5 Величайшие изобретения природы

Методы эволюции слепы, жестоки и бессмысленны. В то же время они создали и самые совершенные машины в известной нам Вселенной. Время от времени эволюция встречается с каким-то выдающимся новшеством, способным переписать правила жизни. Вот ее самые великие изобретения.

Многоклеточность

Вспомните о ней, когда будете мыться в душе. Скорее всего, вы только что намылили спину одним из самых величайших эволюционных новшеств. Ну или, по крайней мере, его хорошей синтетической копией.


Губки считаются ключевым примером многоклеточной жизни. Данное изобретение превратило живые существа из одноклеточных в по-настоящему сложные организмы. Это был настолько правильный ход с точки зрения развития, что он эволюционировал по меньшей мере 16 раз. Животные, земные наземные растения, грибы и водоросли – все это смешалось вместе.

Клетки объединялись между собой на протяжении миллиардов лет. Причем это делали и бактерии, образуя сложные колонии с трехмерной структурой и небольшим «разделением труда». Но сотни миллионов лет назад эукариоты – еще более сложные клетки, выносящие собственную ДНК в ядро, – поднялись на совершенно новый уровень. Они образовали постоянные колонии, в которых разные клетки решали разные задачи (например, питание и выделение), а поведение было хорошо скоординировано.

Эукариоты смогли совершить этот скачок, поскольку уже выработали необходимый набор атрибутов для решения других задач. Многие одноклеточные эукариоты могут адаптироваться или «видоизменяться» в клеточные типы, предназначенные для решения конкретных задач (например, слияния с другой клеткой). Они воспринимают окружающую среду с помощью химических сигнальных систем. Часть таких систем очень похожа на те, через которые многоклеточные организмы управляют поведением клетки. Также они могут обнаруживать и захватывать добычу с помощью тех же поверхностных липких молекул, которые «скрепляют» клетки у животных и других многоклеточных организмов.

Так с чего же все началось? Одно из мнений сводится к тому, что слияние помогало клеткам выживать, поскольку они становились слишком крупными для того, чтобы быть съеденными одноклеточными хищниками. Была и другая точка зрения, в соответствие с которой простые клетки в большинстве своем весьма ограничены в возможностях. Например, они не могли одновременно делиться и отращивать жгутики для передвижения. А колония могла и перемещаться, и производить деление, если каждая клетка в ее составе выполняла свою работу.

Современные исследователи проводят реконструкцию биологии первых многоклеточных существ, изучая геномы их ближайших живых родственников (например, одноклеточных простейших Хоанофлагеллятов). Это подскажет нам, каким образом животные эволюционировали из них порядка 600 миллионов лет назад. Хоанофлагелляты и губки являются единственными живыми свидетелями эволюции и имеют общего предка. Хоанофлагелляты обладают на удивление большим количеством эквивалентов сигнальных молекул, а также молекул клеточной адгезии, не присущих животным.

Но больше и сложнее – не обязательно лучше. Если судить по биомассе и многочисленности видов, то одноклеточная жизнь все еще значительно превосходит многоклеточную.

Глаз

Глаза появились в мгновение эволюционного ока и навсегда изменили уклад жизни. До появления глаз жизнь была мягче и безмятежнее; в ней господствовали медлительные и мягкотельные черви, бороздящие моря. Появление глаз показало живым организмам более жестокий и конкурентный мир. Зрение превратило животных в активных охотников и спровоцировало эволюционную гонку за превосходством, изменившую всю планету.


Первые глаза появились около 543 миллионов лет назад, в начале кембрийского периода. Первыми обладателями глаз стала группа трилобитов Редлихий. Их глаза имели сложную структуру, были похожи на глаза современных насекомых и, вероятно, развивались из светочувствительных ямок. Обнаружение глаз в ископаемых находках стало настоящим сюрпризом, ведь у предков трилобитов, живших 544 миллиона лет назад, глаза отсутствовали.

Так что же произошло в эту волшебную эпоху? Разумеется, глаза были слишком сложной структурой. Разве могли они появиться в одночасье? Дан-Эрик Нильссон из Лундского университета в Швеции считает, что это возможно. Он подсчитал, что для того, чтобы участок светочувствительных клеток превратился в фасеточный (сложный) глаз, потребуется всего полмиллиона лет.


