Основные принципы эволюции путем естественного отбора, изложенные Дарвином и Уоллесом более 150 лет назад, оказались на удивление продуманными. Тем не менее многие детали, лежащие в основе различных механизмов, обнаружили лишь недавно. И они пролили новый свет на процесс эволюции. Для начала, эволюция не всегда шла в столь медленном темпе, как в свое время считал Дарвин. Новые методы исследования раскрывают основные механизмы эволюционных новшеств и способы образования видов. Теперь эволюцию можно проверить в лаборатории.
Ископаемые останки и генетические исследования предполагают, что эволюция происходила в очень медленном темпе. Однако это слишком далеко от истины.
Возьмем, к примеру, колюшку, которую Майкл Белл обнаружил еще в 1990 году, проезжая мимо озера Лоберг на Аляске. Белл был биологом, изучающим эволюцию колюшек, и не планировал собирать рыбу, так как местная колюшка была истреблена в 1982 году с целью улучшения озера для удильшиков.
Белл с удивлением заметил, что морские колюшки повторно заселили озеро. Само по себе данное явление не было чем-то необычным: морские колюшки могут жить и в пресной воде, а большинство пресноводных видов произошло от морских, которые заселяли ручьи и озера после того, как лед начал отступать в конце последнего ледникового периода.
Однако было в этих колюшках нечто странное. Спустя десять тысяч лет после ледникового периода пресноводные колюшки стали сильно отличаться от своих морских предков. Наиболее очевидным отличием стала потеря защитной чешуи, на развитие которой в пресноводной воде уходило бы слишком много времени. В озерах рыба с меньшей «защитой» может перерасти и вытеснить полностью защищенную рыбу.
Ранее считалось, что данный признак должен развиваться медленно – в течение тысяч лет. Именно поэтому Белл был так сильно удивлен, обнаружив меньше чешуи у некоторых рыб, выловленных им в озере Лоберг. В 1991 году Белл попросил друга собрать еще немного рыбы. Конечно же, большая часть из улова не имела защитной чешуи.
Белл, работавший в Университете штата Нью-Йорк в Стоуни-Брук, начал ловить колюшку каждый год. Раз за разом он находил все больше рыбы без защитной чешуи. К 2007 году 90 % выловленных экземпляров не имели защитных чешуек. Вместо положенных тысячелетий, данный признак успел развиться за пару десятилетий.
В отличие от постепенного процесса, описанного Дарвином, эта эволюция проходила с огромной скоростью. Помимо своей уникальности, поразительно здесь то, что такая высокоскоростная эволюция начинает казаться нормой. Очень немногие биологи пытаются отыскать доказательства происходящей эволюции. Но где бы ни находились ученые, эти доказательства находятся – от сорняков и вредителей до рыбы и человека. Теперь выясняется, что при любом изменении среды обитания происходит эволюция и самих обитателей. И делается это довольно быстро.
Такие выводы создают парадокс. Два основных способа изучения эволюции (исследование окаменелостей и сравнение с геномом ныне живущих организмов) предполагают, что процесс происходит постепенно, а некоторые виды почти не изменяются в течение десятков миллионов лет. И если эволюция – насколько быстрый процесс, как утверждают некоторые биологи, то почему данные из ископаемых и генетические исследования говорят об обратном?
Сообщения о быстрой эволюции поступали уже очень давно. Оказывается, еще в 1878 году британский энтомолог Альберт Фарн писал Дарвину о том, что в районах, «потемневших» от загрязнений, хариссы сероватые с темной окраской стали более распространенными, чем светлые особи. И это было почти за 20 лет до первых предположений о том, что знаменитые пяденицы березовые почернели по тем же причинам.
В 1897 году выяснилось, что несколько популяций насекомых становились резистентными к инсектицидам. К 1930-м годам таких примеров стало больше. Например, кокциды, развившие резистентность к синильной кислоте.
В следующие десятилетия биологи сталкивались с новыми и новыми примерами. Какие-то примеры стали известными (например, пяденица березовая), но все они расценивались как курьезы. «Люди говорили: "Надо же, как интересно. Должно быть, это исключение"», – вспоминает Майкл Киннисон из Университета Мэна в Ороно, один из первых исследователей, решивших взглянуть на эволюцию в действии.
В наши дни существуют тысячи примеров. И все больше биологов сходятся во мнении, что быстрое развитие – это далеко не исключение. А благодаря достижениям в области генетики мы начинаем понимать, каким образом это происходит.
Записи Белла о колюшке до сих пор остаются одним из лучших задокументированных примеров. Помимо потери защитной чешуи рыба приобрела и другие признаки, типичные для пресноводных рыб (например, мелкие жабры). Иммунная система рыб также эволюционировала, чтобы лучше справляться с различными угрозами. Исследования, проведенные в начале этого года, показали, что популяция колюшки в Боденском озере (Швейцария) распадается на два вида буквально у нас на глазах. Обитатели главного озера имеют более длинный хребет и более прочную чешую, по сравнению с теми, кто живет в ручьях, впадающих в озеро.
Из генетических исследований мы узнали, что потеря чешуи происходит из-за мутаций в гене EDA, играющем роль в онтогенезе кожи. Эти мутации встречаются и у морской колюшки, хоть и очень редко. Они сохраняются на низких уровнях, поскольку данный признак – рецессивный. То есть рыба потеряет чешую только в том случае, если унаследует две копии мутантного гена.
