Глава 24 Когда все началось: Большой взрыв

На что был похож Большой взрыв? Этот вопрос заинтересовал Жоржа Леметра (1894–1966) еще в 1931 году. Хотя он был священником (и профессором астрономии в Лувенском католическом университете в Бельгии), рождение Вселенной он считал чудом природы; наука и религия существовали для него совершенно раздельно. В 1927 году в изящном теоретическом исследовании он предсказал красное смещение линий в спектрах далеких галактик и его зависимость от расстояния (закон Хаббла). Леметр говорил о I'atome primitive — первичном атоме, который был похож на большое радиоактивное ядро, начавшее распадаться. Он подозревал, что «невозможно путем размышлений постигнуть истинное происхождение, но к этому можно приближаться асимптотически». В это время большинство астрономов не считали нужным даже пытаться понять проблему происхождения Вселенной.

Неизбежность горячего Большого взрыва.

Конкретное исследование процессов, происходивших во время Большого взрыва, начал Георгий Гамов, который учился в Санкт-Петербургском университете у Фридмана и впервые завоевал известность своими работами по квантовой физике (туннелирование и альфа-распад). В 1930-х годах он «туннелировал» из Советского Союза и оказался в Соединенных Штатах, где работал в университете Джорджа Вашингтона. Вместе с Гамовым работали его молодые коллеги — Ральф Альфер и Роберт Герман. Они попытались представить, на что была похожа первичная плотная материя, и получили два важных результата: в начальном состоянии вещество должно было быть очень горячим, поэтому сильно излучать; более того, это излучение до сих пор должно окружать нас, хотя оно ослабло и превратилось в бледный отблеск Большого взрыва.

Эти выводы можно понять, если экстраполировать в прошлое те процессы, которые мы видим сейчас. Звезды формируются из газовых облаков. Значит, в прошлом газа в галактиках было гораздо больше, чем звезд. В далеком прошлом галактики целиком должны были состоять из газа. Сегодня мы видим галактики убегающими друг от друга, следовательно, в прошлом молодые чисто газовые галактики должны были прижиматься друг к другу. А еще раньше этот газ до своего расширения должен был быть очень горячим. Когда-то в прошлом этот газ был таким плотным и горячим, что был совершенно непрозрачным. После окончания этой эпохи пространство стало прозрачным. Излучение, испущенное в тот переходный период, до сих пор должно скитаться по пространству, хотя оно уже сильно остыло из-за расширения Вселенной (рис. 24.1).

Рис. 24.1. Георгий Гамов (1904–1968), автор теории Большого взрыва. С течением времени пространство расширяется, а плотность и температура Вселенной уменьшаются. Рисунок Артура Чернина.

Рождение легких элементов в Большом взрыве.

Уже знакомая нам Сесилия Пейн-Гапошкина доказала, что основным веществом в звездах является водород, вторым по обилию — гелий, а на долю всех более тяжелых элементов приходится совсем немного (и в межзвездном газе сохраняется такая же пропорция). Как возникли эти элементы? Гамов стремился объяснить происхождение всех элементов в процессе Большого взрыва. В 1946 году он предположил, что вначале все вещество состояло из нейтронов. При столкновении двух нейтронов может образоваться ядро дейтерия, а далее при его столкновении с еще двумя нейтронами рождается ядро гелия. Гамов считал, что при соответствующих условиях этот процесс может продолжаться до тех пор, пока не возникнут ядра с массами до 250 атомных единиц. Вычисления показали, какая плотность и температура нужны для этого процесса. Альфер и Герман пришли к выводу, что в нашу эпоху остаточное излучение Большого взрыва должно быть похоже на излучение тела, имеющего температуру -268 °C, или 5 К.

Спустя несколько лет стало ясно, что элементы, следующие за гелием, не могут возникать путем захвата нейтрона, так как более сложные ядра при этом разрушаются, превращаясь в более легкие. Более того, наблюдаемое обилие элементов тяжелее гелия может меняться от звезды к звезде в сотню раз. Если бы тяжелые элементы родились с самого начала, то они должны были бы содержаться в одинаковой пропорции всюду во Вселенной, во всех ее звездах. Так что требуется найти другой «котел» для их производства.

В 1956 году Фред Хойл (рис. 24.2) со своим американским коллегой Уильямом Фаулером (1911–1995) и английскими астрономами Маргарет и Джеффри Бербиджами показали, что элементы тяжелее гелия совершенно естественно рождаются в ходе ядерных реакций в горячих недрах звезд. Они вычислили, какое количество каждого элемента образуется на разных стадиях звездной эволюции и какая его часть возвращается в межзвездные газовые облака. Мы уже обсуждали процессы внутри звезд и то, как химические элементы выбрасываются в межзвездное пространство при взрывах сверхновых (см. главу 19). Результат работы Хойла с коллегами оказался замечательным: в этом процессе химические элементы формируются именно в таком соотношении, какое наблюдается в природе.