Рис. 5.1. Восприятие света. Раньше считалось, что глаз развивался самостоятельно целых 65 раз. Но новые генетические данные говорят о том, что эволюция глаза проходила только однажды. Прототип глаза (в центре) разделился на множество современных форм.


Не стоит и говорить о том, что различие было существенным. Вполне возможно, что клетки со светочувствительными пятнами были вполне обычным явлением задолго до кембрия. Они позволяли древним животным обнаруживать свет и определять его направление. Такие рудиментарные органы чувств все еще используются медузами, плоскими червями, а также другими малоизвестными и примитивными группами. Разумеется, светочувствительные пятна – все-таки лучше, чем ничего. Однако это – не глаза. Настоящий глаз нуждается в важном дополнении – хрусталике, который будет фокусировать свет и формировать изображение.

Трилобиты были не единственными животными, которые приобрели это новообразование. Биологи предполагают, что во многих случаях глаза могли развиваться независимо. Однако генетические данные указывают на наличие одного предка для всех типов глаз. В любом случае, трилобиты были первыми.

И насколько сильно это все изменило. В незрячем мире раннего кембрия зрение было равносильно сверхспособностям. Глаза превратили трилобитов в первых активных хищников, способных выискивать и выслеживать пищу – нечто, непосильное другим животным. И, конечно же, добыча развивалась вместе с ними. Всего несколькими миллионами лет спустя глаза превратились в нечто обыденное, а животные стали более активными и наделенными защитной броней. Этот всплеск эволюционного развития получил название «кембрийский взрыв».

И все же зрение не универсально. Из 37 типов многоклеточных животных его развили только шесть. Казалось бы, что в этом выдающегося? Но только призадумайтесь: эти шесть типов зрячих животных (включая нас с вами, хордовых, членистоногих и моллюсков) стали самыми многочисленными, наиболее распространенными и успешными животными на планете.

Мозг

Мозг часто считается венцом эволюции, наделяющим своего обладателя такими истинно человеческими качествами, как язык, интеллект и сознание. Но еще до этого эволюция мозга сделала нечто невообразимое: она вывела жизнь из состояния «овоща». Впервые мозг дал возможность организму реагировать на изменения окружающей среды быстрее, чем в рамках поколений.


Нервная система координирует две чрезвычайно важные функции: движение и память. Если вы – растение, и ваш источник пищи исчезает, то дело плохо. Но если у вас есть нервная система, контролирующая мышцы, то вы можете передвигаться в поисках еды, жилища и партнеров.

Простейшая нервная система представлена кольцеобразными цепочками у стрекающих (медузы, морские ежи, актинии). Эти животные могут не отличаться умственными способностями, однако они способны находить то, что им нужно, и взаимодействовать с окружающим миром в более сложной форме, нежели растения.

Следующим эволюционным шагом, который, вероятно, и произошел у плоских червей в кембрии, стало добавление своего рода регулирующей системы, которая придавала движениям смысл. Эта разновидность примитивного мозга имела дополнительные «провода», которые организовывались в сеть.

Поиск пропитания стал главной целью всех древних водных обителей. Организмы должны были отделять съедобное от ядовитого, а мозг помогал им в этом. Конечно же, при взгляде на любое животное нельзя не заметить, что мозг всегда расположен рядом со ртом. У ряда самых примитивных беспозвоночных пищевод проходит сквозь мозг.

С мозгами развиваются память и осязание, позволяющие определить, хороший этот мир или нет. Вместе они позволяют животному динамически отслеживать улучшение или ухудшение окружающей обстановки. Даже животные с простейшей мозговой организацией (насекомые, слизни, плоские черви) могут на основании собственного опыта предсказывать свой следующий шаг или выбирать наиболее подходящую пищу; в них заложена система поощрения за правильный выбор. Сложные функции человеческого мозга (социальное взаимодействие, процесс принятия решений, сопереживание и т. д.) развились из этих базовых систем, регулирующих прием пищи. Ощущения, управляющие нашим пищевым поведением, стали интуитивными решениями, которые мы называем внутренним чутьем. Есть простая причина, по которой мы целуем потенциальных партнеров, – это самый примитивный из всех известных нам способов что-либо проверить.

