалось продемонстрировать in vitro синтез молекулы ДНК, используя в качестве матрицы одиночную цепь ДНК. (Этот метод был затем использован другими учеными для выяснения природы генетического кода; см. разд. 22.5.) Корнберг выделил из Е. coli и очистил фермент, который способен связывать друг с другом свободные нуклеотиды в присутствии АТФ как источника энергии с образованием комплементарной цепи ДНК. Он назвал этот фермент ДНК-полимеразой. В своих последующих экспериментах Корнберг использовал вместо нуклеотидов и АТФ дезоксинуклеозидтрифосфаты (дАТФ, дГТФ, дТТФ, дЦТФ), из которых тоже строилась комплементарная цепь ДНК. Дальнейшие данные подтвердили, что именно в этой форме нуклеотиды легко присоединяются к ДНК-матрице и друг к другу. Когда нуклеозидтрифосфаты связываются между собой, две концевые фосфатные группы отщепляются. Оставшаяся фосфатная группа нуклеотида и освобождающаяся энергия используются для образования эфирной связи с углеродными атомами 5 и 3 остатков сахара соседних нуклеотидов (рис. 22.14).

Позднее, в 1967 г., Корнберг показал, что ДНК — полимераза присоединяет нуклеотиды только в направлении 5 → 3. Поскольку две цепи ДНК антипараллельны, т. е. направление 5 → 3 у них противоположно, ДНК-полимераза может непрерывно строить лишь одну новую цепь молекулы ДНК. Другая дочерняя молекула ДНК синтезируется отдельными короткими участками под действием ДНК-полимеразы, движущейся в противоположном направлении[9]. Эти короткие участки новосинтезируемой полинуклеотидной цепи связываются воедино другим ферментом — ДНК-лигазой (рис. 22.15). Молекулы ДНК, синтезируемые in vitro в присутствии ДНК-лигазы, биологически активны и могут использоваться в системе синтеза белка. Молекулы ДНК, полученные в 1956 г. Корнбергом, хотя они имели в целом правильную структуру, были лишены биологической активности, так как участки одной из синтезируемых цепей не могли соединиться друг с другом.

Способ репликации ДНК, предложенный Уотсоном и Криком и показанный на рис. 22.16, известен под названием полуконсервативной репликации, так как при этом каждая новая двойная спираль сохраняет одну цепь исходной двойной спирали ДНК. Этот механизм основан на данных, полученных Мезелсоном и Сталем в серии классических экспериментов в 1958 г. Клетки Е. coli содержат одну кольцевую хромосому; при выращивании этих клеток в течение многих поколений на среде, содержащей тяжелый изотоп азота (15N), вся их ДНК метилась этим изотопом. Клетки с меченой ДНК переносили на среду, содержавшую обычный изотоп азота 14N. По прошествии срока, соответствующего времени генерации Е. coli (50 мин при 36°С), брали пробы клеток, выделяли из них ДНК и центрифугировали 20 ч при 40 000 g в растворе хлористого цезия (CsCl). При этом тяжелые молекулы CsCl начинали осаждаться, образуя градиент плотности, которая возрастала от верхушки к дну пробирки. ДНК собиралась на том уровне, на котором плотность раствора CsCl была равна ее плотности. При исследовании в ультрафиолетовых лучах ДНК в центрифужной пробирке имела вид узкой полосы. Расположение полос ДНК, выделенной из клеток, выращенных на средах с 15N и с 14N, и интерпретация их структуры представлены на рис. 22.16. Эти эксперименты убедительно показали, что репликация ДНК происходит полуконсервативным способом.

22.2. Были выдвинуты три гипотезы для объяснения процесса репликации ДНК. Один вариант получил название полуконсервативного; он описан выше и представлен на рис. 22.14. Две другие гипотезы — о консервативной репликации и о дисперсивной репликации-представлены на рис. 22.17.

Нарисуйте схемы распределения различных типов ДНК в градиенте плотности, которые обнаружили бы Мезелсон и Сталь для двух первых поколений клеток, если бы были верны консервативная и дисперсивная гипотезы.

22.5. Природа генов

Изучение наследственности уже давно было связано с представлением о ее корпускулярной природе. В 1866 г. Мендель высказал мнение, что признаки организмов определяются наследуемыми единицами, которые он назвал "элементами". Позднее их стали называть "факторами" и, наконец, генами; было показано, что гены находятся в хромосомах, с которыми они и передаются от одного поколения другому (см. разд. 23.2).

Рис. 22.14. Репликация двойной спирали ДНК. Спираль родительской ДНК раскручивается, и комплементарные цепи отделяются одна от другой в результате разрыва слабых водородных связей между комплементарными основаниями. Полинуклеотидные цепи ДНК не разрываются благодаря прочности их фосфодизфирных связей. Происходит спаривание между основаниями матричной цепи и свободными нуклеозидтрифосфатами, и последние связываются друг с другом, образуя новую полинуклеотидную цепь. Таким образом получаются две идентичные молекулы ДНК. В разделении родительских цепей и образовании новой полинуклеотидной цепи участвует фермент ДНК-полимераза, но, по всей вероятности, на репликацию оказывают влияние также и другие ферменты


Рис. 22.15. Роль ДНК-лигазы в репликации ДНК. Стрелками показаны направления, в которых перемещается ДНК-полимераза при образовании новых двойных спиралей ДНК. ДНК-лигаза обеспечивает соединение коротких отрезков нуклеотидной цепи в точках, помеченных звездочками


Несмотря на все то, что нам теперь известно о хромосомах, а также о структуре и функциях ДНК, дать точное определение гена все еще очень трудно. В результате изучения природы гена пока удалось сформулировать три возможных определения гена; мы кратко рассмотрим их, так как они важны для понимания некоторых вопросов генетики и эволюции.

Ген как единица рекомбинации. На основании своих работ по построению хромосомных карт дрозофилы (см. разд. 23.3) Морган постулировал, что ген — это наименьший участок хромосомы, который может быть отделен от примыкающих к нему участков в результате кроссииговера. Согласно этому определению, ген представляет собой крупную единицу, специфическую область хромосомы, определяющую тот или иной признак организма.

Ген как единица мутирования. В результате изучения природы мутаций было установлено, что изменения признаков возникают вследствие случайных спонтанных изменений в структуре хромосомы, в последовательности оснований или даже в одном основании (разд. 23.9). В этом смысле можно было сказать, что ген — это всего-навсего одна пара комплементарных оснований в нуклеотидной последовательности ДНК, т. е. наименьший участок хромосомы, способный претерпеть мутацию.

Рис. 22.16. Результаты экспериментов Мезелсона и Сталя по изучению репликации ДНК и их интерпретация. Ширина полос ДНК в центрифужных пробирках отражает относительные количества различных типов молекул ДНК, указанных справа. В пробирке В отношение ширины полос 1:1, а в пробирке Г-3:1


Ген как единица функции. Поскольку было известно, что от генов зависят структурные, физиологические и биохимические признаки организмов, было предложено определять ген как наименьший участок хромосомы, обусловливающий синтез определенного продукта.

Самое приемлемое определение-третье, но в нем не указано, какого рода продукт синтезируется. Известны случаи, когда один "ген" воздействует на несколько признаков (см. разд. 23.1.1), а в других случаях несколько "генов" (полигены) могут определять один специфический признак (разд. 23.7.6).

