3 Дарвин и ДНК: как генетика подстегнула эволюционную теорию

Как известно, в теории эволюции Дарвина и Уоллеса не объяснялась механика процесса. Затем, в начале XX века, появилась новая научная область – генетика. Несмотря на то что генетика произвела настоящую революцию в представлениях о наследовании, поначалу мало кто понимал, что она имеет непосредственное отношение к эволюции. Так как же ДНК вписалась в наше современное понимание эволюции?

Генетическая революция в эволюции

Современное понимание эволюции базируется на сочетании двух совершенно разных концепций. Одна из них была выдвинута монахом, изучавшим семена гороха в Моравском монастыре в 1850-х годах. Другая же пришла к нам от Дарвина и Уоллеса.


Грегор Мендель и Чарльз Дарвин жили в одно время, но они так и не встретились при жизни, а сам Дарвин не узнал о работе Менделя. Оглядываясь назад, можно сказать, что тандем этих двух фундаментальных работ был как брак, заключенный на небесах (или в аду, если вы креационист). На протяжении многих лет никто и не задумывался о том, что исследования наследственности Менделя имели какое-либо отношение к эволюционной теории Дарвина о естественном отборе. Потребовалось порядка 60 лет для того, чтобы собрать частички головоломки воедино и положить начало «современной трактовке» эволюции, которая формулировала идеи Дарвина через призму генетики.

Как именно возникло это новое понимание? И почему потребовалось так много времени?

Объяснение начинается с самого естественного отбора. В соответствии с концепцией естественного отбора, выживают и размножаются только самые приспособленные к локальной среде обитания. Таким образом, популяция как единое целое постепенно изменяется. Сама идея эволюции была принята многими биологами еще в середине XIX века. Однако при попытках признать тот факт, что эволюция происходит под влиянием естественного отбора, возникли некоторые разногласия.

Вероятность существования данного механизма базируется на предположении о том, что благоприятные признаки передаются от одного поколения к следующему в более-менее неизменном виде. Однако никто не знал, как именно это происходит.

Объяснение наследования

Дарвин пытался объяснить наследственность с точки зрения гипотезы под названием «пангенезис». Ученый считал, что каждый организм производит определенные частицы, называемые геммулами, которые передают свои признаки следующему поколению. Дарвин предположил, что потомство развивается из сочетания родительских геммул, благодаря чему демонстрируется комбинация их черт.

Но у этой идеи был серьезный недостаток, которым пользовались его оппоненты: сочетание признаков привело бы к «разбавлению» полезных признаков одного из родителей при скрещивании с особями, не обладающими данными признакам. На протяжении следующих поколений такие признаки должны были неизбежно исчезнуть. И при жизни Дарвина никто не мог решить данную проблему.

Однако ключ к разгадке был уже известен, о чем не знал ни Дарвин, ни его соотечественники. В 1840-х годах Грегор Мендель пришел в мужской монастырь в Брно (Чешская Республика). За последующие годы он провел подробные исследования того, как из поколения в поколение передавались определенные признаки гороха. Монах заметил, что признаки родителей у потомков не смешивались. Скорее, они передавались без изменений, подчиняясь неким закономерностям. Это подтолкнуло Менделя к разработке законов наследования, опубликованных в 1866 году (см. «Кем был Грегор Мендель?»).

Однако никто и не предполагал, что признаки, изучаемые Менделем в горохе (окрас цветка), будут иметь столь важное значение. И на протяжении десятилетий работа исследователя игнорировалась.

Кем был Грегор Мендель?

Жизненный путь Грегора Менделя был крайне необычным для человека, считающегося основателем современной генетики, хотя бы потому, что он провел свою исследовательскую работу за 50 лет до фактического обнаружения генов. Мендель родился в 1822 году на ферме, находящейся на территории современной Чешской Республики. Затем он ушел в мужской монастырь в Брно, где начал заниматься изучением наследственности.

В монастырском саду он вырастил тысячи растений гороха, отметив наличие у них таких признаков, как окрас цветка и морщинистость семян. Например, он обнаружил, что при скрещивании белоцветных растений с фиолетовыми окрас получался не светло-лиловым (как это предписывала концепция о смешении родительских черт), а либо белым, либо фиолетовым в определенном соотношении.

Рис. 3.1. Жизненный путь Грегора Менделя был крайне необычным для человека, ставшего основателем современной генетики.

Эти наблюдения привели его к разработке известных нам законов наследования, опубликованных в 1866 году и представлявших идею доминантных и рецессивных признаков. Данная работа оставалась незамеченной до следующего столетия, когда идеи Менделя были включены в новое научное направление – генетику.

С однозначными признанием вклада Менделя в развитие этой науки согласны не все. Его законы, безусловно, пролили свет на механизм передачи признаков от родителей к потомству. Но даже Рональд Фишер, использовавший идеи Менделя для создания генетической теории эволюции в 1930-х годах, признавал, что результаты Менделя оказались слишком хороши для того, чтобы быть правдой, и, возможно, были «приукрашены» чрезмерно ретивым ассистентом. При этом ни в коем разе нельзя утверждать, что сам Мендель стал бы сторонником теории, основанной на его работе. Свои идеи он выказывал исключительно с точки зрения передачи признаков от одного поколения к другому, не обсуждая при этом сам механизм.