Язык

Если говорить о людях, то язык должен был стать высшим эволюционным достижением. Он возглавляет список того, что делает нас особенными, – от сознания, сопереживания и самокопания до символизма, духовности и нравственности.


То, как именно наши предки совершили данный рывок в развитии, так и осталось одной из самых сложных научных проблем. Сам сложный язык с синтаксисом и грамматикой, в котором смысловое значение формируется в соответствие с иерархией подчиненных предложений, зародился лишь один раз. Воспроизвести язык способен только человеческий мозг.

Но почему же наши близкие эволюционные родственники (шимпанзе и другие приматы) не наделены этой способностью? Ответ кроется в уникальных для человека нейронных сетях. Эти сети позволяют выполнять сложную иерархическую обработку, необходимую для основанного на правилах языка. Нейронные сети формируются как генами, так и опытом. FOXP2 – первый ген, связанный с языком, – был найден в 2001 году.

Этот ген есть и у людей, и у шимпанзе. Однако версии гена варьируют и по-разному влияют на целевые для FOXP2 гены в мозге. Кроме того, мозг новорожденного-человека куда менее развит, чем мозг новорожденного шимпанзе. Это означает, что наши нейронные сети формируются на протяжении многих лет нашего развития при погружении в языковую среду.

В некотором смысле язык – это последнее слово в биологической эволюции, поскольку именно это эволюционное новообразование позволило своим обладателям выйти за пределы чисто биологических реалий. Язык помог нашим предкам в создании собственной среды (теперь мы называем ее «культурой») и адаптации к ней без необходимости в генетических изменениях.

Фотосинтез

Лишь немногие эволюционные новшества имели столь дальновидные последствия для всего живого, как способность получать энергию из солнечного света. Фотосинтез в буквальном смысле преобразил «лицо» планеты, изменив атмосферу и укутав Землю в защитный щит от смертельной радиации.


Без фотосинтеза запасы кислорода в атмосфере были бы ничтожно малы; не существовало бы ни растений, ни животных. На планете жили бы только микробы, влачащие жалкое существование в первичном бульоне из минералов и углекислого газа. Фотосинтез снял все эти ограничения, а выработанный в процессе кислород подготовил почву для возникновения более сложных форм жизни.

До появления фотосинтеза жизнь была представлена одноклеточными микробами, источниками энергии которых являлись химические вещества (сера, железо и метан). Затем примерно 3,4 миллиарда лет назад или даже раньше группа микробов развила в себе способность к получению солнечной энергии с целью образования необходимых для роста и питания углеводов. Пока неясно, как именно им это удалось. Однако генетические исследования показывают, что светоулавливающий аппарат развился из белка, чьей функцией являлась передача энергии между молекулами. Так возник фотосинтез.

Но ранняя версия фотосинтеза не вырабатывала кислород. В качестве исходных компонентов использовались сероводород и диоксид углерода, а конечными продуктами являлись углеводы и сера. Затем, спустя какое-то время (точные даты неизвестны), появился новый тип фотосинтеза, который пользовался другим ресурсом – водой, и в качестве побочного продукта выделял кислород.

В ранние дни на Земле кислород был ядовит для жизни. Он накапливался в атмосфере до тех пор, пока какие-то микробы не развили в себе толерантность к кислороду и не научились использовать его в качестве источника энергии. Это оказалось важным открытием: использование кислорода для сжигания углеводов в 18 раз эффективнее, чем в анаэробной среде.

Жизнь на Земле обзавелась нужным количеством энергии, создав условия для развития сложных многоклеточных форм жизни, включая растения, которые «позаимствовали» свой фотосинтетический аппарат у фотосинтезирующих бактерий (цианобактерий). Прямо или косвенно, но в наши дни фотосинтез производит почти всю энергию, используемую живыми организмами на Земле.

Кислород является не просто эффективным средством для сжигания топлива. При выделении кислорода в процессе фотосинтеза он помогает защитить жизнь. Земля находится под постоянным облучением смертельного ультрафиолетового излучения, исходящего от солнца. Побочным продуктом нашей насыщенной кислородом атмосферы является озоновый слой, простирающийся на 20–60 километров над поверхностью Земли. Именно он отфильтровывает большую часть вредного ультрафиолета. Такой защитный купол позволил жизни выйти из безопасного океана и колонизировать сушу.


