Одной из причин, заставившей ученых настойчиво вводить экспоненциальные числа в практику, явилась необходимость работать с очень большими или очень маленькими числами. Например, масса Земли равна приблизительно 6000000000000000000000000000 грамм, а масса атома водорода — 0,00000000000000000000000166 грамма.
Вы, конечно, заметили, что при такой записи нетрудно потерять один или несколько нулей. В процессе работы ученые разработали метод выражения чисел, когда часть числа является обычным числом, а часть — экспоненциальным. Основой экспоненциальной части является число 10 (в конце предыдущей главы я намекал на эту возможность).
Число 10, возведенное в степень, позволяет представить в удобной форме как очень большие, так и очень маленькие числа. Это видно из приведенной ниже таблицы, которую вы можете проверить, произведя самостоятельные расчеты.
Для того чтобы убедиться в том, что число 10 хорошо вписывается в нашу систему счета, рассмотрим число 4372,654. Разобьем его на разряды и получим 4 тысячи, 3 сотни, 7 десятков, 2 единицы, 6 десятых, 5 сотых и 4 тысячные. Теперь вспомним, что 1000 = 103, 100 = 102, 10 = 101 и так далее, и запишем число 4372,654 как (4 × 103) + (3 × 102) + (7 × 101) + (2 × 100) + (6 × 10-1) + (5 × 10-2) + (4 × 10-3).
Таким образом, мы записали на бумаге те операции, которые уже тысячи лет производят на счетах. Если ряд единиц на счетах пометить как «ноль», ряды, расположенные выше ряда единиц, обозначаем как 1, 2, 3 и так далее, а ряды, расположенные ниже ряда единиц, соответственно обозначаем как -1, -2, -3, то каждый ряд соответствует показателю степени числа 10.
Все положения арифметики, которые мы изучали, используя арабские числа, можно легко объяснить при помощи этих степеней, чего обычно не делают в школах.
Мы потратим немного времени на то, чтобы разобраться с экспоненциальными числами, и в будущем это значительно облегчит нам работу с числами.
Вначале рассмотрим положительные степени числа 10. Заметим, что в данном случае экспонента равна количеству нулей обычного числа. Таким образом, если число нулей в 1 000 000 равно шести, то экспоненциальная форма этого числа 106.
Теперь, когда нам понадобится выразить в экспоненциальной форме число, состоящее не только из единиц и нулей, нужно записать его в виде выражения, включающего 10 в какой-то степени. Например, масса Земли, как мы выяснили в начале главы, равна 6 000 000 000 000 000 000 000 000 000 грамм. Это число можно представить как 6 × 1 000 000 000 000 000 000 000 000 000 грамм. Теперь самое большое число в выражении состоит из единицы и большого количества нулей, то есть его можно представить в виде степени. Поскольку количество нулей равно 27, то число можно записать в форме 1027. Теперь массу Земли можно представить в экспоненциальном виде как 6 × 1027 грамм.
Экспоненциальная форма выражения больших чисел предоставляет два очевидных преимущества. Во-первых, такая запись очень компактна, а во-вторых, ее проще прочесть — нет необходимости считать огромное количество нулей.
Для обозначения малых чисел используют 10 в отрицательной степени. Как видно из таблицы, число 10, возведенное в отрицательные степени, представляет собой обычные числа, десятичные дроби, состоящие из определенного набора нулей, расположенных правее десятичного знака и заканчивающихся единицей. Численное значение отрицательной экспоненты равно количеству нулей после запятой плюс 1. Например, число 0,000001 имеет пять нулей после запятой, следовательно, в экспоненциальной форме оно будет записано как 10-6.
Масса атома водорода может быть выражена в виде произведения 1,66 × 0,000000000000000000000001 грамма. (Если вы произведете операцию умножения, то получите ту величину, которая приведена в начале главы.) Второй сомножитель представляет собой 10 в отрицательной степени, оно содержит 23 нуля справа от десятичного знака. Таким образом, в экспоненциальной форме оно будет записано как 10-24. Масса атома водорода в 1,66 раза больше этой величины, следовательно, масса водорода равна 1,66 × 10-24.