Но как только колюшки попадают в пресную воду, в которой меньшая чешуя несет большую пользу, мутации становятся благоприятными и быстро распространяются под влиянием естественного отбора. Это объясняет, каким образом многократно развивался один и тот же признак по мере того, как колюшки заселяли озера после ледникового периода.
Похоже, такое предсуществующее генетическое разнообразие – и есть тот самый фактор, что позволяет популяциям быстро эволюционировать. Поддержка данной идеи основана на изучении колюшек в Заливе Кука (Аляска), которые только недавно перешли на пресноводный образ жизни. Чешуя этой рыбы осталась неизменной, а команда Белла обнаружила в данных особях меньшее генетическое разнообразие, чем у колюшки из озера Лоберг.
Как правило, быстрая эволюция связана с существующими мутациями. Однако новые мутации также могут сыграть свою роль. Например, комар обыкновенный развил резистентность к фосфорорганическим инсектицидам после того, как необычная мутация создала несколько копий одного гена, подаривших своему обладателю больше ферментов для расщепления пестицидов. Эта новая мутация распространилась по всему миру.
При правильных обстоятельствах стремительно развиваться могут даже новые виды. В 1866 году американские фермеры сообщили о появлении неизвестной личинки, поедающей яблоки – культуру, появившуюся двумя веками ранее. Энтомолог Бенджамин Уолш предположил, что «яблочная личинка» образовала новую линию боярышниковой мухи, перешедшей на другую диету. Уолш уже предполагал, что такой процесс может приводить к видообразованию.
Теперь мы знаем, что Уолш оказался прав. Генетические исследования показали, что боярышниковая муха находилась в процессе разделения на два вида. Более того, паразитические осы-наездники, личинки которых питались личинками насекомых, также находились в процессе распада на два вида.
Новых примеров появляется все больше и больше. Один вид рыб из озера в Никарагуа разделился на два всего за 100 лет. Новая разновидность развила в себе более узкую и острую голову и утолщенные губы, идеально подходящие для того, чтобы питаться насекомыми из расщелин. Основной вид обладал более крепкими челюстями и имел дополнительные зубы, позволяющие разламывать раковины улиток.
Лабораторные исследования показывают, что линии не скрещиваются друг с другом, даже находясь рядом. Это означает, что они уже находятся на пути становления отдельными видами.
Еще один пример – знаменитые галапагосские вьюрки. Супруги-ученые Питер и Розмари Грант изучают вьюрков на острове Дафни-Майор с 1973 года в рамках одного из долгосрочных исследований протекающей эволюции. В 2010 году они заявили, что, возможно, стал развиваться новый вид вьюрка. В 1981 году средний земляной вьюрок (Geospizafortis) с другого острова достиг Дафни-Майор и стал скрещивался с местными видами птицами, производя потомство с необычными клювами и песнями. Четыре поколения спустя, после сильной засухи, из-за которой погибло множество птиц, эта новая линия перестала скрещиваться с другими вьюрками. Не совсем ясно, почему прекратилось скрещивание, но если птицы будут продолжать избегать местных птиц, они скоро станут новым видом.
Список примеров продолжал расти, и Киннисон с коллегами начали систематизировать данные и смотреть, что эти данные говорят нам об эволюции. «Мы пришли к пониманию, что подобные случаи были вовсе не исключением, а новой нормой». Теперь, как считает Киннисон, понятие «быстрая эволюции» скорее сбивает с толку, поскольку указывает, что обычно эволюция проходит медленно. Киннисон предлагает более корректное название – «современная эволюция». Конечно же, доказать, что современная эволюция стала нормой развития миллионов видов по всему миру, – задача не из легких.
Если быстрая эволюция действительно была нормой, то почему же ископаемые и генетические исследования говорят об обратном? Возможно, потому, что новые виды и признаки не только быстро развиваются, но и быстро исчезают, не оставляя следов в ископаемых или генетическом материале.
Наглядный пример обратной эволюции также родом с Галапагосских островов. В 1977 году засуха на Дафни-Майор уничтожила растения с мелкими семенами, и многие из питавшихся ими вьюрков погибли. Особи с большими клювами могли питаться более крупными семенами, поэтому чувствовали себя немного лучше. А спустя несколько поколений размер клюва увеличился на 4 %. Во влажный 1983 год мелкие семена снова появились в большом количестве, и эволюция пошла в обратном направлении.
Видообразование может идти в обратном направлении. На соседнем острове Санта-Крус два зарождающихся вида снова сливаются в один. Исследовательская работа, проведенная в 1960-х годах, показала, что вьюрки на этом острове разделились на две линии: с крупными и мелкими клювами, в зависимости от размера поедаемых семян. В настоящее время большинство птиц обладает клювами среднего размера. Скорее всего, это связано с тем, что люди кормят птиц рисом, а это делает маленькие или большие клювы менее полезными.
Также было обнаружено много других примеров. Озеро Виктория в Восточной Африке стало домом для более 500 видов цихлид, многие из которых образовались за последние 15 000 лет. Сейчас многие виды снова объединяются. Причина в том, что самки узнают самцов своего вида по яркому окрасу. Поскольку в результате человеческой жизнедеятельности озеро начало мутнеть, самки все чаще размножаются с самцами другого вида, создавая гибридов, которые в конечном счете и заменят два первоначальных вида.