Рис. 5.2. Мир, пригодный для животных: в процессе фотосинтеза вырабатывается кислород, которым мы дышим.


Сейчас почти каждый биохимический процесс на планете так или иначе зависит от солнечной энергии.

Секс

Птицы этим занимаются. Пчелы этим занимаются. Для подавляющего большинства видов единственный способ воспроизведения – половое размножение. И оно ответственно за самые красочные биологические шоу на планете – от массового нереста кораллов, который виден из космоса, до различных проявлений, как, например, рога оленя и танец птицы-шалашника. Некоторые биологи считают, что к сексуальным проявлениям стоит отнести поэзию, музыку и искусство. Можно даже сказать, что секс отвечает за поддержание самой жизни. Виды, отказывающиеся от сексуальных отношений, почти всегда вымирают в течение нескольких сотен поколений.


Несмотря на всю важность секса, биологи до сих пор спорят о том, как он появился и почему не подвергся обратной эволюции. Все потому, что на первый взгляд секс выглядит весьма проигрышной стратегией.

Эволюция должна была способствовать бесполому размножению по двум причинам. Во-первых, в битве за ресурсы бесполые виды смогут победить половых. Во-вторых, сперма и яйцеклетка содержат только половину набора генов каждого родителя, то есть организм, использующий половое размножение, передаст лишь 50 % своих генов следующему поколению. Бесполые виды гарантированно передадут 100 % своих генов.

Очевидно, что с этой цепочкой рассуждений что-то не так. Да, это правда, что многие виды, в том числе насекомые, ящерицы и растения, прекрасно обходятся без секса. По крайней мере, какое-то время. Но таких представителей значительно меньше, чем половых.

Стойкий успех секса обычно сводится к тому, что он перетасовывает генетический набор, добавляя вариации и позволяя убирать ненужные (мутации – это как раз то, что в итоге уничтожает большинство бесполых видов). Вариации важны, поскольку позволяют жизни реагировать на изменения окружающей среды, в том числе на взаимодействие с хищниками, добычей и – особенно! – с паразитами. Бесполое размножение иногда сравнивают с покупкой 100 билетов в лотерее, где все номера одинаковые. Куда лучше купить только 50 билетов, но с разными номерами.

Как бы ни был полезен секс сейчас, когда он у нас есть, никто так и не знает, как именно он зародился. Возможно, это было что-то столь прозаичное, как репарация ДНК. Бесполые одноклеточные организмы могли выработать привычку к периодическому удвоению собственного генетического материала, а затем двойному его сокращению. Данный способ позволил бы им восстановить (репарировать) любое повреждение ДНК, «переключаясь» на запасной набор. Схожий обмен ДНК до сих пор отмечается в процессе производства яйцеклеток и сперматозоидов.

Не обошлось здесь и без паразитов. Длинные паразитические ДНК под названием «транспозоны» размножаются путем включения своих копий в стандартный генетический материал клетки. Представьте себе, что транспозон внутри одноклеточного организма приобретает мутацию, позволяющую его клетке-хозяину периодически сливаться с другими клетками перед повторным делением. Транспозон этой примитивной формы секса мог бы распространяться горизонтально между различными клетками. Как только такая мутация возникнет в популяции, паразитический секс распространится довольно быстро.

Смерть

Могла ли эволюция создать смерть с косой? Да, могла. Но, конечно, не во всех ее проявлениях. Живые существа всегда умирали из-за несчастных случаев, будь то голод или травмы. Но есть еще один вид смерти, в которой клетка – и, возможно, целые организмы – выбирает уничтожение из-за суммарной выгоды для общего блага. Другими словами, смерть – это стратегия эволюции.


Если рассматривать многие разновидности запрограммированной гибели клеток или апоптоза, то вполне очевидно, что в каждом многоклеточном организме присутствует механизм самоуничтожения. У вас на руке – пять пальцев. Они образовались потому, что клетки, которые жили между ними, умерли, когда вы были зародышем. Крошечные эмбрионы размером от 8 до 16 клеток (и всего 3 или 4 деления клеток после оплодотворенной яйцеклетки!) зависят от гибели клеток. Заблокируйте апоптоз, и развитие пойдет не так, как нужно. Не будь смерти, мы бы даже не родились.