После того как мы научились использовать числа в экспоненциальной форме на основе 10, нам будет легко разобраться в экспоненциальной форме на основе других чисел. В начале нашей книжки я уже рассказывал вам о том, что в ряде случаев удобно использовать число 12 вместо 10, поскольку у числа 12 больше множителей, чем у числа 10. (У числа 12 есть и другие преимущества, помимо большого количества сомножителей.) Древние люди определяли время по луне. Каждые 29 или 30 дней всходила новая луна и, следовательно, начинался новый месяц. Таких месяцев в году, то есть в период от одной весны до другой, было 12, точнее, 12 месяцев и 11¼ дня. Это придало числу 12 определенное магическое значение, а в древности это было очень важно для человека. Существует 12 знаков зодиака, в каждом из которых Солнце пребывает по одному месяцу при своем кажущемся вращении вокруг Земли. Число знаков зодиака нашло свое отражение и в земных делах. Это 12 племен Израиля и 12 святых апостолов.
Если мы хотим использовать 12 как основу для счетной системы, нам понадобится двенадцать разных цифр, включая ноль. Этими цифрами у нас будут 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, @ и #. Я использую символы @ и # для обозначения тех чисел, которые в десятичной системе обозначаются как 10 и 11.
Число 222 в десятеричной системе, то есть в системе, основанной на 10, можно записать как (2 × 102) + (2 × 101) + (2 × 100). Такое же число в двенадцатеричной системе можно перевести в десятеричную систему, записав его следующим образом: (2 × 122) + (2 × 121) + (2 × 120). Проведем подсчеты и получим: 288 + 24 + 2, или 314. Другими словами, число 222 в системе, основанной на 12, то есть в двенадцатеричной системе, равно числу 314 в системе, основанной на 10, то есть в десятеричной системе.
В двенадцатеричной системе число можно записать, скажем, как 3#4. Это эквивалентно (3 × 122) + (# × 121) + (4 × 120). Мы с вами ранее условились, что # равно 11 в десятеричной системе, следовательно, получаем 432 + 132 + 4, или 568 в десятеричной системе.
В качестве основания для системы счета можно выбрать и число меньше 10. Возьмем число 7, тогда система будет называться семеричной. Тогда нам нужно только 7 символов: 0, 1, 2, 3, 4, 5 и 6. Число 435 в семеричной системе для перевода в десятеричную можно записать как (4 × 72) + (3 × 71) + (5 × 70), что равно 196 + 21 + 5, или 222 в десятеричной системе.
Этот метод позволяет перевести число из одной системы счета в любую другую, причем он применим даже для десятичных дробей.
Выражение 0,15 в двенадцатеричной системе может быть представлено как (1 × 12-1) + (5 × 12-2), или 1/12 + 5/144, что равно 17/144 в десятеричной системе. В семеричной системе то же самое выражение можно представить как (1 × 7-1) + (5 × 7-2), или 1/7 + 5/49, что равно 12/49 в десятеричной системе.
Теперь давайте выясним, как определить, сколько отдельных символов необходимо для каждой отдельной системы счета. Первое число, для которого требуется два символа, — это 10 (в любой системе). Для всех чисел, меньших 10, требуются отдельные и разные символы. Все числа, большие 10, можно записать, используя комбинации символов чисел, меньших 10. Это правило, очевидно, справедливо для десятеричной системы, с которой мы так хорошо знакомы. Можно ожидать, что в других системах это правило тоже справедливо (в чем мы можем убедиться на практике).
Хорошо, теперь давайте выясним, чему равно значение выражения 10, например, в двенадцатеричной системе. Оно равно (1 × 121) + (0 × 120), или 12 + 0, или 12 в десятеричной системе. Аналогично в семеричной системе выражение 10 равно (1 × 71) + (0 × 70), или 7 + 0, или 7. Можно провести аналогичные операции и для других систем, и мы скоро убедимся, что в системе, основанной на каком-либо числе, выражение 10 соответствует именно этому числу. (В десятеричной системе 10, естественно, равно 10.)
В двенадцатеричной системе нам нужны отдельные цифры для каждого числа, меньшего 12, то есть 12 различных цифр, включая ноль. В семеричной системе нам нужны отдельные цифры для каждого числа, меньшего 7, то есть 7 различных цифр, включая ноль. Это правило справедливо для всех счетных систем. Скажем, в системе счета, основанной на 28, нам понадобятся 28 различных цифр, включая ноль.