Такие эволюционные колебания могут стать новой нормой. В результате изменения давления отбора популяции развиваются быстрее сначала в одном, затем в другом направлении, а затем возвращаются туда, откуда начали.
Эволюционные «качели» могут обуславливаться не только внешними факторами (например, погода), но и взаимодействием между видами. Около десяти лет назад команда Нельсона Хэйрстона из Корнелльского университета в Нью-Йорке начала эксперименты с одноклеточными водорослями и питающимися ими крошечными животными под названием «коловратки». Ученые ожидали увидеть классический цикл «хищник-жертва»: снижение количества водорослей на фоне увеличения численности коловраток, последующий спад количества хищников из-за сокращения запаса пищи, дальнейшее восстановление популяции водорослей и т. д. Но ученые заметили неожиданные закономерности. Иногда популяция коловраток росла даже при постоянной численности водорослей.
Хэйрстон понял, что причиной данного явления послужила быстрая эволюция водорослей, в процессе которой происходили поочередное распределение ресурсов в защиту и размножение. То есть создавалось больше пищи для коловраток. Численность коловраток периодически увеличивалась с «правильной» скоростью, сдерживая тем самым быстрое размножение водорослей. Когда же команда повторила те же эксперименты с генетически идентичными клетками водорослей для замедления эволюции, они увидели классические циклы.
Позже Хэйрстон обнаружил, что теоретические биологи уже предсказывали то, что быстрая эволюция может создавать подобные закономерности. Единственное, что так и осталось неясным, – это то, как часто подобное явление происходит в дикой природе.
Одним из мест, где может образоваться данный цикл, является гавайский остров Кауаи, на котором не так давно затихли все сверчки. В 1990-х годах на остров прибыла муха-паразит, которая выслеживала самцов сверчков в брачный период и откладывала в них яйца. Затем личинки мухи заживо поедали сверчков, что привело к резкому сокращению популяции.
В 2003 году на острове еще было тихо. Именно поэтому Марлин Зук из Миннесотского университета была так удивлена, обнаружив множество живых сверчков.
Оказалось, что почти у всей популяции отметилась мутация, которая изменила крылья самцов и сделала так, что при трении лапок не издается никаких звуков. Популяция выжила, поскольку несколько самцов все еще могло стрекотать. «Немые» самцы собирались вкруг стрекочущих самцов и перехватывали потенциальных партнеров для спаривания.
Но Зук заинтересовал вопрос: что же будет дальше? В настоящее время сверчки приближаются к эволюционному тупику. «Не думаю, что "немая" популяция сможет выжить», – считает ученый. Вместо этого, по мнению Зук, мы станем свидетелями цикла «хищник-жертва», обусловленного быстрой эволюцией – той же самой, которую в свое время отмечал Хэйрстон. По мере увеличения популяции «немых» самцов количество паразитов будет снижаться, что приведет к восстановлению численности стрекочущих самцов. А это, в свою очередь, приведет к восстановлению популяции паразитов и т. д.
Сама идея эволюционной гонки, при которой виды должны постоянно эволюционировать для поддерживания жизни, довольно стара. Этот процесс называется «гипотезой Красной Королевы». Однако новое здесь то, что эволюция такого рода способна не только происходить быстрее, чем принято, но и сами участники могут менять свое направление.
Сложите все это воедино, и вы получите новую картину эволюции, которая в корне отличается от общепринятых представлений. По словам Киннисона, популярный взгляд на эволюцию перевернут с ног на голову. Почему-то люди верят в то, что эволюционные изменения незаметны в ближайшем будущем, однако сильно влияют на будущее через миллионы лет. На самом деле все совсем наоборот. Оказывается, что организмы стремительно эволюционируют в ответ на любые изменения среды обитания, но по прошествии длительного времени большинство эволюционных изменений друг друга нейтрализует. Таким образом, чем дольше изучаемый период, тем медленнее происходит эволюция.
Быстрая эволюция у людей
Члены племени Форе из Папуа – Новой Гвинеи считали, что когда кто-то умирает, их близкие должны съесть тело умершего. Дочери ели мозг умершего и иногда кормили грудью своих детей. Эта традиция привела к распространению дегенеративного заболевания мозга, называемого куру. Куру, как и болезнь Крейтцфельдта – Якоба, вызывается патологическим белком приона, который накапливается в мозге.
В некоторых поселениях от куру умерли почти все молодые женщины. Однако некоторые не заразились. Они были потомками человека, рожденного около 200 лет назад и имевшего необычную мутацию в прионном белке. Эта мутация мешала развитию патогенной формы приона. По мере увеличения заболеваемости куру, мутация также стала стремительно распространяться. В настоящее время половина женского населения из наиболее пострадавших от куру областей имеет уникальную мутацию, которая не зафиксирована ни в одном уголке мира. Если бы в 1950-х годах не отказались от традиции ритуального каннибализма, то болезнь еще сильнее распространилась бы внутри племени.
Появление резистентности к куру является одним из ярчайших примеров сверхбыстрой эволюции человека. Но это далеко не единственный пример. Около 3000 лет назад предки тибетцев отделились от популяции, породившей китайскую этническую группу Хань. Как только тибетцы стали жить на возвышенностях, их популяция начала адаптироваться. Несмотря на то что ряд адаптаций стал результатом жизни в горах (что-то вроде высокогорных тренировок у спортсменов), какая-то часть из них передавалась на генетическом уровне.