Даже будучи взрослыми, мы не смогли бы жить без смерти. Без апоптоза нас бы всех поразил рак. Наши клетки постоянно накапливают мутации, которые угрожают внести хаос в наш упорядоченный и структурированный процесс деления клеток. Но системы надзора внутри организма (например, система, включающая в себя белок р53) под названием «хранители генома» обнаруживают почти все подобные ошибки и отправляют пораженные клетки на самоубийство.

Запрограммированная гибель клеток играет центральную роль и в повседневной жизни. Она обеспечивает постоянный круговорот клеток в слизистой оболочке кишечника и создает на коже защитный внешний слой из мертвых клеток. Как только иммунная система завершает борьбу с инфекцией, лишние лейкоциты совершают самоубийство таким образом, чтобы воспаление прекратилось. Растения также используют гибель клеток как часть радикальной защиты от болезнетворных микроорганизмов, изолируя зараженную область, а затем убивая все клетки внутри.

Возможная выгода от жертвования несколькими клетками для организма вполне ясна. Но эволюция способствовала гибели и целых организмов. Клетки всех высших организмов начинают стареть уже после нескольких десятков клеточных делений, что в конечном итоге приводит к гибели самого организма. Отчасти смерть является одной из мер по защите от бесконтрольного роста.

Одна спорная теория предполагает, что все это является частью встроенной программы генетического старения, которая устанавливает верхний предел длительности нашей жизни.

Большинство эволюционных биологов отвергают идею врожденной «программы смерти». В конце концов, говорят они, животные умирают от старости по-разному, а не каким-то одним способом, как апоптотические клетки. Вместо этого они предлагают рассматривать процесс старения как своего рода эволюционную свалку: у естественного отбора мало причин для избавления от недостатков организма, которые поздно проявляются в жизни. Именно поэтому многие люди доживают до зрелых лет. Но теперь, когда люди в большинстве своем живут дольше репродуктивного возраста, мы столкнулись с тем эволюционным новшеством, которого быть не должно: смертью от старости.

Паразитизм

Название уже намекает на некое воровство, обман и скрытый умысел. Но вековая битва между паразитами и их хозяевами является одной из самых мощных движущих сил в эволюции. Без похитителей и любителей пожить за чужой счет жизнь просто была бы другой.


От вирусов до ленточных червей, ракушек и птиц – паразиты являются одними из самых успешных организмов на планете, беспардонно пользующимися всеми известными нам существами. Возьмем, к примеру, ленточного червя. Это плоский паразит, состоящий из гонад и головки с крючками, а также имеющий редуцированную пищеварительную систему, измененную так, чтобы обитать в богатых питательными веществами недрах пищеварительного тракта хозяина. В среднем человеческие ленточные черви живут по 18 лет и за это время успевают произвести 10 миллиардов яиц.

Многие паразиты (например, печеночная двуустка) мастерски овладели искусством манипуляций поведением своего хозяина. Муравьи, чей мозг был поражен молодыми трематодами, как загипнотизированные забираются на верхушки травинок, где с большой долей вероятности они будут съедены окончательным хозяином трематоды – овцой.

Паразиты, оказавшие наиболее сильное влияние на эволюцию, были самого малого размера. Бактерии, простейшие и вирусы могут определять эволюцию хозяев, ведь лишь самые сильные способны пережить инфицирование. И люди не исключение: гены для нескольких врожденных состояний по защите против инфекционных болезней при наследовании в одной дозе. Например, одна копия гена для серповидно-клеточной анемии защищает от малярии. И все это происходит в наши дни. А вот ВИЧ и туберкулез способствуют эволюционным изменениям в таких частях нашего генома, как гены иммунной системы.

Хозяева тоже могут влиять на эволюцию своих паразитов. Например, болезни, передающиеся при контакте человека с человеком, часто становятся менее смертоносными и делают так, чтобы зараженный человек прожил достаточно долго, чтобы передать инфекцию дальше.

Паразиты могут «запускать» эволюцию и на более примитивном уровне. Длинная паразитическая ДНК или транспозон, способный вырезаться и включаться в любое место генома, могут преобразовываться в новые гены, а также стимулировать мутацию или перетасовку ДНК, которая питает генетические вариации. Без их участия не обошлось и появление секса, ведь они активизировали отбор для слияния клеток образования гамет.