Рис. 24.2. Фред Хойл (1915–2001) во время своего визита в Финляндию в 1982 году. Фото: Markku Poutanen.

Более того, Хойл вместе с Роджером Тейлером показали, что весь гелий не мог образоваться в звездах. Если бы гелий, составляющий примерно четверть массы каждой звезды, образовался в реакциях термоядерного синтеза в недрах звезд, то их излучение было бы гораздо сильнее той яркости галактик, которая наблюдается. Примерно 90 % гелия должно было образоваться где-то в другом месте. Но если принять во внимание Большой взрыв, то вычисления хорошо согласуются с наблюдаемым количеством гелия.

Космическое фоновое излучение

Как раз в то время, когда в Англии Хойл и Тейлер рассчитывали последствия Большого взрыва, на другом берегу океана, в Принстоне, Роберт Дикке с коллегами начал поиски его остаточного излучения. Молодой член группы Джим Пиблз теоретически оценивал ожидаемые параметры этого излучения, а остальные участники работы создавали измерительные приборы. Но еще до начала их наблюдений это излучение случайно открыли другие. Арно Пензиас и Роберт Вильсон из Лабораторий «Белл» исследовали радиошумы, нарушающие телефонную связь. Они обнаружили, что некоторые шумы приходят из-за пределов Земли, а возможно, даже из-за пределов Галактики. Поэтому телефонная компания «Белл» мало что могла сделать для снижения шума; но все же — где он возникал?

Пензиас случайно услышал о семинаре, на котором незадолго до этого Пиблз рассказал об ожидаемом «эхе» Большого взрыва. Его свойства соответствовали наблюдаемому радиошуму. Так в 1965 году было открыто космическое фоновое излучение. За это открытие Пензиас и Вильсон получили Нобелевскую премию (рис. 24.3).

Космическое фоновое излучение распределено по разным длинам волн в соответствии со спектром излучения абсолютно черного тела (рис. 24.4). Как мы уже знаем, этот спектр описывается единственным параметром — температурой. Чем выше температура, тем короче длина волны максимума излучения. Наблюдаемый пик фонового излучения в микроволновом диапазоне соответствует температуре 2,7 К. То, что его спектр в точности соответствует излучению абсолютно черного тела, было надежно доказано в 1992 году американской космической обсерваторией СОВЕ (Cosmic Background Explorer, Исследователь космического фона). За этот результат Джон Мазер и Джордж Смут разделили Нобелевскую премию в 2006 году.

Рис. 24.3. Рупорная антенна, с помощью которой Пензиас и Вильсон обнаружили космическое фоновое излучение.

Как раз такой спектр и должен быть у излучения горячего газа, оставшегося после Большого взрыва. Другой ключ к разгадке природы этого излучения был получен из его распределения по небу: оно оказалось изотропным, то есть приходящим равномерно из всех направлений в пространстве. Излучение немного усиливается (его температура выше) в направлении созвездия Лев, а самая низкая температура наблюдается в противоположной стороне неба. Эта особенность отражает движение Земли сквозь однородное поле излучения. Эффект Доплера делает встречное излучение чуть ярче и теплее, чем излучение, приходящее сзади. Измерение этой неоднородности позволяет определить движение Земли во Вселенной. Точнее, можно измерить скорость планеты относительно этого излучения, которое при своем рождении имело одинаковую интенсивность в разных частях Вселенной и теперь задает уникальную естественную систему координат для измерения движений (не следует путать это с неудачными попытками, предпринятыми в XIX веке, измерить наше абсолютное движение относительно эфира).

Рис. 24.4. Интенсивность излучения абсолютно черного тела при температуре 2,73 К (-270,42 °C) в зависимости от длины волны (сплошная линия) и наблюдения со спутника СОВЕ космического фонового излучения (точки).

По движению Земли сквозь фоновое излучение мы можем вывести движение всей Местной группы галактик. По-видимому, она «плывет» в сторону южного созвездия Гидра со скоростью 600 км/с. Фактически мы входим в состав широкого потока галактик, движущегося в этом направлении. Похоже, что частично это движение стимулировано притяжением к соседнему массивному скоплению Virgo (Дева), но еще сильнее действие значительно более далеких и крупных масс, притягивающих нашу и окружающие галактики в течение всей жизни Вселенной и придающих этому потоку большую скорость. Как мы знаем, элементами крупномасштабной структуры Вселенной служат сверхскопления галактик. За нашим Местным сверхскоплением с центром в скоплении Virgo находятся более крупные агрегаты; в числе ближайших — сверхскопление Гидры-Кентавра, лежащее недалеко от направления нашего движения. Этот или другие комплексы за ним могли породить поток галактик, в котором мы движемся.