Чтобы помочь вам глубже разобраться в этих правилах, я привожу таблицу символов для первых тридцати чисел в двенадцатеричной системе, в семеричной системе и в так хорошо нам знакомой десятеричной системе.
Для каждой счетной системы можно составить таблицы сложения и других арифметических действий. В двенадцатеричной системе 5 + 8 = 11, а 3 × 4 = 10. В семеричной системе 3 + 6= 12, а 5 × 3 = 21. Нам это может показаться странным, поскольку мы не используем подобные системы. Но если мы проводим все расчеты в рамках одной из таких систем, мы видим, что система также отвечает поставленным целям. Человечество остановилось на десятеричной системе по той простой причине, что на руках у человека десять пальцев, а вовсе не потому, что эта система более логична, чем любая другая.
Однако в отдельных случаях и для конкретных целей может оказаться, что какая-то система счета является гораздо более функциональной, нежели другие. Это справедливо в случае системы, основанной на 2, то есть двоичной системы.
Выражение 10 в двоичной системе равно 2 в десятеричной системе. Следовательно, в такой системе только две цифры, 0 и 1. На предыдущих страницах приведены символы для первых чисел такой системы и соответствующие эквиваленты десятеричной системы.
Перевод числа из двоичной системы в десятеричную не составляет труда. Рассмотрим, например, выражение 11001 в двоичной системе. Оно эквивалентно (1 × 24) + (1 × 23) + (0 × 22) + (0 × 21) + (1 × 20), или 16 + 8 + 0 + 0 + 1, или 25, что соответствует эквиваленту, приведенному в таблице.
Этот процесс можно упростить, если принять во внимание, что число 2, возведенное в степень, умножается либо на 0, и тогда результат тоже будет равен нулю и его можно не учитывать, либо на 1, и тогда это просто 2, возведенное в какую-то степень.
Таким образом, мы можем проставить порядковый номер справа налево, как это показано ниже маленькими цифрами:
Каждое маленькое число — это степень числа 2, определяемая положением цифры в числе, представленном в двоичной системе. Следует учитывать только те показатели степени, которые стоят против единиц. Показатели, стоящие против нулей, можно опускать. Используя такой подход, можно записать число 11001 как 24 + 23 + 20, или 16 + 8 + 1, или 25.
Большие числа, такие как 1 110 010 100 001 001, можно переводить в десятеричную систему таким же образом.
Поскольку единицам соответствуют позиции 0, 3, 8, 10, 13, 14 и 15, то число будет равняться 215 + 214 + 213 + 210 + 28 + 23 + 20, или 32768 + 16384 + 8192 + 1024 + 256 + 8 + 1, или 58 633.
Обратный перевод из двоичной системы в десятеричную не очень сложен, но более длителен. Предположим, число 1562 выражено в десятеричной системе. В двоичную систему его можно перевести следующим образом:
Наибольшее число, соответствующее двойке, возведенной в степень, и меньшее 1562, — это 210 (или 1024). Если мы вычтем 1024 из 1562, у нас останется 538. Теперь наибольшее число, соответствующее двойке, возведенной в степень, и меньшее 538, — это 29 (или 512). После вычитания этой величины из 538 у нас остается 26. Ближайшее и меньшее число теперь — 24 (или 16). После вычитания остается 10. Теперь ближайшее число — это 23 (или 8). После вычитания остается 2 или 21. Таким образом, 1562 = 210 + 29 + 24 + 23 + 21.
Теперь надо только правильно расставить по местам показатели степени справа налево. Единицы будут стоять на 1, 3, 4, 9 и 10-й позициях. На остальных позициях мы поставим нули. Таким образом, мы получаем число 11 000 011 010, двоичный эквивалент числа 1562 в десятеричной системе.
В двоичной системе очень простые таблицы сложения и умножения:
И это весь список.
Таким образом, в двоичной системе:
Правильность этих вычислений можно, при желании, проверить, учитывая, что числа И, 110 и 1001 в двоичной системе равны соответственно 3, 6 и 9 в десятеричной системе.
Теперь представьте себе, что у вас есть счетная электронная машина с набором переключателей (например, полупроводниковых). Каждый переключатель может находиться в одной из двух позиций — «включено» (когда ток проходит через переключатель) или «выключено» (когда ток не проходит через переключатель).