Со временем Мендель забросил свои исследования, став аббатом в возрасте 46 лет. О нем мало что известно, так как его переписка и прочие личные документы были сожжены после его смерти.

Затем, в 1900 году, законы Менделя заново открыли ботаники Хуго Де Фриз и Карл Корренс. Изучая наследование, оба ученых, независимо друг от друга, пришли к единому мнению о том, что признаки организма являются структурированными единицами и передаются следующему поколению без изменений. И только позже Де Фрис и Корренс обнаружили, что те же исследования проводились Менделем.

Расцвет генов

Так зародилась новая наука о наследовании, которую вначале окрестили «менделизмом». Затем она была переименована в «генетику» биологом Уильямом Бэтсоном, который перевел статью Менделя на английский язык и стал главным пропагандистом его работы. Название для нового научного направления Бэтсон образовал из древнегреческого слова «генезис», что означает «происхождение».

Мендель выражал свои законы с точки зрения признаков, передаваемых родителем потомку. Ранние генетики полагали, что некоторая материальная сущность в организме должна была закодировать эту информацию.

Вскоре биолог Томас Хант Морган определил гены как структуры, расположенные вдоль хромосом внутри клеточного ядра. Работая над плодовой мушкой дрозофилой в 1910 году, Морган показал, что признак, отвечающий за цвет глаз, можно проследить до определенного отрезка Х-хромосомы. Это привело к революционным открытиям связей между различными генами и созданию генетических карт, показывающих расположение генов на хромосомах.

В конце концов исследования Моргана принесли ему Нобелевскую премию и подтвердили идею о том, что гены являются физической сутью наследования. Однако потребовалось еще целых три десятилетия, чтобы обнаружить, что гены состоят из ДНК и что каждый ген кодирует определенный белок.

Казалось, что концепция генов и была той самой недостающей частью теории Дарвина. Она дорисовывала картину естественного отбора, показывая, что признаки не могут смешиваться до неузнаваемости. Стоит добавить, что данный факт был признан не сразу.

Генетика решала еще одну проблему теории Дарвина – источник вариаций в популяции. Отправной точкой Дарвиновской теории служил тот факт, что по природе своей любая популяция содержит множество особей, обеспечивающих исходный материал для естественного отбора.

Теперь же было доказано, что основным источником этого разнообразия служат мутации – спонтанные изменения в структуре гена, приводящие к тому, что он начинает кодировать нечто новое. Такие изменения отмечались Морганом и другими исследователями при изучении положения генов в хромосомах.

Сам Морган пришел к выводу, что вредные мутации быстро искореняются из популяции, признавая тем самым отрицательную сторону естественного отбора. Однако для демонстрации положительного эффекта естественного отбора на гены требовалась дополнительная работа.

Быстро или медленно?

По мнению Дарвина, эволюция – это медленный процесс постепенной адаптации к среде, в ходе которой большинство признаков имеют или когда-либо имели адаптивную функцию. Жирафы с чуть более длинными шеями могли дотянуться до более высоко расположенных листьев, поэтому в процессе естественного отбора у животных появлялись более длинные шеи. Большинство ранних генетиков, напротив, рассматривали эволюцию как нечто, происходящее большими скачками (или сальтациями), в результате чего новые признаки неожиданно проявлялись в ходе какой-либо внутренней перестройки наследственной конституции организма. Например, на растении могли внезапно появиться цветы другого окраса, отличного от родительского. Подобное изменение не обязательно будет носить адаптивный характер.

Ранних генетиков привлекали законы Менделя из-за кажущейся поддержки данных идей. Морган считал, что «природа создает новые виды сразу идеальными» посредством «внезапного изменения зародыша». Бэтсон не видел никакой ценности в исследованиях дарвинистов о непрерывной изменчивости и не согласился с утверждением, что естественные признаки появляются в результате адаптивного давления на виды. По той же самой причине сальтационный механизм изменений не имел никакого отношения к процессу естественного отбора.

Эти укоренившиеся взгляды не давали возможности найти способ согласования двух подходов. Но ситуация изменилась в 1920-х годах благодаря новой области популяционной генетики – изучению изменений определенных генов внутри популяций в течение времени.

Биологи Рональд Фишер, Джон Бердон Сандерсон Холдейн и Сьюалл Райт задействовали сложные математические модели, чтобы показать, что естественный отбор способен увеличить частоту кодирования любого гена для полезного признака и избавиться от наборов генов, не несущих адаптивной нагрузки.

Эта концепция была разработана в книге Фишера «Генетическая теория естественного отбора» (1930) и наиболее известной книге Холдейна «Причины эволюции» (1932). В том же году Райт представил идею адаптивного ландшафта – карты, изображающей все возможные комбинации генов и общей приспособляемости организма.