Температура, вещество и излучение.

В предшествующей истории космоса фоновое излучение было теплее, чем нынешнее, весьма холодное, с температурой всего 2,7 К. По мере расширения Вселенной длина волны любого излучения возрастает: волна растягивается вместе со Вселенной. Но при этом замечательно то, что сохраняется чернотельный спектр излучения, хотя его температура снижается: она уменьшается обратно пропорционально размеру Вселенной.

В эпоху, когда излучение освободилось от взаимодействия с веществом, температура газа составляла примерно 3000 К. С того момента это излучение начало свободно распространяться в нашу сторону, а Вселенная за это время расширилась в 3000/2,7 = 1100 раз во всех направлениях. Когда излучение тронулось в путь, возраст Вселенной был около 400 000 лет. А незадолго до этого момента случилось еще одно важное событие: в более раннюю эпоху главным космическим «элементом» было излучение, но как раз тогда его заменило в этой роли вещество. Поэтому космическое микроволновое излучение несет информацию об эпохе, когда произошла эта смена основного компонента Вселенной.

Используя формулу Эйнштейна (Е = mс2), мы можем вычислить энергию вещества, содержащуюся в некотором объеме пространства, и сравнить ее с энергией излучения в том же объеме. Эти две различные формы энергии реагируют на расширение пространства по-разному: излучение ослабевает быстрее, чем вещество. Может показаться, что неважно, в какой форме была космическая энергия: в форме излучения или вещества. Но это не так. Только вещество может образовать структуры, излучение же распределяется однородно. В мире, которым управляет излучение, не могли бы возникнуть реальные объекты, в том числе и мы с вами. Излучение разогнало бы материю при ее попытках сконцентрироваться.

Астрономическая машина времени.

Астрономические наблюдения обращены в прошлое. Чем дальше источник приходящего к нам света, тем более давнюю историю он нам рассказывает. Космическое микроволновое излучение приносит информацию об эпохе, удаленной на 14 млрд лет. Оно рассказывает нам о главном событии в истории Вселенной — о рождении первых атомов. До этого момента электроны и атомные ядра двигались независимо друг от друга (то есть газ был ионизован). Лишь после того, как плотность и температура достаточно снизились, электроны смогли занять свои стабильные места на орбитах вокруг ядер. Когда электроны оказались связанными в атомах, Вселенная стала прозрачной и свет получил возможность переносить информацию на большие расстояния. В нашу эпоху эти новости о том древнем событии составляют лишь малую часть шума, мешающего радио-и телевизионному вещанию (рис. 24.5).

Рис. 24.5. (а) В эпоху молодости Вселенной фотоны космического излучения не допускали формирования атомов водорода из протонов (+) и электронов (-). (6) Когда излучение ослабло, смогли образоваться атомы. В этот момент пространство стало прозрачным настолько, что фотоны смогли почти свободно перемещаться между атомами.

Кроме того, что фоновое излучение рассказывает нам о рождении атомов водорода, это к тому же исторический документ, рассказывающий о структуре мира в ту эпоху. Прочесть этот документ не так-то легко: структурные детали очень слабы — на уровне 0,00001 интенсивности излучения. Чтобы их заметить, понадобились спутники на околоземной орбите. Пионерами в этом деле были российская космическая обсерватория «Реликт-1» и американский спутник СОВЕ. Группа под руководством Джорджа Смута из Калифорнийского университета в Беркли объявила о результатах эксперимента СОВЕ в апреле 1992 года (позже выяснилось, что «Реликт-1» видел те же структуры, хотя и не так четко). Резко улучшил качество измерений американский спутник WМАР в 2003 году, но еще раньше начался вал открытий по результатам наблюдений с высотных аэростатов и наземных обсерваторий, расположенных в местах с подходящим климатом (например, в Антарктиде).

Измеряя геометрию пространства.

Теоретики ожидали, что наиболее заметные пятна с избытком излучения на микроволновом небе должны иметь угловой размер Луны. Легко понять, что размер таких пятен зависит от геометрии Вселенной. Мы уже объясняли в главе 15, что угол, под которым виден далекий объект, зависит от кривизны пространства. В сферическом пространстве объект кажется больше, чем в плоской эвклидовой Вселенной, а в гиперболическом пространстве он кажется меньше. Таким образом, измеряя размер пятен микроволнового излучения, можно точно измерить общую геометрию (рис. 24.6).