Третье определение получило признание в результате исследований Бидла и Татума. Сформулированная ими гипотеза, известная под названием "один ген — один фермент", нашла много подтверждений с развитием новой области биологии — молекулярной генетики. Впоследствии эта гипотеза была преобразована в функциональную концепцию "один цистрон — один полипептид" (разд. 22.5.1).

22.5.1. Гены и ферменты

Предположение о связи между генами и ферментами впервые высказал, хотя и без употребления этих слов, английский врач Арчибальд Гаррод в 1908 г. Гаррод постулировал, что некоторые "врожденные ошибки метаболизма" — результат неспособности тела вырабатывать определенные химические вещества, что в свою очередь обусловлено наследственными механизмами. Прошло почти 40 лет, прежде чем первые работы по молекулярной генетике подтвердили эту гипотезу и во всей полноте продемонстрировали ее значение.

Исследования в области молекулярной генетики начались с выявления различных веществ и ферментов, участвующих в метаболических процессах. Некоторые нарушения метаболизма связаны с дефектами, которые наследуются так, как если бы они определялись единичными генами. Эти нарушения возникают спонтанно, как в случае мутаций, или же передаются по наследству в соответствии с обычными законами генетики. Рассмотрим, например, обмен аминокислот фенилаланина и тирозина; обычно они используются для синтеза клеточных белков и других веществ, выполняющих структурные и физиологические функции, а их избыток распадается с образованием СО2, воды и азотистых отходов метаболизма. Во всех случаях судьбу этих аминокислот определяет простой метаболический путь, в котором участвует несколько ферментов. Дефектный фермент или отсутствие фермента в одной из четырех точек на этом пути приводит к таким нарушениям метаболизма, как фенилкетонурия, кретинизм, альбинизм и алкаптонурия. Характер наследования этих четырех заболеваний указывает на то, что каждое из них контролируется каким-то одним рецессивным геном.

Рис. 22.17. Схема, поясняющая две другие гипотезы о способе репликации ДНК


Дальнейшие важные данные в пользу гипотезы "один ген — один фермент" были получены в работах Бидла и Татума, начатых в 1941 г. и посвященных механизмам наследования ферментов у розовой хлебной плесени (Neurospora crassa). Подобно Менделю и Моргану, эти авторы очень тщательно выбирали объект для своих экспериментов. Нейроспора — сумчатый гриб (аскомицет), обладающий следующими ценными для генетика качествами:

1) его легко выращивать;

2) его можно получать в больших количествах;

3) у него короткое время генерации (10 дней);

4) вегетативная стадия гаплоидная.

Последняя особенность очень важна. Поскольку на протяжении большей части жизненного цикла клетки этой плесени содержат только один набор хромосом, проявление рецессивных генов не маскируется доминантными аллелями. Если в результате мутации возникает рецессивный ген, то его действие сказывается немедленно. Нейроспора обычно образует бесполые споры (конидии), которые прорастают и дают начало мицелию. Кусочки мицелиев, принадлежащих к двум противоположным типам скрещиваемости, могут сливаться, образуя диплоидную зиготу. Эта зигота тотчас же проходит мейотическое деление, за которым следует одно митотическое деление, и образуется сумка (аск) — плодовое тело, содержащее восемь гаплоидных аскоспор; четыре из них происходят от одного из родительских штаммов, а четыре — от другого. Каждая аскоспора, прорастая, дает начало новому мицелию. Таким образом, мицелий может происходить либо от конидии, возникшей бесполым путем, либо от аскоспоры, образовавшейся половым путем (рис. 22.18).

Рис. 22.18. Аскоспоры в сумке


Нейроспора способна расти на культуральной среде, содержащей только агар, сахара, соли и витамин биотин. Такую среду называют минимальной. Если нейроспора может расти на ней, то это означает, что она способна синтезировать все необходимые для роста углеводы, жиры, аминокислоты и витамины с помощью ферментов, вырабатываемых собственными клетками.

Эксперименты Бидла и Татума состояли в следующем.

1. Конидии подвергали рентгеновскому облучению, чтобы повысить частоту мутаций.

2. Облученные конидии переносили на полную среду (содержащую все аминокислоты и витамины, необходимые для нормального роста) и выращивали на ней.

3. Образовавшиеся мицелии скрещивали с мицелиями, развившимися из конидий, не подвергнутых рентгеновскому облучению ("дикий тип").

4. Образующиеся аски содержали по четыре аскоспоры от каждого из родительских штаммов (мутантного и дикого типа).

5. Аскоспоры извлекали из асков и выращивали по отдельности на полной питательной среде.

6. Пробы мицелиев помещали на обогащенную витаминами минимальную среду. В некоторых случаях роста не наблюдалось.

7. Штаммы, которые не росли, не были способны синтезировать некоторые аминокислоты. Для того чтобы определить, какие это были аминокислоты, эти штаммы переносили на ряд минимальных сред, к каждой из которых добавлялась какая-либо одна аминокислота.

8. Если данный штамм рос на определенной среде, то, следовательно, эта среда содержала ту аминокислоту, которую данный штамм синтезировать не способен. Таким образом были идентифицйрованы мутантные штаммы нейроспоры. Анализ полученных результатов показал, что во всех случаях, в которых половина аскоспор из данного аска давала мутантный штамм, другая половина была способна расти на минимальной среде.

Эти результаты указывали на то, что мутантный ген ведет себя как единичный рецессивный ген и наследуется в соответствии с законами Менделя. Бидл и Татум пришли к выводу, что в каждом случае рентгеновские лучи вызывали мутацию одного гена, контролирующего синтез одного фермента, необходимого для синтеза одной аминокислоты. Это легло в основу их гипотезы "один ген — один фермент" (рис. 22.19).

Рис. 22.19. Схема, иллюстрирующая главные этапы в идентификации мутантных аллелей, которые контролируют синтез ферментов, участвующих в образовании аминокислот. Подробности см. в тексте (цифры на схеме соответствуют цифрам в тексте)


В этих ранних исследованиях был разработан экспериментальный метод с использованием минимальных сред, применяемый в генетике микроорганизмов во многих модификациях и давший огромное количество информации о роли генов.

В настоящее время твердо установлено, что гены контролируют происходящие в клетке процессы путем синтеза ферментов и других белков. Эти ферменты в свою очередь определяют синтез всех прочих веществ клетки.

С течением времени, однако, определение гена было видоизменено. Работы по строению генов бактериофага Т4, проведенные Бензером в 1955 г., привели к созданию концепции цистрона как единицы функции. Цистрон — это участок ДНК, несущий информацию, необходимую для синтеза одной полипептидной цепи; такая цепь может функционировать самостоятельно как биологически активная белковая молекула или становится частью более крупной макромолекулы. В настоящее время концепцию "один ген — один фермент" сменила концепция "один цистрон один полипептид".

22.5.2. Генетический код

Когда Уотсон и Крик в 1953 г. предложили модель структуры ДНК в виде двойной спирали, они высказали также предположение, что генетическая информация, передаваемая из поколения в поколение и определяющая метаболизм клетки, заключена в последовательности оснований молекулы ДНК. После того как было установлено, что ДНК кодирует синтез белковых молекул, стало ясно, что последовательность оснований в нуклеотидах ДНК должна определять аминокислотную последовательность белков. Эта зависимость между основаниями и аминокислотами известна код названием генетического кода. Оставалось показать, что нуклеотидный код в самом деле существует, расшифровать его и выяснить, каким образом он переводится в аминокислотную последовательность белковой молекулы.