В итоге работа этих ученых доказала, что гены лежат в основе как резких изменений признаков, периодически встречаемых у потомства, так и постоянной изменчивости, зафиксированной Дарвином у больших популяций. Биологи показали, что генетический отбор является крайне изобретательной силой, руководящей адаптацией вида к локальной среде, с постоянной мутацией для поддержания генофонда изменчивости. Однако их теоретические модели основывались на сложной статистике и были сложны для понимания.

Научное сообщество познакомилось с принципами геноцентризма в эволюции лишь в 1937 году, когда Феодосий Добржанский опубликовал свою книгу «Генетика и происхождение видов», переведя в ней математические формулы на простой язык. Работа Добржанского расширила наше понимание того, как генетика способствует эволюции, показав, как в результате изменчивости для адаптации к локальной среде происходит образование новых видов у изолированных популяций.

В 1942 году биолог Джулиан Хаксли в своем детальном обзоре «Эволюция: современный синтез» дал название этому новому направлению. К 1950-м годам стала доминировать его формулировка эволюции, однако один из самых ключевых аспектов теории так и остался неоднозначным на протяжении следующих десятилетий.

От генетики к евгенике

Некоторые ранние приверженцы эволюционной теории являлись восторженными сторонниками евгеники – идеи увеличения человеческой популяции путем устранения «непригодных» генов.

К примеру, Рональд Фишер посвятил часть своей книги «Генетическая теория естественного отбора» (1930) надеждам на улучшение человеческой расы за счет евгеники. Чтобы еще активнее поспособствовать реализации данных принципов, он стал отцом восьмерых детей.

Обратная сторона евгеники дала о себе знать в начале XX века, когда несколько штатов США приняли закон о стерилизации «умственно отсталых», а нацисты довели эту идею до радикальной и ужасающей крайности.

Высшая цель?

С момента своего зарождения дарвиновская теория эволюции так или иначе рассматривалась как идея, идущая в разрез с христианским видением природы как продукта некой высшей цели. Наиболее распространенной областью для креационистской оппозиции дарвиновской теории стала территория США, расцвет ее приходится на 1920-е годы и продолжается до сих пор.

Основатели «современного синтеза» хотели показать, что дарвинизм способен сочетать в себе веру в то, что для эволюции характерна тенденция к созданию более высоких уровней организации. Добржанский был выходцем из русской православной среды и в 1962 году написал книгу «Эволюционирующее человечество», пытаясь донести свою мысль о том, что эволюция имеет конечную цель. Хаксли также активно продвигал идею эволюционного прогресса.

Эти авторы представили идеи современного синтеза таким образом, что они не так открыто противоречили традиционным устоям и ценностям. Однако это не помешало некоторым ученым стать сторонниками евгеники (см. «От генетики к евгенике» выше). В последующие десятилетия псевдорелигиозный подход сойдет на нет и поспособствует этому публикация книги «Эгоистичный ген» (1976) Ричарда Докинза, в которой автор позиционирует себя в качестве главного приверженца идеи о том, что природа не имеет никакой конечной моральной цели. Последующие дебаты об эволюции социального поведения и появлении альтруизма проходили на фоне растущей напряженности между дарвиновской эволюцией и религией, то есть всего того, что основатели синтеза надеялись избежать.


Рис. 3.2. Двойная спираль ДНК была открыта в 1953 году.


Современный синтез, несмотря на все сопутствующие трудности, так и остался лежать в основе нашего понимания эволюции. Само понимание эволюции развивается по мере того, как новые открытия в генетике, онтогенетике и экологии расширяют наше понимание взаимосвязей между генами, организмами и окружающей средой.

Геноцентричный взгляд на эволюцию, ответвившийся от идей Дарвина и Менделя, также изменился после того, как мы признали, что среда развития организма играет определенную роль в формировании признаков и способна влиять на способ передачи этих признаков будущим поколениям.

Открытия в области эпигенетики показывают, что химические метки, прикрепляемые для включения/выключения генов, могут оказаться столь же важными для развития, как и сам запрограммированный генетический код (см. главу 8).

Современный синтез считается идеей ХХ века. В ХХI веке история эволюции обретет тот самый уровень совершенства, о котором Дарвин мог только мечтать (см. главу 11).

Что же такое «ген»?

В большинстве своем ген состоит из последовательности ДНК, кодирующей белок, и регуляторных последовательностей (промоторов), которые определяют, когда, где и сколько белка производить. В сложных клетках кодирующая последовательность делится на несколько частей (экзонов), которые отделяются более длинными участками «мусорной» ДНК (интронами) (см. рис. 3.3).


Рис. 3.3. Что такое ген?

Как происходит эволюция генов

Благодаря секвенированию геномов все большего количества видов, мы можем не только проследить за эволюцией тел животных, но и определить генетические мутации, стоящие за подобными изменениями.


Но самое интересное здесь то, что теперь мы можем увидеть, как возникают гены – главные составляющие ключевой основы жизни – белков. И история разворачивается не совсем так, как ожидалось.

