Врезка 18.1 Поколения частиц

Обычное вещество состоит из частиц поколения I: электрона, электронного нейтрино, верхнего и нижнего кварков. Массы (в массах электрона) указаны в скобках. Массы кварков сомнительны, массы нейтрино практически неизвестны. Заметим, что верхний и нижний кварки гораздо легче протона и нейтрона, которые из них состоят. Большая часть массы ядерных частиц обусловлена связью кварков друг с другом.

Вестники слабой силы.

Что такое эта уже упомянутая слабая сила, действующая на нейтрино? В 1960 году Стивен Вайнберг из Гарвардского университета и Абдус Салам (1926–1996) из Имперского колледжа в Лондоне независимо предложили теорию, согласно которой слабая сила и электромагнитная сила являются двумя сторонами одного явления, получившего название электрослабое взаимодействие. Когда-то Максвелл доказал, что электрические и магнитные явления — это две стороны единого электромагнитного взаимодействия; а теперь в эту компанию попала и слабая ядерная сила.

Из теории Вайнберга-Салама следовал важный прогноз: слабую силу должны переносить сверхтяжелые частицы («W» и «Z» конце 1970-х годов в ЦЕРНе физики под руководством Карло Руббиа и Симона ван дер Меера начали работу по повышению энергии столкновения пучков настолько, чтобы могли родиться эти частицы. В январе 1983 года появились первые свидетельства о частице W, а через несколько месяцев была найдена и Z-частица.

W заряжена либо отрицательно, либо положительно и весит как 88 протонов, а частица Z нейтральна и немного тяжелее — ее масса примерно как у 99 протонов. Если вестник слабой силы имеет такую большую массу, то неудивительно, что сама эта сила такая слабая. Действие силы вызвано метаниями частиц-вестников туда-сюда. Тяжелая частица не может отлетать далеко, и она не может метаться слишком часто. Поэтому вероятность того, что проходящая мимо частица может столкнуться с одной из таких частиц-вестников — W или Z, очень мала, а значит, сила слаба.

На первый взгляд может показаться, что с добавлением к нашему списку еще трех более тяжелых частиц все только усложняется. Но оказалось, что это обеспечивает объединение электромагнитной и слабой сил, отчего существенно упрощается вся физическая картина. Мы видим, что электрослабая сила переносится четырьмя разными частицами: фотоном, положительным W, отрицательным W и Z. Поскольку у фотона нет массы, ее влияние простирается на огромные расстояния; остальные три «фотона» распространяют свою силу на очень короткое расстояние. Откуда эти «фотоны» берут свою массу, пока не ясно. Теория Питера Хиггса предсказывает существование «частиц Хиггса», которые пока не найдены (это одна из задач Большого адронного коллайдера в ЦЕРНе). Именно они должны «давать взаймы» свою массу фотонам слабого взаимодействия.

Нобелевскую премию за идею объединения электромагнитной и слабой сил Вайнберг и Салам разделили с Шелдоном Глэшоу (Гарвардский университет), высказавшим идею о четырех типах фотонов в 1961 году. Руббиа и ван дер Меер были отмечены Нобелевской премией через год после открытия ими частиц W и Z.

С помощью кварков и слабой силы можно объяснить радиоактивное бета-излучение. В этом процессе внутри нейтрона один нижний кварк под действием слабой силы превращается в верхний кварк. В результате имевший нулевой заряд нейтрон становится положительно заряженным протоном. А отрицательно заряженный электрон и нейтрино с нулевым зарядом вылетают прочь, так что в этом процессе сохраняются электрический заряд и полная энергия. Эта реакция подчиняется одному из основных законов физики — закону сохранения электрического заряда. Полный заряд всех частиц до и после реакции должен оставаться неизменным. Излучаемое при бета-распаде нейтрино называют электронным нейтрино, поскольку оно связано с электроном. У него должна быть античастица — антинейтрино (рис. 18.8).

Рис. 18.8. Радиоактивный бета-распад. Нейтрон состоит из верхнего кварка и двух нижних кварков. Один из них выбрасывает наружу отрицательную W-частицу. При этом нижний кварк превращается в верхний кварк, а нейтрон становится протоном. Частица W распадается на электрон и антинейтрино.

Смотрим еще глубже: гравитация живет в многомерии?

Гравитационная сила тесно связана с кривизной и размерностью пространства. Оказывается, что силы в природе могут быть связаны с более высокими размерностями. Как мы можем определить количество пространственных измерений? Просто проведем прямые линии так, чтобы они были взаимно перпендикулярны друг другу. На листе бумаги вы можете начертить только две перпендикулярные друг к другу линии, поэтому на плоскости два измерения, плоскость двумерна. Можно представить третью линию, проведенную от плоскости прямо вверх, перпендикулярно тем двум линиям на плоскости; эта линия определит третье измерение (рис. 18.9). Но сколько бы мы ни старались, нам не удастся провести линию четвертого измерения, перпендикулярную трем уже имеющимся линиям. Таким образом, наше пространство имеет три измерения. Даже если четвертое пространственное измерение существует, оно скрыто от нас.