22.5.3. Структура кода

Молекула ДНК построена из нуклеотидов четырех типов, в состав которых входят четыре разных основания: аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц) (см. разд. 5.6). Нуклеотиды соединены в полинуклеотидную цепь; их обозначают начальными буквами названий соответствующих оснований. С помощью этого четырехбуквенного алфавита записаны инструкции для синтеза потенциально бесконечного числа различных белковых молекул. Если бы одно основание определяло положение одной аминокислоты в первичной структуре какого-то белка, то этот белок мог бы содержать только четыре вида аминокислот. Если бы каждая аминокислота кодировалась двумя основаниями, то с помощью такого кода можно было бы определить 16 аминокислот.

22.3. Составьте список 16 возможных попарных сочетаний из оснований А, Г, Т и Ц.

Только код, состоящий из троек оснований (триплетов), мог бы обеспечить включение в белковые молекулы всех 20 аминокислот. В такой код входит 64 разных триплета.

22.4. Четыре основания, используемые по одному, позволяют закодировать четыре аминокислоты; используемые попарно-16 аминокислот; используемые по три-64 аминокислоты. Выведите математическое выражение, объясняющее это.

Доказательства триплетности кода представил Фрэнсис Крик в 1961 г., получив у фагов Т4 мутации, вызванные добавлением или выпадением оснований. Эти добавления и выпадения, приводящие к сдвигам рамки при "чтении" кода (рис. 22.20), проявились у фагов Т4 в изменениях фенотипа. В результате сдвига рамки получались такие последовательности триплетов оснований, которые не могли обеспечить синтез белковых молекул с прежней последовательностью аминокислот (прежней первичной структурой). Только добавление или удаление одного основания в определенных точках могло привести к восстановлению правильного кода. Восстановление первоначальной последовательности оснований предотвращало появление мутантов. Эти эксперименты показали также, что триплеты не перекрываются, т.е. каждое основание может принадлежать только одному триплету. Ни одно из оснований, входящих в данный триплет, не является частью другого триплета (рис. 22.21).

Рис. 22.20. Схема, поясняющая результаты добавления или удаления оснований в триплетном коде. Добавление основания Ц приводит к сдвигу рамки, так что первоначальное сообщение ГAT, ГAT, ... превращается в ТГА, ТГА. ... Выпадение основания А вызывает сдвиг рамки, приводящий к замене первоначального сообщения ГAT, ГAT, ... на ATГ, ATГ, ... Добавление основания Ц и удаление основания А в точках, указанных на схеме, приводят к восстановлению первоначального сообщения ГAT, ГAT, ... (По F.H. С. Crick, 1962, The genetic cod I, Scientific American, Offprint N123, Wm. Saunders and Co.)


Рис. 22.21. Триплеты оснований в неперекрывающемся и перекрывающемся кодах


22.5. Используя повторяющиеся триплеты ГТА и основание Ц, покажите, что исходную последовательность триплетов можно восстановить только путем добавления или удаления трех оснований. (Представьте свой ответ в такой форме, как показано на рис. 22.20.)

22.5.4. Расшифровка кода

Для того чтобы понять ход экспериментов, проводившихся с целью установить, какие триплеты соответствуют тем или иным аминокислотам (т.е. расшифровать генетический код), нужно иметь представление о механизме, с помощью которого триплетный код переводится в структуру белковой молекулы.

В синтезе белка участвуют нуклеиновые кислоты двух типовь — дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК), взаимодействующие друг с другом. Существует три главных типа РНК: информационная, или матричная, РНК (мРНК), рибосомная РНК (рРНК) и транспортная РНК (тРНК)[10]. ДНК содержится и в таких органеллах, как митохондрии и хлоропласты, но в основном она сосредоточена в ядре, где ее нуклеотидная последовательность копируется (транскрибируется) с образованием матричной РНК (мРНК), переходящей из ядра в цитоплазму. Оказавшись в цитоплазме, нить мРНК прикрепляется к рибосомам, где нуклеотидная последовательность мРНК транслируется в аминокислотную последовательность белка. Каждая аминокислота связывается с соответствующей тРНК, которая присоединяется к комплементарному триплету оснований мРНК. Аминокислоты, оказавшиеся в результате этого друг подле друга, соединяются, образуя полипептидную цепь. Таким образом, для белкового синтеза необходимы ДНК, мРНК, рибосомы, тРНК, аминокислоты, АТФ и ГТФ как источники энергии и различные ферменты и кофакторы, катализирующие каждую стадию этого процесса.

Ниренберг использовал эти данные и различные методы, созданные в конце пятидесятых годов, для разработки ряда экспериментов, поставленных с целью расшифровки кода. Суть его экспериментов сводилась к тому, чтобы, используя мРНК с заранее известной последовательностью оснований, выяснить последовательность аминокислот в полипептидной цепи, синтезируемой в присутствии этой мРНК. Ниренбергу удалось синтезировать РНК (полирибонуклеотид), состоящую из многократно повторяющихся триплетов УУУ. Это соединение, названное полиуридиловой кислотой (поли-У), было использовано в качестве мРНК. В каждую из 20 пробирок поместили бесклеточный экстракт Е. coli, содержавший рибосомы, тРНК, АТФ, ГТФ, ферменты и какую-либо одну меченую аминокислоту. Затем в каждую пробирку добавили поли-У и оставили на некоторое время, чтобы произошел синтез полипептидов. Анализ содержимого пробирок показал, что полипептид образовался только в той пробирке, которая содержала аминокислоту фенилаланин. Это было первым шагом в расшифровке генетического кода: выяснилось, что входящий в мРНК триплет оснований, или кодон, УУУ определяет включение в полипептидную цепь фенилаланина. Затем Ниренберг и его сотрудники занялись получением синтетических полинуклеотидов, соответствующих всем 64 возможным кодонам, и к 1964 г. расшифровали коды для всех 20 аминокислот (табл. 22.4).

Таблица 22.4. Последовательности оснований в триплетах и кодируемые ими аминокислоты. Приведены кодоны т. е. триолеты оснований в мРНК, а не в ДНК. В ДНК содержатся комплементарные основания, а У заменен на Т. 2-е основание


* (Кодон, означающий конец синтеза полипептидной цепи.)

Как видно из табл. 22.4, для большинства аминокислот имеется по нескольку кодонов. Код, в котором число аминокислот меньше числа кодонов, называют вырожденным. Кроме того, можно видеть, что для многих аминокислот существенное значение имеют только первые буквы. Три из представленных в табл. 22.4 кодонов не кодируют аминокислот ("нонсенс-кодоны") и действуют как "стоп-сигнал" — означают конец закодированного сообщения. По-видимому, стоп-кодон — это концевая точка функциональной единицы ДНК-цистрона.

Во всех экспериментах, проводившихся с целью расшифровки генетического кода, в качестве источника триплетов использовалась мРНК. Однако от одной клетки другой и от одного поколения другому "генетический текст" передается последовательностью триплетов в ДНК. Поскольку мРНК образу-ется непосредственно на полинуклеотидной цепи ДНК путем комплементарного спаривания оснований, запись наследуемого генетического "текста" ДНК комплементарна его записи в мРНК. Код ДНК можно получить, заменяя основания, содержащиеся в РНК, комплементарными им основаниями ДНК в соответствии с табл. 22.5.