Другие прелести

Конечно же, есть множество других эволюционных новшеств, которые действительно изменили жизнь на земле. Фиксация азота стала одним из них. Если бы не бактерии, способные превращать инертный газообразный азот атмосферы в органические соединения и делать его доступным для других форм жизни, то не было бы наземных растений и многих наземных животных.

Еще одним великим новообразованием стало развитие глаз и мозга. Без генных систем, определяющих направления (перед-зад, верх-низ, право-лево) и контролирующих закладывание тканей в органы, жизнь на Земле однозначно была бы похожа на слизь.

Суперорганизмы

Суперорганизм – это большое количество особей, гармонично сосуществующих и достигающих лучшей жизни путем разделения труда и его результатов. Мы зовем это райской утопией и мечтаем достичь такого уклада на протяжении всей истории человечества. Увы, все наши усилия напрасны. Эволюция, однако, оказалась намного результативнее.


Вспомним физалию (или португальского кораблика). Со стороны она может казаться очередным сгустком медуз, бороздящим просторы открытого моря. Но рассмотрите этот сгусток в микроскопе, и вы увидите следующее: то, что казалось одной особью с щупальцами на самом деле является колонией одноклеточных организмов. Разделение труда этих «сифонофоров» стало настоящим искусством. Какие-то особи отвечают за передвижение, кто-то специализируется на питании, а кто-то распределяет питательные вещества.

Это коллективное существование дает множество преимуществ. Объединенные организмы, которые в противном случае осели бы на морском дне, теперь могут свободно плавать. Вместе они лучше защищают себя от хищников, справляются с физиологическим стрессом и покоряют новые территории. Физалии являются настоящими суперорганизмами.


Рис. 5.3. Внешне физалия похожа на медузу. Но в действительности это колония одноклеточных организмов.


Неудивительно, что с такими преимуществами колониальная жизнь развивалась много раз. Помимо этого, такая система имеет один существенный недостаток. Наглядный пример тому – скользящие бактерии, или миксобактерии.

Эти микробы, пожалуй, являются самыми простыми колониальными организмами. При обычных обстоятельствах отдельные особи бактерий скользят по единичным следам слизи. Лишь при нехватке определенных аминокислот в среде особи начинают объединяться. Получившийся суперорганизм состоит из стебля, увенчанного плодовым телом со спорами. Но рассеяться и начать новую жизнь могут только бактерии, обладающие спорами. Так в чем же смысл образования колонии для остальных?

Для некоторых типов колоний так и осталось неясным, как именно развилось подобное сотрудничество и как в нем избегают жульничества.

Но мы точно знаем, как это работает для одной группы животных – колониальных насекомых. Разгадка просто гениальна. Самки развиваются из оплодотворенных яиц, а самцы – из неоплодотворенных (гаплодиплоидия). Благодаря этому способу определения пола сестры больше связаны между собой, чем с собственным потомством. Получается, что лучший шанс для них передать свои гены дальше – это заботиться друг о друге, а не о собственных яйцах. Тем же объясняется постоянство внутри пчелиного улья, термитника и многих других колоний насекомых, в которых гаплодиплоидия развивалась как минимум десятки раз.

Как выяснилось, ярко-выраженная социальность, или эусоциальность, присутствует у муравьев, термитов, самых высокоорганизованных пчел, ос и других, но не все эти виды используют гаплодиплоидию. Данным мини-общинам явно не хватает тщательного контроля за эпизодами жульничества, но из всех систем на Земле они все еще остаются наиболее близкими к утопии.

Эволюционные промахи

Эволюция может не дотягивать до совершенства, что подтверждает несколько примеров.

• Женский таз. По сравнению с другими приматами, адаптация человека к прямохождению сделала роды намного опаснее.

• Линейные хромосомы. При делении клеток концы линейных хромосом разрушаются. Этого не происходит с кольцевыми хромосомами.

• Мутантный ген GLO. Люди, как и большинство приматов, не могут самостоятельно вырабатывать витамин С. Всему виной мутации в гене L-гулоно-Y-лактоновой оксидазы (GLO), которая при нехватке витамина С делает нас беззащитными перед заболеванием цингой.