Например, один из вариантов гена, контролирующего выработку эритроцитов, встречается у 78 % тибетцев, но лишь у 9 % ханьцев. По мнению авторов данного исследования, процесс отбора идет в самом разгаре.
Дополнительные данные были получены из исследования тибетских женщин, живущих на высоте свыше 4000 метров. У женщин с высоким уровнем кислорода в крови выживало в среднем по 3,6 ребенка, а у женщин с низким уровнем – всего по 1,6 ввиду высокой детской смертности. Это говорит о том, что аллель, отвечающая за высокий уровень кислорода в крови, активно передается потомкам и становится все более распространенной.
До недавнего времени мы считали, что знаем все об образовании видов. Мы считали, что данный процесс почти всегда начинается с полной изоляции популяции. Очень часто это происходит после того, как популяция пересекала некую серьезную «генетическую преграду». Вроде той, когда беременная женщина оказывается забытой на необитаемом острове, а ее потомки затем спариваются друг с другом.
Главный плюс этой модели «эффекта основателя» заключается в том, что ее можно проверить в лабораторных условиях. Но на деле оказалось, что идеальная картинка не складывается. Несмотря на все усилия эволюционных биологов, никто не смог даже приблизиться к созданию нового вида из популяции основателей. Более того, насколько нам известно, ни один новый вид так и не был образован в случаях, когда люди высаживали определенное количество особей на новую территорию.
В наши дни акцент исследований несколько сместился. Биологи до сих пор верят в то, что большая часть видообразования является аллопатрической (результатом географической изоляции). Но их идеи отошли от воли случая и небольших популяций. Теперь биологи рассматривают все необычные способы, которые смогли бы повлиять на быстрое изменение видов.
Основные рассматриваемые факторы – это экологический отбор (новые виды образуются в результате адаптации к изменяющимся условиям окружающей среды) и половой отбор (изменение половых признаков и предпочтений таких признаков приводит к дивергенции (разбросу) в популяциях). Все важные вопросы так или иначе связаны с относительной значимостью двух движущих сил эволюции.
Одной из ярких иллюстраций экологического отбора является параллельное видообразование, когда, по сути, одни и те же виды в ответ на схожую среду обитания возникают независимо и в разных местах. Пример того – рыба колюшка в канадских озерах. Несколько озер заселены двумя разными видами колюшек. Первый вид – придонный, а второй питается планктоном. Анализ митохондриальной ДНК (мтДНК) показал, что колюшки, живущие в одном озере, теснее связаны друг с другом, чем с сородичами из других озер. Иначе говоря, они могли возникнуть в результате параллельного видообразования.
Эти данные также указывают на симпатрическое видообразование – появление видов без географической изоляции. С этой идеей категорически не согласны биологи, верящие в то, что вид не может распадаться на две разновидности без предварительной физической изоляции. Но приверженцы симпатрического направления ухватились за результаты исследований колюшек, а также мтДНД ряда других видов, которые, похоже, также подтверждают данную идею.
Симпатрическое видообразование остается спорным мнением, однако некоторые исследования объясняют, как оно могло происходить. Подтверждения теории получены от группы рыб, подвергшейся самому выдающемуся взрыву видообразования: цихлиды Великих Африканских озер. Озера Ньяса, Виктория и Танганьика, образующие Великие Африканские озера, содержат порядка 1700 видов цихлид, многие из которых развились после последнего ледникового периода, то есть 12 500 лет назад. Одна загадка, связанная с цихлидами, могла бы объяснить появление более 500 видов рыб в озере Виктория без каких-либо физических барьеров, препятствующих скрещиванию. Половой отбор – это логичный ключ к объяснению: яркоокрашенные самцы и разборчивые самки, выказывающие различные цветовые предпочтения. Именно так популяции рыб, на удивление схожие во всех остальных отношениях, могли стать репродуктивно изолированными, а половой отбор в конечном итоге привел к появлению новых видов.
Эта отдельно взятая форма полового отбора основана на способности самок различать самцов разного окраса. Но поскольку воды Великих Африканских озер страдают от загрязнения, цихлиды начинают терять эту способность. В мутных водах активно распространяется гибридизация. А поскольку виды цихлид эволюционно близки, у них часто получается жизнеспособное гибридное потомство. Как ни парадоксально, но некоторые биологи начинают думать, что именно гибридизация могла стать тем самым творческим процессом, создающим новые виды. Вероятно, так все и происходило в озере Виктория – многократно и естественно. Гибридизация могла стать важным фактором и в некоторых других эволюционных взрывах, которые мы называем адаптивной радиацией.
Теоретически, у нас есть возможность проверить, являются ли виды результатом параллельной эволюции, полового отбора или гибридизации, путем поиска «видообразующих генов» – тех, которые ответственны за предотвращение межвидового скрещивания. К сожалению, данное направление исследований не позволило найти большое количество генов, оказывающих значимое влияние. Как оказалось, наоборот, отбор часто влиял на генетическую вариацию, обусловленную действием нескольких генов с меньшими проявлениями. Зачастую, популяции организмов уже содержат вариацию, необходимую для значимых адаптивных изменений. Это означает, что эволюции не нужно ждать мутаций, и она может сразу браться за дело, как только того потребуют экологические обстоятельства. Вот такого эволюционные биологи двадцатого столетия точно не ожидали.