Таблица 22.5. Комплементарность между основаниями РНК и ДНК


22.6. Выпишите последовательность оснований в мРНК, образованной на цепи ДНК с такой последовательностью:

АТГТТЦГАГТАЦЦАТГТААЦГ

Одна из примечательных особенностей генетического кода состоит в том, что он, по-видимому, универсален. У всех живых организмов имеются одни и те же 20 аминокислот и одни и те же пять азотистых оснований (А, Г, Т, Ц и У). Ниренберг показал, что если ввести мРНК, взятую от вида А, в бесклеточную систему от вида Б, то в ней начнется синтез того же полипептида, который образовался бы у вида А. Например, в бесклеточных экстрактах Е. coli, в которые добавляли мРНК, кодирующую гемоглобин млекопитающего, синтезировались молекулы гемоглобина, свойственного этому млекопитающему*.

* (Оказалось, однако, что код митохондриальной ДНК несколько отличается от универсального кода -Прим. ред.)

Некоторые кодоны служат "стартовыми" (инициирующими) сигналами — означают начало полипептидной цепи (как, например, АУГ — кодон метионина), тогда как другие, такие как УАА, — не кодируют ни одну аминокислоту, а служат "стоп-сигналами", т.е. означают конец синтеза полипептидной цепи.

В настоящее время успехи молекулярной биологии достигли такого уровня, что становится возможным определять последовательности оснований в целых генах и удалось даже расшифровать весь генетический "текст" одного организма-фага Фχ174. Это серьезная веха в развитии науки, поскольку теперь можно искусственно синтезировать целые гены, что уже нашло применение в генной инженерии (см. разд. 2.3.6).

Главные черты генетического кода можно вкратце сформулировать следующим образом.

1. Кодом, определяющим включение аминокислоты в полипептидную цепь, служит триплет оснований в полипептидной цепи ДНК.

2. Код универсален: одни и те же триплеты кодируют одни и те же аминокислоты у всех организмов.

3. Код является вырожденным: данная аминокислота может кодироваться более чем одним триплетом.

4. Код неперекрывающийся: например, последовательность мРНК, начинающаяся с нуклеотидов АУГАГЦГЦА, не считывается как АУГ/УГА/ ГАГ... (перекрывание по двум основаниям) или АУГ/ГАГ/ГЦГ... (перекрывание по одному основанию). Недавно было обнаружено, однако, перекрывание некоторых генов у бактериофага Фχ174 и ряда других вирусов. Эти случаи, по-видимому, составляют исключение, возможно, связанное с экономным использованием нуклеиновой кислоты (количество которой у вирусов очень невелико)[11].

22.6. Синтез белка

Из всего того, что было сказано в предыдущих разделах этой главы, можно видеть, что единственные молекулы, которые синтезируются под прямым контролем генетического материала клетки, — это белки (если не считать РНК). Белки могут быть структурными (кератин, коллаген) или играть функциональную роль (инсулин, фибриноген и, главное, ферменты, ответственные за регуляцию клеточного метаболизма). Именно набор содержащихся в данной клетке ферментов определяет, к какому типу клеток она будет относиться. "Инструкции", необходимые для синтеза этих ферментов и всех других белков, заключены в ДНК, которая почти вся находится в ядре; однако, как было показано в начале пятидесятых годов, синтез белка фактически происходит в цитоплазме и в нем участвуют рибосомы. Стало ясно, что должен существовать какой-то механизм, переносящий генетическую информацию из ядра в цитоплазму. В 1961 г. два французских биохимика Жакоб и Моно, исходя из теоретических соображений, постулировали существование особой формы РНК, выполняющей в синтезе белка роль посредника; впоследствии этот посредник получил название мРНК.

22.6.1. Роль РНК

РНК содержится во всех живых клетках в виде одноцепочечных молекул. Она отличается от ДНК тем, что содержит в качестве пентозы рибозу (вместо дезоксирибозы), а в качестве одного из пиримидиновых оснований — урацил (вместо тимина). Анализ РНК, содержащейся в клетках, показал, что существует три типа РНК, участвующих в синтезе белковых молекул. Это матричная, или информационная, РНК (мРНК), транспортная РНК (тРНК) и рибосомная РНК (рРНК). Все три типа РНК синтезируются непосредственно на ДНК, которая служит матрицей для этого процесса. Количество РНК в каждой клетке находится в прямой зависимости от количества вырабатываемого этой клеткой белка.

22.6.2. Матричная, или информационная, РНК

Как показали исследования, мРНК составляет 3-5% всей содержащейся в клетке РНК. Это одноцепочечная молекула, образующаяся на одной из цепей ДНК в процессе так называемой транскрипции. При синтезе мРНК копируется только одна цепь молекулы ДНК. Механизм, определяющий, какая именно цепь будет при этом копироваться, до конца еще не выяснен. Возможно, что в этом процессе участвуют промотор и оператор (см. разд. 22.7.1). Нуклеотиды, из которых синтезируется мРНК, присоединяются к ДНК в соответствии с правилами спаривания оснований и при участии фермента РНК-полимеразы связываются между собой, образуя полинуклеотидную цепь мРНК. Последовательность оснований в мРНК представляет собой комплементарную копию цепи ДНК-матрицы; длина ее может быть различной в зависимости от длины полипептидной цепи, которую она кодирует. Самая короткая молекула мРНК состоит примерно из 300 нуклеотидов. Большинство мРНК существует в клетке лишь в течение короткого времени; в бактериальных клетках это время измеряется минутами, тогда как в эритроцитах млекопитающих синтез гемоглобина может продолжаться в течение нескольких дней после утраты ими ядра (значит, мРНК все это время сохраняется).

22.6.3. Рибосомная РНК

Рибосомная РНК, составляющая более 80% всей РНК клетки, была идентифицирована раньше других типов РНК. Она кодируется особыми генами, находящимися в нескольких хромосомах и расположенными в участке ядрышка, известном под названием ядрышкового организатора. Последовательность оснований в рРНК сходна у всех организмов — от бактерий до высших растений и животных; рРНК содержится в цитоплазме, где она связана с белковыми молекулами, образуя вместе с ними клеточные органеллы, называемые рибосомами (см. разд. 7.2.6).

На рибосомах происходит синтез белка. Здесь "код", заключенный в мРНК, транслируется в аминокислотную последовательность строящейся полипептидной цепи. Рибосомы часто образуют группы, соединяясь друг с другом одной цепочкой мРНК. Такие группы — полирибосомы, или полисомы, — делают возможным одновременный синтез нескольких молекул полипептида при участии одной молекулы мРНК.

22.6.4. Транспортные РНК

Существование транспортных РНК (тРНК) было постулировано Криком и продемонстрировано Хоглендом в 1955 г. Для каждой аминокислоты имеется специфическая тРНК, и все они доставляют содержащиеся в цитоплазме аминокислоты к рибосомам. Таким образом, тРНК играют роль связующих звеньев между триплетным кодом, содержащимся в мРНК, и аминокислотной последовательностью полипептидной цепи. На долю тРНК приходится примерно 15% всей клеточной РНК; у этих РНК самая короткая полинуклеотидная цепь — в нее входит в среднем 80 нуклеотидов. Так как многие аминокислоты кодируются несколькими триплетами, число различных тРНК, переносящих определенные аминокислоты, значительно больше двадцати (идентифицировано уже 60). Все молекулы тРНК имеют сходную основную структуру, показанную на рис. 22.22.