Теперь предположим, что положение «включено» соответствует 1, а положение «выключено» соответствует 0. В этом случае счетную машину можно спроектировать таким образом, чтобы переключение электрического сигнала различными переключателями подчинялось правилам сложения, умножения и другим действиям с единицами и нулями в двоичной системе.
Такая машина будет так быстро производить переключение и производить вычисления с такой скоростью, что сможет выполнить за считаные секунды такой объем вычислений, на который человеку потребовалось бы не меньше месяца.
Однако, рассматривая различные системы счета, мы сильно уклонились от основной темы нашей книги. Теперь мы возвращаемся к десятеричной системе, и вся дальнейшая информация будет подана именно в десятеричной системе.
Для того чтобы четко уяснить себе, какие действия можно производить с экспоненциальными числами на основе 10, начнем работать с относительно небольшими числами, а не с такими огромными, как масса Земли, о которой шла речь в начале главы.
Предположим, нам надо выразить в экспоненциальной форме число 3200. Мы можем использовать только целые числа, поэтому разобьем число 3200 следующим образом: (3 × 1000) + (2 × 100) или (3 × 103) + (2 × 102). Но гораздо удобнее в тех случаях, когда это возможно, пользоваться одной экспонентой. Этого можно добиться, используя десятичные дроби. Представим 3200 в виде 3,2 × 1000 (можете самостоятельно произвести умножение и проверить правильность этого утверждения) или 3,2 × 103.
Можно, конечно, представить 3200 как 32 × 100, что в экспоненциальной форме даст 32 × 102. Можно выбрать такой вариант: 3200 = 0,32 × 1000 или 0,32 × 104. Все эти выражения идентичны. Этот факт можно подтвердить, произведя операции умножения. Для каждого отдельного случая мы получим 3200. Но этот факт можно подтвердить, не производя операций умножения.
Предположим, надо умножить 40 на 50.
40 × 50 = 2000.
Теперь разделим один из сомножителей на 2, а другой умножим на 2. Получаем 20 × 100, или 80 × 25. И в том и в другом случае результат один и тот же, 2000. Предположим, мы умножаем один из сомножителей на 10, а другой делим на 10. Тогда мы получаем 4 × 500 или 400 × 5. И в том и в другом случае результат один и тот же, 2000.
Другими словами, при перемножении двух чисел их произведение не меняется, если один из сомножителей умножить на какое-то число, а другой разделить на это же самое число.
Теперь рассмотрим произведение 3,2 × 103. Умножим 3,2 на 10 и разделим 103 на 10. Как мы уже знаем, произведение от этого не изменится.
3,2 × 10 = 32. Разделим 103 на 10 (или, что одно и то же, умножим на 101) и получим 102. Теперь произведение выглядит как 32 × 102, при этом его величина не изменяется.
Мы можем разделить 3,2 на 10 (получаем 0,32) и умножить 103 на 10 (104). В результате получаем 0,32 × 104, при этом величина также не изменилась.
Мы видим, что выражения 0,32 × 104, 32 × 102, 3,2 × 103 являются одним и тем же числом. Тогда какой смысл менять одну форму на другую? С точки зрения корректности расчетов никакого смысла нет, а вот с точки зрения удобства проведения вычислений — безусловно есть. Целесообразно использовать такую форму экспоненциального выражения, когда неэкспоненциальная часть является числом от 1 до 10. В случае 32 × 102 неэкспоненциальная часть больше 10, в случае 0,32 × 104 неэкспоненциальная часть меньше 1. В случае 3,2 × 103 неэкспоненциальная часть находится между 1 и 10, и это как раз та форма выражения, которая обычно используется.
Для чисел, меньших единицы, это правило также справедливо, за исключением деталей, касающихся экспоненциальной части. Например, рассмотрим число 0,0054. Его можно записать как 54 × 0,0001 или как 5,4 × 0,001. Каждое из этих выражений после перемножения даст один и тот же результат, 0,0054. В экспоненциальной форме это выглядит как 54 × 10-4, 5,4 × 10-3 или 0,54 × 10-2.