Самый очевидный путь развития нового гена – это постепенное накопление незначительных полезных мутаций. Наименее очевидный сценарий: существующий ген, играющий важную роль, эволюционирует в другой ген. Вероятность того, что уже существующий ген сможет развиться в новый без изменения самого организма, весьма мала. Однако, как было замечено биологами столетие назад, данное ограничение вполне преодолимо в случаях, когда мутации создают дополнительную и полноценную копию гена.

Из учебников мы знаем, что процесс формирования новых генов начинается с дупликации генов. В большинстве случаев одна из копий генов приобретет вредные мутации и будет отсеяна. Однако иногда случается и так, что мутация позволяет дублированному гену выполнять нечто новое. Данная копия становится специализированной для своей новой роли, а предковый ген продолжает выполнять старые функции.

Поразительно то, что дупликация генов оказалась почти так же распространена, как и мутации, которые изменяют одну «букву» кода ДНК. При обмене материалом между хромосомами, предшествующему половому размножению, ошибки могут создавать дополнительные копии длинных последовательностей ДНК, в которых может содержаться любая информация – от одного гена до сотен. Здесь, как и при синдроме Дауна, могут дублироваться целые хромосомы, а иногда даже целые геномы.

Поскольку в процессе эволюции дублирование способно создать триллионы генетических копий, нет ничего удивительного в том, что в течение сотен миллионов лет один предковый ген способен породить сотни новых. У нас, людей, имеется порядка 400 генов для одних только обонятельных рецепторов. И все они происходят всего от двух рыб, живших около 450 миллионов лет назад.

Не конец истории

И все же классические взгляды на эволюцию генов не дают объяснения всей картины в целом. Зачастую гены несут в себе более одной функции… так что же происходит при дублировании гена? Если мутация убирает одну из двух существующих функций в первой копии гена, то организм сможет прекрасно существовать, поскольку вторая копия останется неизменной. Даже если еще одна мутация уберет другую функцию из второй копии гена, организм продолжит свое нормальное функционирование.

Теперь вместо одного гена с двумя функциями организм получит два гена с одной функцией в каждом. Данный механизм получил название «субфункционализация». Этот процесс может служить исходным материалом для дальнейшей эволюции.

Но настоящая проблема классической модели эволюции обуславливается фактическими исследованиями новых генов в различных организмах. Например, сравнение геномов нескольких близкородственных видов дрозофилы обнаружило новые гены, которые образовались через 13 миллионов лет после отделения данного вида от общего предка.

Так стало ясно, что около 10 % новых генов возникает в результате процесса под названием «ретропозиция». Ретропозиция происходит в тот момент, когда копии генов матричной РНК (генетические схемы, отправляемые на фабрику по производству белка в клетке, см. рис. 3.3) возвращаются обратно в ДНК, которая затем внедряется в другом месте генома.

Многие вирусы и генетические паразиты копируют себя с помощью ретропозиции, а производимые ими ферменты иногда случайным образом ретропозицируют РНК клетки-хозяина.

Возможно, что этот процесс ответственен за создание многих из недавно появившихся генов у нас, приматов. Вспышка ретропозиции у наших предков, достигшая своего пика около 45 миллионов лет назад, дала толчок к развитию многих тысяч дубликатных генов, и около 60–70 из них эволюционировали в новые гены. Данная вспышка, скорее всего, была обусловлена появлением нового генетического паразита, проникавшего в наш геном.

Эволюция новых генов часто включает в себя еще более радикальные изменения. Например, у дрозофил треть новых генов значительно отличалась от родительских, теряя часть своих последовательностей или приобретая новые участки ДНК.

Откуда берутся эти дополнительные последовательности? В сложных клетках ДНК, кодирующая белок, разбивается на несколько частей, разделенных некодирующими последовательностями. После создания РНК-копии всего гена некодирующие части (интроны) вырезаются, а кодирующие части (экзоны) сращиваются. Затем эта измененная копия РНК отправляется на белковую фабрику. Модульная форма генов значительно увеличивает вероятность мутаций благодаря перетасовке существующих генов и генерации новых белков. Происходить это может различными способами: экзоны внутри гена могут теряться, дублироваться или даже объединяться с экзонами других генов для создания нового химерного гена.

Вариации на тему

Например, большинство обезьян производят белок под названием TRIM5, который защищает их от заражения ретровирусами. Около 10 миллионов лет назад у одной макаки из Азии рядом с геном TRIM5 была добавлена неактивная копия гена CypA, полученная путем ретропозиции. Дальнейшая мутация привела к тому, что клетки продуцировали химерный белок, который на половину TRIM5, а на половину – CypA.

Данный белок обеспечивал лучшую защиту от некоторых вирусов. В это сложно поверить, но ген TRIM5-CypA эволюционировал не один, а целых два раза. Почти то же самое произошло с трехполосыми дурукули в Южной Америке.

При наличии достаточного количества времени – или, скорее, достаточного количества мутаций – дупликация и перетасовка генов может приводить к появлению новых генов, значительно отличающихся от предковых. Но все ли новые генные вариации соответствуют друг другу или же эволюция способна создавать новые гены, отличные от уже существующих?