Рис. 24.6. Мельчайшие вариации температуры космического фонового излучения, измеренные в эксперименте «Бумеранг» на участке неба размером 10 x 20 квадратных градусов. Характерный угловой размер неоднородностей, около 1°, свидетельствует, что пространственная геометрия Вселенной плоская. Credit: The Boomerang Collaboration.

Первые сведения о существовании пятен предпочтительного размера поступили в 1993–1995 годах от сотрудников Института Макса Планка (Германия) и Принстонского университета (США), наблюдавших это на телескопе в г. Саскатун (Канада). А убедительные измерения были проведены в 1998 году с аэростатов: экспериментом Boomerang (Balloon Observations of Millimetric Extragalactic Radiation And Geophysics, Баллонные наблюдения миллиметрового внегалактического излучения и решение задач геофизики) руководили А. Ланге (Калифорнийский технологический институт) и П. де Бернардис (Римский университет), а экспериментом Maxima (Millimeter-wave Anisotropy Experiment Imaging Array, Эксперимент по картированию анизотропии в микроволновом диапазоне) — П. Ричардс (Калифорнийский университет в Беркли). Эти наблюдения показали, что предпочтительный размер пятен фонового излучения соответствует плоской Вселенной. Наконец, космическая обсерватория WMAP (большой коллектив под руководством Чарлза Беннетта из Годдардовского центра космических полетов и Университета Джонса Гопкинса) подтвердила предыдущие результаты с более высокой точностью и измерила параметр Ω = 1,02 ± 0,02. Значение Ω = 1 соответствует плоской Вселенной, Ω > 1 говорит о сферическом пространстве, а Ω <1 указывает на гиперболическую геометрию. Таким образом, наше пространство должно быть почти точно эвклидовым, и любое отклонение от плоскостности — очень малым (рис. 24.7).

Рис. 24.7. Сравнение наилучшей космологической модели с бесконечной протяженностью и плоской геометрией (непрерывная линия) с измерениями космического микроволнового фонового излучения, полученными космической обсерваторией WMAP и другими приборами (точки с «усами» ошибок). Угловой масштаб вариаций указан в верхней части рисунка. Источник: NASA.

Происхождение гелия.

Значительная часть первых 100 000 лет космической истории прошла при доминировании излучения. Вселенная была иной и очень простой: ее заполнял однородный газ, всюду нагретый до одинаково высокой температуры. По мере расширения Вселенной температура и плотность газа снижались. Постепенно эпоха, когда всем управляло излучение, подходила к концу. Но если отправиться в прошлое, к самому началу, когда после Большого взрыва прошло всего несколько минут, то температура в то время была выше» чем в центре Солнца. Поражает воображение, что тогда по всей Вселенной происходили ядерные реакции, похожие на те, что в наши дни генерируют энергию Солнца. Слияние протонов и нейтронов рождало ядра дейтерия, которые после столкновений друг с другом и протонами превращались в гелий.

Количество образовавшегося гелия в первую очередь зависит от соотношения числа нейтронов и протонов. Через 100 секунд после Большого взрыва, когда температура опустилась до миллиарда градусов, на каждые 6 нейтронов было 42 протона. Эти шесть нейтронов соединялись с шестью протонами и образовывали шесть ядер дейтерия, которые затем превращались в три ядра гелия. В результате получалось 36 ядер водорода (протонов) на каждые 3 ядра гелия. Относительные доли гелия и водорода (по массе) составили при этом 4 х 3/48 = 25 % для гелия и 36/48 = 75 % для водорода (поскольку ядра Не вчетверо тяжелее ядер H). По истечении 200 секунд после Большого взрыва, когда температура упала до 700 млн К, реакция синтеза гелия закончилась, и это соотношение гелия и водорода осталось неизменным во всех частях Вселенной.

Первая секунда.

Давайте продвинемся еще дальше в прошлое. С момента Большого взрыва до наших дней прошло 14 млрд лет, первые атомы родились через 400 000 лет, а весь гелий образовался примерно к концу третьей минуты. А в течение первой секунды Вселенная состояла практически из одинакового количества вещества и антивещества. Современный мир почти весь из вещества, тогда как частицы антивещества очень редки и короткоживущи. Когда сталкиваются частица и античастица, обе они исчезают — аннигилируют, превращаясь в излучение. В современном мире нелегко быть античастицей: притаившиеся в каждом углу частицы готовы в момент разделаться с античастицей.

Как же тогда античастицы могли существовать в течение первой секунды? Ответ состоит в том, что излучение тогда было настолько ярким и энергичным, что новые пары частица-античастица постоянно рождались из квантов излучения. Этот процесс противоположен разрушению пар частица-античастица. Противоположные процессы возможны, так как материя и энергия взаимозаменяемы в соответствии с формулой Эйнштейна Е = mс2. Когда температура достаточно высока, рождение и аннигиляция пар частица-античастица происходят с одинаковой частотой, и между этими антиподами может сохраняться равновесие (рис. 24.8).