Рис. 22.22. Модель строения транспортной РНК (тРНК). Молекула состоит из 80 нуклеотидов, но пар, образованных за счет комплементарного связывания, в молекуле только 20


На 5'-конце молекулы тРНК всегда находится гуанин, а на 3'-конце — группировка ЦЦА. Последовательность нуклеотидов в остальной молекуле варьирует и может содержать "необычные" основания, такие как инозин (И) и псевдоурацил (у). Последовательность оснований в триплете антикодона (рис. 22.22) строго соответствует той аминокислоте, которую переносит данная молекула тРНК. Каждая аминокислота присоединяется к одной из своих специфических тРНК при участии своей особой формы фермента аминоацил-тРНК-синтетазы. В результате образуется комплекс аминокислоты с тРНК-аминоацил-тРНК, в котором энергия связи между концевым нуклеотидом А (в триплете ЦЦА) и аминокислотой достаточна для того, чтобы в дальнейшем могла образоваться пептидная связь с карбоксильной группой соседней аминокислоты. Таким образом синтезируется полипептидная цепь. В экспериментах с введением в бесклеточные экстракты Е. coli рибосом из клеток крысиной печени наблюдали синтез белков Е. coli, несмотря на "чужеродность" рибосом. Эти эксперименты продемонстрировали универсальность механизмов, осущест-вляющих белковый синтез с участием мРНК, тРНК и рРНК.

22.6.5. Механизм синтеза белка

Данные, полученные с помощью различных методов в экспериментах на самых разнообразных организмах — от вирусов до млекопитающих, показали, что процесс синтеза белка состоит из двух этапов, схематически представленных на рис. 22.23.

Рис. 22.23. Схема главных этапов в процессе белкового синтеза

22.6.6. Транскрипция

Транскрипцией называют механизм, с помощью которого последовательность оснований в одном из цистронов цепи ДНК "переписывается" в комплементарную ей последовательность оснований мРНК. Как полагают, в области этого цистрона гистоны, связанные с двойной спиралью ДНК, отделяются, обнажая полинуклеотидные последовательности молекулы ДНК. Относительно слабые водородные связи между комплементарными основаниями полинуклеотидных цепей разрываются, что приводит к раскручиванию двойной спирали ДНК и освобождению одиночных цепей. С помощью механизма, который пока не выяснен, одна из этих цепей избирается в качестве матрицы для построения комплементарной одиночной цепи мРНК. Молекула мРНК образуется в результате связывания друг с другом свободных рибонуклеотидов под действием РНК-полимеразы в соответствии с правилами спаривания оснований ДНК и РНК (табл. 22.5 и рис. 22.24).

Как именно происходит транскрипция оснований ДНК в основания РНК, было продемонстрировано в опытах с синтетической ДНК, состоящей из нуклеотидов только одного вида-тимидина (ТТТ...). При введении этой ДНК в бесклеточную систему, содержавшую РНК-полимеразу и все четыре рибонуклеотидтрифосфата (А, У, Г и Ц), синтезировалась мРНК, содержавшая один лишь аденин.

Рис. 22.24. Схема механизма транскрипции. В присутствии РНК-полимеразы двойная спираль ДНК раскручивается в результате разрыва водородных связей между комплементарными основаниями, и из свободных рибонуклеозидтрифосфатов строится полинуклеотидная цепь мРНК. Она комплементарна транскрибируемой цепи ДНК, которая служит матрицей. (По E.J. Ambrose, D.M. Easty, Cell Biology. 1977, 2nd ed., Nelson.)


Синтезированные молекулы мРНК, несущие генетическую информацию, выходят из ядра через ядерные поры и направляются к рибосомам. После того как образовалось достаточное число молекул мРНК, транскрибированных с данного цистрона, транскрипция прекращается и две цепи ДНК на этом участке вновь соединяются, восстанавливая двойную спираль ("молния застегивается"), и опять связываются с гистонами.

22.6.7. Трансляция

Трансляцией называют механизм, с помощью которого последовательность триплетов оснований в молекулах мРНК переводится в специфическую последовательность аминокислот в полипептидной цепи. Этот процесс происходит на рибосомах. Несколько рибосом могут прикрепиться к молекуле мРНК подобно бусинам на нитке, образуя структуру, называемую полисомой. Вся эта структура показана на рис. 22.25. Входящие в ее состав рибосомы связаны общей нитью толщиной 1,5 нм, что соответствует толщине одной цепи мРНК. Преимущество такого комплекса состоит в том, что при этом на одной молекуле мРНК становится возможным одновременный синтез нескольких полипептидных цепей (см. разд. 22.6.3). Каждая рибосома состоит из двух субъединиц-малой и большой (рис. 7.18). Как полагают, мРНК обратимо присоединяется к поверхности малой субъединицы в присутствии ионов магния (Mg2+). При этом два ее первых транслируемых кодона оказываются обращенными к большой субъединице рибосомы. Первый кодон связывает молекулу тРНК, содержащую комплементарный ему антикодон и несущую первую аминокислоту (обычно это метионин) синтезируемого полипептида. Затем второй кодон присоединяет комплекс аминоацил-тРНК, содержащий антикодон, комплементарный этому кодону (рис. 22.26, А и Б). Функция рибосомы заключается в том, чтобы удерживать в нужном положении мРНК, тРНК и белковые факторы, участвующие в процессе трансляции, до тех пор пока между соседними аминокислотами не образуется пептидная связь.

Рис. 22.25. Процесс транскрипции и образование полисомы у бактерий. А. Электронная микрофотография участка хромосомы, на которой можно видеть последовательные стадии образования мРНК и присоединения рибосом. Б. Схематическое изображение структуры вроде показанной на микрофотографии


Как только новая аминокислота присоединилась к растущей полипептидной цепи, рибосома перемещается по нити мРНК с тем, чтобы поставить на надлежащее место следующий кодон. Молекула тРНК, которая перед этим была связана с полипептидной цепью, теперь, освободившись от аминокислоты, покидает рибосому и возвращается в цитоплазму, чтобы образовать новый комплекс амино-ацил-тРНК (рис. 22.26, В).

Рис. 22.26. А и Б. Последовательные стадии прикрепления комплексов тРНК-аминокислота их антикодонами к кодонам мРНК и образования пептидной связи между соседними аминокислотами. В. Перемещение мРНК относительно рибосомы, приводящее к тому, что в надлежащем положении оказывается новый триплет, к которому теперь может присоединиться новый комплекс тРНК-аминокислота. Первая молекула тРНК отделилась от рибосомы и возвращается в цитоплазму, где она реактивируется ферментами, с тем чтобы образовать комплекс с аминокислотой


Такое последовательное "считывание" рибосомой заключенного в мРНК "текста" продолжается до тех пор, пока процесс не доходит до одного из стоп-кодонов (терминирующих кодонов). Такими кодонами служат триплеты УАА, УАГ или УГА. На этом этапе полипептидная цепь, первичная структура которой была детерминирована цистроном ДНК, покидает рибосому, и трансляция завершена. Перечислим главные этапы процесса трансляции:

1) присоединение мРНК к рибосоме;

2) активация аминокислоты и ее присоединение к тРНК;

3) инициация (начало синтеза) полипептидной цепи;

4) элонгация (удлинение) цепи;

5) терминация (окончание синтеза) цепи;

6) дальнейшее использование мРНК (или ее разрушение).

Процесс трансляции схематически представлен на рис. 22.27.

Рис. 22.27. Схема процесса трансляции. Антикодон каждого специфического комплекса тРНК-аминокислота спаривается с комплементарным ему кодоном мРНК на рибосоме. В приведенном здесь примере пептидная связь должна образоваться между лейцином и глицином, в результате чего к растущей полипептидной цепи добавится еще одна аминокислота


После того как полипептидные цепи отделились от рибосомы, они могут тотчас же приобретать свойственную им вторичную, третичную или четвертичную структуру (см. разд. 5.5.3).