Пару десятилетий назад было высказано предположение о том, что уникальные гены могут возникать в результате так называемой мутации сдвига рамки считывания. Каждая аминокислота в белке определяется тремя «буквами» ДНК или нуклеотидами – триплетом (кодоном). Если мутация сдвигает начальную точку считывания кодонов (рамку считывания) на один или два нуклеотида, то конечная последовательность белка будет совершенно иной.

Поскольку ДНК состоит из двух цепочек, то любой ее фрагмент можно «прочитать» шестью различными способами.

Генетический абсурд

Подавляющее большинство мутаций, изменяющих рамку считывания гена, приводят к появлению генетического абсурда. Как правило, опасного. Многие генетические заболевания являются результатом мутации сдвига рамки считывания, разрушающей белки. Это немного похоже на замену каждой буквы алфавита на соседнюю. Результат, как правило, получается абсурдным. Но не всегда.

Другим источником уникальных новых генов может быть «мусорная» ДНК, засоряющая большинство геномов. Первые догадки об этом были высказаны два десятилетия назад, когда команда из Иллинойского университета раскрыла происхождение антифризного белка, вырабатываемого одной антарктической рыбой. Изначально данный ген появился в качестве пищеварительного фермента. Около 10 миллионов лет назад, когда климат на планете стал прохладнее, часть одного из интронов (иными словами – часть «мусорной» ДНК) превратилась в экзон, а затем многократно дублировалась, создавая характерную повторяющуюся структуру антифризных белков.

Так из случайного фрагмента ДНК развился ген, жизненно необходимый для выживания рыбы. Тем не менее этот антифризный ген эволюционировал из уже существующего.

Каковы шансы появления мутаций в «мусорной» ДНК, которые смогли бы сгенерировать полноценный новый ген с нуля? Как до недавнего времени считало большинство биологов, – практически нулевые. Ведь для того, чтобы фрагмент случайной ДНК превратился в ген, потребуется целый комплекс маловероятных условий. Во-первых, некая часть ДНК должна выступить в роли промотора, который укажет клетке на необходимость создания РНК-копий из остальных фрагментов. Во-вторых, эти копии РНК должны обладать последовательностью, которую можно будет преобразовать в схему жизнеспособной матричной РНК для белковой фабрики.

Более того, эта матричная РНК должна закодировать достаточно длинную белковую цепочку (в среднем длина белка составляет 300 аминокислот). Данный вариант крайне маловероятен, поскольку на случайном отрезке ДНК примерно 1 из 20 кодонов окажется «стоп-кодоном». И, наконец, новый белок должен выполнять некую полезную функцию. Все эти трудности казались непреодолимыми.

Данная точка зрения изменилась в 2006 году, когда Дэвид Бегун из Калифорнийского университета и Дэвис с коллегами обнаружили у дрозофил несколько новых генов с последовательностями, не похожими ни на один из старых генов. Они предположили, что эти гены, кодирующие относительно небольшие белки, эволюционировали из «мусорной» ДНК в течение последних нескольких миллионов лет. Пару лет спустя в процессе поиска новых генов у дрозофил были обнаружены еще девять генов, которые, похоже, самостоятельно образовались из «мусорной» ДНК. Другое исследование показало, что с тех пор, как ветви эволюции человека и шимпанзе разошлись более 6 миллионов лет назад, из некодирующей ДНК появилось как минимум шесть новых человеческих генов.

Чем же объяснить столь большую цифру при ничтожно малой вероятности самостоятельного образования гена? Частичным ответом может служить недавнее открытие: несмотря на то что половина нашего генома является «мусорной», 90 % генов можно случайно транскрибировать в РНК.

Это означает, что случайные фрагменты «мусорной» ДНК могут превращаться в белок не так уж и редко. Поскольку, скорее всего, большая часть случайных белков окажется вредной, естественный отбор уничтожит эти последовательности ДНК. Однако время от времени возникает одна удачная мутация. Последовательность, которая делает что-то полезное, будет передаваться внутри популяции и быстро превратится в новый ген, оптимизированный под любую нужную роль.

Пройдет еще много лет, прежде чем мы до конца поймем важность различных механизмов образования новых генов. Однако уже сейчас очевидно, что классический взгляд на эволюцию генов не дает нам полного объяснения. Эволюция не любит суету: она берет новые гены везде, где ей это удается.

Новые данные о последовательностях позволяют биологам стать на шаг ближе к тому, чтобы объяснить эволюцию каждого из наших 20 000 генов.

Эгоистичный ген

Книга Ричарда Докинза «Эгоистичный ген» (1976) популяризировала идеи о том, что истинной мерой эволюции служит ген, а не особь. В книге говорилось о том, что люди – это «биороботы, запрограммированные слепо следовать сохранению эгоистичных молекул под названием "гены"». Понятие «эгоистичный ген» хорошо прижилось в эволюционной генетике и стало самой успешной научной метафорой последних лет. С небольшим отрывом второй по популярности считается «расширенный фенотип».

Оба термина были придуманы Ричардом Докинзом (см. интервью в главе 9) и послужили названиями для его первых научно-популярных книг.