Эти выражения также эквивалентны. Как и в предыдущем примере, мы можем умножить 5,4 на 10, 10-3 разделить на 10. Деление 10-3 на 10 равноценно умножению на 10-1. Деление равноценно вычитанию одного показателя степени из другого (-3 - 1 = -4), то есть 10-3 разделить на 10 равно 10-3-1 или 10-4. Таким образом, мы превратили выражение 5,4 × 10-3 в 54 × 10-4, не изменив его величины.
При помощи аналогичных процедур мы можем превратить 5,4 × 10-3 в 0,54 × 10-2, не изменив его величины. Но на практике предпочтительнее использовать выражение 5,4 × 10-3, поскольку в этом случае неэкспоненциальная часть находится между 1 и 10.
К экспоненциальным числам применимы те же правила, как и к обычным числам.
В операциях сложения и вычитания участвуют только неэкспоненциальные составляющие чисел. Например, при сложении 2,3 × 104 и 4,2 × 104 получаем 6,5 × 104. (Проверьте это утверждение, преобразовав экспоненциальные выражения в неэкспоненциальные: 23 000 и 42 000. Сложив их, вы получите 65 000. Такую же операцию можно осуществить со всеми примерами, которые я привел в этой главе. Таким образом, вы не только научитесь обращаться с экспоненциальными выражениями, но и на практике сможете убедиться, что не обязательно верить всему, что вам говорят, даже если это «что-то» напечатано в типографии.)
Сумма чисел 8,7 × 104 и 3,9 × 104 равна 12,6 × 104. Ответ можно оставить в этом виде, хотя неэкспоненциальная часть больше 10. Можно также при помощи операций умножения—деления, описанных выше, привести выражение к более удобному виду: 1,26 × 105. Этот ответ такой же правильный, как и предыдущий.
А как поступать, когда у чисел различается экспоненциальная часть? Чему будет равна сумма 1,87 × 104 и 9 × 102? Для того чтобы провести сложение, потребуется привести оба числа к такому виду, когда обе экспоненциальные части одинаковы. Например, 1,87 × 104 можно преобразовать в 187 × 102. Тогда можно провести сложение: (9 × 102) + (187 × 102) = (9 + 187) × 102 = 196 × 102. Можно пойти другим путем и превратить 9 × 102 в 0,09 × 104, тогда получим (0,09 × 104) + (1,87 × 104) = (0,09 + 1,87) × 104 = 1,96 × 104.
Таким образом, мы получили два ответа: 196 × 102 и 1,96 × 104. Эти два выражения равноценны, но использовать предпочтительно второе.
С экспоненциальными числами также можно производить операции вычитания. На практике, однако, экспоненциальной формой редко пользуются при выполнении операций сложения и вычитания, поскольку удобнее складывать и вычитать обычные числа. А вот при операциях умножения и деления экспоненциальные числа незаменимы. Предположим, надо перемножить 6000 на 0,008. Это в общем-то нетрудно сделать в столбик:
В данном примере единственную трудность представляет операция с нулями. Нужно внимательно отследить положение десятичной запятой.
А теперь попробуем провести умножение, используя экспоненциальную форму выражения чисел. Переведем числа в экспоненциальную форму: 6000 = 6 × 104, 0,008 = 8 × 10-3. Перемножим эти числа: 6 × 104 × 8 × 10-3. 6 × 8 = 48; затем 104 × 10-3 = 101. (Складываем экспоненты 4 + (-3) = 1.) Получаем ответ: 48 × 101, или, в более удобной форме, 48 × 102, или в виде обычного числа 480.
Как мы видим, используя экспоненциальную форму, мы значительно упрощаем задачу умножения, особенно в том случае, когда имеем дело с очень большими и очень маленькими числами.
Предположим, надо решить такую задачу. Сколько атомов водорода содержалось бы в Земле, если бы она состояла только из этих атомов водорода.
Масса Земли равна
6 000 000 000 000 000 000 000 000 000 грамм, а масса атома водорода — 0,00000000000000000000000166 грамма. Чтобы найти количество атомов водорода, надо массу Земли разделить на массу атома водорода, то есть разделить 6 000 000 000 000 000 000 000 000 000 на 0,00000000000000000000000166. Разумеется, вы можете проделать эту процедуру, если захотите, но, пожалуй, разумнее перейти к экспоненциальной форме.