Рис. 18.9. Ребра прямоугольной коробки образуют три линии, перпендикулярные друг другу. В трехмерной Вселенной нельзя найти четвертую прямую, перпендикулярную всем этим трем линиям.

Идея Эйнштейна представить гравитацию как кривизну пространства выглядит настолько элегантно, что физики задумались — а нельзя ли и другие силы представить так же? К моменту завершения общей теории относительности была известна еще только одна сила — электромагнитная, которая хорошо описывалась теорией Максвелла. Эйнштейн чувствовал, что гравитация и электромагнетизм должны быть как-то связаны друг с другом. Остаток жизни он потратил на поиск единой теории.

Эту точку зрения разделял и финский физик Гуннар Нордстрём (1881–1923), опубликовавший в 1914 году в журнале Physikalische Zeitschrift общую теорию гравитации и электромагнетизма, согласно которой пространство четырехмерно (а не трехмерно), а время является пятым измерением. Нордстрём впервые ввел дополнительное измерение в наше пространство-время, так что гравитация стала всего лишь проявлением электромагнитного взаимодействия в пяти измерениях. В проекции на известные четыре измерения гравитация и электромагнетизм кажутся разными силами. Эта теория, к сожалению, оказалась ошибочной. Но сама идея унификации с использованием дополнительных пространственных измерений была рождена.

Гуннар Нордстрём был современником Альберта Эйнштейна. Инженер по образованию, он заинтересовался химией, и это привело его в Геттинген, где он учился у Вальтера Нернста. В Геттингене молодой Нордстрём стал искренним приверженцем релятивизма. После единственной статьи по химии все остальные статьи Норд-стрёма были посвящены релятивизму, электродинамике и гравитации. Свою первую релятивистскую теорию гравитации, предшественницу общей теории относительности, Нордстрём представил в 1912 году и усовершенствовал в 1913 году, во время совместной работы в Цюрихе с Эйнштейном. В 1914 году Эйнштейн и А. Д. Фоккер переформулировали эту теорию. Ее главный недостаток состоял в том, что она не предсказывало отклонения света, проходящего вблизи массивных тел. Этот эффект был открыт в 1919 году, после чего Нордстрём отказался от своей теории и работал над общей теорией относительности Эйнштейна.

После возвращения в Хельсинки Нордстрём стал доцентом теоретической физики в университете и преподавал курс элементарной физики в старших классах. В 1916–1918 годах он работал в Лейдене (Голландия). В 1918 году он занял должность профессора физики в Технологическом университете Хельсинки. До Нордстрёма в Хельсинки не было традиции заниматься теоретической физикой, поэтому его работа не находила понимания. На просьбу выделить ему деньги на заграничную командировку он получил отказ с формулировкой: «Четвертое измерение можно изучать и дома, без путешествий за границу».

В 1921 году немецкий физик Теодор Калуца (1885–1954) независимо пришел к идее объединенной теории, использующей пятое измерение. В работе Калуцы электромагнетизм тоже является следствием кривизны пространства-времени, и теперь перед нами искривленное пятимерное пространство, так что электромагнетизм становится одним из видов гравитации.

Можно ли иметь пять измерений — четыре пространственных плюс время — в противовес четырехмерной гравитации (три измерения в пространстве плюс время), с которой мы ознакомились в теории Эйнштейна? Все бы было неплохо, если бы добавление еще одного обычного пространственного измерения не усложнило задачу. В 1747 году Иммануил Кант показал, что закон гравитации связан с размерностью пространства. Если гравитация ослабевает с расстоянием обратно пропорционально некоторой его степени (n), то число пространственных измерений будет n + 1. В законе Ньютона эта степень составляет n = 2, а размерность пространства равна 2 + 1 = 3. Если бы тело двигалось в другом силовом поле, с другим значением n, то можно показать, что его орбита при n больше 2 была бы очень неустойчива. Например, если бы сила гравитации с удалением от Солнца уменьшалась так, что n равнялось бы 3, то небольшие возмущения вынудили бы Землю либо упасть на Солнце, либо улететь от него. И если бы для электрической силы n равнялось 3, то вокруг ядра атома не могли бы существовать электронные оболочки. Сложные химические соединения и жизнь на Земле стали бы невозможны.