Видообразование все еще остается животрепещущей областью исследований, а удешевление секвенирования генома означает, что мы вступаем в захватывающую эру популяризации геномных исследований, посвященных образованию видов.
Удивительное разнообразие жизни на Земле является грандиозным свидетельством изобретательности эволюции. В течение 500 миллионов лет естественный отбор создавал крылья для полета, плавники для плавания и ноги для ходьбы – и это только среди позвоночных. Предрасположенность к эволюционным новшествам (или, говоря научным языком, «эволюционируемость») уже заложена в канву жизни.
В теории эволюции есть лишь несколько более фундаментальных вопросов, чем эволюционируемость. Но в обиход биологов она вошла лишь в 1987 году, когда это определение придумал блистательный фразер Ричард Докинз. За прошедшие десятилетия данное понятие было у всех на устах, однако лишь недавно реальные данные стали укреплять каркас теоретических знаний.
Многочисленные современные исследования пытаются пролить свет на факторы, которые способны повышать или ограничивать способности организма к развитию. Они также объясняют важнейшие события в эволюции человека – переход к хождению на двух ногах и появление наших ловких рук, использующих инструменты.
Первой трудностью было точное определение «эволюционируемости». Суть в том, чтобы выявить способность вида или популяции реагировать на естественный отбор. Поскольку генетическая изменчивость является исходным материалом для отбора, степень этой вариации в популяции должна была стать приближенным показателем эволюционируемости.
Всякий раз, когда большинство исследователей говорят о эволюционируемости, они имеют в виду нечто более абстрактное. Это не только количество генетических изменений в организме, но и то, способна ли подобная вариация перерасти в адаптивные изменения внешнего вида или поведения особи, сформированные естественным отбором. Поэтому Гюнтер Вагнер – пионер в данной области из Йельского университета, определяет эволюционируемость как «способность генерировать наследственные фенотипические вариации». То есть вариация уже заложена в строение организма и способна передаваться из поколения в поколение.
Вопрос, конечно, заключается в том, что именно определяет данную способность.
Ключевых факторов здесь два. Возможно, самым основным из них служит «устойчивость к мутациям» – способность организма к нормальному развитию, несмотря на наличие генетических мутаций. Поскольку гены редко действуют обособленно, то, в зависимости от общего генетического фона, определенная мутация может оказывать положительное, отрицательное или нейтральное влияние на организм. Следовательно, достичь большей устойчивости можно с помощью механизмов, ослабляющих влияние мутаций в конкретном гене. В принципе, это должно повышать выживаемость особи, поскольку снижается вероятность потенциально вредных изменений в строении организма. Однако такой защитный эффект становится врагом для изменений, скрывающим потенциально благоприятные вариации и тормозящим эволюционное развитие организма.
Или так может показаться. По сути, нейтрализуя эффекты вредных мутаций устойчивость сохраняет генетические вариации, которые в противном случае могли бы быть отсеяны. Это означает, что внутри популяции особи накапливают множество скрытых мутаций. Дальнейшие генетические или экологические изменения могут отключить защитные механизмы и открыть эффекты сохраненных мутаций, тем самым обеспечивая уже готовыми вариациями в основе организма. Какими же могут быть механизмы, лежащие в основе устойчивости?
По данным исследований, проведенных Сьюзен Линдквист из Массачусетского технологического института, основными участниками, по-видимому, являются «белки теплового шока» (БТШ). БТШ следят за тем, чтобы остальные белки всегда формировали стабильную третичную структуру – это крайне необходимо для выполнения их функций внутри клетки. В суровых условиях (экстремальная температура или высокая засоленность) белки могут складываться в неправильную структуру, из-за чего не смогут выполнять свою функцию. Именно здесь вступают БТШ, выступая в роли шаперонов (наставников), помогающих белкам восстановить свою правильную структуру и качественно выполнять свою функцию даже в сложных условиях.
Важно отметить, что БТШ контролируют фолдинг белка в одну и ту же стабильную форму даже при генетических мутациях, которые подменяют последовательность аминокислот в белке. Это позволяет скрытым вариациям постепенно накапливаться в организме, не мешая рутинной деятельности белка.
Структура и функция белков регулируют все типы процессов при развитии организма. Поэтому, когда команда Линдквиста удалила БТШ из резуховидки Таля и у дрозофил, накопленные мутации неожиданно проявились в физических изменениях организма, включая новую форму листьев резуховидки Таля и изменение форм глазных яблок у дрозофил. Обычно гены, кодирующие БТШ, не прекращают своего функционирования в естественных популяциях, но временами изменения в среде обитания (например, кардинальная смена рациона) могут подавлять систему БТШ и вызывать тот же эффект – создание вариации, способной реагировать на давление отбора именно тогда, когда это нужно больше всего.
БТШ не являются ключевой составляющей устойчивости. Некоторые белки по своей природе устойчивее других, даже без участия БТШ. Это также влияет на эволюцию особи. Например, в 2006 году группа Джесси Блума из Центра исследований рака имени Фреда Хатчинсона (Сиэтл) показала, что более устойчивые белки могут извлекать дополнительные полезные функции из новых мутаций, не утрачивая своей основной структуры и не превращаясь в бесполезный клубок. А в 2014 году Блум продемонстрировал, что способность вируса гриппа выдерживать мутации позволяет ему адаптироваться к ответной реакции иммунной системы.