• Трахея. Расположена рядом с пищеводом. Это означает, что удушье для нас – не редкость.

• Чувствительные клетки головного мозга. Пара минут кислородной недостаточности вызывает необратимые повреждения головного мозга человека. Для сравнения глазчатая кошачья акула может прожить целый час без кислорода.

• Зубовидный отросток. Это отросток последнего шейного позвонка. Он легко ломается и может повредить ствол мозга.

• Ноги. Спустившись с деревьев, мы начали ходить на «запястьях» нижних конечностей, что приводит ко всевозможным структурным дефектам.

• Y-хромосома. Аккумулирует мутации, поскольку не может поменяться ДНК с Х-хромосомой.

Симбиоз

Крокодилы со сверкающими деснами, коралловые рифы, орхидеи, рыбы со светящими приманками, муравьиные фермы. Самоцель симбиоза – получение пищи за некие «услуги» по очистке, передвижению, для защиты от солнца, ради пристанища и, конечно же, другой еды.


Существует множество определений симбиоза, однако мы будем придерживаться следующего: симбиоз – это отношения, в процессе которых два вида вовлечены в тесную физическую взаимовыгодную зависимость, почти всегда связанную с получением пищи. Симбиоз привел к сейсмическим сдвигам в эволюции, а эволюция, в свою очередь, постоянно порождает новые симбиотические отношения.

Вполне возможно, что ключевыми связями явились те, которые дали толчок образованию сложных, или эукариотических, клеток. Эукариоты используют специальные органеллы (митохондрии и хлоропласты) для получения энергии из пищи или солнечного света. Изначально эти органеллы были простыми прокариотическими клетками, которые эукариоты поглотили в крепких симбиотических объятиях. Без них были бы невозможны самые важные этапы развития: усложнение организмов, а также появление многоклеточных растений и животных.

В процессе эволюции симбиоз возникал очень часто, поэтому можно с уверенностью сказать, что это – правило, а не исключение. Глубоководные удильщики приютили биолюминесцентные бактерии в своих отростках надо ртами. Более мелкая рыба, приплывающая на свет, становится легкой добычей. Коралловые полипы на поверхности океана служат домом для фотосинтезирующих водорослей и обменивают неорганические продукты жизнедеятельности на органические углеродные соединения. Это одна из причин того, почему столь скудные на энергетические запасы тропические воды могут поддерживать столько разных форм жизни. В свою очередь, водоросли производят химическое вещество, поглощающее ультрафиолетовый свет и защищающее кораллы.

Считается, что более 90 % всех видов растений участвуют в симбиотических связях. Например, семена орхидеи. Это не более чем пыль с почти полным отсутствием питательных веществ. Для прорастания и роста орхидеи они переваривают грибок, которым затем заражается семя.

Ржанковые достают пиявок из зубов крокодилов, предлагая последним гигиену полости рта в обмен на еду. Муравьи-листорезы используют измельченные листья в качестве удобрения для грибка, который они выращивают в подземных камерах. Муравьи не могут переваривать листья, но питающийся ими грибок производит вкусную для муравьев пищу из сахара и крахмала, разрушая токсины в листьях. К тому же нет ни одного животного, включая нас, которое смогло бы выжить без бактерий, обитающих в кишечнике, переваривающих пищу и производящих витамины.

Но… у природы есть предел изобретательности

Нам часто кажется, что природа придумала все, что можно, еще задолго до появления самих людей – включая колесо, точнее, его прообраз (см. «Колеса – эффективный способ передвижения. Почему же они так и не эволюционировали в природе?»). И все же есть такие структуры, которые при всей своей полезности так и не развились – и не смогут этого сделать, по крайней мере на Земле.


Например, кто-то считает, что будь у зебр встроенные пулеметы, их бы никогда не беспокоили львы. Так почему же эволюция изобретает одни вещи и пренебрегает другими?

Возникает чрезвычайно сложный вопрос: как изучить то, что еще не появилось? Для начала можно задать себе вопрос, любимый всеми порицателями эволюции, которые верят в то, что большинство изобретений природы (глаза, жгутики бактерий и т. д.) слишком сложны для образования в ходе эволюции. Зачем оно нужно? Понять это – уже половина ответа, считают они.