Рис. 24.8. (а) Достаточно энергичный фотон может родить пару частица-античастица, например электрон и позитрон, (б) Фотон высокочастотного излучения рождается при столкновении частицы с античастицей. В молодой Вселенной эти взаимно обратные процессы были уравновешены.


Но по мере расширения Вселенной и падения температуры в некоторый момент рождение пар становится невозможным, а аннигиляция продолжается и приводит к массовой гибели частиц и античастиц. То, что некоторые частицы выживают, объясняется небольшой асимметрией: число частиц чуть-чуть больше числа античастиц. Причина этой асимметрии до сих пор не ясна. А. Д. Сахарову и В. А. Кузьмину удалось выяснить необходимые для этого физические условия. Кажется, природа не отдает предпочтения веществу перед антивеществом; но почему-то история Вселенной началась с небольшой асимметрии в пользу вещества. По оценкам на каждые 1500 млн античастиц приходилось 1500 млн плюс одна частица. Когда 1500 млн частиц уничтожили столько же античастиц, оставалась еще одна частица, которая позже вошла в структуру Вселенной. А погибшие частицы и античастицы продолжили свое существование в виде излучения. Хотя фундаментальная физика пока не может найти причину указанной асимметрии, но именно благодаря ей мы существуем!

У каждого сорта частиц есть свои античастицы, а насколько долго после Большого взрыва они просуществуют в равном количестве, зависит от их массы. В отличие от пар массивных частиц и античастиц, легкие пары могут возникать из менее энергичных фотонов при более низких температурах. Температуру, выше которой возможен баланс частица-античастица, называют пороговой температурой этой частицы. Электрон и его античастица позитрон являются самыми легкими частицами (мы не принимаем во внимание нейтрино, масса которого гораздо меньше, но пока не определена). Пороговая температура электрона равна 10 млрд градусов. До этого значения температура Вселенной снизилась через 1 секунду после Большого взрыва, и это стало особым моментом в истории космоса. Примерно в этот момент или чуть позже произошла последняя аннигиляция между электроном и позитроном, после чего в космосе уже не осталось антивещества.

В период между 0,0001 с (= 10-4 с) и 1 с наиболее распространенными частицами во Вселенной были лептоны. В этот или более короткий период электроны и позитроны постоянно рождались и разрушались, присутствуя в большом количестве. Вот почему это время называют эпохой лептонов. Напомним названия трех основных типов субатомных частиц: лептоны, адроны и фотоны. Лептоны — это электроны, мюоны и нейтрино. Адроны — это барионы и мезоны, состоящие из более элементарных частиц — кварков.

В промежутке между 0,00001 С (= 10-5 с) и 10-4 с в большом количестве существовали более массивные адрон-антиадронные пары (в основном пионные). Этот период называют эпохой адронов. Позже даже самые легкие адрон-антиадронные пары аннигилировали и больше никогда уже не возникали, поскольку фотоны позже уже не имели достаточно энергии для образования адрон-антиадронных пар.

А еще раньше основными частицами были кварки и антикварки. Период между 10-12 с и 10-5 с называют эпохой кварков. В этот период плотность материи была так велика, что адроны не могли возникать как связанные системы. Существовали только свободные кварки. Когда началась эпоха кварков, температура была около 1016 (= 10 миллионов миллиардов) градусов.

В эпоху адронов (между эпохами кварков и лептонов) адроны могли существовать как отдельные частицы, но аннигиляция адронов и антиадронов еще не завершилась. Моментом рождения протонов (то есть водорода) можно считать начало эры адронов на 0,00001 с. В это время плотность вещества была очень высокой, сравнимой с плотностью внутри протона, то есть в 1015 раз плотнее воды.

Нейтрино заслуживают отдельного упоминания. Согласно теории, сегодня они самые многочисленные среди частиц. В каждом кубическом сантиметре пространства должно содержаться 600 нейтрино, родившихся в юной Вселенной. К сожалению, они так слабо взаимодействуют с обычной материей, что нам пока не удалось зарегистрировать их.

Загадка Большого взрыва.

Историю Вселенной можно проследить назад в прошлое до эпохи ядерного синтеза при космическом возрасте в несколько минут. Имеющиеся астрономические данные и общепринятая физическая теория служат надежным фундаментом для этой цели. Но описание более ранних эпох гораздо менее надежно. И совершенно закрыто от нас рождение Вселенной. Можно сказать, что Большой взрыв — это не более чем метафора. Очевидно, что не было «взрыва», подобного взрыву водородной бомбы. Но что же это было, что заставило Вселенную расширяться? Есть еще несколько конкретных вопросов, касающихся природы Большого взрыва.