Другое исследование, проведенное Робертом Макбрайдом в Йельском университете, показало, что вирусы размножаются для того, чтобы производить более устойчивые белки, которые будут адаптироваться к новым давлениям отбора (например, повышенные температуры) быстрее, чем менее устойчивые штаммы. Другими словами, вирусы оказались более эволюционирующими.
Однако устойчивость – это лишь одна сторона эволюционируемости. Вторым важным фактором является интеграция – то, как различные части тела и признаки изменяются и развиваются вместе. Интеграция признаков часто обусловлена их общей историей развития. Например, такие части тела, как конечности, зубы, ребра и позвонки, которые дублируются вдоль оси тела, возникли в результате прямой дупликации определенных генов еще в процессе эволюции. Эти две копии не будут полностью независимыми друг от друга, потому что их экспрессия в различных участках генома не регулируется одинаковыми регуляторными генами. То есть две части тела все еще будут изменяться и развиваться вместе.
Интеграция возможна и в случае, если разные части задействованы в выполнении одинаковой функции. Например, большой палец руки и остальные четыре пальца работают вместе для захвата объектов и выполнения различных действий. Чтобы сохранить оптимальное использование руки, изменение в одной части (допустим, удлинение пальца) должно сопровождаться соответствующими изменениями в остальных пальцах. Таким образом, отбор отдает предпочтение той системе развития, при которой генетические изменения, влияющие на длину одного пальца, приведут к согласованному сдвигу в размерах всех оставшихся.
Интеграция, как и устойчивость, – это палка о двух концах. С одной стороны, она увеличивает способность к созданию согласованных и адаптивных изменений в структуре тела, что, несомненно, повышает шансы особи на выживание. С другой стороны, интеграция ограничивает возможные направления развития, которыми могло бы пойти животное: потенциально благоприятное изменение одного признака может привести к катастрофическим последствиям для других признаков, связанных с ним.
К счастью для жизни на Земле, интеграция не работает по принципу «все или ничего». Вполне очевидно, что признаки могут быть интегрированы в разной степени (см. «Эволюционирующие собаки»). Иногда существующая интеграция может полностью отключаться, превращая каждый признак в независимый «модуль» с большей эволюционируемостью.
Рассмотрим эволюцию крыльев у млекопитающих. Передние и задние конечности мышей и других грызунов очень тесно интегрированы, поэтому изменения в одной паре конечностей (к примеру, удлинение) почти идеально коррелирует с изменениями в другой паре.
Однако летучие мыши пользуются своими измененными передними конечностями для полета, а задними – для захвата предметов. Это две совершенно разные задачи, намекающие на слабую интегрированность конечностей.
И действительно, Бенедикт Халлгримссон из Университета Калгари (Канада) и Натан Янг из Калифорнийского университета (Сан-Франциско) обнаружили, что ковариация длины костей в передних и задних конечностях летучей мыши склонна быть значительно ниже, чем у других млекопитающих. Это указывает на то, что в процессе эволюции предки летучих мышей, должно быть, потеряли генетическую интеграцию между передними и задними конечностями, открыв дверь для формирования крыльев.
Подобная ситуация могла бы объяснить и различные этапы эволюции приматов. Например, Кэмпбелл Рольян из Университета Калгари сравнил виды четвероногих приматов (макаки), у которых руки и ноги выполняют схожие функции, с высшими приматами (люди, шимпанзе, гориллы и орангутаны), у которых руки и ноги выполняют независимые функции.
Как и ожидалось, Рольян обнаружил большую интеграцию между руками и ногами четвероногих, а не высших приматов. Другое исследование передних и задних конечностей в целом, а не просто рук и ног по отдельности, привело к схожим результатам: ковариаций в конечностях высших приматов оказалось примерно на 40 % меньше, чем у четвероногих.
Итогом стало то, что руки и ноги могли реагировать на естественный отбор с большей степенью независимости, увеличивая тем самым собственную эволюционируемость. В конечном счете именно это позволило древним людям «отрастить» более длинные ноги, адаптированные к бегу и ходьбе. А длина рук при этом оставалась относительно неизменной. По той же причине укорочение предплечья, которое облегчило использование инструментов, не ограничивалось аналогичными изменениями в нижней части ног, которые могли бы негативно повлиять на способности к ходьбе.
Важно отметить, что интеграция идет поэтапно. Несмотря на значительное ослабление интеграции между руками и ногами в последнее время некоторые эволюционные связи затухают. Речь идет о достаточно сильных связях, способных удивительным образом изменить ход эволюции. К примеру, Рольян и Халлгримссон в сотрудничестве с Даниэлем Либерманом из Гарвардского университета обнаружили, что давление отбора на ноги могло подготовить цепкие руки человека к выполнению физической работы и использованию инструментов. Данное открытие было сделано после детального сравнения длины костей, составляющих каждый палец, и самого пальца. Ученые заметили, что достаточный уровень интеграции, сохранившийся между пальцами рук и ног, позволял им совместно развиваться до определенной степени.
Таким образом, давление отбора, формирующее ноги, могло изменить и руки, или наоборот. Но как именно? Используя компьютерное моделирование для подсчета возможного давления отбора и соответствующих изменений в анатомии приматов, группа ученых предположила, что естественный отбор действовал главным образом на пальцы ног – увеличивая большой палец и сокращая оставшиеся для стабилизации ноги в процессе ходьбы.