Доказательства того, что включение аминокислоты в полипептидную цепь определяется комплементарным спариванием оснований между кодоном мРНК и антикодоном тРНК, а не самой аминокислотой, были получены в следующем эксперименте. Комплекс тРНК-цистеин обычно спаривается при помощи своего антикодона АЦА с кодоном УГУ мРНК. При воздействии на этот комплекс катализатора — никеля Ренея — цистеин превращается в аминокислоту аланин. Когда такой новый комплекс тРНК-аланин (несущий антикодон цистеиновой тРНК) помещали в бесклеточную систему, содержавшую в качестве мРНК поли-УГУ, синтезированная полипептидная цепь состояла из одного только аланина. Этот эксперимент подтвердил важную роль взаимодействия кодонов мРНК с антикодонами тРНК в процессе трансляции.

Вся последовательность событий, из которых складывается процесс белкового синтеза, схематически представлена на рис. 22.28.

Рис. 22.28. Упрощенная схема основных структур и процессов, участвующих в белковом синтезе

22.7. Регуляция активности генов

В этой главе мы описали механизмы, с помощью которых клетки передают генетический материал из поколения в поколение. Структура и функции генетического материала в настоящее время изучены достаточно подробно, однако в генетике остается еще ряд областей, где вопросов много, а ответов мало. За последние 30 лет генетические исследования сильно продвинулись вперед, и на многие фундаментальные вопросы ответы уже получены. Самые главные достижения — это, несомненно, открытие структуры ДНК и расшифровка генетического кода. Эти два открытия вдохновили других ученых и побудили их попытаться глубже проникнуть в тайны молекулярной генетики. Большая часть неразрешенных проблем, стоящих перед молекулярными генетиками, связана с механизмами, которые регулируют активность генов, участвующих в процессах метаболизма, развития и дифференцировки.

Классической генетикой установлено, что все соматические клетки организма несут один и тот же набор генов, т. е. содержат одинаковое число хромосом, несущих одни и те же аллели. И тем не менее клетки многоклеточного организма очень разнообразны по структуре и функциям. Даже в одной и той же клетке скорость синтеза белковых молекул может варьировать в зависимости от обстоятельств и потребностей. Данные о механизмах, регулирующих активность генов в клетке, были впервые получены при изучении регуляции синтеза ферментов у Е. coli.

В 1961 г. Жакоб и Моно провели ряд экспериментов, желая понять природу индукции синтеза ферментов у Е. coli. Полагают, что в клетках Е. coli синтезируется около 800 ферментов. Синтез некоторых из них происходит непрерывно, и их называют конститутивными ферментами; другие же образуются только в присутствии надлежащего индуктора, который может и не быть субстратом данного фермента. Такие ферменты, примером которых служит β-галактозидаза, называют индуцибельными ферментами.

Е. coli быстро растет на культуральной среде, содержащей глюкозу. При перенесении клеток на среду, содержащую вместо глюкозы лактозу, рост начинается не сразу, а после короткой задержки, но затем идет с такой же скоростью, как и на среде с глюкозой. Проведенные исследования показали, что для роста на лактозной среде необходимо наличие двух веществ, которые Е. coli обычно не синтезирует: Р-галактозидазы, гидролизующей лактозу до глюкозы и галактозы, и лактозопермеазы, делающей клетку способной быстро поглощать лактозу из среды. Это служит примером того, как изменение в условиях среды — замена глюкозы лактозой — индуцирует синтез определенного фермента. Другие эксперименты с Е. coli показали, что высокое содержание в среде аминокислоты триптофана подавляет выработку триптофансинтетазы — фермента, необходимого для синтеза триптофана. Синтез β-галактозидазы служит примером индукции, а подавление синтеза триптофансинтетазы — примером репрессии фермента. На основании этих наблюдений Жакоб и Моно предложили механизм, объясняющий индукцию и репрессию, — механизм "включения" и "выключения" генов.

22.7.1. Гипотеза Жакоба-Моно

Генетические инструкции, определяющие аминокислотную последовательность упомянутых выше белков, заключены в структурных генах, причем инструкции для β-галактозидазы и лактозопермеазы тесно сцеплены в одной хромосоме. Активность этих генов регулируется еще одним геном, который называют геном-регулятором и который препятствует переходу структурных генов в активное состояние. Ген — регулятор может находиться на некотором расстоянии от структурных генов. Доказательства его существования получены при изучении мутантных клеток Е. coli, лишенных этого гена и поэтому вырабатывающих β-галактозидазу непрерывно. Ген — регулятор содержит генетическую информацию для синтеза репрессора, который препятствует активности структурных генов. Репрессор действует на структурные гены не прямо, а опосредованно, оказывая влияние на участок, примыкающий к структурным генам и называемый оператором. Оператор и управляемые им структурные гены в совокупности называют опероном (рис. 22.29).

Репрессор представляет собой особый аллостерический белок, который либо связывается с оператором, подавляя его активность ("выключает" его), либо не связывается с ним, позволяя ему проявлять активность (оставляет его включенным). Когда оператор включен, на структурных генах осуществляется транскрипция и происходит образование мРНК, которую рибосомы и тРНК транслируют в полипептиды; а когда оператор выключен, мРНК не образуется и кодируемые ею полипептиды не синтезируются (рис. 22.29).

Рис. 22.29. Основные структуры и процессы, участвующие в регуляции белкового синтеза согласно гипотезе Жакоба-Моно. Цифры указывают последовательность событий


Механизм, от которого зависит, присоединится ли аллостерический белок к оператору или нет, прост и при этом чувствителен к изменениям условий внутри клетки. В молекуле репрессора имеется по меньшей мере два активных участка; к одному из них может присоединиться молекула индуктора, а другой служит для присоединения к оператору, выключающего весь оперон.

22.7.2. Индукция ферментов

Присоединение молекулы индуктора к активному участку молекулы репрессора изменяет третичную структуру репрессора (аллостерический эффект; см. разд. 6.6) так, что он не может связаться с геном — оператором и репрессировать его; в результате оператор оказывается в активном состоянии и включает структурные гены.

При выращивании Е. coli на среде с глюкозой ген-регулятор продуцирует белок, обладающий свойствами репрессора, который связывается с геном-оператором и выключает его. Структурные гены при этом не активируются, и ни β-галактозидаза, ни лактозопермеаза не синтезируются. При переносе бактерий на среду с лактозой последняя действует как индуктор, присоединяясь к молекуле репрессора и препятствуя ее соединению с оператором. Структурные гены переходят в активное состояние и продуцируют мРНК для синтеза ферментов, ответственных за поглощение и расщепление лактозы. Таким образом, лактоза индуцирует собственное расщепление (рис. 22.30).

Рис. 22.30. Индукция синтеза β-галактозидазы согласно гипотезе Жакоба-Моно. Цифры указывают последовательность событий

22.7.3. Репрессия ферментов

Если молекула корепрессора присоединяется к соответствующему активному участку репрессора, то это усиливает способность репрессора связываться с оператором; при этом происходит инактивация оператора и тем самым предотвращается включение структурных генов.

Е. coli может синтезировать аминокислоту триптофан при участии фермента триптофансинтетазы. Если клетка содержит избыток триптофана, некоторая его часть действует как корепрессор, связываясь с молекулой репрессора. Молекулы корепрессора и репрессора присоединяются к оператору и подавляют его активность. Структурные гены выключаются, мРНК не образуется, и синтез триптофансинтетазы прекращается. Это пример ингибирования по типу обратной связи на генном уровне (рис. 22.31)[12].