Основная идея «Эгоистичного гена» сводится к тому, что эволюция заключается в естественном отборе генов и только их. Докинз видит в них лучших кандидатов на звание «единиц репликации» эволюции. Таким образом, передаваемыми генами являются те, чьи последовательности выполняют определенные функции на генном уровне (с целью дальнейшей репликации) и при этом не обязательно являются полезными для организма на более высоком уровне или на уровне групп организмов.

«Расширенный фенотип» Докинза (1982) продолжает эту идею, утверждая, что в своем стремлении к выживанию и репликации гены распространяют свое влияние за пределы признаков (или фенотипа) особи во внешний мир, где они также повышают шансы на выживание. Вспомните, например, плотину бобра или паутину паука. Тем не менее многие биологи уверены, что настало время для переосмысления геноцентрического взгляда на эволюцию (см. главу 11).

Пять классических примеров эволюции генов

По мере секвенирования геномов большего количества видов, генетики получают на удивление детальную картину молекул, имеющих фундаментальное значение для жизни на Земле.


С помощью современных методов мы можем не только проследить, как эволюционировали тела животных, но и определить генетические мутации, лежащие в основе этих изменений, а также, как было сказано ранее, обнаружить, что временами гены эволюционируют совершенно удивительным образом. Ниже приведены пять классических примеров генной эволюции, наглядно показывающих многогранность ДНК.

Цветовая выборка

Вы когда-нибудь замечали, что временами собаки как будто не видят яркий и заметный мяч? Это происходит потому, что у большинства млекопитающих есть только два (а не три, как у человека) цветочувствительных пигмента сетчатки (или оптина), что и объясняет присущую животным форму дальнотизма.

Так почему же у нас их три? В большинстве глаз млекопитающих был найден ген MWS/LWS, ответственный за кодирование одного из двух пигментов. У предков приматов и некоторых обезьян этот ген был продублирован.

Как правило, копии запасных генов быстро вырождаются, приобретая мутации, но в этом случае мутации в одной копии приводят к появлению опсина, способного распознавать другой оптический спектр. Таким образом, мы приобрели улучшенное трихроматическое цветовое зрение.

Но есть и другая сторона этой истории. В действительности цветовое зрение предков позвоночных было лучше, чем у нас, благодаря наличию четырех цветочувствительных опсинов. В отличие от нас, эти животные могли видеть ультрафиолет и другие цвета. Эту способность унаследовало большинство амфибий, рептилий и птиц… Так почему же млекопитающие потеряли целых два цветочувствительных гена опсина?

Скорее всего, объяснение можно найти в том факте, что некоторые древние млекопитающие являлись ночными животными с небольшой потребностью в цветочувствительных опсинах, которые «работали» только в дневное время. В результате эти гены подверглись мутации, а часть из них была и вовсе потеряна – если вы не пользуетесь чем-то, то оно теряется.

Наше зрение могло развиваться в очень разных направлениях. Как только предки гекконов перешли на ночной образ жизни, у них цветное ночное видение.

Кристально чистый

Вы бы не смогли прочесть эти строки без белков кристаллинов в глазу. Благодаря своему высокому показателю преломления эти прозрачные белки способны преломлять свет, позволяя хрусталику глаза проецировать свет на сетчатку. Так где же эволюция смогла найти прозрачные белки с высоким показателем преломления для развития глаз? Как оказалось, везде.

Возьмите, например, альфа-кристаллин, который содержится во многих глазах животных, в том числе и у человека. Изначально это был белок теплового шока. Данный тип белка поддерживает функциональное состояние других белков. По сути, это все тот же белок теплового шока. Он продолжает выполнять данную функцию в некоторых тканях организма, производящих лишь небольшое количество белка. Однако в хрусталике белок вырабатывается в большом количестве, поэтому основной функцией кристаллина стала оптическая.

Есть только один ген, который кодирует альфа-кристаллин (HspB5). Таким образом, образование новой функции (например, преломление света) не обязательно сопряжено с появлением совершенно нового гена, кодирующего новый белок. Временами дело ограничивается несколькими мутациями в последовательностях, определяющих объем существующего белка, способного производиться в конкретном виде ткани. Иногда эволюция идет по простому пути.

Мемы: эволюционируют не только гены

Термин «мем» придумал биолог Ричард Докинз в своей книге «Эгоистичный ген» (1976), рассматривавшей принципы дарвинизма. Идея Докинза заключалась в том, что дарвиновская теория эволюции посредством естественного отбора не обязательно применима только к биологии. Эволюционный процесс возможен благодаря механизму репликации, создающему множество слегка отличающихся копий той же самой информации, и тому факту, что лишь несколько созданных копий сохранится для последующей репликации. Информация, которая реплицируется, изменяется и отбирается, называется репликатором, а сам процесс хорошо известен в биологии. В биологической эволюции репликаторами служат гены. Однако нет веских причин, по которым не могло бы существовать других эволюционных систем с другими репликаторами. Поэтому Докинз и придумал термин «мем» для обозначения культурного репликатора.