• Почему сила Большого взрыва была как раз такой, чтобы Вселенная приобрела в точности критическую плотность (плоское пространство)?

• Почему Вселенная изотропна, то есть одинакова во всех направлениях?

• Почему во Вселенной были отдельные области, «зародыши», с небольшим избытком плотности, которые позже превратились в галактики?

Большой взрыв мог бы оказаться слишком слабым, и в этом случае Вселенная быстро сколлапсировала бы обратно и вернулась к своему исходному состоянию. Или же он мог оказаться слишком сильным — в этом случае галактики не родились бы. Но расширение как раз такое, какое нужно: существуют области, в которых расширение уже прекратилось (галактики), в то время как в больших областях между галактиками расширение продолжается и не дает галактикам скапливаться и сливаться друг с другом.

Одним из популярных ответов на вопрос о тонкой настройке Вселенной служит антропный принцип. Можно представить, что существует бесконечное число вселенных. Почти все они непригодны для жизни, так как необходимые для возникновения жизни долгоживущие структуры в них не возникают. Но среди них есть по крайней мере одна с необходимой тонкой настройкой и скоростью расширения — наша! Если бы не возникло ни одной пригодной для жизни вселенной, то никто этого и не заметил бы. Мы еще вернемся к этой проблеме в главе 33.

А в чем проблема изотропии? Она связана с космологическим горизонтом; это расстояние, дальше которого мы не видим, по крайней мере — сейчас. Внутри горизонта располагается вся наблюдаемая Вселенная, а вне его пространство простирается, возможно даже — до бесконечности. Свет, возникший за горизонтом, все еще идет к нам. Эта граница существует из-за того, что у Вселенной конечный возраст (рис. 24.9). Таким образом, горизонт ограничивает пространство, которое мы видим; но в качестве достойной компенсации мы получаем возможность видеть рождение Вселенной, или, точнее, те события после ее рождения, излучение от которых мы можем зафиксировать. На сегодня фоновое излучение — это самый далекий посланец. Если мы когда-нибудь научимся регистрировать космическое нейтрино, то это будет весточка из эпохи, когда после Большого взрыва прошло менее одной секунды.

Рис. 24.9. Космологический горизонт — это расстояние, с которого свет может дойти до нас за время существования Вселенной (около 14 млрд лет). С большего расстояния свет еще не дошел до нас. С течением времени горизонт расширяется, и мы видим все более далекие области.

Подобно тому как у нас есть свой горизонт, у каждой точки расширяющейся Вселенной тоже есть собственный горизонт. Если две точки расположены достаточно далеко друг от друга, их горизонты не перекрываются. В таком случае Вселенную можно рассматривать как содержащую огромное количество отдельных областей, которые никогда не обменивались информацией друг с другом. В прошлом размер горизонта был меньше, чем сейчас, так как после Большого взрыва прошло меньше времени, а значит, лучи света пролетели меньшее расстояние. Но даже сейчас нетрудно найти далекие области, лежащие в разных направлениях и ничего не знающие друг о друге. Например, возьмем две любые противоположные области на небе. Космическое фоновое излучение из этих направлений возникло в местах, отдаленных друг от друга на миллиарды световых лет, когда возраст Вселенной был меньше миллиона лет. Вычисления показывают, что пятна фонового излучения, разделенные на небе более чем на пару градусов, возникли в областях, которые никогда не могли контактировать друг с другом. В то же время характеристики этого излучения очень мало меняются от одной области к другой. Как это возможно? В этом и заключается проблема изотропии.

Инфляция и космологические эпохи.

В эпоху преобладания вещества горизонт расширяется быстрее, чем само пространство, но было ли так всегда? В эпоху своей бурной молодости Вселенная могла расширяться намного быстрее, и даже быстрее, чем сам горизонт. Если это так, то чем ближе мы к Большому взрыву, тем все большую и большую часть Вселенной должен был охватывать горизонт. На этой идее основана так называемая теория инфляции, которая призвана решить проблему изотропии. Возможно, что когда-то внутри одного горизонта находилась практически вся Вселенная либо же как минимум та ее часть, которая сейчас гораздо больше нашего современного горизонта. Все области в пределах нашего поля зрения могли в прошлом соприкасаться друг с другом, и это объясняет однородность и изотропию наблюдаемой Вселенной. Но что заставило совсем юную Вселенную начать расширяться с тем колоссальным ускорением, которого требует инфляционная модель? Эту фазу можно описать, используя силу отталкивания, впервые введенную Эйнштейном и затем отвергнутую им. Увеличив силу отталкивания, использованную в статической модели Эйнштейна, в 10120 раз и ограничив период ее действия до 10-32 с, можно получить инфляционную модель Вселенной. Но только в 1965 году Эраст Борисович Глинер из Физико-технического института им. А. Ф. Иоффе в Санкт-Петербурге понял, что сила отталкивания может возникнуть из космического вакуума. Мы вернемся к этому вопросу после краткой экскурсии по разным периодам эволюции Вселенной, какими они сегодня представляются.