Как оказалось, польза всегда огромна. Крылья насекомых могли развиться от колебаний жабр – изначально ими пользовались для гребли по водной поверхности. Это пример экзаптации – явления, при котором структуры и поведение, образованные для одной цели, в корне меняют свой функционал, продолжая оставаться полезными на каждом промежуточном этапе.

Если взглянуть на эту точу зрения под другим углом, то получается, что некоторые функции не способны развиться по причине того, что их промежуточные этапы будут совершенно бесполезны. Например, двусторонняя радиосвязь оказалась бы весьма полезной многим животным: для отправления беззвучных сигналов тревоги или обнаружения других представителей своего вида. Так почему же подобная связь так и не возникла? Недавнее изобретение наноразмерных радиоприемников показало, что физически это возможно.

Ответ может крыться в том, что половина радио – совершенно бесполезна. Обнаружение природных радиоволн (например, от молнии) не расскажет животному ничего полезного об окружающей среде. То есть не возникнет отбора для мутаций, позволяющих организмам обнаруживать радиоволны. В то же время при отсутствии средств для обнаружения радиоволн их излучение не принесет никакой пользы.

Контрастность с видимым излучением едва ли можно было бы сделать ярче. Очевидно, что возможность определять наличие или отсутствие света станет весьма полезным навыком во многих средах; размытое изображение лучше, чем ничего, и так далее, вплоть до четкого ястребиного зрения.

Небо из морских водорослей

Излучение видимого света может оказаться полезным даже для существ, не способных обнаружить его самостоятельно. Например, биолюминесцентный фитопланктон подсвечивает волны в океане, приманивая хищников, питающихся врагами фитопланктона. Те же принципы применимы и к звуку – не сложно заметить, как различные формы эхолокации обособленно эволюционировали в таких группах, как летучие мыши, пещерные саланганы и киты.

Можно задаться и таким вопросом: почему никогда не образовались растения, способные парить в небе, как воздушный шар? На первый взгляд, эта идея не кажется чем-то из области фантастики: у многих морских водорослей имеются специальные поплавки, или пневматоцисты, наполненные кислородом или углекислым газом. Другие водоросли могут производить водород. Так что попробуйте заполнить большую тонкую пневматоцисту водородом, и, возможно, морские водоросли научатся летать. Летающие растения смогут выбивать воду и направлять растения к свету, что даст им значительное эволюционное преимущество. Так почему же наше небо не пестрит живыми воздушными шарами зеленого цвета?

Скорее всего, промежуточная стадия так и не смогла развиться, поскольку большие пневматоцисты с чрезвычайно тонкими мембранами оказались бы слишком уязвимыми перед хищниками и легко повреждались бы от волн. Более того, водоросли вырабатывают водород только в том случае, если в воде присутствует мало серы. К тому же молекулы газообразного водорода настолько малы, что будут попросту вытекать из любой пневматоцисты. А половина водородного шара мало на что способна, по крайней мере, на нашей планете. Даже эволюция имеет свои пределы.

Колеса – эффективный способ передвижения. Почему же они так и не эволюционировали в природе?

Нельзя с полной уверенностью утверждать, что природа никогда не изобретала колеса – миллионы лет бактерии пользовались им в качестве средства передвижения. Колесо лежит в основе бактериального жгутика, который немного напоминает штопор и постоянно вращается для движения организма вперед. Около половины всех бактерий имеют как минимум один жгутик. Каждый из жгутиков крепится к «колесу», заложенному в клеточной мембране. Колесо вращается сотни раз в секунду, приводимое в действие крошечным электродвигателем. Этот сложный образец нанотехнологий имеет даже собственный задний ход.

Так что ошибкой будет говорить, что природа не изобретала колеса. При таком разнообразии живущих бактерий в мире, должно быть, существует куда большее количество колес, чем других форм передвижения.

Есть еще и макроскопические формы жизни, которые вращаются как колесо. Например, перекати-поле. А в калифорнийских горах живет саламандра, которая при появлении опасности сворачивается в кольцо и катится дальше. Гусеница жемчужного мотылька пошла еще дальше и при появлении хищника научилась перекатам в четыре-пять оборотов по плоской поверхности.

Загрузка...