Все, что вы узнали, скопировав информацию от другого, – это мем. Сюда относится ваша привычка к правостороннему или левостороннему движению, поеданию тостов с фасолью, ношению джинсов и поездкам в отпуск. Вы бы не делали ничего из вышеперечисленного, если бы до вас никто не попробовал этого или чего-то очень похожего. Имитация или подражание, в отличие от иных форм обучения, являются своего рода копированием или репликацией. Другие животные мастерски способны к обучению. Например, белки запоминают сотни мест своих запасов на зиму, а коты или собаки выстраивают расширенные ментальные карты. Но все это – обучение по ассоциациям или методом проб и ошибок. Только имитация позволяет передать плоды обучения от одного животного к другому; и люди не имеют себе равных, когда дело доходит до подражания.

Сама по себе идея мемов как репликаторов была жестко раскритикована, и многие биологи ее отвергли. И все же меметика может многое предложить для объяснения человеческой природы.

Согласно теории мемов, люди радикально отличаются от других видов, потому что мы единственные являемся машинами мемов. Человеческий интеллект не просто выше или лучше остальных, это – нечто совершенно иное, основанное на новом эволюционном процессе и новом виде информации.

Рыбный запах

Благодаря дупликации генов за сотни миллионов лет один ген может положить начало не только одному новому гену, но и сотням других.

Например, у нас, людей, имеется порядка 400 генов, кодирующих обонятельные рецепторы. Все они произошли от двух предковых генов очень древней рыбы, жившей около 450 миллионов лет назад.

Эволюция этого «семейства» гена была весьма хаотичной. Исследования генома показали, что в ходе эволюции млекопитающих вместо постоянного приобретения новых генов для новых обонятельных рецепторов происходила их масштабная потеря. Данный процесс получил название «эволюция рождения и смерти».

Это привело к появлению больших различий между млекопитающими. Вы догадываетесь о том, что у собак имеется больше рецепторов, чем у людей, – порядка 800 действующих обонятельных генов. Но почему же у коров их еще больше – свыше 1000?

Молекулярно-эволюционный биолог Масатоси Неи предположил, что для хорошо развитого обоняния млекопитающим требуется некое минимальное количество различных обонятельных рецепторов. То, что животные делают с уже имеющимися рецепторами (иначе говоря, со связью с мозгом в процессе развития), может иметь большее значение для тонкого обоняния.

Неи полагает, что пока у животных есть больше обонятельных рецепторов, чем нужно, естественного отбора не произойдет, а гены будут беспорядочно приобретаться и теряться. Иначе говоря, генетический дрейф может объяснить отличия в типе и количестве обонятельных рецепторов у млекопитающих.

Дважды ничто

Гены HOX представляют собой семейство близкородственных генов, отвечающих за эмбриональное развитие животных. Это «главные переключатели», белки, которые координируют активацию других наборов генов в процессе развития.

Все гены HOX произошли от гена protoHOX очень древнего животного. У предка позвоночных protoHOX неоднократно дублировался, образуя кластер из 13 генов HOX. Потом был продублирован и весь геном в этой родословной предков. Затем была фаза еще одного дублирования, в ходе которой создались четыре кластера генов HOX, которые теперь контролируют развитие всех живущих позвоночных.

В ветви, ведущей к млекопитающим, были потеряны 13 из 52 генов, созданных в ходе дупликации генома, оставив млекопитающим лишь 39 генов HOX. Но настоящая загадка кроется в объяснении того, почему сохранилось так много генных копий, созданных после дупликации геномов. Почему они просто не выродились и не исчезли? Волне разумным было бы попридержать запасные копии генов под рукой, однако эволюция не строит планов на будущее.

Аналогичный феномен прослеживался у гладкой шпорцевой лягушки Xenopuslaevis, весь геном которой был продублирован 40 миллионов лет назад. Подавляющее большинство дополнительных копий гена должно было сгинуть уже давно. Но по прошествии этого времени почти половина продублированных генов сохранилась в первозданном виде.

Например, выдающееся исследование Марио Капекки (2006) из Медицинского института Говарда Хьюза в Солт-Лейк-Сити полностью изменило процесс зарождения семейства генов HOX. Капекки объединил два существующих НОХ-гена (HOXA1 и HOXB1) для воссоздания предкового гена HOX1. Мыши, получившие этот предковый ген вместо двух современных, продолжали нормально развиваться.

В своей работе Капекки предположил, что два новых гена в сумме делают не больше, чем один предковый ген. Иными словами, обе генных копии вырождались после дупликации. При замене одного гена двумя другими не было получено никакого преимущества, а сам процесс оказался нейтральным.

Этот феномен, открытый в 1999 году, стал известен как субфункционализация – явление, когда при дупликации гена функции предкового гена распределяются между копиями. Исследования шпорцевой лягушки показывали, что субфункционализация способна объяснить сохранение как минимум одной трети от всех копий гена.

Было выявлено, что возрастающая сложность генома (наличие большего количества генов) может развиться в результате как генетического дрейфа, так и естественного отбора. Как только особи приобретают лишние гены, возрастает вероятность того, что в ходе отбора эти гены приобретут новые полезные функции.