Коротко говоря, в инфляционной модели с самого начала (почти) пустое пространство стало быстро расширяться, и Вселенная оставалась относительно пустой и холодной. Затем вдруг, примерно за 10-32 с, Вселенная заполнилась веществом и излучением при очень высокой температуре, порядка 1028 градусов. Энергия для рождения этого вещества и излучения черпалась из вакуума, в результате чего у него она понизилась до нынешнего значения. После этого процесс расширения стал «нормальным».

Так закончился первый период космической истории — эпоха инфляции. Родившаяся тогда материя не была похожа на ту, которую мы знаем сегодня; да и взаимодействия были другими. Например, электромагнитная сила и слабая сила тогда еще не были независимыми — это была единая электрослабая сила. Такие частицы, как фотоны и W- и Z-бозоны, были неотличимы друг от друга, и тогда еще не было речи об электронах, мюонах и нейтрино в их современном смысле. В ту эпоху могли существовать и какие-то неизвестные частицы вроде гипотетических Х-частиц, которые невозможно создать даже на самых мощных ускорителях. Период между эпохой инфляции и более поздней эпохой кварков можно разделить на две части. Первая фаза называется эпохой теорий великого объединения, а вторая — эпохой теории Вайнберга-Салама. Эти названия связаны с современными теориями взаимодействия. В начальной фазе цветная сила и электрослабая сила представляли собой единую силу, а в следующей фазе они уже разделились (Врезка 24.1).

Хотя гипотетическая эпоха инфляции остается целиком вне рамок наших наблюдений, теория инфляции, помимо того что она объясняет изотропию, приводит и к другим интересным следствиям, которые могут пролить свет на Большой взрыв и рождение галактик. В итоге быстрого «раздувания» Вселенная автоматически переходит к нужной скорости расширения: не слишком большой и не слишком малой. Эта теория утверждает, что пространство должно быть почти или точно плоским, а исследования космического фонового излучения подтверждают этот факт.

Врезка 24.1. Космологические периоды.

При обсуждении молодой Вселенной удобно использовать логарифмическую шкалу времени. Экстремально короткие начальные периоды могут содержать очень важные события, тогда как более поздние длинные периоды могут протекать без сколько-нибудь интересных событий. Логарифмическая шкала времени (в секундах) придает одинаковое значение и ранним коротким, и поздним длинным периодам. Здесь мы указали приблизительное время начала или протекания различных космологических периодов.

Инфляцию используют также для объяснения малых флуктуаций плотности, которые позже превратились в галактики. Сославшись на принцип неопределенности Гейзенберга, можно сказать, что переход от первичного вакуума к современному состоянию вакуума не мог произойти везде одновременно. Материя и излучение родились в одних областях Вселенной немного раньше, чем в других. Этот процесс мог вызвать небольшую рябь, которая в последующие эпохи сохранилась в виде волн давления (об этом см. главу 27).

Антигравитация, космический вакуум и темная энергия.

Эраст Глинер предположил, что силой, которая могла бы придать материи огромные начальные скорости расширения в момент Большого взрыва, служит космическая антигравитация, представленная в уравнениях космологической постоянной Эйнштейна. В основном здесь та же физика, что и в стандартной модели, в которой наблюдаемое в наши дни ускоренное расширение Вселенной вызвано антигравитацией (см. главу 23). Но для объяснения Большого взрыва нужно предположить, что вначале космологическая постоянная была гораздо больше, чем сейчас, и смогла придать первоначальному космологическому расширению экспоненциально быстрый («инфляционный») характер.

Позднее, в 1970-х, эту идею использовала в своих исследованиях Ирина Дымникова из Физико-технического института им. А. Ф. Иоффе, а с начала 1980-х идея стала очень популярна в космологии благодаря усилиям Алана Гута из Массачусетского технологического института, Андрея Линде из московского Физического института им. П. Н. Лебедева, Алексея Старобинского из Института им. Л. Д. Ландау в Москве, Катсухико Сато из Токийского университета и других. Они предложили интересные варианты инфляционных моделей и продемонстрировали, что идея Глинера действительно перспективна при исследовании физики Большого взрыва.