При использовании экспоненциальных выражений задача сразу упрощается: (6 × 1027) : (1,66 × 10-24). Так же, как и в случае умножения, можно поделить одну неэкспоненциальную часть на другую. Таким образом, получаем частное 6 : 1,66 = 3,6 (приближенно, но достаточно для данной задачи), в то же время 1027: 10-24 = 1051). Таким образом, количество атомов водорода в Земле (если бы она состояла из одних атомов водорода и имела бы ту массу, которую имеет сейчас) равнялось бы 3,6 × 1051). Или в виде обычного числа
3 600 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
грамм, если бы просто перемножили два обычных числа, как это делали в предыдущих разделах.
Не представляет трудности также возведение в степень экспоненциальных выражений и извлечение из них корня. Так, (9 × 104)2 равно 92 × (104)2, что равно 81 × (104)2, или 81 × 108, или 8,1 × 109. Точно так же можно извлечь корень из (9 × 104). Корень квадратный из (9 × 104) равно √9 × √104 или 3 × 102.
Есть еще неясные моменты при использовании экспоненциальной формы записи чисел. Если мы имеем дело с числами с большим количеством нулей, все достаточно просто. Но предположим, что надо перемножить 6837 и 1822. Если мы запишем эти числа в экспоненциальной форме, то получим: 6,837 × 103 и 1,822 × 103. Перемножить экспоненциальные части несложно, а вот что делать с числами 6,837 и 1,822? Мы столкнулись с той же задачей, как и при перемножении больших чисел, с той только разницей, что надо следить за положением десятичного знака. Другими словами, нам нужно представить число в такой форме, чтобы неэкспоненциальная часть была как можно короче или равнялась 1. Поскольку речь идет о десятеричной системе, нам понадобятся десятичные экспоненты, которые мы обсуждали в конце седьмой главы.
Теперь давайте подробнее рассмотрим экспоненты на основе 10. Начнем с 100 = 1 и 101 = 10. А чему равны экспоненты между 0 и 1? Например, 100,5 = 10½ = √10, что приблизительно равно 3,162278. Таким же способом (но с большими сложностями) можно получить значение 10 в степени от 0 до 1. Эти величины подсчитаны и собраны в специальных справочниках в виде таблиц. В нашей книжке приведена краткая таблица значений числа 10, возведенного в различные степени.
Поскольку в данном случае основанием всегда является число 10, то в таблицах обычно приводятся только показатели степени, то есть экспоненты. Отдельно записанная экспонента называется логарифмом, значение экспоненциального выражения в виде обычного числа называется антилогарифмом. Например, в выражении 102 = 100 справедливы следующие обозначения:
2 — логарифм 100,
а 100 — антилогарифм 2.
Таблица, приведенная ниже, в которой приведены антилогарифмы для ряда логарифмов, называется таблицей антилогарифмов.
В таблице приведены приближенные значения антилогарифмов, да и невозможно привести точные значения, потому что они существуют только для таких чисел, как 100,0, 101,0 и так далее. Однако величину антилогарифма можно вычислить с такой точностью (то есть до такого десятичного знака), которая требуется в данном конкретном случае.
Если мы пойдем в обратном направлении, мы можем любое число от 1 до 10 представить как 10 в какой-то степени. Другими словами, для каждого числа при помощи соответствующих методик (которые мы не будем обсуждать в нашей книжке) можно вычислить эквивалентный логарифм.
Ниже приводится краткая таблица логарифмов для ряда обычных чисел. Подробные таблицы логарифмов, в которых можно найти логарифм для любого числа, содержатся в ряде справочников.
Таблицы логарифмов уже составлены, и никому больше не нужно заниматься самостоятельными подсчетами. Эта трудоемкая работа уже проделана. Единственное, что необходимо сделать теперь, — это найти нужное значение в таблице логарифмов. Возьмем наугад какое-нибудь число, например 3,2, и найдем по таблице, приведенной ниже, значение логарифма. Логарифм 3,2 равен 0,5051. Еще один пример из таблицы: логарифм 2,4 равен 0,3802. (Разумеется, это приближенные значения логарифмов.)
Теперь, когда у нас есть значения логарифмов, то есть экспонент, можно их использовать при операциях умножения и деления.