Загадочный фермент

Впервые нейлон изготовили в 1935 году. И лишь 40 лет спустя, в 1975 году, была обнаружена бактерия, способная выживать и переваривать не сам нейлон, а отходы от его производства – химические вещества, которые не существовали до начала производства нейлона.

Позже было замечено, что данная бактерия, теперь известная как Arthrobacter KI72, выработала несколько типов ферментов, способных утилизировать промышленные отходы. Первый тип – гидролаза 6-аминогексановой кислоты, кодируемая генами nylBs, – стал широко известным под названием «нейлоназа».

Нейлоназа годами привлекала к себе внимание в качестве наглядной иллюстрации эволюции в действии. Однако возникло множество споров на предмет того, как именно она развилась.

В 1984 году генетик Сусуму Оно предположил, что одним из путей развития новых генов является мутация сдвига рамки считывания, которая изменяет способ считывания генетического кода и, таким образом, полностью меняет аминокислотную последовательность белка. По мнению ученого, нейлоназа развивалась тем же образом.

Затем, в 1992 году, другая группа ученых заявила, что гены nylB уникальны и развивались по довольно сложному и особенному механизму.

Сейджи Негоро из Университета Хиого в Японии утверждает, что эти мнения ошибочны. Его группа опубликовала множество исследований по структуре и эволюции нейлоновых ферментов. Проведенные им исследования структуры белка показали, что нейлоназа очень похожа на обычный тип ферментов, которые расщепляют беталактамазы – природные антибиотики, вырабатываемые многими организмами. Изменение всего двух аминокислот (две мутации) требуется для замены бета-лактамазного сайта связывания на один, способный к связыванию подобных продуктов нейлона.

И хотя Оно ошибся в отношении нейлоназы, он оказался прав в том, что мутации сдвига рамки считывания являются одним из путей развития генов. У одних только людей были обнаружены сотни примеров подобных мутаций.

Кому нужны новые гены?

Организмам не обязательно образовывать новые гены, чтобы выполнять новые функции или создавать новые части тела. В разных частях организма идентичные белки играют разные роли, а один ген может производить множество белков.

Альтернативный сплайсинг РНК, включающий в себя какие-то конкретные части гена, может генерировать целое разнообразие белков. Исследования показывают, что альтернативный сплайсинг встречается у людей гораздо чаще, чем предполагалось, а большинство генов продуцировало по меньшей мере два варианта. Человеческий ген bn2 может производить более 2000 различных белков, некоторые из которых не обладают никакими сходствами. Ген Dscam у дрозофилы способен образовывать впечатляющее количество вариантов – целых 38 000.

Но это еще не все. Можно одновременно редактировать РНК в двух разных генах для создания нового белка. Данный процесс называется транс-сплайсингом, и он способен значительно увеличить количество возможных белков.

Путь к становлению геноцентричных взглядов на эволюцию

5000 год до н. э.

Люди начинают разбираться в наследовании, когда переходят на селекционное разведение полезного домашнего скота и сельско-хозяйственных культур (кукуруза, пшеница, рис).


400 год до н. э.

Древнегреческие философы рассматривают механизмы наследования человека.

Гиппократ полагает, что материалом для наследственности служат крошечные частицы в организме, которые накапливаются в семенной жидкости родителей. Эти частицы смешиваются для создания признаков потомков.


1859

Чарльз Дарвин публикует «Происхождение видов» – собственное объяснение эволюции через естественный отбор. В книге содержится множество примеров того, как непостоянные признаки распространяются внутри популяции, но не приводится объяснения механизма их передачи.


1866

Августинский монах Грегор Мендель публикует подробные исследования по наследованию в растениях гороха и закладывает фундамент для современной генетики. Более трех десятилетий результаты его работ будут незамеченными.


1868

Дарвин публикует работу «Изменение животных и растений в домашнем состоянии», в которой излагает свою гипотезу о пангенезисе – процессе, при котором частицы под названием «геммулы» передают признаки организма своим потомкам.


1900

Голландские и немецкие ботаники повторно открывают законы Менделя о наследовании.


1905–1906

Биолог Уильям Бэтсон, главный сторонник работ Менделя, придумывает термин «генетика». Вскоре разрабатывается концепция гена.


1920-е

Новая область популяционной биологии начинает объединять идеи Дарвина и Менделя, определяя, как эволюция может работать на уровне генов.


1937

Феодосий Добржанский развивает современный синтез, определяя эволюцию следующими генетическими терминами: «изменение частоты аллеля [генного типа] в генофонде».


1942

Эрнст Майр обобщенно объясняет эволюцию новых видов. Например, когда географический барьер делает популяцию генетически несовместимой с исходными видами.


1944

Было доказано, что ДНК является материалом наследственности, а не белком, как это считалось ранее.


1951

Розалинд Франклин впервые получает изображения ДНК. Двумя годами позже Джеймс Уотсон и Фрэнсис Крик определяют структуру двойной спирали ДНК.


1990

Запускается проект «Геном человека». Проект завершится 13 лет спустя, когда будет обнаружена полная последовательность. Затем последуют исследования геномов многих других организмов.

Загрузка...