После Нордстрёма и Калуцы шведский физик Оскар Клейн (1894–1977) сформулировал теорию пятимерной гравитации. Для решения вышеупомянутых проблем Клей предположил «уплотнить» дополнительное пространственное измерение. А именно — он закрутил пятое измерение так сильно, что оно стало круговым; этот круг до того мал, что его невозможно непосредственно наблюдать даже внутри атомов. Замечательным результатом теорий пятимерной гравитации Нордстрёма-Калуцы-Клейна стало то, что они объединили гравитацию с электромагнетизмом.

Как закручены измерения в теории Клейна? В качестве примера рассмотрим кусок проволоки. Если смотреть на него издалека, то он кажется одномерным, его единственным измерением служит длина. Но если мы приблизимся к нему, то увидим, что у проволоки есть и толщина, поэтому требуется еще одно измерение для указания положения точки на окружности, охватывающей проволоку. Вот это измерение закручено (рис. 18.10).

С точки зрения Клейна, существует четвертое измерение, связанное с каждой точкой нашего трехмерного пространства. Это искривленное четвертое измерение закручено в маленькую окружность. Мы не замечаем эти окружности вокруг себя из-за их малого размера: они меньше протона настолько же, насколько сам протон меньше планеты. Даже если такое измерение существует, то неудивительно, что мы не можем его наблюдать.

С годами теория Нордстрёма-Клейна-Калуцы оказалась забыта. Но когда были открыты новые силы, физики задумались — а почему бы не описать все силы как явления кривизны пространства в более высоких измерениях? Это было сделано в теории супергравитации, которая связана с очень абстрактной и детально разработанной теорией струн. В ней утверждается, что вся материя и энергия состоят из необычайно коротких нитей, называемых струнами (вместо точечных частиц, которые обычно представляют), а также мембранных образований, называемых бранами. Заменяя точечные частицы струнами, можно объединить известные силы — электромагнитные, гравитационные, слабые и сильные ядерные. При таком подходе нет реальных сил, а только искривление пространства, которое проявляется в разных формах или влияниях («силах»).

Рис. 18.10. Свернутое измерение. Верхняя линия выглядит одномерной, но если мы увеличим на ней точку Р, то увидим, что в действительности это двумерная трубка. Второе свернутое измерение было скрыто. В теории Клейна измерения выше трех скрыты таким же образом.

До сих пор не существует окончательного варианта теории супергравитации; современные модели используют до десяти пространственных измерений (плюс время). Все измерения пространства, кроме трех, должно быть каким-то образом компактифицированы (упакованы) в крошечный объем, например закручены в семимерный шар размером в 10-32 см. Не нужно даже пытаться представить себе этот клубок измерений в нашем пространстве; все дополнительные измерения находятся вне нашего трехмерного мира.

Несколько лет назад Савас Димопулос из Стэнфордского университета и его коллеги Нима Аркани-Хамед и Георгий Двали сделали смелое предположение: возможно, что некоторые из этих дополнительных измерений не так уж сильно скручены. Заметив, что нет экспериментальных фактов, ограничивающих эту возможность, они предположили, что дополнительные измерения могут быть относительно большими, радиусом до 1 мм, то есть размером с маковое зернышко.

В этой новой гипотезе о больших дополнительных измерениях скрыта возможность решения старой загадки. Почему гравитация намного слабее других сил? Хотя электромагнетизм, а также слабое и сильное взаимодействия по силе сравнимы друг с другом, все они гораздо мощнее гравитации: как гора в сравнении с фантастически малым размером, фигурирующим в теории струн. Чтобы понять этот гигантский пробел, Димопулос с коллегами предположили не только эти большие дополнительные измерения, но и что гравитация является единственной силой, проникающей во все эти измерения (например, фотон, несущий электромагнитную силу, не может «утечь» из нашего трехмерного пространства). Следовательно, гравитация не такая уж слабая. Просто мы ощущаем ее такой слабой, поскольку она существует во многих измерениях. Гравитация «разжижается» в этом огромном дополнительном пространстве, которого мы не чувствуем.

Итак, вы бегло познакомились с некоторыми сложными областями физики и получили представление о том, какие идеи вдохновляют современных физиков. «Многомерное пространство» звучит фантастически, но нужно помнить, что корни современной супергравитации и теории струн уходят в 1910-е годы, когда рождалась общая теория относительности.

Микрокосмос связан с очень малыми размерами. Диаметр протона равен примерно 10-12 мм, но он чудовищно велик по сравнению с пространственным масштабом 10-31 мм, присутствующим в теории супергравитации. А если мы поднимем взгляд к небу, то придется в степенях десятки заменить знак «-» на «+». Например, диаметр Солнца около 10+12 мм, а диаметр наблюдаемой части Вселенной около 10+30 мм. В этом смысле человеческие существа на шкале размеров располагаются между миром субатомных частиц и миром звезд и галактик.

Загрузка...