Мы знаем, что при умножении показатели степени суммируются, значит, чтобы перемножить 3,2 и 2,4, достаточно сложить их логарифмы, 0,5051 и 0,3802, сумма которых равна 0,8853. Это пока только экспонента, то есть число, которое мы ищем, — это 100.8853. Теперь надо опять обратиться к таблице антилогарифмов и найти антилогарифм 0,8853. Это 7,68. Таким образом, 3,2 × 2,4 = 7,68.
Если же мы хотим поделить 3,2 на 2,4, достаточно вычесть 0,3802 из 0,5051, что равно 0,1249. Антилогарифм этого числа равен 1,333, что и является ответом.
А теперь вернемся к примеру, с которого мы начали этот раздел: 6837 × 1822. Преобразуем эти числа в экспоненциальную форму и получим (6,837 × 103) × (1,822 × 103). Логарифм 103— это просто 3, так как логарифм числа — это степень, в которую надо возвести 10, чтобы получить данное число. А для того чтобы получить 103, очевидно, надо 10 возвести в третью степень. Точно так же логарифм 1012 равен 12, а логарифм 10-14 равен -14.
Логарифм числа 6,837 надо искать в таблице логарифмов более подробной, чем та, которая приведена в книжке. Он равен 0,83487. Тогда логарифм 6,837 × 103 равен 0,83487 + 3 (вспомните, при перемножении чисел мы суммируем их логарифмы), или 3,83487.
Точно так же по таблице находим логарифм 1,822, который равен 0,26055, таким образом, логарифм 1,822 × 103 равен 0,26055 + 3, или 3,26055.
Чтобы перемножить числа 6837 и 1822, нужно сложить их логарифмы, а затем найти антилогарифм суммы. Таким образом, логарифм произведения этих чисел равен 3,83487 + 3,26055, или 7,09542. Это число можно представить как 0,09542 + 7. Десятичная часть числа, в данном случае 0,09542, называется мантиссой, а целая, в данном случае 7, — характеристикой.
Антилогарифм числа — это просто число 10, возведенное в эту степень. Антилогарифм 0,09542 (определенный по таблице) равен 1,246, а антилогарифм 7 — это 107. При переходе от логарифма к антилогарифму сложение заменяется умножением. Таким образом, антилогарифм равен 1,246 × 107. Или в обычной, неэкспоненциальной форме 12 460 000.
Если вы просто перемножите 6837 на 1822 в столбик, то получите 12 457 014. Однако не следует забывать, что логарифмы — это приближенные величины, так что и результат мы можем получить только с определенным приближением.
Чтобы разделить 6837 на 1822, надо вычесть логарифм второго числа из логарифма первого, или 3,83487 — 3,26055 = 0,57432. Антилогарифм этого числа равен 3,752. Это и есть искомый ответ. Если вы выполните деление в столбик, то получите более точное выражение: 3,75192. Но как мы уже знаем, логарифмы — это приближенные величины.
Возможно, такой метод расчета показался вам громоздким и неэффективным, ведь мало того, что мы получаем приближенный результат, но надо еще искать ответы в двух таблицах. Не проще ли произвести умножение в столбик? Однако при инженерных и научных расчетах часто достаточно той точности, которую дает метод логарифмов. В то же время часто приходится проводить многократные операции деления и умножения, и метод логарифмов оказывается просто незаменим. Предположим, надо решить такой пример: (194,768 × 0,045 × 19,22) : (1,558 × 35,4).
Вам понадобится довольно много времени, чтобы провести все необходимые операции деления и умножения, а используя метод логарифмов, если вы хорошо освоили правила работы с логарифмическими таблицами, можно решить этот пример очень быстро. Нужно будет несколько раз заглянуть в таблицы и провести несколько операций сложения и вычитания.
Далее, если по условиям вашей задачи вам достаточно получить ответ с определенным приближением — а в инженерных и научных расчетах именно это и требуется, — метод логарифмов дает дополнительное преимущество, поскольку он значительно сокращает время, необходимое для проведения вычислений.
Ключ к сокращению времени вычислений мы найдем, если обратим внимание на характер логарифмической зависимости. Логарифм 1,0 равен 0,0000, логарифм 2,0 равен 0,3010, а логарифм 3,0 равен 0,4771. При увеличении числа от 1 до 2 величина логарифма увеличивается на 0,3010; при увеличении числа от 2 до 3 величина логарифма увеличивается на 0,1761. Логарифм 4,0 равен 0,6020, что означает увеличение на 0,1249. При увеличении числа от 9,0 до 10 логарифм увеличивается с 0,9542 до 1,0000, то есть только на 0,0458. При переходе от 19 к 20 логарифм увеличивается с 1,2788 до 1,3010, то есть только на 0,0222.