В результате по мере развития большого пальца ноги увеличивался и большой палец на руке. По чистой случайности это привело к тому, что кончики большого пальца и остальных смогли соприкоснуться впервые в истории эволюции, наделяя наших предков большей ловкостью и точностью захвата. Все это стало ключом к успешному использованию инструментов.
Главная идея заключается в том, что животные состоят из «вложенной иерархии» модулей и интегрированных признаков. И хотя кости рук и кистей человека (и всех высших приматов) обладают меньшей интеграцией, чем у четвероногих обезьян, интеграция между руками и ногами оставалась достаточно сильной и имеющей глубокие эволюционные последствия. Именно общие модели интеграции и модульности, а не один из этих факторов в отдельности, в конечном счете и определяют эволюционируемость.
И действительно, если заглянуть глубже в историю, то можно увидеть, как эти факторы сыграли решающую роль в эволюции животных. Около 540 миллионов лет назад кембрийский взрыв привел к формированию общего плана строения тела порядка 35 известных групп животных. Их общий предок не достиг высокого уровня интеграции или устойчивости, что делало его гибким в плане развития и нацеленным на эволюционные новшества. Эволюция успешно воспользовалась этой гибкостью и вскоре поспособствовала еще большей интеграции развития, параллельно более или менее корректируя 35 планов строения тел.
Нельзя сказать, что с тех пор эволюционируемость резко упала. Несмотря на то что процессы развития, отвечающие за общее строение животных, слишком тесно интегрированы для фундаментальных изменений, дальнейшее стремление к большей модульности частей тела животных повышает их способности к индивидуальному развитию. Именно это повысило их индивидуальную эволюционируемость. Именно эти эксперименты с частями тел животных, а не радикальное переосмысление всей их структуры, дали толчок к удивительным биологическим новшествам, особенно среди членистоногих и позвоночных.
Теперь основной целью стало понять, что именно вызывает диссоциацию интегрированных признаков, заставляя их становиться более модульными. Возможно, что в некоторых случаях части тела обособляются в результате счастливой случайности, которой затем успешно пользуется эволюция. Чтобы разобраться с процессом диссоциации, потребуются углубленные знания всех генетических механизмов-участников. В этом направлении уже ведутся работы путем картирования генов, определяющих интеграцию различных признаков у мышей. Но генетическая «сыскная работа» обнаружила весьма сложную картину. Например, по словам Халлгримссона, в определении формы лица человека участвует огромное количество вариаций генов: «Вы не сможете объяснить большую часть вариаций из геномных данных. А таковыми окажутся слишком многие сложные признаки». Изменения в процессе регуляции гена вместо корректировки самого гена – вот главный ключ к разгадке. Примечательны результаты другого исследования – оно показало, что и сама эволюционируемость продолжает развиваться.
Это первые шаги в эмпирическом исследовании эволюционируемости. Дальнейший прогресс будет зависеть от ученых, собирающих данные по различным направлениям биологии. Полноценная теория интеграции, модульности и развивающаяся природа эволюционируемости потребуют объединения генетики и биологии развития с морфологическими исследованиями как в экспериментальных, так и в естественных условиях.
Эволюционирующие собаки
Лица лучшего друга человека могут обладать совершенно удивительными формами – от короткой и сплющенной морды пекинеса до вытянутой мордашки колли. Исследования Эбби Дрейк из Манчестерского университета (Великобритания) и ее коллеги Криана Клингерберга продемонстрировали, что разнообразие собачьих морд сопоставимо с разнообразием всех видов плотоядных.
Но удивительная вариация у собак была получена всего за несколько тысяч лет селекционного разведения и стала возможной благодаря ограниченной интеграции между мордой и мозгом – в норме такое ограничение не встречается у других млекопитающих. Интересно, что схожая модульность встречается у волков, койотов и шакалов. Поэтому считается, что морды собак всегда были способными к эволюционируемости – для формирования им требовалось всего лишь правильное давление отбора.
Сейчас эволюционные эксперименты в лаборатории стали обыденностью, а самый продолжительный эксперимент, начатый в 1988 году, позволил нам увидеть эволюцию во всей красе. Из него мы узнали, как значительное изменение одного существа может сказаться на его среде обитания и изменить траекторию развития всех существ, населяющих это пространство.
Долгосрочный эволюционный эксперимент был начат Ричардом Ленски из Мичиганского государственного университета. В этом проекте Ленски взял один штамм бактерии E. coli и создал 12 культур.
С тех пор каждый день образец каждой культуры переносили в свежую питательную среду, состоящую преимущественно из глюкозы. С момента начала эксперимента бактерии создали свыше 66 000 поколений. Каждые 75 дней образцы замораживаются, создавая искусственную «окаменелость», благодаря которой ученые смогут вернуться назад и определить точные генетические мутации, лежащие в основе наблюдаемых изменений.
Наибольший эволюционный сдвиг произошел примерно после 31 500-го поколения, когда одна линия в одной из 12 популяций развивала способность питаться цитратом – еще одним химическим веществом, входящим в состав питательной среды. В обычных условиях E. coli не питается цитратом, потому что не может перенести его в собственные клетки. Однако эта мутация наделила «поедателей цитрата» способностью к созданию белка-«антипортера» CitT, благодаря которому цитрат может пройти через мембрану и проникнуть в клетку. Ген этого белка уже существовал. Однако он обычно находился в «выключенном» состоянии из-за присутствия кислорода.