Инфляционные модели подразумевают, что общая теория относительности и «нормальная» физика работают в экстремальных условиях Большого взрыва. Это далекоидущая экстраполяция наших современных знаний. Поэтому научный статус инфляционной модели пока остается неопределенным. В отличие от нее, стандартная фридмановская космология, охватывающая период от нескольких минут после Большого взрыва и вплоть до наших дней, надежно разработана без существенной экстраполяции физических законов и подтверждена множеством астрономических наблюдений.

Основная идея Глинера состоит в том, что космологическая постоянная представляет космическую среду с совершенно особыми свойствами, которые можно описать в терминах плотности и давления. Важно заметить, что состояния движения и покоя неразличимы относительно этой среды. Могут быть два тела, движущиеся с некоторой скоростью относительно друг друга, но эта среда будет неподвижна относительно каждого из них! Это означает, что такая среда не может служить системой отсчета. В механике это особое свойство обычно приписывается вакууму, который считается не более чем пустотой. Теперь у нас есть еще один пример вакуума, который имеет определенную плотность и давление, а значит, обладает определенной энергией. Вакуум Глинера однороден в пространстве, вездесущ и неизменен во времени.

Развивая эту идею, Яков Борисович Зельдович в конце 1960-х годов предположил, что космический вакуум молодой Вселенной был идентичен квантовомеханическому вакууму, открытому Полем Дираком из Кембриджского университета в 1927 году. Квантовый вакуум — это также не пустота, а поле с так называемой нулевой энергией — следствие квантовой природы частиц и полей. Эти вопросы столь фундаментальны и трудны для понимания, что, несмотря на усилия многих ученых, предпринятые в последние десятилетия, предположение Зельдовича не удалось ни доказать, ни опровергнуть.

Вакуум Глинера возродился в космологии современной Вселенной в виде так называемой темной энергии. Это не гипотетический первичный вакуум, а реальный вакуум, обнаруженный при космологических наблюдениях. Темная энергия невидима и проявляет себя только антигравитационным влиянием на движение галактик. Ее макроскопические свойства как среды известны благодаря Глинеру, но ее внутренняя микроскопическая структура до сих пор совершенно загадочна.

Как было рассказано в главе 23, плотность темной энергии впервые измерили на очень больших расстояниях в миллиарды световых лет, используя сверхновые как стандартные свечи. Но похоже, что ее влияние сказывается и на меньших расстояниях в несколько миллионов световых лет, в окрестностях Галактики. Это выяснила международная группа, включающая некоторых авторов этой книги. В обоих случаях хаббловский поток расширения служит естественным инструментом для обнаружения силы отталкивания темной энергии. Фактически гравитация массы Местной группы и антигравитация темной энергии компенсируют друг друга в удивительной близости от нас — недалеко от границы Местной группы, на расстоянии, всего лишь примерно вдвое превышающем расстояние до галактики Андромеда! По движению галактик на таких расстояниях определена «локальная» плотность темной энергии, которая оказалась близкой к «общей» ее плотности или даже в точности равной ей. Это говорит об удивительном факте: антигравитация Эйнштейна действительно является вездесущим явлением во Вселенной, таким же, как гравитация Ньютона.

Самое начало.

В эпоху Античности Платон утверждал, что время появилось вместе с небесами (или пространством). С тех пор мы прошли длинный путь, но постоянно возвращаемся к фундаментальному вопросу: откуда все взялось и как это все начиналось? Вселенная, которую мы видим вокруг себя, каким-то образом возникла в Большом взрыве, но мы не знаем как. Хотя здравый смысл подсказывает нам, что бесплатных обедов не бывает, но все же: если вакуум может самопроизвольно заполнять себя частицами, хотя бы и короткоживущими, то почему вся Вселенная не могла возникнуть из ничего? В конце концов, почему бы и не быть бесплатному обеду, и не только в виде еды, но и в форме целого материального мира?

Такие идеи теоретики обсуждают в рамках квантовой космологии. Когда Вселенная была очень молодой, даже моложе, чем упомянутые ранее 10-32 секунды после Большого взрыва, тогда для Вселенной как целого действовал принцип неопределенности Гейзенберга. Квантовые эффекты становятся доминирующими, когда мы уходим в прошлое к так называемому времени Планка, 10-43 секунды после Большого взрыва. В эту эпоху само понятие времени становится таким запутанным, что не имеет смысла говорить о более ранних моментах времени. Соответственно и у энергии возникает такая гигантская неопределенность, что Вселенная могла бы возникнуть «из ничего». Быть может, великий принцип Гейзенберга откроет перед нами возможность хотя бы в принципе понять, как пространство и время родились 14 млрд лет назад в их особом состоянии, из которого они эволюционировали в то, что мы сегодня имеем. Детали всего этого пока известны очень плохо.

Загрузка...