Теперь нанесем на один край линейки значения логарифмов, расположив их равномерно, а на другой край — соответствующие этим логарифмам числа (антилогарифмы).
Мы видим, что обычные числа располагаются все более часто с увеличением числа. Это отражает тот факт, что с увеличением числа скорость увеличения логарифма снижается.
Шкала, на которой числа расположены не равномерно, а соответственно величинам их логарифмов, называется логарифмической шкалой. Эта логарифмическая шкала стала основой для изобретения одного очень полезного инструмента для вычислений — логарифмической линейки, которая еще совсем недавно была необходима каждому инженеру, до тех пор, пока на смену ей не пришли калькуляторы и компьютеры.
Линейка устроена следующим образом. Если две обычные линейки, на которые нанесены логарифмические шкалы, двигать друг относительно друга, можно проводить операции сложения и вычитания, а поскольку шкалы на линейках логарифмические, это означает, что мы складываем или вычитаем логарифмы чисел, то есть перемножаем или делим сами числа.
Например, нам надо перемножить 2 и 3. Как показано на рисунке, устанавливаем подвижную часть линейки так, чтобы деление 1 на ней совпало с делением 3 на неподвижной части. Затем переводим взгляд на деление 2 на подвижной части и смотрим, против какого деления на неподвижной части оно установилось. Мы видим, что это 6. То есть логарифм 3 + логарифм 2 = логарифму 6, а 3 × 2 = 6.
На следующем рисунке показан эскиз настоящей логарифмической линейки с несколькими шкалами. Такая линейка позволяет быстро решать разнообразные задачи и производить сложные расчеты, точность которых зависит от размера делений шкал. Фактически такая линейка представляет собой компактную таблицу логарифмов.
Однако каждое новое достижение обычно сопровождается какими-то потерями. Точно так же дело обстоит и в случае с логарифмической линейкой. Линейка позволяет гораздо быстрее и удобнее производить вычисления, но есть и потери. При использовании таблиц логарифмов вам не надо самим определять положение десятичной запятой, оно уже указано в таблице. При расчетах на линейке вам придется определять положение десятичной запятой самостоятельно.
Для того чтобы определить положение десятичной запятой, необходимо грубо оценить ответ решаемой задачи. Например, мы вычисляем выражение, которое рассматривали ранее в этой главе:
(194,768 × 0,045 × 19,22) : (1,558 × 35,4).
Произведем округление чисел этого выражения и получим: (200 × 1/20 × 202) : : (1½ × 35), что равно (4000 : 50), или 80. Это означает, что ответ, который мы получим, точно решая приведенное выше выражение, будет находиться ближе к числу 80, нежели к 8 или 800. Таким образом, мы оценили положение десятичной запятой, или, другими словами, «порядок величины» будущего ответа.
Теперь, используя логарифмическую линейку, можно выполнить указанные действия. В результате мы получаем ответ 587, а поскольку мы знаем, что ответ должен находиться ближе к 80, чем к 8 или 800, то десятичную запятую можно смело ставить после второй значащей цифры слева, то есть получаем 58,7. Все расчеты при помощи логарифмической линейки, включая определение порядка величины, заняли у меня всего 35 секунд, хотя я считал не торопясь, чтобы не наделать ошибок.
Если решать этот пример, производя умножение и деление в столбик, можно получить более точный ответ. Я проделал эти вычисления и получил 58,6. Но в процессе расчетов я допустил две ошибки, которые мне пришлось исправлять, и всего мне потребовалось 20 минут. Не могу сказать, что процедура доставила мне удовольствие. Сначала я обнаружил расхождение с результатами расчета по линейке, а затем был вынужден проверить каждый этап расчета и сравнить его с результатами, полученными на линейке.
Современные карманные калькуляторы и компьютеры, разумеется, еще более упростили все возможные расчеты. Но я иногда думаю, что если современный ученый — это новое воплощение ученого древности, то карманный калькулятор — это просто новое воплощение древних счетов.