Рис. 22.31. Механизм репрессии синтеза триптофанситетазы согласно гипотезе Жакоба-Моно. Цифры указывают последовательность событий. Прерывистыми стрелками обозначены репрессированные стадии

22.7.4. Регуляция метаболических путей

Описанный выше двойной механизм делает возможным взаимодействие между внутриклеточной средой и генетическим аппаратом для обеспечения тонкой регуляции клеточного метаболизма. На рис. 22.32 показан простой метаболический путь, в котором исходный субстрат и конечный продукт могут играть роль соответственно индуктора и корепрессора. Благодаря этому клетка может синтезировать фермент в таком количестве, которое необходимо в данное время для того, чтобы поддерживать на нужном уровне количество конечного продукта. Такой способ регуляции метаболизма чрезвычайно экономен. Отрицательная обратная связь, осуществляемая путем инактивации первого фермента (а) при его связывании с конечным продуктом (Е), быстро блокирует данный метаболический путь, но не приостанавливает синтез других ферментов (b, с и d). В модели, предложенной Жакобом и Моно, конечный продукт (Е), присоединяясь к репрессору и тем самым усиливая его ингибирующее действие на оператор, подавляет синтез всех ферментов (а, b, с и d) и выключает данный метаболический путь. Индуцирующая функция исходного субстрата на схеме не показана.

Рис. 22.32. Механизм регуляции метаболического пути А Е. Сплошными линиями показаны механизмы, действующие по принципу отрицательной обратной связи; прерывистыми линиями-механизмы, действующие во время репрессии. Крестом( х) обозначено блокирование синтеза данного фермента

22.7.5. Видоизмененная гипотеза оперона

После того как в 1961 г. Жакоб и Моно предложили механизм, с помощью которого гены могут включаться и выключаться, были получены другие дан-ные, позволившие прояснить различные аспекты этого механизма. Исходя из генетических данных, было высказано предположение о существовании промотора, расположенного рядом с оператором и действующего между ним и геном-регулятором. Предполагается, что промотор выполняет две функции. Во-первых, промотор-это то место, к которому присоединяется РНК-полимераза, прежде чем начать перемещаться вдоль ДНК, транскрибируя структурные гены в соответствующую мРНК. Это перемещение, конечно, зависит от того, находится ли оператор в активном состоянии или нет. Во-вторых, последовательность оснований в промоторе определяет, какая из цепей двойной спирали ДНК присоединит к себе РНК-полимеразу. Таким образом, от промотора зависит, какая из цепей двойной спирали ДНК будет служить матрицей для синтеза мРНК.

22.8. Генетическая регуляция развития

Большинство многоклеточных животных и растений начинает свой жизненный цикл с одной клетки — зиготы. Из этой клетки в результате многократных митотических делений получается сложный, высокодифференцированный организм. Процесс этот называют ростом и развитием, и он включает также дифференцировку. В результате дифференцировки каждая клетка приобретает определенную структуру, позволяющую ей выполнять ряд специфических функций более эффективно, и это является одним из важнейших событий, происходящих в процессе развития. Почему клетки, принадлежащие одному организму, образовавшиеся путем повторных клеточных делений и содержащие один и тот же генетический материал, отличаются таким широким разнообразием, типичным для многоклеточных организмов? Причина этого далеко не ясна, однако она, несомненно, связана с индукцией и репрессией генов при участии механизмов, вероятно, сходных с описанными в предыдущем разделе. Судя по имеющимся данным" дифференцировка связана с различными взаимодействиями трех факторов — ядра, цитоплазмы и окружающей среды.

22.8.1. Роль ядра

Значение ядра как хранилища генетического материала и его главная роль в определении фенотипических признаков были установлены давно. Немецкий биолог Хаммерлинг одним из первых продемонстрировал важнейшую роль ядра. Он выбрал в качестве объекта своих экспериментов необычайно крупную одноклеточную (или неклеточную) морскую водоросль Acetabularia. Существуют два близко родственных вида A. mediterranea и A. crenulata, различающиеся только по форме "шляпки" (рис. 22.33).

Рис. 22.33. Морская водоросль Acetabularia, использованная Хаммерлингом для того, чтобы продемонстрировать роль ядра. А. Два вида Acetabularia. Б. Эксперименты, проведенные Хаммерлингом


В ряде экспериментов, в том числе таких, в которых "шляпку" отделяли от нижней части "стебелька" (где находится ядро), Хаммерлинг показал, что для нормального развития шляпки необходимо ядро. В дальнейших экспериментах, в которых соединяли нижнюю, содержащую ядро часть одного вида с лишенным ядра стебельком другого вида, у таких химер всегда развивалась шляпка, типичная для того вида, которому принадлежало ядро.

При оценке этой модели ядерного контроля следует, однако, учитывать примитивность организма, использованного в качестве объекта. Метод пересадок был применен позднее в экспериментах, проведенных в 1952 г. двумя американскими исследователями, Бриггсом и Кингом, с клетками лягушки Rana pipiens. Эти авторы удаляли из неоплодотворенных яйцеклеток ядра и заменяли их ядрами из клеток поздней бластулы, уже проявлявших признаки дифференцировки. Во многих случаях из яиц — реципиентов развивались нормальные взрослые лягушки.

22.7. О чем свидетельствуют результаты описанных выше экспериментов?

22.8.2. Роль цитоплазмы

Дальнейшие сведения о роли цитоплазмы дали эмбриологические исследования. У очень многих организмов цитоплазма яйца выглядит неоднородной уже на самой ранней стадии зародышевого развития: в ней можно различить слои и зоны, создаваемые неравномерным распределением зернистого или по-разному окрашенного материала. У тех видов, у которых первые деления дробления происходят в вертикальной плоскости, как, например, у амфибий, каждый из образующихся при этом бластомеров, если отделить его от других, обычно дает начало целому нормальному эмбриону. У других видов, например у моллюсков, изолированные бластомеры не способны к нормальному развитию и образуют только часть зародыша. В первом случае разные зоны цитоплазмы распределяются между обоими бластомерами поровну, тогда как во втором они распределены неравномерно. Яйца, в которых цитоплазма дифференцирована, так что разные их участки всегда дают начало определенным частям зародыша, называют мозаичными. Тем не менее во всех случаях (за редкими исключениями) ядра всех клеток содержат одинаковые наборы генов. Следует поэтому полагать, что различие в дальнейшей судьбе эмбриональных клеток — результат какого-то влияния на гены со стороны цитоплазмы.

В 1924 г. в ряде эмбриологических экспериментов, ставших теперь классическими, Шпеман и Мангольд показали, что дифференцировка в значительной степени контролируется влиянием цитоплазмы клеток одного типа на клетки другого типа. В одном из своих экспериментов эти авторы брали гаструлу амфибии, вырезали кусочек ткани из дорсальной губы бластопора (рис. 22.34) и пересаживали ее в вентральную область другой гаструлы. Клетки дорсальной губы при нормальном развитии образуют хорду и мезодермальные сомиты (миотомы). В этом опыте у гаструлы-реципиента из тканей трансплантата (донора) развивались вторая хорда и миотомы. Над ними из эктодермы реципиента возникала новая, дополнительная нервная трубка, что в итоге приводило к образованию органов второго головастика (рис. 22.34). Структуры, образовавшиеся в эксперименте на необычном для них месте, называют атопическими.