Антипортер – это своего рода вращающаяся дверь. Она позволяет менять одну молекулу на другую. В данном случае цитрат импортируется в клетку в обмен на одну из трех мелких и менее ценных молекул: сукцинат, фумарат или малат. После развития способности питаться цитратом численность популяции резко возросла, поскольку та же питательная среда теперь могла содержать больше клеток.
Вскоре «поедатели цитрата» стали доминировать, превосходя все штаммы E. coli, кроме одного, который развил в себе способность эксплуатировать измененную среду, содержащую теперь три экспортированные молекулы. Достичь этой способности штамм смог путем создания белка-транспортера DctA. Теперь с небольшими энергетическими затратами он мог импортировать сукцинат и другие молекулы, экспортированные цитратопотребляющим штаммом.
Но на этом все не закончилось. Штамм, потребляющий цитрат, стал производить больше DctA, стараясь компенсировать часть сукцината и других молекул, терявшихся в процессе добывания цитрата.
Такая работа представляет собой прекрасный пример того, что эволюция и экосистемы неразрывно связаны, а эволюционные новшества могут изменять условия среды, стимулируя разнообразие и изменяя как структуру экосистемы, так и эволюционные траектории сосуществующих организмов.
Исследователи сравнивают это с эволюцией фотосинтетических бактерий, происходившей около 2,4 миллиарда лет назад: тогда кислород, выделяемый первыми фотосинтезаторами, изменил Землю и ход эволюции. Теперь появление цитратопотребляющих штаммов изменило питательную среду и путь развития всех живущих в ней бактерий.
Эти открытия являются еще одним примером бездумности эволюции. Лучшим решением стало бы использование небольшого количества энергии для импорта цитрата напрямую, а не обмен цитрата на сукцинат с последующей тратой энергии на попытки вернуть этот сукцинат до того, как его съедят другие бактерии.
Эксперимент также показал, что «эволюция» и «совершенство» – это две несовместимые вещи. Даже в простой и неизменяемой среде внутри лабораторной колбы бактерии не прекращают создавать мелкие «корректировки» для улучшения своего уровня приспосабливаемости.
Ленски считал, что после 10 000 поколений бактерии смогут приблизиться к некоему верхнему пределу приспособляемости, дальнейшее улучшение которого невозможно. Но данные 50 000 поколений показали, что это совсем не так. Сталкиваясь друг с другом при равных условиях, новые поколения стабильно росли быстрее старых. Другими словами, уровень приспособляемости не стоит на месте.
Полученные результаты соответствуют математическому правилу распределения, известному как «степенной закон»: объект может увеличиваться вечно, но со стабильно убывающей скоростью. «Даже если мы экстраполируем выборку на 2,5 миллиарда поколений, то у нас не появится веских причин предполагать наличие верхнего предела», – говорит Ленски.
Результаты исследований Ленски показывают, что даже в простейших и самых постоянных средах эволюция не способна достичь предела совершенства, при котором процесс развития мог бы остановиться.
Подобный вывод дискредитирует одно из любимейших представлений эволюционных биологов, в соответствие с которым виды развиваются до достижения пика приспособляемости в поле возможностей. В реальном мире виды живут в постоянно меняющихся условиях. Результаты показывают, что способов адаптации к окружающей среде намного больше, чем мы себе представляем.
Стремительный или постоянный – кто победит в эволюционной борьбе за выживание?
Одна чашка Петри. Два бактериальных штамма конкурируют за превосходство. Так что же победит после развития 500–1500 поколений?
Наблюдая за «боями на смерть» между клонами Escherichia coli, исследователи заметили, что абсолютными победителями редко бывали первопроходцы, обязанные своим успехом специфическим генным мутациям. В большинстве случаев пальма лидерства доставалась простым «работягам». Главным образом потому, что, в отличие от самых ранних претендентов на победу, они по-прежнему могли приобретать небольшие, но ценные мутации, которые в конечном счете оказывались жизненно важными для выживания и доминирования.
Эти менее значимые мутации дают существенное преимущество в дальнейшем, поскольку позволяют использовать сильные стороны всего генома. «Бурные» мутации, обеспечивающие ранний успех, не так хорошо согласуются со всем геномом, как менее стремительные.
Эволюционные соревнования проводились командой исследователей во главе с Ричардом Ленски и Джеффри Барриком из Техасского университета в Остине. Они отобрали четыре отдельные пары клонов и сравнили каждую пару друг с другом. Штаммы-лидеры, которые почти сразу начали завоевывать чашку Петри, развили полезные мутации, направленные на улучшение эффективности topA – особого гена, транскрибирующего многие другие гены. Они также развили мутации в RBS – гене, улучшающем производство ДНК и РНК.
Но затем, как в басне о черепахе и зайце, эти мутации стали их слабостью, приведя их в состояние эволюционного «сна»: их не отступающие соперники продолжали развивать в себе не столь явные, но жизненно необходимые мутации, наделившие их преимуществом.
Это исследование помогает ответить на вопросы о том, как происходит отбор: на фоне значимых и стремительных мутаций в отдельных генах или же путем постоянного развития целых геномов. Обнаружение эволюционного превосходства всего генома над влиянием отдельных генов в бактериях оказало колоссальное значение для генетических исследований человека. Оно может объяснить, почему очень часто исследователям генов не удается обнаружить отдельные гены, связанные с часто наследуемыми признаками.