Рис. 22.34. Эксперименты Шпемана и Мангольд по эмбриональной индукции. А. Развивающаяся гаструла (вид сверху); виден бластопор. Б. Гаструла амфибии в продольном разрезе; видна область дорсальной губы бластопора, кусочек которого вырезали и пересадили в гаструлу А. В. Поперечный разрез развивающегося зародыша, у которого образовалось два идентичных набора эмбриональных тканей. Г. Сросшиеся зародыши, возникшие в результате пересадки ткани из дорсальной губы бластопора


На основании этих данных Шпеман и Мангольд выдвинули гипотезу о механизме дифференцировки, получившем название эмбриональной индукции. Согласно этой гипотезе, определенные клетки действуют как организаторы на другие, подходящие для этого клетки. Организатор способен побуждать такие клетки к развитию в направлении, отличном от того, в котором они развивались бы в отсутствие организаторов.

Согласно представлениям Шпемана, в процессе эмбрионального развития организма определенный участок, называемый первичным организатором, детерминирует все дальнейшее течение развития. У амфибий это дорсальная губа бластопора, а у птиц — область, называемая первичной полоской. Эти первичные организаторы определяют положение оси зародыша и побуждают другие ткани действовать как вторичные и третичные организаторы — и так далее, пока не завершится дифференцировка всех органов и систем органов эмбриона на нормальных для них местах[13].

22.8.3. Природа организатора

В ряде экспериментов у зародышей вырезали участки ткани, обладающие свойствами индуктора, и помещали их на несколько часов на кусочки агара. Когда затем эти кусочки агара имплантировали в области зародыша, обладавшие соответствующей компетенцией, эти области дифференцировались так же, как и при воздействии самого индуктора. Таким образом было показано, что организатор выделяет химическое вещество, способное диффундировать в агар. Попытки выделить это вещество пока не дали достаточно ясных результатов. Высказывались предположения, что оно может быть стероидом, белком или нуклеиновой кислотой. Пол и Гилмур обратили внимание на то, что в разных тканях гистоновые и негистоновые белки распределены по поверхности молекул ДНК неравномерно. По их мнению, гистоны "прикрывают" нефункционирующие участки ДНК, т.е. те участки, в которых гены необратимо репрессированы, тогда как негистоновыми белками "прикрыты" гены, которые должны транскрибироваться.[14]

22.8.4. Роль внешней среды

Большую роль в выяснении степени влияния внешней среды на развитие сыграли исследования, подобные экспериментам Жакоба и Моно. Оказалось, например, что лактоза — это внешний фактор, оказывающий прямое влияние на функционирование генов у Е. coli. На развитие и рост растений и животных влияют такие факторы, как свет, температура, снабжение водой, питательными веществами, СО2 и кислородом (см. гл. 9, 10, 15, 16 и 21). Факторы среды, вероятно, обычно оказывают влияние на дифференцировку, воздействуя через цитоплазму, которая в свою очередь влияет на гены.

22.8.5. Роль генов в развитии

Связь между определенными участками молекулы ДНК и морфологическим развитием усиленно изучалась на организмах, обладающих гигантскими (политенными) хромосомами. Такие хромосомы имеются, например, в клетках слюнных желез у личинок многих двукрылых, в том числе дрозофилы. Как эти политенные хромосомы достигают таких размеров, объясняется в разд. 23.5.1. Гигантские хромосомы относительно легко изучать с помощью светового микроскопа, и окраска по Фёльгену выявляет в них специфическую для каждого участка поперечную исчерченность. В процессе развития личинки дрозофилы проходят несколько стадий ("возрастов"), разделенных линьками-периодами интенсивной активности эпидермиса, за которой следует сбрасывание старой кутикулы. Две последние линьки сопровождаются особенно резкими изменениями; одна из них ведет к образованию куколки, а другая — к выходу взрослой особи (имаго). Для этих стадий характерны интенсивный метаболизм и процессы дифференцировки. Ход развития регулируется гормонами (см. разд. 21.4). На определенных стадиях некоторые из поперечных полос на хромосомах увеличиваются и образуют структуры, известные под названием пуфов или колец Бальбиани (по имени ученого, впервые обнаружившего их в 1890 г.). Специфическое окрашивание, выявляющее РНК, и радиоавтографические исследования с использованием меченых предшественников РНК показали, что в пуфах происходит синтез РНК. Было также установлено, что величина пуфов находится в прямой зависимости от скорости синтеза РНК. Полагают, что пуфы образуются в результате раскручивания молекул ДНК, разделения комплементарных цепей и синтеза мРНК в процессе транскрипции.

В процессе развития особи наблюдается определенная последовательность образования пуфов, регулируемая гормоном линьки — экдизоном. На разных личиночных стадиях и на стадии куколки пуфы возникают в различных участках хромосом; это позволяет предположить, что они соответствуют структурным генам. Доказательства того, что это участки генетической активности, представил Беерман, изучавший личинок двух видов комаров, принадлежащих к роду Chironomus. Некоторые клетки слюнных желез у личинок одного вида зернистые, а у другого вида — нет. Генетические карты, построенные по данным скрещиваний между этими двумя видами, показали, что аллели, определяющие эти признаки, расположены вблизи центромеры одной из хромосом, причем аллель зернистости доминирует. Исследование хромосом этих видов показало, что у вида, обладающего зернистыми клетками, пуфы образуются только в том участке, где локализован этот ген. Кроме того, у личинок, гетерозиготных по признаку зернистости, пуф в этом локусе возникает только в хромосоме, несущей доминантный аллель.

Дальнейшим подтверждением связи между хромосомными пуфами и синтезом мРНК служат результаты введения организмам, обладающим гигантскими хромосомами, актиномицина D. Актиномицин D подавляет транскрипцию, препятствуя синтезу мРНК, и у особей, которым вводили это вещество, пуфы не образуются (рис. 22.35).

Рис. 22.35. Радиоавтографы четвертой хромосомы личинки Chironomus tentans, демонстрирующие связь между пуфингом и синтезом мРНК. Черные точки-радиоактивный уридин, включенный в процессе синтеза мРНК. А. Как показывает радиоавтограф, синтез РНК сосредоточен в области пуфа. Б. После добавления небольших количеств актиномицина D. подавляющего синтез мРНК, как пуфинг. так и включение уридина выражены слабо


На рост и развитие растений и животных оказывают также влияние гормоны. Во многих случаях их действие осуществляется на уровне транскрипции, т.е. синтеза мРНК. Конкретные механизмы воздействия различных гормонов на транскрипцию и на синтез белка весьма разнообразны. Некоторые гормоны присоединяются к рецепторным участкам клеточной мембраны. После связывания гормона рецептором, который связан с лежащим под ним ферментом аденилатциклазой, образуется циклический АМФ, который переходит в цитоплазму и действует как "второй посредник", индуцирующий транскрипцию. Подробнее об этом механизме говорится в разд. 16.6.1.

В этой главе мы попытались описать некоторые процессы, связанные с непрерывностью жизни. Живым системам, очевидно, необходима как генетическая стабильность в малых временных масштабах, так и генетическая пластичность в долговременном плане. Стабильность обеспечивают механизмы митоза, тогда как мейоз создает огромную генетическую изменчивость, позволяющую организмам приспосабливаться к меняющейся среде.

В следующей главе будут описаны особенности наследования признаков, правила, которым оно подчиняется, и пути распространения генетических изменений в популяциях.

Загрузка...